
952 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004

Design Space Exploration for Optimizing On-Chip
Communication Architectures

Kanishka Lahiri, Anand Raghunathan, and Sujit Dey

Abstract—Rapid growth in the complexity of system-on-chips is being
accompanied by increasing volume and diversity of on-chip communi-
cation traffic, which in turn, is driving the development of advanced
system-level communication architectures. While these architectures have
the potential to improve system performance, they pose significant new
challenges to the system designer, owing to the complex design space de-
fined by the availability of numerous network topologies, communication
protocols, and mapping alternatives for system communications. In this
paper, we address the problem of mapping a system’s communication
requirements to a given communication architecture template. We
illustrate the nature of the communication architecture design space,
and describe an exploration methodology that uses efficient algorithms
to help automate the process of mapping the system communications
to the selected template. In addition, we demonstrate the importance
of simultaneously optimizing the on-chip communication protocols in
order to maximize system performance. Experiments conducted on
example systems, including a cell forwarding unit of an ATM switch,
indicate that the proposed techniques aid in automatically constructing
communication architectures that have high performance. For the systems
we considered, the solutions generated using our methodology had 53%
superior performance (on average), over those based on conventional
architectures and mapping approaches. The algorithms used in the
proposed methodology are computationally efficient, and scale well with
increasing communication architecture complexity.

Index Terms—Bus architectures, communication synthesis, network-on-
chip, on-chip communication, system-level design, system-on-chip.

I. INTRODUCTION

Electronic system design is being revolutionized by the widespread
adoption of the system-on-chip (SoC) paradigm. The benefits of the
SoC approach are numerous, including improvements in system perfor-
mance, cost, size, power dissipation, and design turn-around-time. In
order to exploit these advantages to the fullest, system design method-
ologies need to adequately address two dimensions of system design.
First, it is essential to optimize the mapping of a system’s computation
and storage requirements onto a set of high-performance components,
like CPUs, DSPs, application-specific cores, memories, etc. Second, it
is equally important to optimize the mapping of the system’s commu-
nication requirements onto a set of selected communication resources.
The focus of this paper lies on this latter aspect of system design.

The on-chip communication architecture is a fabric that integrates
the various SoC components, and provides them with a mechanism
for the exchange of data. While trends in system complexity indicate
increasing demands placed by the on-chip communication traffic on
the communication architecture, technology scaling trends indicate that
the performance and energy characteristics of global interconnect are
rapidly deteriorating, relative to logic components. These trends, taken
together, make the communication architecture an increasingly critical

Manuscript received October 2, 2002. This work was supported in part by
NEC Laboratories America and in part by the California MICRO program. This
paper was recommended by Associate Editor R. Camposano.

K. Lahiri was with the Department of Electrical and Computer Engineering,
University of California San Diego, La Jolla, CA 92093 USA. He is now with
NEC Laboratories America, Princeton, NJ 08540 USA (e-mail: klahiri@nec-
labs.com).

A. Raghunathan is with NEC Laboratories America, Princeton, NJ 08540
USA.

S. Dey is with the Department of Electrical and Computer Engineering, Uni-
versity of California San Diego, La Jolla, CA 92093 USA.

Digital Object Identifier 10.1109/TCAD.2004.828127

determinant of several system-wide metrics, including overall system
performance and power consumption [1]–[4]. As a result, traditional ar-
chitectures for on-chip communication, such as those based on a single
shared bus, often fail to satisfy stringent performance requirements.
This is driving the development of advanced SoC communication ar-
chitectures, ranging from derivatives of buses to complex networks
of communication channels, with associated communication protocols
[5], [6]. When customizing such architectures toward the requirements
of an application (or application domain), careful attention needs to be
paid to several aspects, including: 1) selection of an appropriate net-
work topology; 2) selection of appropriate communication protocols,
along with configuration of various protocol parameters; and 3) map-
ping of the system communications to physical paths in the topology.
Each of these steps by themselves pose numerous design alternatives.
Additionally, as shown in this paper, these steps often interact, leading
to tradeoffs that are very difficult to identify or evaluate in the absence
of automatic tools. The aim of this work is to provide system designers
with automatic tools to enable rapid exploration of such tradeoffs, and
techniques to efficiently implement a given system’s communication
requirements as an on-chip communication architecture.

A. Paper Overview and Contributions

In this paper, we describe a design-space exploration methodology
for optimizing system-level on-chip communication architectures. The
methodology takes as inputs, a system description that has been
partitioned into hardware (HW) and software (SW), and mapped onto
appropriate components, and the selected communication architecture
template. The methodology uses efficient algorithms to generate an
optimized mapping of the system’s communication requirements onto
a selected communication architecture template. The techniques also
help in statically customizing the on-chip communication protocols.
The methodology is based on identifying, through efficient perfor-

mance analysis, the characteristics of system-level communication
traffic, including an accurate analysis of potential contentions for
shared channels in the architecture. The exploration and optimization
methodology consists of: 1) a clustering algorithm that helps deter-
mine an initial mapping of the SoC communications to the network
topology and 2) an iterative improvement strategy that takes into
account dynamic effects in order to improve upon the quality of
the initial solution. The result is an optimized mapping of system
communications, along with suitably configured communication
protocols.
In Section II, we provide background on SoC communication archi-

tectures. In Section III, we study the nature and size of the commu-
nication architecture design space, evaluate the potential advantages
of accurate design space exploration, and illustrate, using examples,
key issues that need to be considered by the design space exploration
methodology. In Section IV, we describe the proposed exploration and
optimization methodology, and detail the various steps in Section V. In
Section VI, we present results of experiments that evaluate the method-
ology, by considering its application to several example systems.

B. Related Work

A large body of work exists on system-level synthesis of applica-
tion-specific architectures through HW/SW partitioning and mapping
of the application tasks onto predesigned cores and application-spe-
cific hardware [7]–[11]. While most previous research has focussed
on optimizing computation and storage during the mapping process,
only recently has the problem of mapping a system’s communication
requirements onto an underlying on-chip communication architecture
started to receive interest.

0278-0070/04$20.00 © 2004 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004 953

Research on synthesis of on-chip communication architectures
mostly deals with the generation of optimized network topologies
[12]–[16]. In addition, several new communication protocols for high
performance on-chip communication have recently been proposed
[17]–[20]. While topology selection and protocol design are each
critical steps in the design of a communication architecture, in this
work, we address a complementary problem. We assume the network
topology and protocols are predetermined via selection of a com-
munication architecture template, which are becoming increasingly
available from interconnect core providers [17], [21]–[23]. We address
the problem of how to optimize the mapping of system commu-
nications to provided templates, while at the same time, suitably
configuring the on-chip communication protocols.

To combat problems associated with long, capacitive wires typi-
cally faced by bus-based architectures, researchers have proposed the
use of communication architectures based on the concept of a net-
work-on-chip consisting of regular interconnect topologies and associ-
ated protocols capable of supporting large numbers of communicating
elements [5], [24]. These complex networks create significant chal-
lenges in determining the best way to map system communications to
an underlying network topology.

Fast and accurate system-level performance analysis is the key
to a practical design space exploration methodology. Research on
system-level performance analysis of on-chip communication include
approaches based on simulation of the entire system, which model
communication at varying levels of abstraction [25], [26]. However,
the high computational cost of simulation-based techniques make
these techniques infeasible when exploring a large design space. More
efficient static performance-estimation techniques include [12]–[14],
and [27], but they do not model dynamic effects like bus contention
accurately enough to drive an optimization methodology. A third
category of performance-analysis techniques that account for on-chip
communication include trace-based techniques [28], [29]. In this
work, we adopt the trace-based performance-analysis framework
described in [28], which provides for accurate modeling of dynamic
effects such as bus contention, while at the same time being far more
efficient than simulation-based techniques.

Recent advances that facilitate the process of optimizing the commu-
nication architecture include development of latency insensitive design
techniques [30]. Latency insensitive design refers to a methodology
in which the functional correctness of a system consisting of a set of
communicating components is guaranteed, even though the delay asso-
ciated with system-level communications may vary. The use of latency
insensitive system specifications allows system designers to explore
numerous alternative communication architectures, without incurring
the large cost of verification at each step.

Finally, a body of work on interface synthesis and design [31]–[37]
addresses issues related to implementation of specified protocols
in hardware, and enables component reusability. Once the mapping
of the system components to a communication architecture has
been performed, these techniques help generate the interface logic
between pairs of communicating components. In order to promote
design reuse, recently, standards have started to evolve to define
specifications for communication interfaces, or wrappers [38], [39].
Such initiatives aim at standardizing the signaling conventions at the
component-communication architecture interface. These efforts will
facilitate customization of the communication architecture topology,
mapping and protocol parameters.

II. BACKGROUND: ON-CHIP COMMUNICATION ARCHITECTURES

The design of on-chip communication architectures must address
several issues including: 1) definition of an appropriate network

topology; 2) selection and configuration of the communication proto-
cols; and 3) definition of a mapping of the system communications.
The communication architecture topology defines the physical

structure of the communication architecture. Numerous topology
alternatives exist, ranging from those based on a single shared
bus (which connects all system components), to more complex
architectures, such as bus hierarchies, token rings, crossbars, or
custom networks. When the topology has multiple communication
channels (or buses), bridges are used to interconnect the necessary
channels. Components connected to the topology include: 1) master
components, (e.g., CPUs, DSPs), which are capable of initiating
communication transactions and 2) slave components (e.g., memories,
peripherals), which merely respond to transactions initiated by a
master. In this paper, we consider on-chip communication architectures
ranging from simple bus-based architectures to those consisting of
arbitrary networks of shared and dedicated channels. We assume the
on-chip communication architecture is memoryless, i.e., data cannot
be stored in the communication architecture.
Since multiple masters often share communication channels in the

communication architecture, communication protocols are used to
manage access to each channel. These protocols implement arbitration
algorithms such as round-robin access, TDMA [17], and priority-based
selection [23], [40]. In addition, these protocols are responsible for
defining the logical conventions that govern communication trans-
actions. For example, typical protocols provide for the availability
of burst transfers, wherein a master is given the right to use the bus
for multiple cycles, without being required to negotiate repeatedly
with the arbiter. The protocol may specify maximum burst lengths to
prevent a master from monopolizing a bus. The protocols also define
other functionality, such as pipelined transactions, split transactions,
word sizes, endianness, etc.
Communication mapping refers to the process of associating abstract

system-level communications with physical communication paths in
the communication architecture topology. This step is trivial for com-
munication architectures based on a single shared bus (where all com-
munications are mapped to the bus). However, as shown later in this
paper, when the communication architecture has numerous channels,
the number of possible mappings grows exponentially, making simple
exhaustive search impractical. Additionally, the interaction between
communication protocols and communication mappings adds further
to the complexity of this design space, calling for exploration tech-
niques based on accurate analysis to derive architectures that are well
optimized for the given application.

III. CHARACTERISTICS OF THE COMMUNICATION

ARCHITECTURE DESIGN SPACE

We formulate the problem of designing the on-chip communication
architecture for a partitioned andmappedHW/SW system as consisting
of three steps: 1) defining a topology consisting of a network of
channels (each serving either as a dedicated point-to-point link,
or as a shared bus) interconnected by bridges; 2) customizing the
communication protocol for each channel; and 3)mapping the system’s
communications onto paths in the network topology (by mapping
components onto channels). In this work, we focus on the latter two
steps, assuming that the designer has selected an architectural template
for the communication architecture. The communication architecture
template specifies: 1) the network topology, which could be any
arbitrary interconnection of shared and dedicated communication
channels and 2) a definition of the communication protocols used
on each channel, with available configurable parameters.
The reasons we chose this approach are twofold. First, several such

templates are commercially available to the designer today, covering

954 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004

Fig. 1. Example system of communicating components: (a) logical view of intercomponent communication, (b) a possible mapping of system communications
to a selected network topology, called Arch1.

Fig. 2. Alternative mappings for example system: (a) Arch2 and (b) Arch3.

a range of topologies and communication protocol alternatives [17],
[21]–[23], [41]. Second, being faced with such choices, we believe the
designer should be empowered by automatic tools in order to evaluate
alternative templates for a given system. Our techniques aim at pro-
viding these tools, using which the designer can optimize the mapping
of system communications to each template in turn, customize the tem-
plate, and evaluate the resulting solutions using fast system-level per-
formance analysis.

In this section, using examples, we illustrate the key issues that
arise in the process of mapping a system’s communications to a
given template. We first show that the design space comprising
alternative communication mappings and communication protocol
configurations is significantly large, making techniques based on
exhaustive search impractical with existing tools. Next, we show that
the variation in performance across the design space is large enough
to motivate careful exploration, due to the performance gains that may
be possible. We show that an approach that merely clusters frequently
communicating components does not necessarily provide the best
solution, due to the additional complexity introduced by temporal
properties of system communications. Finally, we show that selecting
a particular mapping of components and communications to physical
paths without considering the effects of the on-chip communication
protocols can result in significantly suboptimal designs.

Example 1: Fig. 1(a) shows a system consisting of a set of eight
components, each of which execute a set of computation tasks and also
perform data and control communications. Bold lines indicate transfer
of data, while dotted lines indicate exchange of control or synchroniza-
tion signals. Note that these lines indicate the logical view of intercom-
ponent communication, and not physical paths in the communication
architecture. Fig. 1(b) shows a communication architecture where all
the communications generated by the system components are mapped
to one of the two shared buses connected by a bridge. For example,
communications betweenC1 andC2 are mapped to Bus1, while those
between C5 and C6 are mapped to Bus2. However, for this template,

TABLE I
PERFORMANCE VARIATION OVER DIFFERENT POINTS IN THE DESIGN SPACE

there could be other mappings as well, such as the ones shown symbol-
ically in Fig. 2(a) and (b). For example, Fig. 2(a) shows an architecture
in which communications between C1 and C4 are mapped to a path of
buses: Bus1 ! Bus2.
Table I reports the performance of the system under different map-

pings as measured by the performance-analysis tool described in [28].
Each row represents a distinct mapping of components to buses in
the communication architecture. For example, in Arch1, components
C1–C4 are grouped onto one bus, and components C5–C8 are on an-
other bus [Fig. 1(b)]. In this case, the system takes 11 723 cycles to
process a fixed sequence of input stimuli. Arch1 is 23% faster than
Arch2 [Fig. 2(a)], which takes 15 314 cycles to process the same se-
quence of input stimuli. However, Arch1 is 27% slower than Arch3,
which takes 9242 cycles to complete processing the stimuli.
The above example illustrates the following issues.

• The number of alternative mappings can be very large for a
system with numerous components and channels. For the small
example in Fig. 1, (8 components and 2 channels), under the
assumption that the two buses are identical, and that the compo-
nents must be equally partitioned between them, the number of
possible mappings is 8

4
, or 70.

For an arbitrary set of n components and k distinct channels
the number of possible mappings is kn. In practice, though, the
design space is smaller, since there typically exist limits on the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004 955

number of components that may be assigned to each channel.
However, as shown later in this section, for each choice of map-
ping, there exist important performance critical choices when
configuring the communication protocols for each channel. Com-
bined with the problem of choosing the best communicationmap-
ping, this results in a highly complex design space.

• The performance variation across this design space is significant.
The total time taken by the system to complete execution varies
by up to 65%, depending on the selected communication archi-
tecture. This motivates the need for systematic exploration of the
design space.

• Exploiting the characteristics of intercomponent communication
traffic can lead to more optimized solutions. For example, note
that Arch1 outperforms Arch2. The reason behind this is that
the mapping of components to buses in Arch1 is derived by clus-
tering components that exchange large volumes of performance
critical data. This reduces the number of communications that
span multiple buses, and incur the overhead of communicating
over the bridge.

In the next example, we demonstrate that using simple metrics such
as the volume of communication traffic to drive the communication
architecture optimization does not necessarily yield the best solution.

Example 2: Let us consider again the system discussed in
Example 1, and examine the alternative mappings in a little more
detail. Table I reported that system performance under Arch1 is su-
perior to that under Arch2. The mapping in Arch1 provides superior
performance because: 1) the number of communication transactions
that span multiple buses are minimized and 2) components that
exchange large amounts of performance critical data are attached to
the same bus. Both of these factors result in low transmission latencies.
However, as we see next, this approach does not necessarily yield the
best architecture. If we change the mapping of components to channels
to that of Arch3 [Fig. 2(b)], then we find that the system completes
its task in 9242 cycles, a further improvement of 21% over Arch1.
The reason for the improvement is that the new mapping separates
components that have largely overlapping communication lifetimes
(C1 from C3 and C5 from C7), resulting in an implementation
that causes fewer conflicts and hence enhanced concurrency in the
system’s execution. However, the penalty paid is that the number
of communication transactions going across the bridge is no longer
minimum, since component C1 communicates with component C4

and C3 with C2 [Fig. 1(a)]. For this system, the benefit of reduced
conflicts outweighs the penalty of transactions that span multiple
buses. Hence, Arch3 is the architecture that best recognizes and takes
advantage of the characteristics of the application’s communication
traffic. The example shows a case where a simple clustering heuristic
fails to generate the best solution.

Example 3: Finally, we illustrate that communication architecture
design tools should incorporate the influence of the on-chip commu-
nication protocols in order to accurately assess the quality of a candi-
date solution. Using the same example from Fig. 1, recall that the per-
formance-analysis results indicated that Arch3 was the best solution
due to reduced conflict level on each bus. However, the performance
estimate for Arch3 in Table I was derived assuming that optimized
bus-protocol parameters were used for each of the two buses.

Suppose that, while examining alternative solutions, we ignore the
effect of the bus protocol, and assume fixed protocol parameters across
different mapping alternatives. To illustrate the danger of such an ap-
proach, we report on the following experiment. Each bus was assigned
a static priority-based arbitration protocol, with fixed protocol param-
eters (we consider the bus access priorities of each component, and the
maximum burst transfer size, as the protocol parameters).

TABLE II
EFFECT OF COMMUNICATION PROTOCOLS IN THE DESIGN SPACE

In the first experiment, we evaluated Arch3 [Fig. 2(b)], leaving the
protocol parameters unchanged from Arch2, (as shown in row 1 of
Table II). The system took 12 504 cycles to complete the task, a degen-
eration of 6.7% over Arch1. However, after we generated optimized
bus protocol parameters for Arch2 (row 2 of Table II), the best per-
formance result of 9242 cycles was obtained.
The above example illustrates the following important point: while

examining alternative candidate communication architectures, the
effects of the on-chip protocols cannot be ignored. When the set of
components mapped to a channel is changed, the traffic characteristics
on that channel change, and hence necessitate re-examination of
previously configured protocols. This suggests that the problems of
selecting an optimized communication mapping, and choosing the best
set of protocols, are interrelated, and that solving each independently
could easily lead to suboptimal solutions. In the example, such an
approach would have made us overlook Arch3. Hence, in order to
make an accurate comparison between two alternative communication
mappings, it is necessary to: 1) derive optimized protocols for each
and 2) conduct performance analysis of each architecture while
taking into account the effects of both the selected communication
mapping as well as the selected protocol configuration.

IV. DESIGN-SPACE EXPLORATION AND OPTIMIZATION METHODOLOGY

In this section, we present an overview of our communication archi-
tecture design methodology and highlight the important steps. In the
next section, we describe how some of the important steps are con-
ducted in greater detail.
The overall methodology is shown in Fig. 3. The inputs (shown

shaded in the figure) consist of: 1) a system specification that has
been partitioned into HW and SW, and mapped to appropriate
cores or custom HW and 2) a communication architecture template
consisting of a network topology (defined by a set of shared/dedicated
communication channels interconnected by bridges), and associated
communication protocols. Note that the methodology applies to
topologies that are memoryless. This implies that data transfers, once
successfully initiated, must complete before another transfer can
occur, since data cannot be stored internally in the communication
architecture. The algorithms automatically generate an optimized
mapping of system components to specific channels in the target
architecture, as well as optimize the communication protocols for each
channel by customizing the protocol parameters.
In the first step, HW/SW cosimulation of the partitioned/mapped

system description is performed, with communication modeled using
instantaneous, conflict-free exchange of communication events. Ex-
ecution traces are collected and stored in a compact representation
called a symbolic execution graph (SEG), which captures the abstracted
system behavior (including computation, communication, and inter-
component synchronization) over the entire execution trace [28]. Using
the analysis algorithms detailed in [28], Step 3 generates various sta-
tistics about the system performance and intercomponent communica-
tion traffic. Based on these statistics, and a specification of the com-

956 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004

Fig. 3. Methodology for design space exploration of on-chip communication architectures.

munication architecture template, clustering techniques (Step 4) are
used to generate an initial mapping of components to the target archi-
tecture. Step 5 determines a set of optimized protocol parameters for
each channel. The results of Steps 4 and 5 together constitute an initial
solution.

As demonstrated in Section III, an approach that stopped with the
initial solution may result in poor system performance for many sys-
tems. Hence the need for the second, iterative improvement part of our
methodology. In Step 6, the performance-analysis tool is re-invoked, to
consider effects of the generated communication architecture. The tool
re-evaluates system performance and gathers new communication sta-
tistics. Based on these statistics, Step 7 explores alternative solutions
by calculating the potential performance gains of moving already as-
signed components from one channel to another, and chooses the best
set of candidate “moves” to construct a new solution. The output of
Step 7 is a new mapping of components to the target architecture. Step
8 reconfigures the protocol parameters, for reasons illustrated in Sec-
tion III. The new solution is re-evaluated, and the iterative procedure
(Steps 6–8) is repeated till no further improvement in performance is
obtained.

V. ALGORITHMS

In this section, we first describe details of the algorithms used by
the methodology of Fig. 3. First, we describe how the given system,
its intercomponent communication statistics, as well as the given com-
munication architecture template are modeled. We next describe the
techniques used to compute the initial solution, and then consider how
the iterative part of the methodology improves on that solution.

A. Modeling Intercomponent Communication Statistics

Statistics generated by the performance analysis of Step 3 are
represented in an intercomponent communication graph. The com-
munication graph is a directed graph consisting of one vertex for
each component, and an edge (Ci; Cj) when there exists communi-
cations between component Ci and Cj . The direction of the edge is

Fig. 4. Communication graph: example.

dependent on the master-slave relationship between them.1 An edge
(Ci; Cj) is annotated with properties of the communication transac-
tions seen between components Ci and Cj , including the number of
transactions, distribution of their sizes (mean, variance), critical path
information, (expressed as the distribution of their timing slacks),
the number of transactions with zero slack (critical transactions).
While the various parameters on each edge may be used in several
different ways, in our implementation, we chose to derive a single
weight for each edge by taking the product of the average size (in
number of bus words) and the number of transactions between Ci

and Cj , and scaling it by the average slack (in cycles) (Fig. 4). This
takes into account frequency, volume and criticality of transactions
that occur between components Ci and Cj .
By examining the Communication Graph, Step 4 calculates for each

component, a measure of the load it imposes on the communication
architecture. For component Ci this is the sum of the weights of the
outgoing edges fromCi in the Communication Graph. It then arranges
the components in descending order of load.

1A master initiates a communication transaction, while a slave only
responds to transaction requests.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004 957

Fig. 5. Topology graph: example.

B. Network-Topology Modeling

The network topology of the architectural template is modeled
using a Topology Graph. An example of a Topology Graph is shown
in Fig. 5, corresponding to the template shown in Fig. 1(b). The
graph consists of one vertex for each channel, and bidirectional edges
between vertices for channels that are interconnected by a bridge. The
information on such edges contain parameters that describe the prop-
erties of the bridge—the overhead of transmitting a single word over
it, its frequency of operation etc. Each vertex also has a self-looping
edge, which describes properties of the channel it represents. For
each channel P in the topology, a connectivity metric is calculated by
estimating the time taken to transfer a fixed amount of data from a
component on channel P to each of the other channels in the topology.
This estimate is obtained using the topology model described above
and includes: 1) Protocol Overheads and 2) Transmission Delay.
Protocol Overheads are contributed by handshaking conventions on
each channel/bridge, and Transmission Delay, is determined by the
channel bandwidth. The result is used to derive a connectivity rank
for channel P . Note that this calculation ignores the possibility of
conflicts. The intuition behind the ranking procedure is that channels
which have high bandwidth, and are “well connected” to the rest of
the network topology, have low delays and, hence, obtain a high rank.

C. Clustering Procedure for Initial Solution

The clustering procedure picks the highest ranked component that
is not yet assigned to a channel and then tries to decide which channel
to assign it to. For example, suppose channel P has components Ci

and Cj assigned to it and component Ck is being considered for as-
signment. The interaction level of component Ck with channel P is
measured by summing the weights of the edges (Ck; Cj), (Ck; Ci),
(Ci; Ck), (Cj ; Ck) in the communication graph. This is repeated for
each channel, and the one for which the result is maximum is the target
channel for component Ck. If this level exceeds a threshold, then the
assignment is made. If not, it implies that too few components have
been assigned to make an informed decision using the above technique.
In this case, the list of components is scanned for a component which
has not yet been assigned, and has maximum interaction with the cur-
rent component Ck . The ranks of the two components, the number of
components assigned to each channel so far, and the ranks of the avail-
able channels are used to assign the component pair to an appropriate
channel. If there still exist choices among a few alternatives, a channel
is randomly chosen.

1) Assigning Protocol Parameters: The procedure for optimizing
the protocols is specific to the exact set of configurable parameters
that are available in the communication architecture template. We ex-
plain the procedure for an architectural template that uses a static pri-
ority-based protocol for each channel, since this is the most commonly

used protocol in practice today e.g., [23], [40]. The parameters that we
consider are the priorities of each component, and the maximum per-
missible burst transfer size.

• Priorities are assigned to components sharing a channel by exam-
ining the ranks of each component in the sorted list of components
generated earlier.

• The maximum burst transfer size for a channel k is calculated
as the weighted average of the size of transactions mapped to
the channel, where the weight incorporates the criticality, derived
from the average values of the timing slack. This favors large
burst transfer sizes when large transactions lie on the system crit-
ical path.

D. Iterative Improvement Incorporating Dynamic Effects

In this section, we describe how we construct a sequence of moves
(or transformations) to yield a solution that improves the system’s per-
formance, while taking into account the effects of runtime conflicts in
the communication channels. Given an assignment of components to
channels, with a set of protocol parameters for each channel, Step 7
first efficiently computes the potential gain of moving component Ci

from the channel towhich it is currentlymapped (P) to another channel
(Q). This is repeated for every combination of component and poten-
tial destination channels. The rest of the algorithm uses well-known
iterative techniques to determine a subsequence of moves whose cu-
mulative gain is maximum, in order to construct an improved solution
[42]. At each step in the iterative procedure, the move that is chosen is
the one producing the maximum gain. Note that the move producing
the maximum gain may result in a deterioration (gain may be negative).
However, a sequence of moves with a net positive gain may be enabled
by considering individual moves with negative gain. Thus, the explo-
ration technique provides for a degree of hill-climbing in order to avoid
local maxima.
1) Estimating the Potential Gain of a Move: The potential gain of

a move is efficiently estimated using the procedure described in Fig. 6,
which makes use of additional information that is generated by the per-
formance-analysis tool for the architecture under consideration. We
first describe the principle behind the procedure through the use of
an example. Under a given architecture, the lifetime of a communi-
cation transaction is made up of three parts: 1) waiting time arising out
of protocol overhead; 2) waiting time arising out of simultaneous ac-
cess attempts to the shared channel i.e., conflicts; and 3) time taken to
transfer the data. The performance-analysis tool generates, for each pair
of components (Ci; Cj), the number of cycles for which the lifetimes
of communication transactions involving Ci overlaps with transaction
lifetimes involving Cj . Fig. 7(a) shows a set of overlapping communi-
cation transaction lifetimes, and Fig. 7(b) shows the resulting commu-
nication conflict graph.
Given a certain mapping of components to channels, the conflict

level for a channel P is calculated by accumulating the edge weights
for every (Ci; Cj) in the communication conflict graph, where Ci and
Cj represent components mapped to channel P . When considering a
move of component Ci from channel P to channel Q, the algorithm
calculates the potential decrease in the conflict level on channel P and
the potential increase in the conflict level on channel Q, and estimates
the merit of performing such a move. To illustrate this, consider the ex-
ample shown in Fig. 7(b), where the components are shown grouped
into two buses, and potential gain of moving componentC3 fromBus2
to Bus1 is being evaluated. From Fig. 7(b), the conflict level on Bus2
is calculated as 19 (6 between C1 and C2, 5 between C2 and C3, and
8 between C1 and C3). After moving C3, the conflict level on Bus2
reduces to 6 (6 between C1 and C2), while the conflict level on Bus1
increases from 2 to 9. Fig. 7(c) shows the conflict levels on each bus
before and after moving vertex C3 from Bus1 to Bus2.
To calculate the potential gain of moving component Ci from

channel P to Q, the pseudocode of Fig. 6 is executed. The first loop

958 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004

Fig. 6. Evaluate_gain procedure to compute gain of each move.

accumulates the communication delays associated with communica-
tions involving components on channels P and Q, using the method
described in Section V-B. The result is stored in old delay. Then
the conflict levels on the each channel are calculated as described
earlier and saved in lP and lQ . The second loop calculates the
new (increased) conflict level lQ on channel Q, and the third loop
calculates the new (decreased) conflict level lP on channel P . Then
the speed of each channel is symbolically scaled by the conflict level
on each channel. The time taken for all communications involving
components on channels P and Q are recalculated (new delay), and
compared with the previous value. The difference is the potential gain
of performing the move.

E. Accuracy and Efficiency Issues

In this section, we explain why the performance-analysis tool needs
to be invoked inside the body of the iterative procedure (in Step 6 of
Fig. 3). The reason behind this strategy is that the intercomponent-com-
munication statistics gathered through performance analysis can be di-
vided into two categories: 1) statistics that are independent of the com-
munication architecture, which include the number of communication

transactions that occur over the period of the trace between each pair of
components, and the sizes of these communications (number of bytes
per transaction) and 2) statistics that are sensitive to the exact imple-
mentation of the communication architecture, which include informa-
tion about the timing of communication transactions, time spent by a
component waiting for access to a shared channel, the execution time
of each communication transaction, the critical transactions exchanged
between a pair of components, and the available timing slack on each
transaction. For each new mapping of system communications, the ar-
chitecture-dependent statistics (the latter category) need to be re-eval-
uated. This requires the analysis tool to be re-invoked at the beginning
of each iteration.
Taking this further, it may be argued that in order to achieve even

greater accuracy, it should be necessary to run the analysis tool even
deeper in the iterative procedure, namely in Step 7, when the poten-
tial gain of moving a component from one channel to another is cal-
culated. However, this could result in significantly increased runtimes
for the exploration tool. Additionally, in our experiments, we observed
that the benefit may be limited for templates based on complex net-
work topologies, where the effect of moving a single component from
one channel to another is often local, with little effect on the majority
of the communication transactions in the system. Individual local per-
turbations can be evaluated using simpler, more efficient procedures,
such as the one described in Section V-D1.

VI. EXPERIMENTAL RESULTS

In this section, we present results of experiments conducted on
example systems, and evaluate the benefits of using the exploration
techniques presented in this paper. In the first set of experiments, we
compare the performance of communication architectures generated
using our exploration techniques with ones based on conventional bus
architectures. In addition, we report on the CPU time consumed by
the exploration tool while generating these solutions. In the second set
of experiments, we evaluate the use of our exploration technique to
evaluate tradeoffs in selecting communication architecture templates.

A. Experimental Methodology

The experiments were conducted on two example systems. The first
is a cell forwarding unit of an output queued ATM switch, depicted
in Fig. 8. The ATM system consists of 8 output ports, each with a local
queue of cell headers. The system also has three shared memory banks,
to store the arriving cell payloads. Each port periodically polls its queue
to detect presence of a cell. When nonempty, it issues a dequeue signal
to its local queue, extracts the relevant cell from the appropriate shared
memory and sends it onto its output link. The second system (SYS) is
the one described in Fig. 1.
Each system was specified as a set of concurrent communicating

tasks, with communication modeled as the exchange of abstract com-
munication events. HW/SW partitioning and mapping was performed
using the POLIS [11] framework, and system-level simulation was car-
ried out in PTOLEMY [43]. The resulting simulation traces were used
in the subsequent communication architecture analysis and exploration
algorithms. For the ATM example, the network topology consisted of
three buses interconnected by 2 bridges. For the SYS example, the net-
work topology consisted of two buses connected by a bridge with spec-
ified parameters (width, speed, etc.) as shown in Fig. 1(b). In each case,
the final architecture generated using the described analysis and explo-
ration methodology was evaluated using detailed HW/SW cosimula-
tion to confirm the accuracy of the predicted performance estimates.
The performance estimation error was found to be less than 2% in all
cases.

B. Effectiveness of the Exploration Techniques

Tables III and IV report on the performance of the SYS and ATM
examples, respectively. In each table, the performance of the system is

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004 959

Fig. 7. Taking into account conflicts during estimation of gain of performing a move. (a) Execution trace showing communication lifetimes; (b) Communication
Conflict Graph; (c) Conflict levels when considering moving component 3 from 1 to 2.

Fig. 8. Example system: ATM.

reported under different communication architectures. The rows cor-
respond to the following architectures: in row 1, all components are
mapped to a single shared system bus; in row 2, components are ran-
domly mapped to the selected communication architecture topology;
in row 3, the mapping and protocols are determined by the clustering-
based initial solution; in row 4, the mapping and protocols are those
determined by the complete exploration procedure; in row 5, the com-
munication architecture is based on an ideal one, which allows for in-
finite concurrency and bandwidth (this provides a lower bound on the
system execution time).

Column 2 of Tables III and IV reports the actual performance mea-
surement in terms of the number of clock cycles taken to accomplish a
given task. In the case of SYS this was the time taken to process 2000
input stimuli, and for the ATM example, it was the time taken to process
1000 cells. In column 3, each table reports performance of each con-
figuration relative to the case where all communication goes through
a shared bus (row 1). Column 5 reports CPU times with the following
interpretations. In rows 1 and 2, (shared bus and random), the reported
CPU is that spent in choosing optimized protocol parameters (the map-
ping is predetermined) and a single evaluation of system performance

using the tool presented in [28]. In row 3 the CPU time measurement
includes the time spent in constructing the initial solution, protocol con-
figuration, and performance analysis. In row 4 (optimized solution), it
represents the time spent in analysis, construction of the initial solution,
protocol configuration, and the iterative procedure. Finally, for the last
row, CPU time indicates the time required to perform HW/SW cosim-
ulation of the entire system, to generate the initial system execution
traces.
From these tables we observe the following:

• The clustering-based approach by itself provides significant
performance improvements for both systems, as compared to
the shared bus solution, and the random solution. For the SYS
system, clustering results in improvements of 52% and 23%
over the shared bus and random solutions respectively. For the
ATM system, clustering provides corresponding improvements
of 38% and 22%.

• Performance of each system under the optimized mapping is su-
perior to any of the other solutions. In particular, for the SYS
example, the optimized solution is 63% (2.67 times) faster than
the shared bus solution, 40% faster than the random solution,
and 21% faster than one obtained by simply clustering frequently
communicating components. Similar results for the optimized
ATM architecture indicate improvements of 44%, 29%, and 9%,
respectively.

• The CPU time consumed by the exploration algorithms are dom-
inated by the time spent in performance analysis. In rows 1–3, the
times reported are roughly the same, and correspond to the time
take for a single invocation of the analysis tool. The CPU time
reported in row 4 is twice the CPU time reported in the previous
rows, owing to an extra invocation of the analysis tool during the
iterative improvement step.

• Using cosimulation as a performance-analysis tool for design
space exploration methodology is clearly infeasible, since the
large computational cost of a simulation is potentially encoun-
tered at every point in the design space. This is borne out by
the time taken to conduct HW/SW cosimulation for each system,
which, in spite of abstract communication modeling, takes over
2 min for each system (row 5 in each table). In comparison, our
performance-analysis technique is over an order of magnitude
faster.

960 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004

TABLE III
EXPERIMENTAL RESULTS—EXAMPLE SYSTEM SYS

TABLE IV
EXPERIMENTAL RESULTS—EXAMPLE SYSTEM ATM

C. Evaluating Tradeoffs in Communication Architecture
Template Selection

Next, we illustrate how the described techniques can be utilized to
evaluate tradeoffs in selecting or designing an architectural template
for an on-chip communication architecture. For these experiments, we
consider an extended version of the system described in Fig. 1. The ex-
tended system consists of 16 communicating components, with inter-
component communication characteristics defined by stochastic traffic
generators (communication requests and interrequest separations fol-
lowed Gaussian distributions). The architectural template considered
was based on a variable-length chain of buses.2 In this experiment, the
previously described techniques were used to optimize the mapping of
system communications to templates consisting of 2–8 buses. Perfor-
mance of the architecture in each case was measured in terms of the
total number of cycles required to complete the processing of a fixed
number of input stimuli. For each template, three performance num-
bers are reported. Fig. 9 depicts, for each template, performance under:
1) a random assignment of components to buses; 2) a clustering-based
assignment (based on the initial solution constructed in our method-
ology); and 3) an optimized assignment (derived using the complete
methodology described in this paper). For example, when the template
consists of two buses, system performance with a random mapping
is 48 849 cycles. With a clustering-based assignment, it is 36 525 cy-

2These experiments illustrate the evaluation of different instances within a
class of templates. However, the approach could also be used to compare per-
formance and evaluate tradeoffs across different template classes, e.g., token
rings, bus hierarchies, crossbars, etc.

Fig. 9. Tradeoffs in template selection: performance variation with increasing
number of buses under different mapping strategies.

cles, a 25% improvement. With the optimized mapping, performance
is 30 693 cycles, a 37% improvement. From the graph, we make the
following observations.

• While the general trend indicates improving performance for the
optimized mapping with increasing number of buses, there are
several cases where forcibly adding more buses has negligible,
or even detrimental effect on overall performance (e.g., template
sizes 5,7,8). The reason behind this is that addition of a new bus
increases parallelism for certain communications on one hand,
while, on the other, it introduces additional overhead for com-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 6, JUNE 2004 961

munications that encounter bus bridges when spanning multiple
buses. Note that for these experiments, we forced the optimiza-
tion algorithm to use all the available buses, rather than isolate
and discard buses that do not benefit performance.

• The proposed techniques are capable of generating high-per-
formance solutions across different communication architecture
templates. The proposed methodology is successful in gener-
ating solutions that have significantly better performance than
even those that are based on clustering alone. The optimized
communication architectures provide up to 1.45x improvements
over the clustering solutions, and up to 2.25x improvements over
the random solutions.

• The presented methodology can help designers choose the most
appropriate template for a given design. For example, the results
indicate that for this system, a template consisting of four buses
may provide sufficient performance. Adding more buses brings
about incremental performance improvements that may not jus-
tify the additional hardware and design cost.

VII. CONCLUSION

In this paper, we presented new techniques to help designers
optimize the mapping of a system’s communication requirements to
an on-chip communication architecture. We illustrated the issues in
automating this process, and presented a methodology and its con-
stituent algorithms for design space exploration. Experimental results
conducted to evaluate the effectiveness of the proposed techniques
indicate that the methodology performs well, generating solutions
that provide significantly better performance over conventional
communication architectures.

REFERENCES

[1] R. Ho, K. W. Mai, and M. A. Horowitz, “The future of wires,” Proc.
IEEE, vol. 89, pp. 490–504, Apr. 2001.

[2] D. Sylvester and K. Keutzer, “A global wiring paradigm for deep
submicron design,” IEEE Trans. Computer-Aided Design, vol. 19, pp.
242–252, Feb. 2000.

[3] L. Benini and G. D. Micheli, “Powering networks on chips,” in Proc.
Int. Symp. Syst. Level Synthesis, 2001, pp. 33–38.

[4] V. Raghunathan, M. B. Srivastava, and R. K. Gupta, “A survey of tech-
niques for energy-efficient on-chip communication,” in Proc. Design
Automation Conf., June 2003, pp. 900–905.

[5] W. J. Daily and B. Towles, “Route packets not wires: On-chip intercon-
nection networks,” in Proc. Design Automation Conf., June 2001, pp.
684–689.

[6] L. Benini and G. D. Micheli, “Networks on chips: A new SoC para-
digm,” IEEE Comput., vol. 35, pp. 70–78, Jan. 2002.

[7] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and De-
sign of Embedded Systems. Englewood Cliffs, NJ: Prentice Hall, 1994.

[8] R. Ernst, J. Henkel, and T. Benner, “Hardware-software cosynthesis for
microcontrollers,” IEEE Design Test Mag., vol. 10, pp. 64–75, Dec.
1993.

[9] T. B. Ismail, M. Abid, and M. Jerraya, “COSMOS: A codesign
approach for a communicating system,” in Proc. IEEE Int. Workshop
Hardware/Software Codesign, 1994, pp. 17–24.

[10] P. H. Chou, R. B. Ortega, and G. B. Borriello, “The CHINOOK hard-
ware/software cosynthesis system,” in Proc. Int. Symp. Syst. Level Syn-
thesis, 1995, pp. 22–27.

[11] F. Balarin, M. Chiodo, H. Hsieh, A. Jureska, L. Lavagno, C. Passerone,
A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and B. Tabbara,
Hardware-Software CoDesign of Embedded Systems: The POLIS Ap-
proach. Norwell, MA: Kluwer, 1997.

[12] T. Yen and W. Wolf, “Communication synthesis for distributed em-
bedded systems,” in Proc. Int. Conf. Computer-Aided Design, Nov.
1995, pp. 288–294.

[13] J. Daveau, T. B. Ismail, and A. A. Jerraya, “Synthesis of system-level
communication by an allocation based approach,” in Proc. Int. Symp.
System Level Synthesis, Sept. 1995, pp. 150–155.

[14] M. Gasteier and M. Glesner, “Bus-based communication synthesis on
system level,” ACM Trans. Design Automation Electron. Syst., vol. 4,
no. 1, pp. 1–11, 1999.

[15] R. B. Ortega and G. Borriello, “Communication synthesis for distributed
embedded systems,” in Proc. Int. Conf Computer-Aided Design, Nov.
1998, pp. 437–444.

[16] A. Pinto, L. P. Carloni, and A. Sangiovanni-Vincentelli, “Constraint-
driven communication synthesis,” in Proc. Design Automation Conf.,
June 2002, pp. 783–788.

[17] Sonics Integration Architecture Available: http://www.sonicsinc.com
[Online]

[18] R. Yoshimura, K. T. Boon, T. Ogawa, S. Hatanaka, T. Matsuoka, and K.
Taniguchi, “DS-CDMAwired bus with simple interconnection topology
for parallel processing system LSIs,” in Proc. Int. Solid-State Circuits
Conf., 2000, pp. 370–371.

[19] K. Lahiri, A. Raghunathan, G. Lakshminarayana, and S. Dey, “Commu-
nication architecture tuners: A methodology for the design of high per-
formance communication architectures for system-on-chips,” in Proc.
Design Automation Conf., June 2000, pp. 513–518.

[20] K. Lahiri, G. Lakshminarayana, and A. Raghunathan, “LOT-
TERYBUS: A new communication architecture for high-performance
system-on-chip designs,” in Proc. Design Automation Conf., June 2001,
pp. 15–20.

[21] CoreConnect Bus Architecture [Online]. Available: http://www.chips.
ibm.com/products/coreconnect/

[22] B. Cordan, “An efficient bus architecture for system-on-a-chip design,”
in Proc. Custom Integrated Circuits Conf., 1999, pp. 623–626.

[23] AMBA 2.0 Specification [Online]. Available: http://www.arm.com/
armtech/AMBA

[24] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C. A. Ze-
ferino, “SPIN: A scalable, packet switched, on-chip micro-network,” in
Proc. Design Automation Test Eur. (DATE) Conf., 2003, pp. 70–73.

[25] J. A. Rowson and A. Sangiovanni-Vincentelli, “Interface based design,”
in Proc. Design Automation Conf., June 1997, pp. 178–183.

[26] K. Hines and G. Borriello, “Optimizing communication in embedded
system cosimulation,” in Proc. Int. Symp. Hardware/Software Codesign,
Mar. 1997, pp. 121–125.

[27] P. Knudsen and J. Madsen, “Integrating communication protocol se-
lection with partitioning in hardware/software codesign,” in Proc. Int.
Symp. Syst. Level Synthesis, Dec. 1998, pp. 111–116.

[28] K. Lahiri, A. Raghunathan, and S. Dey, “System-level performance anal-
ysis for designing on-chip communication architectures,” IEEE Trans.
Computer-Aided Design, vol. 20, pp. 768–783, June 2001.

[29] P. Lieverse, P. V. D. Wolf, K. Vissers, and E. Deprettere, “A method-
ology for architecture exploration of heterogeneous signal processing
systems,” J. VLSI Signal Process., vol. 29, no. 3, 2001.

[30] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli,
“Theory of latency-insensitive design,” IEEE Trans. Computer-Aided
Design, vol. 20, pp. 1059–1076, Sept. 2001.

[31] S. Narayanan and D. D. Gajski, “Interfacing incompatible protocols
using interface process generation,” in Proc. Design Automation Conf.,
June 1995, pp. 468–473.

[32] P. H. Chou, R. B. Ortega, and G. B. Borriello, “Interface cosynthesis
techniques for embedded systems,” in Proc. Int. Conf. Computer-Aided
Design, Nov. 1995, pp. 280–287.

[33] J. Oberg, A. Kumar, and A. Hemani, “Grammar-based hardware syn-
thesis of data communication protocols,” in Proc. Int. Symp. Syst. Level
Synthesis, 1996, pp. 14–19.

[34] R. Passerone, J. A. Rowson, and A. Sangiovanni-Vincentelli, “Auto-
matic synthesis of interfaces between incompatible protocols,” in Proc.
Design Automation Conf., June 1998, pp. 8–13.

[35] J. Smith and G. De Micheli, “Automated composition of hardware com-
ponents,” in Proc. Design Automation Conf., June 1998, pp. 14–19.

[36] K. Anjo, A. Okamura, T. Kajiwara, N. Mizushima, M. Omori, and Y.
Kuroda, “NECoBus: A high end SoC bus with a portable and low la-
tency wrapper based interface mechanism,” in Proc. Custom Integrated
Circuits Conf., May 2002, pp. 315–318.

[37] D. Lyonnard, S. Yoo, A. Baghdadi, and A. A. Jerraya, “Automatic gen-
eration of application-specific architectures for heterogeneous multipro-
cessor system-on-chip,” in Proc. Design Automation Conf., June 2001,
pp. 518–523.

[38] On-Chip Bus Attributes Version 1 (OCB 1.2x [Online]. Available:
http://www.vsi.org/resources/VSIASpecifications.htm

[39] Open Core Protocol International Partnership (OCP-IP) [Online]. Avail-
able: http://www.ocpip.org

[40] OMI Standards Draft, Siemens AG, OMI 324 PI Bus, Rev 0.3d, 1994.
[41] Crossbow Technologies [Online]. Available: http://www.cross-

bowip.com
[42] B. Kernighan and S. Lin, “An efficient heuristic procedure for parti-

tioning graphs,” Bell Syst. Technical J., vol. 49, pp. 291–307, 1970.
[43] J. Buck, S. Ha, E. A. Lee, and D. D. Masserchmitt, “Ptolemy: A frame-

work for simulating and prototyping heterogeneous systems,” Int. J.
Comput. Simul., vol. 4, pp. 155–182, 1994.

