
 Open access  Book Chapter  DOI:10.1007/3-540-44743-1_5

Design Space Exploration for Massively Parallel Processor Arrays — Source link 

Frank Hannig, Jürgen Teich

Institutions: University of Paderborn

Published on: 03 Sep 2001 - Parallel Computing Technologies

Topics: Massively parallel, Design space exploration, Coprocessor, Vector processor and
Field-programmable gate array

Related papers:

 Loop Parallelization in the Polytope Model

 Hierarchical algorithm partitioning at system level for an improved utilization of memory structures

 Resource constrained scheduling of uniform algorithm

 Synthesis of FPGA Implementations from Loop Algorithms

 Regular mapping for coarse-grained reconfigurable architectures

Share this paper:    

View more about this paper here: https://typeset.io/papers/design-space-exploration-for-massively-parallel-processor-
15fhwtjzvv

https://typeset.io/
https://www.doi.org/10.1007/3-540-44743-1_5
https://typeset.io/papers/design-space-exploration-for-massively-parallel-processor-15fhwtjzvv
https://typeset.io/authors/frank-hannig-1a5f2x97ma
https://typeset.io/authors/jurgen-teich-1og1afyx9v
https://typeset.io/institutions/university-of-paderborn-67h599v8
https://typeset.io/conferences/parallel-computing-technologies-1zx1rcfy
https://typeset.io/topics/massively-parallel-3km3a8vz
https://typeset.io/topics/design-space-exploration-1b67j1ty
https://typeset.io/topics/coprocessor-2bedaccy
https://typeset.io/topics/vector-processor-3e9c3e9t
https://typeset.io/topics/field-programmable-gate-array-1w67h42e
https://typeset.io/papers/loop-parallelization-in-the-polytope-model-4p846qdpcc
https://typeset.io/papers/hierarchical-algorithm-partitioning-at-system-level-for-an-35zgsu4lt9
https://typeset.io/papers/resource-constrained-scheduling-of-uniform-algorithm-3cbjwrnl0u
https://typeset.io/papers/synthesis-of-fpga-implementations-from-loop-algorithms-19t2uy2hx8
https://typeset.io/papers/regular-mapping-for-coarse-grained-reconfigurable-3twdpc8g6v
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/design-space-exploration-for-massively-parallel-processor-15fhwtjzvv
https://twitter.com/intent/tweet?text=Design%20Space%20Exploration%20for%20Massively%20Parallel%20Processor%20Arrays&url=https://typeset.io/papers/design-space-exploration-for-massively-parallel-processor-15fhwtjzvv
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/design-space-exploration-for-massively-parallel-processor-15fhwtjzvv
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/design-space-exploration-for-massively-parallel-processor-15fhwtjzvv
https://typeset.io/papers/design-space-exploration-for-massively-parallel-processor-15fhwtjzvv


Design Space Exploration for Massively Parallel

Processor Arrays⋆

Frank Hannig and Jürgen Teich

University of Paderborn, D-33098 Paderborn, Germany,
{hannig, teich}@date.upb.de,
URL: http://www-date.upb.de

In Proceedings of the Sixth International Conference on Parallel Computing Technologies (PaCT-2001), Novosibirsk, Russia, September 3-7, 2001.
Volume 2127 of Lecture Notes in Computer Science (LNCS), pp. 51-65, c© Springer-Verlag, 2001.

Abstract. In this paper, we describe an approach for the optimiza-
tion of dedicated co-processors that are implemented either in hardware
(ASIC) or configware (FPGA). Such massively parallel co-processors are
typically part of a heterogeneous hardware/software-system. Each co-
processor is a massive parallel system consisting of an array of processing
elements (PEs). In order to decide whether to map a computational in-
tensive task into hardware, existing approaches either try to optimize for
performance or for cost with the other objective being a secondary goal.
Our approach presented here, instead, a) considers multiple objectives si-
multaneously. For a given specification, we explore space-time-mappings

leading to different degrees of parallelism and cost, and different optimal
hardware solutions. b) We show that the hardware cost may be efficiently
determined in terms of the chosen space-time mapping by using state-
of-the-art techniques in polyhedral theory. c) Finally, we introduce ideas
to drastically reduce dimension and size of the search space of mapping
candidates. d) The feasibility of our approach is shown for two realistic
examples.

1 Introduction

Technical analysts foresee the dilemma of not being able to focus next generation
hardware complexity because of a lack of mapping tools. On the other hand, the
next generation of ULSI chips will allow to implement arrays of 10 × 10 32-bit
micro-processors on a single die and more. Hence, parallelization techniques and
compilers will be of utmost importance in order to map computational-intensive
algorithms efficiently to these processor arrays.

Through this advance in technology, also reconfigurable hardware, sometimes
also called configware such as FPGAs (field-programmable gate-arrays) [OD95],
becomes more and more attractive as co-processors for the following three rea-
sons: 1) Chips with up to 10 million gate counts allow to implement arithmetic
co-processors with hundreds of processing elements, e.g., for image processing
and linear algebra algorithms, see, e.g., in Fig. 1. Shown is an FPGA place-

⋆ Supported in part by the German Science Foundation (DFG) Project SFB 376 “Mas-
sively Parallel Computation”.



52

Memory    CPU    CPU

PE01

PE02

PE03

PE04

PE05

PE06

PE07

PE08

PE09

PE10

PE11

PE12

PE13

PE14

PE15

PE16    I/O

Fig. 1. Heterogeneous application, architecture, and hardware/software partition in-
cluding a massively parallel co-processor implemented in hardware (ASIC) or config-
ware (FPGA).

ment visualized by the tool BoardScope by Xilinx [Xil01] with a square array of
processing elements (PEs), each consisting of an array-multiplier, an adder, reg-
isters, and some control logic. 2) Configware has the major advantage of being
able to reuse silicon for time-variant co-processor functions by means of recon-
figuration. 3) Support for regular designs: standards such as the Java API JBits
[Xil01] allow to specify the regular design within Java-loops such that lower-level
mapping may be accomplished efficiently and independent of the problem-size.

In the eighties and early nineties, higher-level mapping techniques for so-
called systolic arrays have been in its fancy. They pretty much dealt with the
problem of mapping a certain algorithm specified by a loop program onto a par-
allel processor array such as a systolic array, and architectural extensions thereof
with time-dependent and control-dependent processor functions [Tei93]. By the
use of linear space-time mappings, the relationship between a regular array of
communicating PEs and the temporal execution of operations of loop algorithms
has been described. Unfortunately, dedicated hardware chips proposed for cer-
tain algorithms were too rigid, implementing just a single problem, or too slow
and expensive due to long time-to-market.

With the above mentioned advances of silicon technology, and the advent of
configware, the necessity of mapping tools for parallel hardware processors has
been rethought and its application scope and processor capabilities broadened.
Some important recent approaches include the PICO-N system by Hewlett-
Packard [SAR+00] that specifies a methodology for synthesizing an array of
customized VLIW processors starting with a loop program with uniform data
dependencies and VHDL code at the RTL-level. From a given irregular pro-
gram, parts are automatically extracted, mapped to hardware, and finally, the
specification is modified to make use of this accelerator. Another approach that
embeds regular array design into heterogeneous hardware/software targets is the



53

Compaan system [KRDL00]. There, Matlab applications are transformed into a
network of sequential, communicating processes where each process is responsi-
ble for computing some variables of a nested loop program.

In this realm, our paper deals with the specific problem of exploring cost/per-
formance tradeoffs when mapping a certain class of loop-specified computations
called piecewise regular algorithms [Tei93] onto a dedicated co-processor. The
main new ideas of our approach are summarized as follows:

– Simultaneous consideration of multiple objectives: For a given piecewise reg-
ular algorithm, we explore space-time-mappings1 leading to different degrees
of parallelism and cost, and different optimal hardware solutions. Existing
approaches such as [FM98] consider solutions that find a schedule first (time-
mapping) such to minimize latency and minimize cost as a secondary goal,
or the other way round. Such design points are not necessarily so-called
Pareto-optimal [Par96] points.

– Efficient computation of objectives: We show that hardware cost may be
efficiently determined in terms of the chosen space-time mapping by using
state-of-the-art techniques in polyhedral theory.

– Search space reduction: We introduce several ideas to drastically reduce di-
mension and size of the search space of mapping candidates.

The rest of the paper is structured as follows. Section 2 introduces the class of
algorithms we are dealing with. In Section 3, the exploration algorithm for finding
Pareto-optimal space-time mappings is given. There, the objective functions for
cost and performance (latency) are explained including the reduction of the
search space. Finally, results are presented in Section 4.

2 Notation and Background

2.1 Algorithms

In this paper the class of algorithms we are dealing with is a class of recurrence
equations defined as follows:

Definition 1. (Piecewise Regular Algorithm). A piecewise regular algorithm con-
tains N quantified equations

S1 [I] , . . . , Si [I] , . . . , SN [I]

Each equation Si [I] is of the form

xi [I] = fi (. . . , xj [I − dji] , . . .)

where I ∈ Ii ⊆ Zn, xi [I] are indexed variables, fi are arbitrary functions,
dji ∈ Zn are constant data dependence vectors, and . . . denote similar arguments.
1 Although we are able to handle also more general classes of algorithms and mappings,

introducing them here would unnecessarily complicate the notation and hinder to
present the main ideas of the exploration approach.



54

The domains Ii are called index spaces, and in our case defined as follows:

Definition 2. (Linearly Bounded Lattice). A linearly bounded lattice denotes an
index space of the form

I = {I ∈ Zn | I = Mκ + c ∧ Aκ ≥ b}

where κ ∈ Zl, M ∈ Zn×l, c ∈ Zn, A ∈ Zm×l and b ∈ Zm. {κ ∈ Zl | Aκ ≥ b}
defines an integral convex polyhedron or in case of boundedness a polytope in Zl.
This set is affinely mapped onto iteration vectors I using an affine transformation
(I = Mκ + c).

Throughout the paper, we assume that the matrix M is square and of full rank.
Then, each vector κ is uniquely mapped to an index point I. Furthermore, we
require that the index space is bounded.

For illustration purposes throughout the paper, the following simple example
is used.

Example 1. Consider a piecewise regular algorithm which consists of three quan-
tified indexed equations

a[i, j] = f(a[i− 1, j]), ∀(i j)T = I ∈ I
b[i, j] = g(b[i, j − 1]), ∀(i j)T = I ∈ I
c[i, j] = a[i, j] op b[i, j], ∀(i j)T = I ∈ I.

The data dependence vectors are daa = (1 0)T, dbb = (0 1)T, dac = (0 0)T, and
dbc = (0 0)T. The index space is given by

I =















I ∈ Z2 |









1 −1
−3 −5

3 4
−4 5









(

i

j

)

≥









−3
−63

26
−14























.

Computations of piecewise regular algorithms may be represented by a depen-
dence graph (DG). The DG of the algorithm of Example 1 is shown in Fig. 3 (a).
The DG expresses the partial order between the operations. Each variable of the
algorithm is represented at every index point I ∈ I by one node. The edges cor-
respond to the data dependencies of the algorithm. They are regular throughout
the algorithm, i.e. a[i, j] is directly dependent on a[i − 1, j]. The DG specifies
implicitly all legal execution orderings of operations: if there is a directed path in
the DG from one node a[J ] to a node c[K] where J,K ∈ I, then the computation
of a[J ] must precede the computation of c[K].

Henceforth, and without loss of generality2, we assume that all indexed vari-
ables are embedded in a common index space I. Then, the corresponding de-
pendence graphs can be represented in a reduced form.

Definition 3. (Reduced Dependence Graph). A reduced dependence graph (RDG)
G = (V,E, D, I) of dimension n is a network where V is a set of nodes and
E ⊆ V × V is a set of edges. To each edge e = (vi, vj) there is associated a
dependence vector dij ∈ Zn.
2 All described methods can also applied for each quantification individually.



55

Example 2. In Fig. 2, the RDG of the algorithm introduced in Example 1 is
shown.

0
0

0
0

a

b

0
1

1
0

c

Fig. 2. Reduced dependence graph.

2.2 Space-Time Mapping

Linear transformations as in Equation (1) are used as space-time mappings
[Mol83,Len93] in order to assign a processor index p ∈ Zn−1 (space) and a
sequencing index t ∈ Z (time) to index vectors I ∈ I.

(

p

t

)

=

(

Q

λ

)

I (1)

In Eq. (1), Q ∈ Z(n−1)×n and λ ∈ Z1×n. The main reasons for using linear
allocation and scheduling functions is that the data flow between PEs is local
and regular which is essential for VLSI implementations. The interpretation of
such a linear transformation is as follows: The set of operations defined at index
points λ · I = const. are scheduled at the same time step. The index space of
allocated processing elements (processor space) is denoted by Q and is given by
the set Q = {p | p = Q · I ∧ I ∈ I}. This set can also be obtained by choosing
a projection of the dependence graph along a vector u ∈ Zn, i.e. any coprime3

vector u satisfying Q · u = 0 [Kuh80] describes the allocation equivalently.
Allocation and scheduling must satisfy that no data dependencies in the DG

are violated. This is ensured by the well-known causality constraint

λ · dij ≥ 0 ∀(vi, vj) ∈ E. (2)

A sufficient condition for guaranteeing that no two or more index points are
assigned to a processing element at the same time step is given by

rank

(

Q

λ

)

= n. (3)

Using the projection vector u satisfying Q ·u = 0, this condition is equivalent to
λ · u 6= 0 [Rao85].
3 A vector x is said to be coprime if the absolute value of the greatest value of the

greatest common divisor of its elements is one.



56

(b)

2 4

2

4

8

i

j

6 8 10

6

(a)

2 4

2

4

8

i

j

6 8 10

6

u
cb

a

1

p

3

5

7

9

11

13

15

u

Fig. 3. In (a), the dependence graph of the algorithm introduced in Example 1 is shown.
Also an allocation given by a projection vector u is illustrated. Counting the number of
processors is equal to counting the number of integral points in a transformed polytope
shown in (b) which may be accomplished using Ehrhart polynomials [CL98].



57

3 Methodology

Based on the class of piecewise regular algorithms, we want to explore space-
time mappings systematically in order to find optimal implementations. Thereby,
we want to simultaneously minimize several objectives, a multiobjective opti-
mization problem (MOP). In this paper, we consider the two objectives latency
L(Q,λ) as a measure for the performance, and cost C(Q,λ) of a processor array.

As C and L are dependent on Q and λ, the search space contains n×n param-
eters. But as already mentioned, a linear allocation can be described equivalently
through a coprime projection vector u. Thus, the dimension of the search space
can be reduced to 2× n (vector u, vector λ).

4 8

L

12 16 20 24 28 32 36 40  C

10

12

14

16

18

Fig. 4. Pareto-points for the matrix multiplication example in the objective space of
latency (L) and cost (C).

Fig. 4 shows a typical tradeoff curve between cost and performance for a
matrix multiplication algorithm. Different pairs of latency and cost correspond
to different space-time mappings. As we are concerned with a MOP, there is
not only one optimal solution but typically a set of optimal solutions, so called
Pareto-optimal solutions. Our MOP consists of two objective functions C(u, λ)
and L(u, λ), where the parameters u and λ are denoted as decision variables.
The optimization goal is to simultaneously minimize C(u, λ) and L(u, λ) within
a search space of feasible space-time mappings.

Definition 4. (Search Space, Decision Vector). Let x = (u λ)T ∈ Z2n denote a
decision vector and X denote decision space of all vectors x satisfying Eq. (1),
(2) and (3).



58

Definition 5. (Pareto-optimality). For any two decision vectors a,b ∈ X, a

dominates b iff (C(a) < C(b) ∧ L(a) ≤ L(b))∨(C(a) ≤ C(b) ∧ L(a) < L(b)).
A decision vector x ∈ X is said to be non-dominated regarding a set A ⊆ X

iff ∄ a ∈ A : a dominates x. Moreover, x is said to be Pareto-optimal iff x is
non-dominated regarding X.

In Fig. 4, the objective space of an example discussed later in Section 4 is shown.
The white points correspond to Pareto-optimal solutions because they are not
dominated by any other point. Dominated points are shown in black.

Now, we are able to formulate our exploration algorithm. For a given RDG
G = (V,E, D, I) and a set U of projection vectors u, our exploration methodol-
ogy works as follows: First, the cost C for a given projection vector u is deter-
mined. For this allocation, the minimal latency L is computed. Afterwards, we
determine if the design point is non-dominated with respect to the actual set of
Pareto-optimal solutions. If it is non-dominated, the decision vector (u λ)T is
added to the Pareto-optimal set, denoted O in the following. Subsequently, the
set O has to be updated if the new decision vector dominates some other vectors
in O. In the following algorithm, the main ideas of our exploration methodology
are described.

EXPLORE
IN: RDG, set U of projection vector candidates
OUT: Pareto-optimal set O
BEGIN

FOR each candidate u ∈ U DO
C ← determineNoOfPEs(u)
L ← minimizeλ{L(u, λ)}
IF (u λ)T is non-dominated with respect to O THEN
O ← O ∪ {(u λ)T}
update(O)

ENDIF
ENDFOR

END

Next, we briefly describe how the cost C and the latency L may be computed.
Afterwards, we describe how to reduce the set U of candidate vectors u that
must be investigated.

3.1 Cost

For a regular processor array, we are able to approximate the cost, as being
proportional to the processor count.

C(u, λ) = #PE(u) · (cFU + cRg(λ) + cWire(u)) (4)

In Eq. (4), #PE(u) denotes the number of projected index points when project-
ing the index space I along u (see, e.g., Fig. 3 (a)). The cost for functional



59

units, registers and wiring is denoted by cFU, cRg and cWire. In the follow-
ing, we assume that processor arrays are resource-dominant: This means that
cFU ≫ cRg(λ)+cWire(u). Under these assumptions, we obtain the approximation:

C(u, λ) ≈ C(u) = #PE(u) · cFU (5)

As a consequence, the cost of an array is independent of the schedule and propor-
tional to the number of points in the projected polytope I. This is also the reason
why we are able to investigate only the projection vector candidates u ∈ U and
minimize the latency L.

It remains to determine the number of processor elements for a given linear
allocation. Here, a geometrical approach recently proposed in [Cla96] is applied,
for illustration, see Fig. 3. In (a), the index space of the algorithm described in
Example 1 and a projection vector u = (2 1)T is shown. This linear allocation
leads to an array of 15 processors. This number of processor elements can be
determined by a transformation of the given polytope I. The number of integral
points inside this transformed polytope is equal to the number of processor
elements obtained by the projection along u. In [Cla96], it has been shown that
this problem is equal to a counting problem of the number of integral points
in a transformed polytope, see e.g. the polytope shown in Fig. 3 (b) for the
algorithm of Example 1. The number of processors using the projection vector
u = (2 1)T results in 15 different projected PEs. This is exactly the number of
integral points inside the polytope shown in Fig. 3 (b), see [Cla96] for details. A
state-of-the-art solution to the final counting problem is to use so-called Ehrhart
polynomials4 [CL98].

3.2 Latency

In this section, a short description is given how the latency for a given piecewise
regular algorithm and a given schedule vector λ is determined. For approximation
of the latency, the following term is used

L = max
I∈I
{λ · I} −min

I∈I
{λ · I} = max

I1,I2∈I
{λ · (I2 − I1)} .

The latency minimization problem in algorithm EXPLORE may be formulated as
a mixed integer linear program (MILP) [Thi95,TTZ97]. This well-known method
is used here during exploration as a subroutine. In this MILP, the number of
resources inside each processing element can be limited (determining cFU). Also
given is the possibility that an operation can be mapped onto different resource
types (module selection), and pipelining is also possible. As a result of the MILP,
we obtain:

– the minimal latency L,
– the according optimal schedule vector λ,
– the iteration interval5 P ,

4 Due to space limits, we omit the details of this procedure.
5 The iteration interval P of an allocated and scheduled piecewise regular algorithm

is the number of time instances between the evaluation of two successive instances
of a variable within one processing element [Thi95].



60

– the start times of each vi ∈ V , within the iteration interval
– the selected resource type for each vi ∈ V .

Here, only the latency is used for rating the performance. The other values,
however, are necessary for simulation and synthesis. We will present a detailed
example of this procedure in Section 4.

In the following, we introduce two new additional methods how to reduce
the search space for Pareto-optimal space-time mappings.

2 4

2

4

6 8

6

-2-4-6-8

-2

-4

-6

0 i

j

❅ P−

❅ B

Fig. 5. Difference body of the convex polytope from Fig. 3 (a).

3.3 Projection vector candidates

Let I ⊂ Zn be a linearly bounded lattice according to Definition 2. In the
following, we investigate projection vectors for the polytope P = {κ ∈ Zn | Aκ ≥
b}. By our assumption that the lattice matrix M has full rank, projection vectors
u′ ∈ Zn for P may be transformed to a corresponding projection vector u ∈ Zn

in I by u = Mu′.
For the exploration, it is necessary to determine a set U of projection vector

candidates. This search space may be bounded as follows: Note that a projection
vector may not be optimal if not at least two points κ1, κ2 ∈ P are projected
onto each other:

κ1 − κ2 = αu′, α ∈ Z. (6)

Hence, the search space may be bounded by the set of possible differences of



61

4 8

L

12 16 20 24 28 32 36 40  C

14

22

30

38

 C(u ) j

Fig. 6. Pareto-points obtained through design space exploration for the algorithm in-
troduced in Example 1.

two points in P, the so-called difference body D of P [WD89], which again is a
polytope.

D = {κ ∈ Zn | κ = κ1 − κ2 ∧ κ1, κ2 ∈ P} .

The dual P− of D is convex and symmetric about the origin (see, e.g., in Fig. 5
for the polytope P in Fig. 3 (a)). From duality, P− = {κ ∈ Zn | A−κ ≥ b−} is
the intersection of closed half-spaces. Furthermore, let B ⊂ Zn be the smallest
n-dimensional box (bounding box) containing P−.

In the following, a procedure for the reduction of suitable projection vector
candidates is described:

– Compute all vertices V of the polytope P.
– For each pair vi, vj ∈ V compute the vertex difference vi − vj . The set of

vertex differences is denoted by V−.
– Determine the dual representation of V−. This is the convex polytope P−.

Also determine the bounding box B of V−.
– Iterate over all points u′ ∈ B. For the reason P− is symmetric about the

origin, also B is symmetric about the origin. Due to symmetry, it is only
necessary to consider, e.g., for the first component of u′ all positive values.
Furthermore, the selected projection vectors u′ have to be coprime. Finally,
test if u′ is in P−. If u′ ∈ P−, the condition in Eq. (6) that at least two
point mapped onto each other is satisfied.

Example 3. Reconsider the polytope shown in Fig. 3 (a) with the vertices

v1 =

(

2
5

)

, v2 =

(

6
9

)

, v3 =

(

11
6

)

, v4 =

(

6
2

)

.

All differences vi − vj , i, j ∈ [1, 4], i 6= j are marked in Fig. 5 as white small
boxes. P− is bounded by the black, B by the dashed line. Due to symmetry,
only the upper half-space has to be explored. All coprime integral points (i j)T,
i ∈ [−9, 9], j ∈ [0, 7] which lie inside P− are projection vector candidates.



62

3.4 Further reduction of the search space

The order in our exploration algorithm to determine the cost first has the ad-
vantage that possibly the search space can be reduced further by adding a more
restrictive constraint to the MILP for latency minimization: Let O be the set
of so far determined Pareto-points (see Fig. 6). The dashed line denotes the
computed cost of a design point (uj λj)

T. If this design point shall be Pareto-
optimal, obviously L(λj) must be smaller or equal to the latency L(λi) of all
such points oi ∈ O for which the cost C(ui) is smaller or equal to C(uj):

IF (∃ oi = (ui λi)
T ∈ O | C(ui) ≤ C(uj)) THEN

let oi ∈ O be the Pareto-point for which
maxoi∈O{C(ui) | C(ui) ≤ C(uj)} holds
IF (C(ui) < C(uj)) THEN

add constraint L(λj) < L(λi) to MILP
ELSE

IF (C(ui) = C(uj)) THEN
add constraint L(λj) ≤ L(λi) to MILP

ENDIF
ENDIF

ENDIF

4 Results

First, space-time mappings for the algorithm introduced in Example 1 are ex-
plored. The bounding box (Fig. 5) contains 295 integral points as candidates for
projection vectors. When symmetry is explored and only coprime vectors are
considered, U is reduced to 45 candidates. For each of these projection vectors,
the cost C is determined. Subsequently, the latency is minimized. The results
are visualized in Fig. 6, the Pareto-optimal solutions are the white points and
presented in Table 1. The MILP was solved for execution times of 1 unit for f(a)

Table 1. Pareto-points of the design space exploration for the algorithm in Example 1.

u λ C L

(1 0)T (4 1) 8 42
(1 1)T (2 2) 9 25
(2 1)T (1 2) 15 19
(3 1)T (1 1) 20 15

and g(b). For op, we considered 4 time units. From the solution of the MILP,
we obtain the schedule vector λ, the iteration interval P and as well all starting
times for each operation within the iteration interval. In the following, we take
a closer look at the solution for u = (2 1)T. The corresponding iteration interval



63

is 4 and the starting points are τ(a) = 0, τ(b) = 0, and τ(c) = 1. In Fig. 7, the
scheduling for the processors p = 3, 4, and 5 is shown. The data dependencies
between adjacent index points are visualized by arcs.

t

P

processor
4

c

a
b

c

a
b

c

a
b

c

a
b

c

a
b

c

a
b

c

a
b

c

a
b

c

processor
3

processor
5

6
3

8
4

9
5

7
4

5
3

6
4

8
5

10
6

11
6

a
b

Fig. 7. Bar chart of scheduled algorithm.

The second example is a matrix multiplication algorithm. The product C =
A ·B of two matrices A ∈ RN1×N3 and B ∈ RN3×N2 is defined as follows

cij =

N3
∑

k=1

aikbkj ∀ 1 ≤ i ≤ N1 ∧ 1 ≤ j ≤ N2.

A corresponding piecewise regular algorithm is given by

input operations
a [i, 0, k]← aik 1 ≤ i ≤ N1 ∧ 1 ≤ k ≤ N3

b [0, j, k]← bkj 1 ≤ j ≤ N2 ∧ 1 ≤ k ≤ N3

c [i, j, 0] ← 0 1 ≤ i ≤ N1 ∧ 1 ≤ j ≤ N2

computations
a [i, j, k]← a [i, j − 1, k] 1 ≤ i ≤ N1 ∧ 1 ≤ j ≤ N2 ∧ 1 ≤ k ≤ N3

b [i, j, k] ← b [i− 1, j, k] 1 ≤ i ≤ N1 ∧ 1 ≤ j ≤ N2 ∧ 1 ≤ k ≤ N3

z [i, j, k]← a [i, j, k] · b [i, j, k] 1 ≤ i ≤ N1 ∧ 1 ≤ j ≤ N2 ∧ 1 ≤ k ≤ N3

c [i, j, k] ← c [i, j, k − 1] + z [i, j, k] 1 ≤ i ≤ N1 ∧ 1 ≤ j ≤ N2 ∧ 1 ≤ k ≤ N3

output operations
cij ← c [i, j, N3] 1 ≤ i ≤ N1 ∧ 1 ≤ j ≤ N2

where the index space is

I = {I = (i j k)T ∈ Z3 | 1 ≤ i ≤ N1 ∧ 1 ≤ j ≤ N2 ∧ 1 ≤ k ≤ N3}.

The input operations a and b are mapped each to one resource of type input. The
execution times of these operations are zero. This is equivalent to a multi-cast
without delay to a set of index points. For the multiplication (variable z), an
execution time of 4 time units is considered, whereby the multiplier is pipelined,



64

being able to start a new execution every two time units. The addition (variable
c) takes three time units and by use of pipelining is able to start each time unit
a new operation.

An exploration for N1 = 4, N2 = 5 and N3 = 2 has been performed. The
search space of |[−4, 4]| · |[−5, 5]| · |[−2, 2]| = 9 · 11 · 5 = 495 projection vector
candidates can be reduced to 83 using our reduction techniques. The results are
visualized in Fig. 4. We obtain three Pareto-optimal solutions shown in Table 2.

Table 2. Pareto-points of the design space exploration for the matrix multiplication
algorithm.

u λ C L

(1 0 0)T (2 0 3) 10 16
(0 1 0)T (0 2 3) 8 18
(0 0 1)T (0 0 3) 20 10

5 Conclusion and Future Work

We have presented a first approach for systematically exploring Pareto-optimal
space-time mappings for a class of algorithms with uniform data dependencies.
The considered objective functions are cost and performance (latency). In our
exploration algorithm we introduced also several new techniques for reduction
of search space for Pareto-optimal space-time mappings.

Our exploration framework is part of the PARO6 design system that supports
also the automated synthesis of regular circuits.

In the future, we would like to extend the presented results to include energy
consumption as an additional objective and to perform symbolic design space
exploration for parameterized index spaces.

References

[CL98] Philippe Clauss and Vincent Loechner. Parametric Analysis of Polyhedral
Iteration Spaces. Journal of VLSI Signal Processing, 19(2):179–194, July
1998.

[Cla96] Philippe Clauss. Counting Solutions to Linear and Nonlinear Constraints
through Ehrhart polynomials: Applications to Analyse and Transform Scien-
tific Programs. In Tenth ACM International Conference on Supercomputing,
Philadelphia, Pennsylvania, May 1996.

6 PARO is a design system project for modeling, transforming, optimization, and pro-
cessor synthesis for the class of piecewise linear algorithms. For further information,
check the website: http://www-date.upb.de/research/paro/.



65

[FM98] Dirk Fimmel and Renate Merker. Determination of Processor Allocation in
the Design of Processor Arrays. Microprocessors and Microsystems, 22(3–
4):149–155, 1998.

[KRDL00] Bart Kienhuis, Edwin Rijpkema, Ed F. Deprettere, and Paul Lieverse. High
Level Modeling for Parallel Executions of Nested Loop Algorithms. In IEEE

International Conference on Application-specific Systems, Architectures and

Processors, pages 79–91, Boston, Massachusetts, 2000.
[Kuh80] Robert H. Kuhn. Transforming Algorithms for Single-Stage and VLSI Ar-

chitectures. In Workshop on Interconnection Networks for Parallel and Dis-

tributed Processing, pages 11–19, West Layfaette, IN, April 1980.
[Len93] Christian Lengauer. Loop Parallelization in the Polytope Model. In Eike

Best, editor, CONCUR’93, Lecture Notes in Computer Science 715, pages
398–416. Springer-Verlag, 1993.

[Mol83] Dan I. Moldovan. On the Design of Algorithms for VLSI Systolic Arrays.
In Proceedings of the IEEE, volume 71, pages 113–120, January 1983.

[OD95] John V. Oldfield and Richard C. Dorf. Field Programmable Gate Arrays:

Reconfigurable Logic for Rapid Prototyping and Implementation of Digital

Systems. John Wiley & Sons, Chichester, New York, 1995.
[Par96] Vilfredo Pareto. Cours d’Économie Politique, volume 1. F. Rouge & Cie.,

Lausanne, Switzerland, 1896.
[Rao85] S. K. Rao. Regular Iterative Algorithms and their Implementations on Pro-

cessor Arrays. PhD thesis, Stanford University, 1985.
[SAR+00] Robert Schreiber, Shail Aditya, B. Ramakrishna Rau, Vinod Kathail, Scott

Mahlke, Santosh Abraham, and Greg Snider. High-Level Synthesis of Non-
programmable Hardware Accelerators. In IEEE International Conference

on Application-specific Systems, Architectures and Processors, pages 113–
124, Boston, Massachusetts, 2000.

[Tei93] Jürgen Teich. A Compiler for Application-Specific Processor Arrays.
PhD thesis, Institut für Mikroelektronik, Universität des Saarlandes,
Saarbrücken, Germany, 1993.

[Thi95] Lothar Thiele. Resource Constrained Scheduling of Uniform Algorithms.
Journal of VLSI Signal Processing, 10:295–310, 1995.

[TTZ97] Jürgen Teich, Lothar Thiele, and Li Zhang. Scheduling of Partitioned Reg-
ular Algorithms on Processor Arrays with Constrained Resources. Journal

of VLSI Signal Processing, 17(1):5–20, September 1997.
[WD89] Yiwan Wong and Jean-Marc Delosme. Optimization of Processor Count for

Systolic Arrays. Technical Report YALEEU/DCS/RR-697, Yale University,
Department of Computer Science, New Haven, Conneticut, 1989.

[Xil01] Xilinx, Inc. http://www.xilinx.com/products/software/jbits/




