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Abstract
Keeping user data private is a huge problem both in cloud

computing and computation outsourcing. One paradigm to

achieve data privacy is to use tamper-resistant processors,

inside which users’ private data is decrypted and computed

upon. These processors need to interact with untrusted exter-

nal memory. Even if we encrypt all data that leaves the trusted

processor, however, the address sequence that goes off-chip

may still leak information. To prevent this address leakage,

the security community has proposed ORAM (Oblivious RAM).

ORAM has mainly been explored in server/file settings which

assume a vastly different computation model than secure pro-

cessors. Not surprisingly, naïvely applying ORAM to a secure

processor setting incurs large performance overheads.

In this paper, a recent proposal called Path ORAM is stud-

ied. We demonstrate techniques to make Path ORAM practical

in a secure processor setting. We introduce background evic-

tion schemes to prevent Path ORAM failure and allow for a

performance-driven design space exploration. We propose a

concept called super blocks to further improve Path ORAM’s

performance, and also show an efficient integrity verification

scheme for Path ORAM. With our optimizations, Path ORAM

overhead drops by 41.8%, and SPEC benchmark execution

time improves by 52.4% in relation to a baseline configuration.

Our work can be used to improve the security level of previous

secure processors.

1. Introduction

1.1. Motivation

Security of private data when outsourcing computation to an

untrusted server is a huge security problem. When an un-

trusted server receives private data from a user, the typical

setup places the private/encrypted data along with the program

in a tamper-proof environment (e.g., secure processor or co-

processor attached to the server), at which point the data is

decrypted and the program is run [13, 23]. Secure coproces-

sors such as Aegis [23] and XOM [13] or Trusted Platform

Module (TPM) based systems generally assume the program

being run is trusted–that is, not intentionally malicious and

believed to be free of bugs that could leak information about

the private data, through pin traffic for example.

Having a trusted program is a lofty and sometimes imprac-

tical assumption; the program’s source code may be complex

or even hidden and therefore not certified by the user. For

example, the user may request that a program (e.g., medical

diagnosis software) be run on the data, but not know the details

of the software. The server itself may be honest-but-curious

or even malicious. Security is broken when the server can

learn something about the private data by applying the client

program or some other curious program to the encrypted data

and monitoring the secure processor’s side channels such as

external pin traffic.

We note that some efforts to limit leakage through memory

access patterns (e.g., HIDE [30]) have applied random shuf-

fling to small chunks of memory. While HIDE and related

techniques are quite efficient, obfuscation over small chunks

does not achieve security when the untrusted server specifies

the client program (see Section 6.2).

Completely stopping information leakage through memory

access patterns requires the use of Oblivious RAMs (ORAMs)

[7, 15, 8]. ORAMs make the sequence of memory locations ac-

cessed indistinguishable from a random sequence of accesses,

from a cryptographic standpoint. There has been significant

follow-up work that has resulted in more efficient ORAM

schemes [19, 21]. But till recently, ORAM has been assumed

to be too expensive to integrate into a processor from a perfor-

mance overhead standpoint.

Our focus in this paper is on Path ORAM, a recent ORAM

construction introduced in [20]. A recently-proposed secure

processor architecture called Ascend performs encrypted com-

putation assuming untrusted programs and furthermore uses

Path ORAM to obfuscate memory access patterns [3, 4]. We

use the Path ORAM configuration in [3] as a baseline in this

paper. Our focus here is on optimizing the Path ORAM primi-

tive in a secure processor setting, so it can be more efficiently

integrated into all types of secure processors, including As-

cend.

1.2. Our Contribution

We believe ORAM is a useful cryptographic primitive in many

secure architecture settings, but it has not received much atten-

tion from the architecture community thus far. In this paper,

we make the following contributions:

1. We present optimizations to Path ORAM to make it more

suitable for implementation in a secure processor setting;

2. We give a provably-secure background eviction scheme

that prevents so-called Path ORAM failure (defined in

Section 2) and enables more efficient ORAM configura-

tions;

3. We shrink the dimensions of failure probability and per-
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formance overhead to a single dimension, allowing for

easy design space exploration;

4. We propose the notion of super blocks, further improving

Path ORAM performance;

5. We show how to efficiently implement Path ORAM on

commodity DRAM;

6. We show that combining all of our optimizations results

in a 41.8% reduction in Path ORAM overhead and a

52.4% improvement on SPEC benchmarks execution

time in relation to a baseline Path ORAM configuration;

and

7. We propose an efficient integrity verification layer for

Path ORAM.

Integrity verification [6] and encryption [13] [23] of mem-

ory contents were initially considered difficult to do without

serious performance degradation prior to architectural research

(e.g., [22], [28], [26], [10]) that addressed processor perfor-

mance bottlenecks. We take a similar first step for Oblivious

RAM in this paper.

1.3. Paper Organization

We give background on ORAM and describe Path ORAM in

Section 2. Our improvements to Path ORAM are described

in Section 3, and evaluation results are provided in Section 4.

Section 5 introduces a efficient integrity verification scheme

for Path ORAM. Related work is described in Section 6, and

we conclude the paper in Section 7.

2. Oblivious RAM

Suppose we are given program P with input M and any other

program P′ with input M′ and compare the first T mem-

ory requests made by each (denoted transcriptT (P(M)) and

transcriptT (P
′(M′))). A transcript is a list of requests: each re-

quest is composed of an address, operation (read or write) and

data (if the operation is a write). Oblivious RAM (ORAM)

guarantees that transcriptT (P(M)) and transcriptT (P
′(M′))

are computationally indistinguishable. Crucially, this is saying

that the access pattern is independent of the program and data

being run.

A simple ORAM scheme that satisfies the above property

is to read/write the entire contents of the program memory to

perform every load/store. To hide whether a particular block

was needed in the memory scan (and if it was, whether the

operation was a read or a write), every block must be encrypted

using randomized encryption (e.g., AES in CTR mode), which

means that with overwhelming probability the bitstring making

up each block in memory will change. With this scheme, the

access pattern is independent of the program or its data but

clearly it will have unacceptable overheads (on order the size

of the memory). Modern ORAM schemes achieve the same

level of security through being probabilistic. In this work, we

focus on a recent proposal called Path ORAM [20] because of

its practical performance and simplicity.

Level L = 3

Level 2

Level 1

Level 0

Leaf 1 Leaf 2 = 8Leaf l = 6
L

Stash

External memory

ORAM interface

Path to leaf l

Stash stores up to C blocks

Z = 4 blocks

Figure 1: A Path ORAM of L = 3 levels. At any time, blocks

mapped to leaf l = 6 can be located in any of the shaded struc-

tures (i.e., on path 6 or in the stash).
ORAM assumes that the adversary sees transcriptT (P(M))

as opposed to other program state for P(M). A trusted ORAM

client algorithm, which we refer to as the ORAM interface,

translates program memory requests into random-looking re-

quests that will be sent to an untrusted external memory where

data is actually stored. (In our secure processor setting, the

ORAM interface is analogous to a memory controller.) Note

that the ORAM interface’s job is only to protect against leak-

age through transcriptT (P(M)), given a T fixed across all

transcripts. If the adversary compares two transcripts of dif-

ferent length, clearly the adversary can tell them apart. Fur-

thermore, when each access in the transcript is made can leak

information. Ascend [3, 4] deals with these leakage channels

by forcing periodic requests of ORAM and predetermined

program running time. However, this paper will focus only on

making the ORAM primitive as efficient as possible since it is

a least-common-denominator in any scheme.

2.1. Basic Path ORAM

In Path ORAM, the external memory is structured as a bal-

anced binary tree, where each node is a bucket that can hold

up to Z blocks. The root is referred to as level 0, and the

leaves as level L. This gives a tree with L+1 levels, holding

up to N = Z(2L+1− 1) data blocks (which are analogous to

processor cache lines in our setting). The remaining space

is filled with dummy blocks that can be replaced with real

blocks as needed. As with data blocks in the naïve memory

scan scheme, each block in the ORAM tree is encrypted with

randomized encryption.

The ORAM interface for Path ORAM is composed of two

main structures, a stash1 and a position map, and associated

control logic. The position map is an N-entry lookup table

that associates the program address of each data block with a

leaf in the ORAM tree. The stash is a memory that stores up

to a small number, C, of data blocks from the ORAM tree at a

time. Now we describe how Path ORAM works. Readers can

refer to [20] for a more detailed description.

At any time, each data block stored in the ORAM is

1This is the local cache in [20]. We changed the term to distinguish it from

a processor’s on-chip cache.
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mapped (at random) to one of the 2L leaves in the ORAM

tree via the position map (i.e., ∀ leaves l and blocks b,

Prob(b is mapped to l) = 1/2L). Path ORAM’s invariant (Fig-

ure 1) is: If l is the leaf currently assigned to some block b,

then b is stored (a) in some bucket on the path from the root of

the ORAM tree to leaf l, or (b) in the stash within the ORAM

interface. The path from the root to leaf l is also referred to as

path l.

Initially, the ORAM is empty and the position map asso-

ciates each program address with a random leaf. Suppose

a program wants to access some block b with program ad-

dress u. It makes the request through the ORAM interface via

accessORAM(u,op,b′):

1. Look up the position map with u, yielding leaf label l.

2. Read and decrypt all the blocks along path l. Add all

the real blocks to the stash. Path ORAM’s invariant

guarantees that if block b exists, it must be in the stash at

this point.

3. If op = read, return b if it exists; otherwise return nil. If

op = write, replace b with b′ if it exists; otherwise add a

new block b′ to the stash.

4. Replace l with a new randomly-selected label l′.

5. Evict and encrypt as many blocks from the updated stash

into path l in the ORAM tree. If there is space in any of

the buckets along the path that cannot be filled with data

blocks, fill that space with encryptions of dummy blocks.

We will refer to steps 2-5 as accessPath(u, l, l′,op,b′) later in

the paper.

On a path read, all the blocks (including dummy blocks)

are read and decrypted, but only real blocks are stored into the

stash. For example in Figure 2, the dummy block in leaf 3 is

not put into the stash. Address u = 0 is reserved for dummy

blocks.

Step 4 is the key to Path ORAM’s security: whenever

a block is accessed, that block is randomly remapped to a

new leaf in the ORAM tree (see Figure 2 for an example).

accessORAM() leaks no information on the address accessed,

because a randomly selected path is read and written on every

access regardless of the program memory address sequence.

Furthermore, since data/dummy blocks are put through ran-

domized encryption, the attacker will not be able to tell which

block (if any) along the path is actually needed.

Step 5 is the ORAM ‘shuffle’ operation from the litera-

ture [8]. The idea is that as blocks are read into the stash, in

order to keep the stash size small, step 5 tries to write as many

blocks to the tree as possible, and tries to put each block as

close to the leaves as possible. In the top right box (# 3) in

Figure 2: (b,1) can only go to the root bucket since it only

shares the root bucket in common with the path 3; (c,2) can

no longer be written back to the tree at all since it only shares

the root bucket with path 3, and the root bucket is now full;

(d,4) can be mapped back to the bucket between the leaf and

the root; no block goes to leaf 3, so that bucket needs to be

filled up with the encryption of a dummy block. After all of

the above computation is done, the ORAM interface writes

back the path in a data-independent order (e.g., from the root

to the leaf).

2.2. Randomized Encryption for Path ORAM

The Path ORAM tree and stash have to store a (leaf, pro-

gram address, data) triplet for each data block. Let B be the

data block size in bits. Each leaf is labeled by L bits and the

program address is stored in U = ⌈log2 N⌉ bits. Then each

bucket contains Z(L+U +B) bits of plaintext. As mentioned,

the protocol requires randomized encryption over each block

(including dummy blocks) in external memory, adding extra

storage to each bucket. We first introduce a strawman random-

ized encryption scheme, and then propose a counter-based

randomized encryption scheme to reduce the bucket size.

2.2.1. Strawman scheme A strawman scheme to fully en-

crypt a bucket (used in [3]) is based on AES-128: On a per-

bucket basis, apply the following operation to each block in

the bucket:

1. Generate a random 128-bit key K′ and encrypt K′ using

the processor’s secret key K (i.e., AESK(K
′)).

2. Break up the B plaintext bits into 128-bit chunks (for

AES) and apply a one-time-pad (OTP) to each chunk that

is generated through K′ (i.e., to encrypt chunki, we form

the ciphertext AESK′(i)⊕ chunki).

The encrypted block is the concatenation of AESK(K
′) and the

OTP chunks, and the encrypted bucket is the concatenation of

all of the Z encrypted blocks. Thus, this scheme gives a bucket

size of M = Z(128+L+U +B) bits where Z(L+U +B) is

the number of plaintext bits per bucket from the previous

section. Note that since we are using OTPs, each triplet of

(L+U +B) bits does not have to be padded to a multiple of

128 bits.

2.2.2. Counter-based scheme The downside to the strawman

scheme is the extra 128 bits of overhead per block that is used

to store AESK(K
′). We can reduce this overhead by a factor

of 2 ·Z by introducing a 64-bit counter per bucket (referred to

as BucketCounter). To encrypt a bucket:

1. BucketCounter← BucketCounter+1.

2. Break up the plaintext bits that make up the bucket into

128-bit chunks. To encrypt chunki, apply the follow-

ing OTP: AESK(BucketID||BucketCounter||i)⊕ chunki,

where BucketID is a unique identifier for each bucket in

the ORAM tree.

The encrypted bucket is the concatenation of each chunk along

with the BucketCounter value in the clear. BucketCounter

is set to 64 bits so that the counter will not roll over.

BucketCounter does not need to be initialized; it can start

with any value.

This scheme works due to the insight that buckets are always

read/written atomically. Seeding the OTP with BucketID is

important: it ensures that two distinct buckets in the ORAM

tree will not have the same OTP. A new random key K is
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Remap block B and 

replace data with B’
Write back path 1

Figure 2: An example Path ORAM operation (Z = 1 and C = 4) for reading block b and then updating b to be b′. Each

block has the format: ‘block identifier’,‘leaf label’ (e.g., (b,3)). If the program address for b is u, steps 1-3 correspond to

accessORAM(u,read,−) and steps 4-6 are accessORAM(u,write,b′) from Section 2.1. An adversary only sees the ORAM

interface read/write two random paths (in this case path 3 and path 1).

picked each time a program starts, so that the OTPs used across

different runs will be different to defend replay attacks. With

this scheme, M = Z(L+U +B)+ 64 bits which we assume

for the rest of the paper.

2.3. Hierarchical Path ORAM

The N ·L-bit position map is usually too large, especially for a

secure processor’s on-chip storage. For example, a 4 GB Path

ORAM with a block size of 128 bytes and Z = 4 has a position

map of 93 MB. The hierarchical Path ORAM addresses this

problem by storing the position map in an additional ORAM

(this idea was first mentioned in [21]).

We will refer to the first ORAM in a hierarchy as the data

(Path) ORAM or ORAM1. ORAM1’s position map will now be

stored in a second ORAM ORAM2. If ORAM2’s position map

is still too large, we can repeat the process with an ORAM3

or with however many ORAMs are needed. ORAMi,(i ≥ 1)
are referred to as position map ORAMs. To perform an access

to the data ORAM in a hierarchy of H ORAMs, we first

look up the on-chip position map for ORAMH , then perform

an access to ORAMH ,ORAMH−1, . . . ,ORAM1. Each ORAM

lookup yields the path to access in the next ORAM.

To be concrete, we give an example with a 2-level hierarchi-

cal Path ORAM. Let Nh, Lh, Bh, Mh, Ch, and Zh be the param-

eters for ORAMh (h = 1,2, variable names are analogous to

Section 2.1). Since the position map of ORAM1 has N1 entries

and each block in ORAM2 is able to store k2 = ⌊B2/L1⌋ labels,

ORAM2’s capacity must be at least N2 = ⌈N1/k2⌉≈N1 ·L1/B2.

The number of levels in ORAM2 is L2 = ⌈log2 N2⌉−1.

The invariant is, if some data block b1 in ORAM1 has pro-

gram address u1, then

1. there exists a block b2 in ORAM2 with program address

u2 = ⌊u1/k2⌋+ 12; the i = u1− (u2− 1)k2-th leaf label

stored in b2 equals l1.

2The +1 offset is because address u2 = 0 is reserved for dummy blocks in

ORAM2.

2. For h = 1,2, bh is mapped to a uniformly random leaf

lh ∈ {1, . . . ,2
Lh} in ORAMh’s tree; bh is either in some

bucket along path lh in ORAMh’s tree, or in ORAMh’s

stash (the Path ORAM invariant holds for each ORAM

in the hierarchy).

Given the above invariants, accessHORAM(u1,op,b′1) be-

low describes a complete 2-level hierarchical ORAM access:

1. Generate random leaf labels l′1 and l′2. Determine i and

u2 as described in the invariant.

2. Lookup ORAM2’s position map with u2, yielding l2.

3. Perform accessPath(u2, l2, l
′
2,write,b′2) on ORAM2,

yielding block b2 (as described in the invariant). Record

l1, the ith leaf label in b2. Replace l1 with l′1 to get b′2.

4. Perform accessPath(u1, l1, l
′
1,op,b′1) on ORAM1. This

completes the operation.

accessPath() is defined in Section 2.1.

A hierarchical Path ORAM requires an additional state ma-

chine to decide which ORAM is being accessed and requires

additional storage for each ORAM’s stash.

2.4. Path ORAM Storage & Access Overhead

To store up to N ·B data bits, the Path ORAM tree uses

(2L+1−1) ·M bits, where M = Z(L+U +B)+64 as defined

in Section 2.2.2. In practice, the Path ORAM tree would be

stored in DRAM. In that case M should be rounded up to a

multiple of DRAM access granularity (e.g. 64 bytes). For

a hierarchical ORAM with H ORAMs, the on-chip storage

includes the stash for each ORAM, ∑
H
i=1 Ci(Li +Ui +Bi) bits

in total, and the NH ·LH -bit position map for ORAMH .

We define Path ORAM Access_Overhead as the ratio be-

tween the amount of data moved and the amount of useful

data per ORAM access. In order to access B bits (one data

block) in Path ORAM, (L+1)M bits (an entire path) have to

be read and written, giving Access_Overhead =
2(L+1)M

B
.

The access overhead of hierarchical Path ORAM is similarly
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Figure 3: The probability that the number of blocks in the

stash exceeds a certain threshold for different Z, in a 4 GB

Path ORAM with 2 GB working set and an infinitely large stash.

defined as
∑

H
i=1 2(Li +1)Mi

B1
. The denominator is B1 because

only the block in data ORAM is needed by the processor.

2.5. Limitations of Path ORAM for Secure Processors

As mentioned, Path ORAM was not originally designed for

secure processors. Below we list the limiting factors for Path

ORAM in a secure processor setting, and briefly talk about

how we will address them.

2.5.1. Stash overflow Path ORAM fails when its stash over-

flows. Despite the write-back operation, blocks can still ac-

cumulate in Path ORAM’s stash. When a block is remapped

on an access, the probability that it can be written back to the

same path is low. This may cause the total number of blocks

in the stash to increase by one after an access.

Figure 3 gives the cumulative distribution of stash occu-

pancy for a 4 GB Path ORAM with 2 GB working set and

different Z, assuming an infinitely large stash. In this exper-

iment, we take a data point after every access and show the

histogram. In particular, Figure 3 shows the probability that

the number of blocks in the stash exceeds a certain threshold

C, which is equivalent to the failure probability with a stash

of size C. Even with a stash size of 1000 blocks, Path ORAM

with Z ≤ 2 always fails and Path ORAM with Z = 3 fails with

∼ 10−5 probability. This problem can be alleviated by making

Z ≥ 4. However, a larger Z increases Access_Overhead (Sec-

tion 2.4). We will introduce background eviction—a scheme

to empty the stash when it fills—to eliminate Path ORAM

failure probability in Section 3.1.

2.5.2. Access latency To access a data block/cache line, a

normal processor will initiate a fast page or burst command

to a DRAM to access specifically the cache line of interest (B

bits). By contrast, Path ORAM moves hundreds of times more

data (given by Access_Overhead) than a normal processor

does per access, significantly increasing the memory access

latency.3

Decreasing Z can proportionally decrease Path ORAM’s

access overhead. However, such configurations are precluded

because they significantly increase the failure probability (Fig-

ure 3). In Section 4.1 we will use our background eviction

3In fact, Path ORAM latency accounts for most of the performance over-

head in the Ascend secure processor [3, 4].

technique to make these higher performance configurations

possible in a secure processor setting.

2.5.3. Low DRAM utilization In the original Path ORAM

paper [20], the authors suggest setting the maximum num-

ber of data blocks in the ORAM to the number of buckets,

which means only 1/Z of blocks contain valid data (the rest is

made up of dummy blocks). As with trying to reduce latency,

increasing the number of valid blocks in the ORAM, while

keeping the ORAM capacity and Z fixed, leads to a larger fail-

ure probability. In Section 4.1.3 we show DRAM utilization

can be improved.

3. Path ORAM Optimization

We now describe techniques to improve Path ORAM in a

secure processor context.

3.1. Background Eviction

3.1.1. Proposed background eviction scheme To be us-

able, a background eviction scheme must (a) not change the

ORAM’s security guarantees, (b) make the probability of stash

overflow negligible and (c) introduce as little additional over-

head to the ORAM’s normal operation as possible. For in-

stance, a strawman scheme could be to read/write every bucket

in the ORAM tree when stash occupancy reaches a threshold—

clearly not acceptable from a performance standpoint.

Unfortunately, the strawman scheme is also not secure. We

make a key observation that if background evictions occur

when stash occupancy reaches a threshold, the fact that back-

ground evictions occurred can leak privacy because some

access patterns fill up the stash faster than others. For exam-

ple, if a program keeps accessing the same block over and

over again, the requested block is likely to be already in the

stash—not increasing the number of blocks in the stash. In

contrast, a program that scans the memory (i.e., accesses all

the blocks one by one) fills up the stash much faster. If an

attacker realizes that background evictions happen frequently,

the attacker can infer that the access pattern of the program is

similar to a memory scan and can possibly learn something

about private data based on the access pattern.

One way to prevent attacks based on when background evic-

tions take place is to make background evictions indistinguish-

able from regular ORAM accesses. Our proposed background

eviction scheme prevents Path ORAM stash overflow using

dummy load/stores. To prevent stash overflow, we stop serving

real memory requests and issue dummy requests whenever the

number of blocks in the stash exceeds C−Z(L+ 1). (Since

there can be up to Z(L+ 1) real blocks on a path, the next

access has a chance to overflow the stash at this point.) A

dummy access reads and decrypts a random path and writes

back (after re-encryption) as many blocks from the path and

stash as possible. A dummy access will at least not add blocks

to the stash because all the blocks on that path can at least go

back to their original places (note that no block is remapped

on a dummy access). Furthermore, there is a possibility that
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some blocks in the stash will find places on this path. Thus,

the stash cannot overflow and Path ORAM cannot fail, by the

definition of ORAM failure we have presented so far, with

our background eviction scheme. We keep issuing dummy

accesses until the number of blocks in the stash drops below

the C− Z(L+ 1) threshold, at which point the ORAM can

resume serving real requests again.

Our background eviction scheme can be easily extended to

a hierarchical Path ORAM. If the stash of any of the ORAMs

in the hierarchy exceeds the threshold, we issue a dummy

request to each of the path ORAMs in the same order as a

normal access, i.e., the smallest Path ORAM first and the data

ORAM last.

Livelock. Our proposed background eviction scheme does

have an extremely low probability of livelock. Livelock occurs

when no finite number of background evictions is able to

reduce the stash occupancy to below C−Z(L+1) blocks. For

example, all blocks along a path may be mapped to the same

leaf l and every block in the (full) stash might also map to

leaf l. In that case no blocks in the stash can be evicted, and

dummy accesses are continually performed (this is similar

to a program hanging). However, the possibility of such a

scenario is similar to that of randomly throwing 32 million

balls (blocks) to 16 million bins (leafs) with more than 200

balls (stash size) landing into the same bin—astronomically

small (on the 10−100 scale). Therefore, we do not try to detect

or deal with this type of livelock. We note that livelock does

not compromise security.

3.1.2. Security of the proposed background eviction Our

background eviction scheme does not leak any information.

Recall that the original Path ORAM (with an infinite stash and

no background eviction) is secure because, independent of

the memory requests, an observer sees a sequence of random

paths being accessed, denoted as

P = {p1, p2, . . . , pk, . . .} ,

where pk is the path that is accessed on kth memory access.

Each pk,(k = 1,2, . . .) follows a uniformly random distribu-

tion and is independent of any other p j in the sequence. Back-

ground eviction interleaves another sequence of random paths

qm caused by dummy accesses, producing a new sequence

Q =
{

p1, p2, . . . , pk1
,q1, . . . , pk2

,q2, . . .
}

.

Since qm follows the same uniformly random distribution with

pk, and qm is independent of any pk and any qn(n 6= m), Q

also consists of randomly selected paths, and thus is indistin-

guishable from P. This shows the security of the proposed

background eviction.

3.1.3. Examples of insecure eviction schemes We point out

that attempts to eliminate livelock (Section 3.1.1) are likely

to break security. We examine the following potentially in-

secure eviction scheme: When the number of blocks in the

stash reaches the threshold, we randomly access a block that
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Figure 4: Average Common Path Length between

consecutively-accessed paths with the insecure eviction

scheme and the proposed background eviction scheme. This

attack compromises the insecure eviction scheme.

is in the stash (referred to as the block remapping scheme).

This scheme will not livelock because the blocks in the stash

will gradually get remapped and ‘escape’ the congested path.

Unfortunately, this is also why security breaks.

We first define CPL(p, p′), the Common Path Length of

path p and p′, which is the number of buckets shared by

the two paths. Given arbitrary p and p′, CPL(p, p′) may be

between 1 and L+1 (two paths at least share the root bucket,

and there are L + 1 levels in total). Using Figure 1 as an

example, CPL(1,2) = 3 and CPL(3,8) = 1. Given an ORAM

tree of L+ 1 levels, if p and p′ are drawn from a uniform

distribution, then

P
(

CPL(p, p′) = l
)

=











1

2l
, 1≤ l ≤ L

1

2L
, l = L+1











,

E
[

CPL(p, p′)
]

= 2−
1

2L
.

For the proposed secure background eviction scheme, the

average CPL should be very close to the expectation. However,

for the sequence Q with the block remapping eviction scheme,

each qm (an access for eviction) is the leaf label of block um

that is in the stash at that point. Note that a block mapped

to path p is less likely to be evicted to the ORAM tree if

the accessed path p′ shares a shorter common path with p.

Therefore, the fact that block um is in the stash suggests that the

access prior to it, which is pkm
, is not in favor of the eviction

of um. So if this eviction scheme is used, the average CPL

between consecutive paths in Q will be significantly smaller

than the expected value 2− 1
2L . We mount this attack 100 times

on a Path ORAM with L = 5, Z = 1 and C−Z(L+ 1) = 2.

Figure 4 shows that our attack can detect the insecure evictions.

The average CPL of our proposed background eviction scheme

is 1.979, very close to the expected value 2− 1
25 ≈ 1.969, while

the average CPL of the insecure eviction scheme is 1.79.

There are other eviction schemes that are harder to break.

For example, an eviction scheme can randomly remap one

of the blocks in the stash and access a random path. This

scheme creates no dependency between consecutive accesses

and thus can defeat the above attack. However, it still tends

6



to remap blocks from congested paths to less congested paths,

and hence may be broken through more sophisticated attacks.

We do not discuss these schemes and the corresponding attacks

since they are tangential to the main topic of this paper.

3.1.4. Impact on performance We modify the definition of

access overhead defined in Section 2.4, taking into account

dummy accesses introduced by background eviction,

Access_Overhead =
RA+DA

RA

2(L+1)M

B
(1)

where RA is the number of real accesses and DA is the number

of dummy accesses. The access overhead of hierarchical Path

ORAM is defined similarly as

Access_Overhead =
RA+DA

RA

∑
H
i=1 2(Li +1)Mi

B1
. (2)

Though dummy accesses waste some cycles, background

eviction now allows more efficient parameter settings that

were previously prohibited due to high failure probability.

We will show that background eviction improves the overall

performance in Section 4.1.

3.2. Super Blocks

So far, we have tried to reduce the amount of data moved per

ORAM access through background eviction and design space

exploration. Another way to improve Path ORAM’s efficiency

is to increase the amount of useful data per ORAM access, by

loading multiple useful blocks on an ORAM access. However,

this is almost impossible in the original Path ORAM, since

blocks are randomly dispersed to all the leaves and are unlikely

to reside on the same path.

To load a group of blocks on a single access, these blocks

have to be intentionally mapped to the same leaf in the ORAM

tree. We call such a group of blocks a super block. It is

important to note that the blocks within a super block S do not

have to reside in the same bucket. Rather, they only have to

be along the same path so that an access to any of them can

load all the blocks in S.

When a block b ∈ S is evicted from on-chip cache, it is put

back into the ORAM stash without waiting for other blocks

in S. At this point it can find its way to the ORAM tree alone.

When other blocks in S get evicted from on-chip cache at a

later time, they will be assigned and evicted to the same path

as b. We remark that this is the reason why super blocks are

not equivalent to having larger blocks (cache lines): a cache

line is either entirely in on-chip cache, or entirely in main

memory.

3.2.1. Merging scheme Super blocks create other design

spaces for Path ORAM, such as super block size, which blocks

to merge, etc. In this paper, we only merge adjacent blocks

in the address space into super blocks. We believe this can

exploit most of the spatial locality in an application, while

keeping the implementation simple. We use the following

simple scheme.

Static merging scheme: only merge adjacent blocks (cache

lines) into super blocks of a fixed size. The super block size is

determined and specified to the ORAM interface before the

program starts. At initialization stage, data blocks are initially

written to ORAM, and the ORAM interface simply assigns

the same leaf label to the blocks from the same super block.

The additional hardware required is small.

We believe dynamically splitting/merging super blocks

based on temporal locality would yield better performance.

We leave such schemes to future work.

3.2.2. Security of super blocks For the same reasons as back-

ground eviction, an access to a super block must be indis-

tinguishable from an access to a normal block for security

reasons. In our scheme, a super block is always mapped to a

random leaf in the ORAM tree in the same way as a normal

block. If any block in the super block is accessed, all the blocks

are moved from ORAM to on-chip cache and also remapped to

a new random leaf. A super block access also reads and writes

a path, which is randomly selected at the previous access to

this super block. This is exactly the Path ORAM operation.

Splitting/merging super blocks is performed on-chip and is

not revealed to an observer.

3.2.3. Impact on performance The super block scheme im-

proves the access overhead by a factor of |S| (the super block

size in terms of blocks), if the |S| blocks returned to the pro-

cessor on a single access do have locality. In this case, per-

formance is improved by reducing on-chip cache miss rate.

The overhead of super blocks is more dummy accesses. For

example, statically merging super blocks of size |S| has similar

effects as reducing the Z by a factor of |S|. We investigate the

potential performance gain of super blocks in Section 4.3.

3.3. Other Optimizations

3.3.1. Exclusive ORAM When connected to a processor, we

design ORAM to be exclusive, i.e., any block in on-chip cache

is not in ORAM. When a block (cache line) in ORAM is

requested, the ORAM interface returns the block to on-chip

cache and removes the block from ORAM. If the target block

belongs to a super block, then the entire super block is removed

from ORAM and put into on-chip cache. This guarantees that

ORAM never has a stale copy of a block. So when a dirty

cache line is evicted from on-chip cache, it can be directly

put into the Path ORAM’s stash without accessing any path.

In contrast, if the ORAM is inclusive, it may contain a stale

copy of the evicted block (if the block has been modified by

the processor). Then the ORAM interface needs to make an

access to update the stale copy in the ORAM.

Let us consider the scenario that most favors an inclusive

ORAM: a program that scans memory and never modifies

any block (all blocks are read-only). In this case, all the

blocks evicted from the last-level cache are clean. In the

inclusive ORAM, each last-level cache miss randomly remaps

the requested block. In the exclusive ORAM, the requested

block is removed after being read into the stash. Another
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Figure 5: The access order in (b) hides encryption latency and

can return data earlier than (a).

block, which is mapped to a random leaf, is evicted from

the last-level cache and put into the stash to make space for

the requested block. So the inclusive ORAM and exclusive

ORAM still add the same number of blocks to the stash, per

access. Note that an exclusive ORAM should perform better

when there are dirty cache lines evicted from on-chip cache.

It is also worth pointing out that in a conventional processor,

a DRAM access is required if a dirty block needs to be written

back to main memory. In that case, the access overhead of Path

ORAM would be lower than what we defined in Equations 1

and 2.

3.3.2. Hierarchical ORAM access order For a hierarchical

ORAM {ORAM1, ORAM2, . . . , ORAMH} (ORAM1 is the data

ORAM and ORAMH is the smallest position map ORAM), in-

stead of performing accessHORAM() as described in Section

2.3 where each ORAM is read and written one by one, we

propose the following more efficient access order, shown in

Figure 5.

We first read a path from each ORAM, starting from

ORAMH to ORAM1. While reading ORAMh, the ORAM in-

terface re-encrypts blocks in ORAMh+1’s stash and prepares

those blocks to be written back. When ORAM1 is read, the

program data of interest is forwarded to the processor. Finally,

the ORAM interface performs path writeback operations for

each ORAM.

This strategy is better than a read/write each ORAM one by

one strategy in the following two aspects. First, it hides the

encryption latency by postponing the path writes, leaving the

ORAM interface enough time to re-encrypt the blocks to evict.

Second, the ORAM interface can return the requested data

block after decrypting ORAM1 so that the processor can start

making forward progress earlier. Note that ORAM throughput

does not change: the writeback operations must occur before

the next set of reads.

3.3.3. Block size for position map ORAMs Although we set

the block size of data ORAM to be 128 bytes to utilize spatial

locality in the programs, all the position map ORAMs should

use a smaller block size, since all we need from a position map

ORAM on an access is a leaf label, which is typically smaller

than 4 bytes. The trade-off of a smaller block size is that

as block size decreases, the number of blocks increases and

hence the new position map grows, and thus more ORAMs

Level L = 3

Level 2

Level 1

Level 0

Leaf 1 Leaf 2 = 8
L

Figure 6: Illustration of subtree locality.

may be needed to reduce the final position map to fit in on-chip

storage.

The block size for position map ORAMs should not be too

small because in that case: (1) other storage in a bucket (the

addresses, the leaf labels and the 64-bit counter) dominate;

and (2) adding an ORAM into the hierarchy introduces one

decryption latency and one DRAM row buffer miss latency as

discussed in Section 3.3.2.

3.3.4. Building Path ORAM on DRAM Previous work on

ORAM (and this paper so far) only focused on ORAM’s theo-

retical overhead, the amount of extra data moved per access

or similar metrics. ORAM has to be eventually implemented

on commodity DRAM in order to be used in secure proces-

sors. However, if not properly done, Path ORAM can incur

significantly larger overhead than the theoretical results when

actually built on DRAM. For example, DRAM latency is much

higher on a row buffer miss than on a row buffer hit. When

naïvely storing the Path ORAM tree into an array, two consec-

utive buckets along the same path hardly have any locality, and

it can be expected that row buffer hit rate would be low. We

propose an efficient memory placement strategy to improve

Path ORAM’s performance on DRAM.

We pack each subtree with k levels together, and treat them

as the nodes of a new tree, a 2k-ary tree with
⌈

L+1
k

⌉

levels.

Figure 6 is an example with k = 2. We adopt the address

mapping scheme in which adjacent addresses first differ in

channels, then columns, then banks, and lastly rows. We set

the node size of the new tree to be the row buffer size times the

number of channels, which together with the original bucket

size determines k.

4. Evaluation

4.1. Path ORAM Design Space Exploration

We first explore the design space of Path ORAM to find con-

figurations that minimize access overhead in Equations 1 and

2. Background eviction plays an important role: since it elimi-

nates stash overflow, we can perform design space exploration

with a single metric without worrying about Path ORAM fail-

ure probability.

4.1.1. Methodology In all experiments, we use a 128-byte

cache line size (= the block size for the data ORAM), the

counter-based randomized encryption in Section 2.2.2, and

assume that each bucket is padded to a multiple of 64 bytes.

In each experiment, 10 ·N (N is the number of blocks in the
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Figure 8: Access overhead of different ORAM sizes for 2 GB

working set (e.g., 25% utilization corresponds to 8 GB ORAM).

ORAM) random accesses are simulated, excluding dummy

accesses by background eviction.

4.1.2. Stash size Figure 7 shows that for Z ≥ 2, the percentage

of dummy accesses is low to start, and only drops slightly as

the stash size increases from 100 blocks to 800 blocks. The

percentage of dummy accesses for Z = 1 is high—making

Z = 1 a bad design point. We set stash size C = 200 for the

rest of the evaluation.

4.1.3. Utilization In Figure 8 we fix the working set (amount

of valid data blocks) to be 2 GB and explore how other param-

eters impact access overhead. ORAM utilization is defined as

the number of valid data blocks out of the N total blocks in the

ORAM. This metric is directly related to DRAM utilization

from Section 2.5.3.

The best performance occurs at Z = 3 with 50% utilization.

Access overhead increases slightly when utilization is too low

because the path gets longer. But it is not very sensitive to

low utilization since doubling the ORAM size only increases

the path length by one. Access overhead also increases when

utilization is too high because high utilization results in lots

of dummy accesses. Smaller Z configurations (e.g., Z = 1,2)

are more sensitive to high utilization: their performance dete-

riorates more rapidly as utilization goes up. In fact, we do not

have the results for Z = 1 at utilization ≥ 67% or Z = 2 at uti-

lization ≥ 75% because these configurations are so inefficient

that we cannot finish 10 ·N accesses for them.

Z = 3 at 67% utilization and Z = 4 at 75% utilization still

have reasonable performance. This shows that the 1/Z utiliza-

tion suggested in [21] was too pessimistic.

4.1.4. ORAM capacity Figure 9 sweeps ORAM capacity

with utilization fixed at 50%. For ORAMs larger than 256

MB, Z = 3 achieves the best performance. As the ORAM
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Figure 10: Overhead breakdown for 8 GB hierarchical ORAMs

with 4 GB working set. DZ3Pb12 means data ORAM uses

Z=3 and position map ORAMs have 12-byte block. The final

position map is smaller than 200 KB.

shrinks in size, the amount of dummy accesses decreases, and

the benefit of smaller Z begins to show. For ORAMs between

1 MB to 64 MB, Z = 2 has the lowest overhead. This suggests

that smaller Path ORAMs should use smaller Z. Figure 9 also

shows that Path ORAM has good scalability; latency increases

linearly as capacity increases exponentially.

4.1.5. Position map ORAM block size Figure 10 shows the

benefits of a small block size for position map ORAMs. We

vary the block size of position map ORAMs and give the

overhead breakdown. For each configuration, the number of

ORAMs is chosen to get a final position map less than 200 KB.

In the figure, DZ3Pb12 means the data ORAM uses Z = 3 and

position map ORAMs have 12-byte blocks. We show results

with both Z = 3 and 4 for the data ORAM because static

super blocks may need Z = 4 to reduce dummy accesses. We

fix block size to be 128 bytes for data ORAMs and Z = 3 for

position map ORAMs (except baseORAM). baseORAM is the

configuration used in [3]: a 3-level hierarchical Path ORAM

where all the three ORAMs use 128 byte blocks, assume Z = 4,

and use the strawman encryption scheme (Section 2.2.1).

Note that buckets are padded to a multiple of 64 bytes. This

is why a 16-byte block size does not achieve good perfor-

mance: both 16-byte and 32-byte block sizes result in a bucket

size of 128 bytes. The optimal block size for position map

ORAMs seems to be 12 bytes, followed by 32 bytes. However,

Section 4.2 will show that the 12-byte design turns out to have

larger overhead when actually implemented since it requires

two more levels of ORAMs in the hierarchy than the 32-byte

one. 32-byte position map ORAM block size with Z = 3,4
reduces access overhead by 41.8% and 35.0% compared with

the baseline.
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4.2. Path ORAM on DRAM

We use DRAMSim2 [17] to simulate ORAM performance

on commodity DRAM. We assume the data ORAM is 8 GB

with 50% utilization (resulting in 4 GB working set); position

map ORAMs combined are less than 1 GB. So we assume a

16 GB DRAM. We use DRAMSim2’s default DDR3_micron

configuration with 16-bit device width, 1024 columns per row

in 8 banks, and 16384 rows per DRAM-chip. So the size

of a node in our 2k-ary tree (Section 3.3.4) is ch× 128× 64

bytes, where ch is the number of independent channels. We

evaluate the four best configurations in Figure 10, i.e., data

ORAM Z = 3 and 4, and 12-byte/32-byte position map ORAM

blocks.
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Figure 11: Hierarchical ORAM latency in DRAM cycles assum-

ing 1/2/4 channel(s). Same notations as with Figure 10.

Figure 11 shows the data latency (not counting decryption

latency) of hierarchical Path ORAMs using the naïve memory

placement and our subtree strategy, and compares these with

the theoretical value, which assumes DRAM always works at

its peak bandwidth. The figure shows that ORAM can benefit

from multiple independent channels, because each ORAM

access is turned into hundreds of DRAM accesses. But this

also brings the challenge of how to keep all the independent

channels busy. On average, the naïve scheme’s performance

becomes 20% worse than the theoretical result when there are

two independent channels and 60% worse when we have four.

Our subtree memory placement strategy is only 6% worse than

the theoretical value with two channels and 13% worse with

four. The remaining overhead comes from the few row buffer

misses and DRAM refresh.

Even though a 12-byte position map ORAM block size

has lower theoretical overheads, it is worse than the 32-byte

design.

We remark that it is hard to define Path ORAM’s slowdown

over DRAM. On one hand, DDR3 imposes a minimum ∼ 26

(DRAM) cycles per access, making Path ORAM’s latency

∼ 30× over DRAM assuming 4 channels. On the other hand,

our Path ORAM consumes almost the entire bandwidth of all

channels. Its effective throughput is hundreds of times lower

than DRAM’s peak bandwidth (≈ access overhead). But the

actual bandwidth of DRAM in real systems varies greatly and

depends heavily on the applications, making the comparison

harder.

Table 1: System configuration for the baseline and secure pro-

cessor. On a cache miss, the processor incurs the cache hit

plus miss latency.

Core model: in order, single issue

Cycle latency per Arith/Mult/Div instr 1/4/12

Cycle latency per FP Arith/Mult/Div instr 2/4/10

Cache

L1 exclusive I/D Cache 32 KB, 4-way

L1 I/D Cache hit+miss latencies 1+0/2+1

L2 exclusive Cache 1 MB, 16-way

L2 hit+miss latencies 10+4

Cache block size 128 bytes

Table 2: Path ORAM latency and on-chip storage of the con-

figurations evaluated in Section 4.3. All cycle counts refer to

CPU cycles.

ORAM config. baseORAM DZ3Pb32 DZ4Pb32

return data (cycles) 4868 1892 2084

finish access (cycles) 6280 3132 3512

stash size (KB) 77 47 47

position map size (KB) 25 37 37

4.3. Path ORAM in Secure Processors

We connect Path ORAM to a processor and evaluate our opti-

mizations over a subset of the SPEC06-int benchmarks. The

processors are modeled with a cycle-level simulator based on

the public domain SESC [16] simulator that uses the MIPS

ISA. Instruction/memory address traces are first generated

through SESC’s rabbit (fast forward) mode and then fed into a

timing model that represents a processor chip with the param-

eters given in Table 1. Each experiment uses SPEC reference

inputs, fast-forwards 1 billion instructions to get out of ini-

tialization code and then monitors performance for 3 billion

instructions.

Table 2 lists the parameters for configurations DZ3Pb32,

DZ4Pb32 and baseORAM, including the latency (in CPU

cycles) to return data and finish access, as well as the on-chip

storage requirement for the stash and position map. Assuming

CPU frequency is 4× of DDR3 frequency,

latencyCPU = 4× latencyDRAM +H× latencydecryption.

We also compare against a conventional processor that uses

DRAM. Path ORAMs and DRAMs are both simulated using

DRAMSim2.

Figure 12 shows the SPEC benchmark running time using

different Path ORAM configurations and super blocks, normal-

ized to the insecure processor with DRAM. DZ3Pb32 reduces

the average execution time by 43.9% compared with the base-

line ORAM. As expected, the performance improvement is

most significant on memory bound benchmarks (mcf, bzip2

and libquantum).
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ORAM.

In this experiment, we only statically form super blocks of

size two (consisting of two blocks). On average, DZ4Pb32

with super blocks outperforms DZ3Pb32 without super blocks

(the best configuration without super blocks) by 5.9%, and

is 52.4% better than the baseline ORAM. There is a substan-

tial performance gain on applications with good spatial local-

ity (e.g., mcf) where the prefetched block is likely to be ac-

cessed subsequently. Using static super blocks with DZ3Pb32

slightly improves the performance on most benchmarks, but

has worse performance on certain benchmarks because it re-

quires too many dummy accesses, canceling the performance

gain on average.

5. Integrity Verification

Orthogonal to performance optimizations, we can build an

integrity verification layer on top of Path ORAM so that a

secure processor can verify that the retrieved blocks from Path

ORAM are authentic, i.e., they were produced by the secure

processor, and fresh, i.e., a block in the ORAM corresponds

to the latest version that the processor wrote.

A strawman approach to implementing the integrity layer

is to store a Merkle tree in external memory. Each leaf of

the Merkle tree stores a 128-bit hash of a data block in the

ORAM. We note that this scheme would work with any kind of

ORAM, and similar ideas are used in [14]. To verify a block,

a processor needs to load its corresponding path and siblings

in the Merkle tree and check the consistency of all the hash

equations. This scheme has large overheads for Path ORAM,

because all the Z(L+ 1) data blocks on a path have to be

verified on each ORAM access. So Z(L+1) paths through the

Merkle tree must be checked per ORAM access, which contain

Z(L+1)2 hashes in total. (Z and L are given in Section 2.1.)

To implement integrity verification with negligible over-

head, we exploit the fact that the basic operation of both the

Merkle tree and Path ORAM is reading paths through their tree

structures. In particular, we create an authentication tree that

has exactly the same structure with Path ORAM (shown mir-

rored in Figure 13). (We describe ideas and give an example

here; additional details can be found in [4].)

To avoid having to initialize the authentication tree at pro-

gram start time,4 we add two bits to each bucket—labeled

4We assume that at start-up time, the authentication and ORAM trees

consist of random bits corresponding to the uninitialized DRAM state.

B3 B4 B6Level 2

Level 1

Level 0

B5

B0

Level 0

Level 1

Level 2 h5 = H(B5) h6 = H(B6)h3 = H(B3) h4 = H(B4)

A
u

th
e

n
ti

c
a

ti
o

n
 T

r
e

e

Stash

(h0 stored inside processor) 

depends on  h1, h2, B0, f  , f  

Reads

Writes

P
a

th
 O

R
A

M

O
R

A
M

 

In
te

r
fa

c
e

Processor pins

Leaf 1 Leaf 2 Leaf 3 Leaf 4

h0 ,f  , f0
0

1
0

B1 ,f  , f0
1

1
1 B2 ,f  , f0

2
1
2

h1 depends on h3, h4, B1, f  , f 0
1

1
1 h2 depends on h5, h6, B2, f  , f 0

2
1
2

0
0

1
0

Figure 13: Integrity verification of Path ORAM.

f i
0 and f i

1 for bucket i and stored in external memory along

with bucket i—that are conceptually valid bits for bucket i’s

children. We say bucket i is reachable from the root bucket

if all valid bits on the path, from the root bucket to bucket

i, equal 1. We define reachable(Bi) = 1 if Bi was reachable

at the start of a particular ORAM access and = 0 otherwise.

We maintain the invariant that all reachable buckets from the

root bucket have been written to through ORAM operations at

some point in the past.

Each intermediate node in the authentication tree now stores

the hash of the concatenation of (a) child bucket valid flags,

(b) the corresponding bucket in the Path ORAM tree, and (c)

the sibling hashes for that intermediate node. Authentication

works as follows: Suppose the root bucket is labeled B0 and the

root hash/child valid flags (stored inside the ORAM interface)

are h0/ f 0
0 / f 1

0 respectively. We initialize h0 = H(0) and f 0
0 =

f 0
1 = 0 at program start time. Following the figure: to perform

an ORAM access to block B5 mapped to leaf l = 3, the ORAM

interface performs the following operations:

1. ORAM path read: read B0, B2 and B5 and child valid

flags f 2
0 , f 2

1 .

2. Read sibling hashes for the path (h1 and h6).

3. Compute h′5 = H(B5), h′2 = H( f 2
0 || f

2
1 ||( f 2

0 ∨ f 2
1 ) ∧

B2|| f
2
0 ∧ h′5|| f

2
1 ∧ h6), h′0 = H( f 0

0 || f
0
1 ||( f 0

0 ∨ f 0
1 ) ∧

B0|| f
0
0 ∧ h1|| f

0
1 ∧ h′2), where ‘∨’ and ‘∧’ are logical

OR/AND operators.5

4. If h0 = h′0, the path is authentic and fresh!

5. Update child valid flags: f 0
0
′ = f 0

0 , f 0
1
′ = f 2

0
′ = 1 and

f 2
1
′ = f 2

1 ∧ reachable(B2). Update the root bucket child

valid flags (inside the ORAM interface) to f 0
0
′, f 0

1
′.

6. ORAM path writeback: evict as many blocks as possible

from the stash to the path 3 (forming B′0, B′2 and B′5).

Write f 2
0
′, f 2

1
′ as the new child valid flags for B′2.

7. Re-compute h5, h2 and h0; write back h5 and h2.

All data touched in external memory is shaded in Figure 13.

5Note that ( f i
0 ∨ f i

1)∧Bi = Bi if reachable(Bi) = 1 and is only needed to

get the correct value for h′0 before the first access is made. This OR-AND

operation is applied to other non-leaf buckets for the sake of consistency, but

is not required.
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Note that only the sibling hashes need to be read in from

the authentication tree. The hashes on the path of interest

are computed by the processor, by hashing the buckets read

via the Path ORAM operation concatenated to the sibling

hashes. We point out that since hashes are computed from

the leaves to the root, only the reachable portion of the path

in the authentication tree needs to be read per access. That

is, if the path to B5 is being accessed (see above) and f 0
0 =

f 0
1 = 0 at the time of the access, h′0 = H(0||0||0||0||0) = H(0),

which is independent of any values in the authentication tree.

Conceptually, the child valid flags indicate a frontier in the

ORAM/authentication trees that has been touched at an earlier

time.

In summary, on each ORAM access at most L≪ (L+1)2Z

(sibling) hashes need to be read into the processor and L hashes

(along the path) need to be written back to the external authen-

tication tree. This operation causes low performance overhead

beyond accessing ORAM.

6. Related Work

6.1. Secure Hardware

The TPM [25, 1, 18] is a small chip soldered onto a mother-

board capable of performing a limited set of secure operations;

the TPM assumes trust in the OS, RAM, Disk, connecting bus

and the user application. The TPM, and user systems such as

Intel’s TPM+TXT [9], do not consider address bus leakage in

their threat model and therefore ORAM can be used in con-

junction with them to achieve higher security. Aegis [23, 24]

is a single-chip processor and the first to provide memory

integrity verification and encryption, which allows memory

to not be trusted, but assumes trust in the OS kernel and user

application. eXecute Only Memory (XOM) [11, 12, 13] trusts

only the user application and the processor chip but needs to

be protected against replay attacks. Aegis and XOM need

additional functionality to be protected against attacks based

on memory access patterns of badly-written programs or pro-

grams with bugs, and our work in this paper can be used to

guarantee security in these scenarios.

The Trusted Execution Module TEM [2] is a secure co-

processor capable of securely executing partially-encrypted

procedures/closures expressing arbitrary computations which

fit inside the TEM. ORAM would enable TEM to use external

memory without sacrificing security.

Ascend [3] (followed up in the more comprehensive [4])

uses Path ORAM to perform encrypted computation assuming

untrusted programs. We have compared our ORAM configura-

tions and associated architectural optimizations to those used

in a preliminary publication on Ascend [3] and shown sig-

nificant improvements. We note again that Ascend performs

ORAM accesses strictly periodically which increases over-

head slightly; our focus here is on the efficiency of the ORAM

primitive as opposed to a specific usage scenario, and there-

fore we have not assumed periodic accesses for the Ascend

baseline or for our ORAMs.

6.2. Memory Access Pattern Leakage

HIDE [30] (and follow-on work [5], [27]) has architectural

support to obfuscate memory access patterns through the idea

of randomly shuffling memory locations between consecu-

tive accesses (similar to ORAM). However, to have small

performance overheads, HIDE only applies this technique

within small chunks of memory (usually 8 KB to 64 KB). In

our threat model, obfuscation over small chunks breaks se-

curity because the server can engineer a data placement for

a client program, or engineer a curious program to perform

inter-chunk accesses based on private data, and decipher all

the encrypted data. If HIDE were to apply shuffling over 4 GB

memory, the on-chip storage requirements would correspond

to an untenable amount of cache memory on-chip. Therefore,

to achieve cryptographic-grade security, it is much better to

use our optimized Path ORAM.

7. Conclusions

Traffic from processor chip pins to DRAM memory is a side

channel that can be easily monitored by software, and is hard

to enclose in a tamper-resistant package. Therefore, it is impor-

tant to thwart attackers who try to exploit this side channel to

discover private data. Oblivious RAM can guarantee security

by blocking this side channel; this requires that an ORAM

interface be built into the chip, which increases the amount of

off-chip traffic logarithmically in the worst case.

“Default” configurations of Path ORAM can result in over

10× performance degradation for benchmarks such as SPEC

if all data is considered private. Through novel architectural

mechanisms such as background eviction and super blocks,

as well as comprehensive design space exploration, we have

shown that this overhead can be significantly reduced. Ongo-

ing improvements include using different kinds of ORAMs

for streaming data [29] and optimizing benchmarks with high

locality using dynamic super block schemes.
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