
Design Space Exploration of a Hardware-Software Co-
designed GF(2m) Galois Field Processor for Forward Error

Correction and Cryptography
Wei-Ming Lim1, M. Benaissa2

University of Sheffield
Department of Electronic and Electrical Engineering,
Mappin Street, Sheffield, S1 3JD, United Kingdom

1elp00wml@sheffield.ac.uk 2m.benaissa@sheffield.ac.uk

ABSTRACT
This paper describes a hardware-software co-design approach for
flexible programmable Galois Field Processing for applications
which require operations over GF(2m), such as RS and BCH
codes, Elliptic Curve Cryptography and the AES. Complexities of
flexible implementations of different applications on a same
computation architecture can be migrated to software during
design time. However, the underlying GF(2m) arithmetic
architecture needs to be designed with software programmability
(or reconfigurability) in mind. We describe novel reconfigurable
subword parallel GF(2m) arithmetic architectures designed with an
associated instruction set architecture for different applications
over GF(2m) and same applications with differing parameters.
Design space exploration is carried out with two simple
parameters P and Q which can be changed at design time and will
affect the performance of different applications and flexibility of
the final implementation. We show implementation results given
for an FPGA prototype of the processor and programmed for RS
and BCH coding, AES and elliptic curve cryptography with
differing parameters. Complexity figures and configuration
overheads for subword parallel GF(2m) arithmetic architectures
are also estimated and discussed.

Categories and Subject Descriptors
C.3 [Special-Purpose And Application-Based Systems]: Real-time
and embedded systems; B.2 [Arithmetic And Logic Structures]:
Design Styles---Parallel

General Terms:
Design, Algorithm, Performance

Keywords
Galois Field Processor, GF(2m) Arithmetic, Forward Error Control
Coding, Reed-Solomon Code, BCH Code, Cryptography, Elliptic
Curve Cryptography, Advanced Encryption Standard, Hardware-
Software Co-design, Design Space Exploration

1. INTRODUCTION
GF(2m) arithmetic has been used extensively in the domains of
Forward Error Correction (FEC) Codes and Cryptography. Well
known examples include Reed Solomon and BCH Codes for FEC
[1], Elliptic Curve Cryptography (ECC) [2] for Public Key
Cryptography and lately, the Advanced Encryption Standard [3]
(AES) using the Rijndael Algorithm for Private Key
Cryptography.

As systems get increasingly complex, more and more effort has
being channelled into re-usable implementations, particularly
software controlled architectures, by allowing design re-use
simply through re-programming. Some examples are described in
[4-7]. Here, we define two parameters P and Q: P is the number of
parallel arithmetic computation units (multiplication, division and
Addition) and Q is the bit size of each unit. This paper will
concentrate on the design space exploration of a software driven
hardware architecture for applications over GF(2m) with P and Q
as the central design parameters.

A hardware-software co-design approach is described for
hardware architectures over GF(2m) whereby software allows the
same hardware to be re-used for different applications. This
entails a design space exploration where the requirements of
different applications over GF(2m) are systematically explored,
and also the formulation of a hardware architecture to facilitate
these applications. This design space can be broadly define into
three levels of abstraction as shown in Table 1. The top level
determines the global requirements of the specific applications.
For example, application area (cryptography or FEC), code rate
and error correction capability of a RS or BCH code (N,K), key
size of the AES and the curve parameters of ECC.. etc.

The bottom level consists of the basic arithmetic circuits that form
the basis of the applications. Choices here include the size and
type of the arithmetic for example in terms of field size,
irreducible polynomial and basis representation. These are of
course influenced by the global requirements. The middle level
provides the “bridge” between the top and bottom levels. Usually,
this middle level determines the overall structure of a derived
architecture and is determined by the primitive operations of an
application. For each application, we identify these primitive
operations, and this is an important first step towards designing
efficient hardware/software architectures. Table 2 shows the
requirements of various different operations.

There has been a trend towards using parallel arithmetic
computation units driven by software for FEC algorithms as
evident in [5, 6], since there is substantial inherent parallelism in
these algorithms. The same principle can be applied directly to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’03, October 1–3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010…$5.00.

53

AES. Due to the large field size, parallel arithmetic computations
are not considered for ECC as these need multiple arithmetic
units. Obviously a simplistic implementation of ECC would be
achieved by setting: P = 1 and Q equals the field size over which
the ECC is defined. To bridge the gap of an architecture flexible
enough for RS codes, BCH codes and the AES is relatively
simple, however, the same cannot be said if ECC is to be included
with other applications. Although a GF(2163) processor designed
for ECC can be used directly for GF(28) computations for the AES
(or RS/BCH codes), it will be highly inefficient as only 8 out of a
possible 163 bits are used at any one time. (Assuming the
underlying arithmetic units can support variable field sizes and
irreducible polynomials). This is one main obstacle towards
developing efficient processor architectures for the domain of
GF(2m).

Table 1 : Abstraction Levels

Abstraction
Levels Application

Cryptography FEC
Algorithm

Level AES Diff Key Lengths
ECC Diff Curve sizes

RS(N, K) codec
BCH (N,K) codec

Key Equation Solving
Using BMA or

Euclidean Algorithm,
Systematic Non

Systematic Encoding
Primitive

Operations

Point Additions/
Doubling over Projective
or Affine Co-ordinates

 Different Polynomial

Operations
Arithmetic

Level
Variable Field Size, Variety of Bases,

Variable Irreducible Polynomials

Table 2 : Requirements Analysis of Applications over GF(2m)

Application RS Codes BCH AES ECC
Ranges 3-8 Bits 3-16 Bits 8 Bits >100 Bits

Primitive
Operations Polynomial

Matrix and
Polynomial

like

Quadratic
Equations

Subword parallelism (SWP) is a concept from computer
architecture first introduced by Lee in [8]. Multiple subwords are
packed into a word and processed with a single instruction, which
can be seen as a form of SIMD (Single instruction Multiple Data).
This concept can be extended to the domain of GF(2m) as well. It
can provide the flexibility without loss of efficiency required for a
GF(2m) processor and solves the problem of large data size
mismatch for different applications. A SWP GF(2m) processor is
defined as an entity with a data path of m = PxQ bits and can
operate in two modes : Single Instruction Single Data (SISD) and
Single Instruction Multiple Data (SIMD) mode. A SWP GF(2m)
arithmetic circuit allows the processor to compute P GF(2n)
arithmetic operations (n ≤ Q) or one GF(2n) arithmetic operation
(Q < n ≤ PxQ) per instruction. This means by suitable selection of
P and Q, it is possible to define a structure that can be utilized
efficiently for both large and small field size operations. For e.g, if
P = 21 and Q = 8, m = 168. The processor can be used for one
large GF(2n) computation (n ≤ 168) or 21 parallel smaller GF(2n)
computations (n ≤ 8), the former useful for ECC and the latter
useful for AES, RS and BCH codecs.

The process of design space exploration is very much top
down/bottom up. In the very first pass, the top down approach will

attempt to identify the requirements of each application at each
level as given in table 1. The bottom up approach will attempt to
formulate suitable architectures to suit these requirements at each
level, and this may take several iterations before a compromise is
reached for a given cost function in terms of speed versus area
versus power for example. To reach a compromise on all of these
requirements plus considerations for flexibility is not a trivial task
and further work are needed here. In this paper, we will be
concentrating primarily on the requirements issues for the domain
of GF(2m) which is not a common subject in the published
literature.

The SWP type architectural structure of the arithmetic circuits of
the GF(2m) processor forms the middle abstraction level in Table
1 in this paper. An Instruction Set Architecture can then be
defined over this architecture which allows the processor to
compute the primitive operations for different applications.

2. SUBWORD PARALLEL
ARCHITECTURES

This section describes the architecture of a Subword Parallel
GF(2m) processor which consists of the SWP GF(2m) arithmetic
circuits.

2.1. SWP GF(2m) Arithmetic Circuits
We briefly describe how a subword parallel GF(2m) multiplier can
be designed using a simple example for m = 4. The GF
multiplication algorithm used here is based on the well known
MSB first algorithm operating over a polynomial basis which is
outlined in [9] and reproduced briefly below. We need to compute
C(y) = A(y).B(y) mod G(y).

Multiplication Algorithm [9]
1 C'(y) = all zeros
2 for i = 0 to m-1
3 C’(y) = C’(y) + G(y).c’m + A(y).bm-1
4 B(y) = y.B(y) mod (ym)
5 C'(y) = y.C'(y) mod (ym+1)
6 end loop;

We can break line 3 of the algorithm into bit slices, (:)0 mk ≤≤

)()(1−•⊕′•⊕′=′ mkmkkk bacgcc

Figure 1 shows a 4-bit bit slices cascaded together. This performs
one iteration of the multiplication algorithm. By feeding the
intermediate result back into the same structure m times, a m-bit
GF(2m) multiplication can be performed. Notice that as long as the
data are MSB justified, the same m-bit structure can be used for
GF(2n) multiplications)(mn ≤ by varying the number of iterations
n. From the algorithm, we can see that at every iteration, bm-1 and
c’m are used to determine whether C’(y) is added with A(y) and
G(y). We call these global signals.

B(y) is loaded into a shift register and is MSB shifted n times
during the course of the algorithm. At the ith iteration, the most
significant bit of the shift register will be the ith bit of B(y), bi.
Line 4 and 5 of the algorithm is simply the mathematical
representation of logical shift with the MSB discarded. Shifting of
Line 5 can be hardwired as shown in Figure 1. Suppose the
structure in Figure 1 is cut into two parts of 2-bits each, and

54

additional configuration circuitry (basically multiplexers and basic
gates) are added to each 2-bits parts called Logic Units (LU). The
configuration circuitry of each LU is controlled by a set of control
signals MSBlock and LSBlock. Setting both MSBlock and
LSBlock of a LU to ‘1’ “isolates” that particular LU such that all
global signals are derived from the same LU, and shifting signals
do not cross into other LUs. In fact, both LUs in this situation can
be seen as independent 2-bit multipliers. Similarly, setting
LSBlock[2] and MSBlock[1] to ‘0’, and setting LSBlock[1] and
MSBlock[2] to ‘1’ configures the structure in Figure 2 to behave
as if it is a 4-bit multiplier, as the global signals are now
multiplexed from the MSB LU (LU 2) and shifting signals are
allowed to pass between LUs. In general, we can thus break-up a
large M-bits GF(2m) multiplier into P smaller Q-bits LUs, which
essentially are Q-bits GF(2Q) multipliers. In practice, it will be
easier to design a LU of a specific size (Q-bits) and couple as
many of them together to achieve the required large field size.

c’ 4(i - 1)

c’ 0(i)

c’ 0(i - 1)

a 0 g 0

c’ 1(i)

c’ 1(i - 1)

a 1 g 1

c’ 2(i)

c’ 2(i - 1)

a 2 g 2

c’ 3(i)

c’ 3(i - 1)

a 3 g 3

4 - bits Shift Register containing B(x)

c’ 1(i+1) c’ 2(i+1) c’ 3(i+1) c’ 0(i+1) c’

4 - bits Shift Register containing B(x) 4 - bits Shift Register containing B(x)

4(i+1)
‘0’ Hardwired

Shift

b 3(i - 1)

Figure 1: 4-bit GF(2m) Multiplier

c’ 2(i - 1)

c’ 0(i)

a 0 g 0

c’ 1(i)

c’ 1(i - 1)
a 1 g 1

c’ 0(i)

a 0 g 0

c’ 1(i)

a 1 g 1

2 - bits SR containing B(x)

c’ 1(i+1) c’ 2(i+1) c’ 0(i+1)
‘0’

2 - bits SR containing B(x)

c’ 2(i - 1)

c’ 1(i+1) c’ 2(i+1) c’ 0(i+1)
LSBlock[2] LSBlock[1]

LU 1 LU 2

MSBlock[1] MSBlock[2]
‘0’ ‘0’

b 1 b 1

c’ 0(i - 1) c’ 1(i - 1) c’ 0(i - 1)
c’ 2(i - 1)

c’ 0(i)

a 0 g 0

c’ 1(i)

c’ 1(i - 1)
a 1

LSBlock[2] LSBlock[1]

LU 1 LU 2

‘0’ ‘0’

b 1 b 1

c’ 0(i - 1) c’ 1(i - 1) c’ 0(i - 1)

Figure 2: Modified GF(2m) multiplier with 2 LUs.

The same procedure can be applied to a GF(2m) division
algorithm, although this is not described here it due to length
constraints. In particular, Brunner in [10] described a polynomial
basis GF(2m) division algorithm which can be used for
modification into the SWP structure as it is regular in structure
and computation cycles. This regularity is important as it makes

modifications easier. GF(2m) addition needs no modifications as
it only involves bit-wise XOR operations.

2.1.1. Complexity Analysis
Table 3 shows the complexity figures of the SWP GF(2m)
arithmetic circuits in terms of P and Q. The size of the arithmetic
circuits without modification are comparable to that outlined in [9,
10], which is expected since they use the same algorithm. Due to
the configuration circuitry, the overall area and time complexity
incurs a penalty. For reasonable choices of P and Q, this added
complexity represents a small percentage overall. For example, if
P = 21 and Q = 8 giving M = 168, the percentage overhead due to
the configuration circuitry will be 4.01% for the multiplier and
5.81% for the divider circuit. The added propagation delay due to
the configuration circuits for multiplication and division
corresponds to TMUX2 and to TMUX2 + TMUXQ respectively. (Note:
TMUXi is the propagation delay through an i-input multiplexor.)

Table 3 : Complexity Figures of SISD/SIMD ALU

 Gates for P, Q-bits Logic
Unit without Control

Gates for
Config. Cct.

Overall
Propagation

Delay

M
ul

tip
lie

r 2PQ
2PQ
2PQ
PQ

XOR
AND
F/F

MUX2

2P
2P

MUX2
AND

TMUX2 + 2 TXOR +
TAND

D
iv

id
er

 P(4Q + 1)
P(3Q + 1)
P(5Q + 2)
P(Q + 1)

 P(16Q + 7)

XOR
AND
F/F

NOT
MUX2

5P
P

4P

MUX2
MUXQ
AND

TXOR + TAND + 2
TMUX2+ TMUXQ

2.2. SWP GF(2m) Processor Architecture

LU 1

LU 2

LU P

Subword
Permutations

And Data
Manupilations

Ra

Rb

Rdes
Register

File

SWP GF(2m)
Arithmetic

Ccts

LU 1LU 1

LU 2LU 2

LU PLU P

Subword
Permutations

And Data
Manupilations

Ra

Rb

Rdes
Register

File
Register

File

SWP GF(2m)
Arithmetic

Ccts

Figure 3 : Processor Datapath Block Diagram

A simplified processor datapath block diagram is shown in Figure
3. It consists of the SWP arithmetic circuits (multiplication,
division and addition over GF(2m) and subword permutation
circuits which are necessary to handle subword manipulations.
The register file is made up of many Register Locations each with
a word size of M bits wide and each Register Location (a word)
can be seen as P number of Coefficient Locations (subwords),
each Q bits wide (i.e. m=PxQ). In SIMD mode, the data in each
Register location can be viewed as a polynomial of degree P-1,
with coefficients as elements of a Galois Field up to a size of

55

GF(2Q) (i.e. the name coefficient locations). A polynomial with
degree larger than P can be stored in two or more Register
Locations. In SISD mode, each Register Location will only have
one data element in it. See Figure 4.

R1 Polynomial A(x)
of degree P-1

R2)2(nGFb ∈
n ≤ m

R3, R4 Polynomial
D(x) of degree P+2

ap-1a1 a2 a3a0

Q-Bits
PxQ-Bits

b

R1

R2

dp-1d1 d2 d3d0R3

0dP+1 dP+2 0dPR4

C0 C1 C2 C3 CP-1

00 0 00 00 0 00Rk

)2(, q
ii GFda ∈
q ≤ Q

Figure 4 : Register File Structure with different contents

2.3. Core Instruction Set Architecture
For each different sets of applications, the instruction set
architecture maybe different. This is because for different
applications, additional specialized instructions maybe included to
improve significantly the performance of the processor running
these applications. However, it is possible to identify a core set of
instructions that will be applicable for a majority of applications,
and these are usually present regardless of the applications the
processor is designed for.

2.3.1. Core Instructions
We denote Rj (Ci) as the ith Coefficient Location of the jth Register
Location. In SIMD Mode, MULT, DIVI and ADDP instructions
operate on p parallel data pairs in a pair of Register Locations. In
SISD Mode, they will operate on only one data pair per pair of
Register Locations. The other instructions are required for
subword re-arrangement, data alignment and movement (shifting,
copying, Subword copying etc).

Table 4: Core Arithmetic Instructions

ADDPSIMD Rdes (Ci) [Ra(Ci) + Rb(Ci)]mod
G(y) for i = 0 to P-1

ADDPSISD Rdes [Ra + Rb] mod G(y)

SUMASIMD Rdes (Ca) ∑ −

=

1

0

P

i
Ra(Ci)

MULTSIMD Rdes (Ci) [Ra(Ci) x Rb(Ci)]mod G(y) for i = 0 to P-1
MULTSISD Rdes Ra x Rb mod G(y)

DIVISIMD Rdes (Ci) [Ra(Ci) / Rb(Ci)]mod
G(y) for i = 0 to P-1

DIVISISD Rdes [Ra / Rb]mod G(y)
REPASIMD [Rdes (Ci)] Ra (Ca) for i = 0 to P-1
REPOSIMD Rdes (Cdes) Ra(Ca)

SHPX Rdes LSB/MSB Bit Shift Ra by x-bits. Pad with Zeros
COPY Rdes Ra

SETC Setup Instruction for SIMD/SISD mode, Irreducible
Polynomial etc

3. PRIMITIVE OPERATIONS
In this section, we show that almost all of the primitive operations
for different applications over GF(2m) can be synthesized from the
core ISA.

3.1. Reed Solomon and BCH codes
All of the primitive operations required in RS and BCH codec can
be broken down into polynomial operations over GF(2m) of one
form or another. They are: Polynomial Multiplications (PM),
Polynomial Divisions (PD) and Polynomial Evaluations (PE).
Non-Systematic RS encoding is basically a PM whereas
systematic RS Encoding is a PD. Syndrome Computation and
Chien Search of the decoding stage are PEs. Key Equation
Solving using Extended Euclidean Algorithm is a combination of
PDs and PMs. Therefore, deriving efficient ways of computing
these polynomial operations are crucial. This section will briefly
describe some ways these polynomial operations can be
synthesized simply by the core ISA described before and are by
no means definitive. It will be straightforward to extend the
techniques presented here to more general polynomial operations.

3.1.1. Polynomial Multiplication

bDeg B(x)

aDeg A(x)a1 a2 a3a0R1

C0 C1 C2 C3 CDeg A(x)

b1 b2 b3b0R2

C0 C1 C2 C3 CDeg B(x)

0

CP-1

CP-1

0bDeg B(x)

aDeg A(x)a1 a2 a3a0R1

C0 C1 C2 C3 CDeg A(x)

b1 b2 b3b0R2

C0 C1 C2 C3 CDeg B(x)

0

CP-1

CP-1

0

Figure 5 : Data Orientation of A(x) and B(x) for PM

Let ∑ =
=

))(deg(

0
)(xA

i
i

i xaxA , ∑ =
=

))(deg(

0
)(xB

i
i

i xbxB ,)2(, m
ii GFba ∈ .

The polynomial multiplication of)()()(xBxAxD ×= is given by:

ji
j

xA

i

xB

j
i xbaxD +

= =
∑ ∑=

))(deg(

0

))(deg(

0
)(

Assuming the degrees of A(x) and B(x) is less than P-1, then each
of the polynomial can be fitted into a single Register Location
LSB justified as shown in Figure 5. Using the core Arithmetic
Instructions, a PM can thus be synthesised:

• R1 A(x); R2 B(x); RTemp1 Zero Polynomial
• For i = 0 to deg (A(x)) Loop
• RTemp2 REPA R1(Ci)
• RTemp3 MULT RTemp2, R2
• RTemp1 ADDP RTemp3, RTemp1
• RResult (Ci) REPO RTemp1(Ci)
• RTemp1 SHPX LSB, RTemp1, Q-Bits
• End Loop;
• For j = 0 to deg(B(x)) – 1 Loop
• RResult(Cdeg(A(x)) + j) REPO RTemp1(Cj)
• End Loop;

This is basically a multiply-add-shift operation of A(x) and B(x).
The result D(x) will be stored in RResult. Note that if deg(A(x) +
deg(B(x)) > P-1, the result D(x) maybe exceed the size of one
Register Location and have to be stored accordingly. Since the
degrees of A(x), B(x) and D(x) of all PMs present in RS and BCH
codes can be predetermined, it is relatively easy determine the
storage required.

56

3.1.2. Polynomial Division
Again, let A(x) and B(x) follows the same notation as before.
Given A(x) and B(x), calculate find D(x) and E(x) which satisfies
the expression:

 D(x) × B(x) + E(x) = A(x)

In other words, we want to calculate A(x)/B(x) and get the
quotient D(x) and the remainder which is E(x). Assuming the
deg(A(x)) = deg(B(x)) + 1, then deg(E(x)) = 1 and deg(D(x)) =
deg(B(x)) – 1. For simplicity, here we assume that each A(x) and
B(x) can be fitted into a single Register Location MSB justified.
The steps involved in the polynomial division (also commonly
known as Polynomial Long Division) are:

1. R1 A(x); R2 B(x);
2. RTemp1 REPA R1(CP-1)
3. RTemp2 MULT RTemp1, R2
4. RTemp1 REPA R2(CP-1)
5. RTemp2 DIVI RTemp2, RTemp1
6. RQuotient(C1) REPO RTemp2(CP-1)
7. RTemp3 ADDP RTemp2, R1
8. RTemp1 REPA RTemp3(CP-2)
9. RTemp2 MULT RTemp1, R2
10. RTemp1 REPA R2(CP-1)
11. RTemp2 DIVI RTemp2, RTemp1
12. RQuotient(C0) REPO RTemp2(CP-2)
13. RRemainder ADDP RTemp3, RTemp2
14. RQuotient = D(x), RRemainder = E(x)

The number of instructions needed to compute a polynomial
division will be minimum when A(x) and B(x) can be fitted into a
single register. Polynomial division is the fundamental primitive
operation in Key Equation Solving using the Euclidean Algorithm
and it can be concluded that as long as P ≥ 2t, where t is the error
correcting capability of a BCH or RS code, the number of
instructions needed for the Euclidean Algorithm will be at a
minimum.

3.1.3. Polynomial Evaluation

0aP+1 aP+2 0aPR2

ap-1a1 a2 a3a0R1

1R3
2α 3α 1−pαα

R4
1+pα 2+pαpα 00

C0 C1 C2 C3 CP-1

0aP+1 aP+2 0aPR2

ap-1a1 a2 a3a0R1

1R3
2α 3α 1−pαα

R4
1+pα 2+pαpα 00

C0 C1 C2 C3 CP-1

Figure 6 :Data Orientation for Polynomial Evaluation

Compute ∑ =
=

))(deg(

0
)(A xA

i
i

ia αα where)2(mGF∈α . As an

example, we assume that A(x) in this case spans two Register
Locations as shown in Figure 6. To save on computation cycles,
P-1 multiple powers of α are pre-computed and stored in
multiple Register Locations as well. To evaluate)(A α ;

1. R1, R2 A(x); R3, R4 Pre-computed Powers of α ;
2. RTemp1 MULT R1, R3
3. RTemp2 MULT R2, R4
4. RTemp1 ADDP RTemp1, RTemp2
5. RResult(C0) SUMA RTemp1
6.)(A α = RResult(C0);

3.2. Advanced Encryption Standard
In general, the basic operations of the AES can be synthesized
using the core ISA (with the exception of the Affine Transform
required in the SubWord Transformation). We can easily modify
the DIVI instruction so that an Forward Affine Transform (FAT)
or Inverse Affine Transform (IAT) is computed after and before
an inversion is computed respectively (See Table 5). There is
substantial parallelism in the AES algorithm, which makes its
implementation in a SWP architecture very attractive. An AES
State is stored in the register file in the way as shown in Figure 7,
where a 128-bit Block (or a state) is stored across 4 Registers
Locations. If P > 4, multiple blocks of data can be stored in the
same 4 Register Locations. In the example of Figure 7, P = 8,
hence we can store 2 AES states every 4 register locations. This
also means that multiple AES encryptions or decryptions can be
computed at the same time. On closer examination, it is evident
that the ShiftRow Operation of the AES is the bottleneck of the
system if it is implemented with just the core ISA. A new
instruction SHPW is created specifically for the ShiftRow
Operation in AES.

Table 5 : Extended Instructions for AES

DIVI
(SIMD-
AES)

Rdes (Ci) FAT[1/Rb(Ci)] mod G(y)
Rdes (Ci) 1/ IAT[Rb(Ci)] mod G(y)

for i = 0
to P-1

SHRW Rdes Shift-Row-Index, Ra

S0,0

S1,0

S2,0

S3,0 S3,1 S3,2 S3,3

S2,1 S2,2 S2,3

S1,1 S1,2 S1,3

S0,1 S0,2 S0,3 S0,0

S1,0

S2,0

S3,0 S3,1 S3,2 S3,3

S2,1 S2,2 S2,3

S1,1 S1,2 S1,3

S0,1 S0,2 S0,3

R2

R3

R4

R1

C1 C2 C3 C4 C5 C6 C7 C8

1st AES State 2nd AES State

Figure 7 : Storage of AES state in Register File

3.3. Elliptic Curve Cryptography
The primitive operations of the Elliptic Curve Cryptography can
be broken down simply into Point Additions and Point Doubling.
A Non-Supersingular Elliptic Curve [2] is defined over Affine Co-
ordinates as:

6
2

2
32 axaxxyy ++=+ where 2a and)2(6

mGFa ∈

Given that two points A = (x1,y1) and B = (x2,y2) lie on an Elliptic
Curve, point addition D = A + B is defined as below, where D =
(x3,y3). If A ≠ B then

12

12
xx
yy

−
−

=θ , 212
2

3 axxx ++++= θθ , 1133)(yxxy −+=θ

If A=B then
1

1
1 x

yx +=θ or
2

2
2 x

yx +=θ

and, 2
2

3 ax ++= θθ , 3
2

3)1(xxy ++= θ .

These operate over quadratic equations defined over GF(2m). and
can be synthesized using the core ISA, primarily ADDP, MULT
and DIVI operating in SISD mode

57

4. RESULTS & CONCLUSIONS
It is evident that once the requirements of the primitive operations
are determined and a processor architecture is designed to meet
these requirements, a stable platform is available that can be
tailored for different applications or different groups of
applications by changing P and Q at design time. We show an
example where P and Q are fixed and determine the range of
applications this processor can be used for without re-design. This
is to show the inherent flexibility of the processor architecture for
different applications and does not represent a practical design
flow, where applications usually determine the values of P and Q.

4.1. P = 8, Q = 8 for RS, BCH, AES and ECC
The largest small field size the processor can compute in parallel
is constrained by Q. For a BCH or RS (N,K) codes, this will
constrain the maximum value of N. Table 6 shows the ranges of
(N,K) codecs that can be computed without re-design for Q = 8.
For the AES, the only variable is the different key schedule
computation and P/4 denotes the number of parallel AES blocks
that can be computed at the same time for a specific value of P.
The largest field size the processor can operate on in this case is
GF(264) (m = PxQ. In practical applications, P can be chosen to be
large enough for secure elliptic curve cryptography. A proof of
concept prototype GF Processor has been implemented on Field
Programmable Gate Arrays (Xilinx Virtex XCV-800) using the
concepts outlined in this paper for the parameters of P=8 and Q=8
and Table 7 shows the throughput of a few applications from
Table 6. The processor was designed using VHDL on Xilinx
Foundation 3.1e and occupies 2505 Slices with an equivalent gate
count of 43,251 gates. Through analysis, it can be determined that
the size of the processor scales more or less linearly with m (i..e.
PxQ).

Table 6: Ranges of Applications for P= 8 and Q=8

Application Variables for Q = 8

RS, BCH
codec

(255,K)
(127,K)
(63,K)

(31,K)
(15,K)
(7,K)

AES 128, 192, 256 Bits Key size.
P/4 Parallel Blocks Computations

ECC Up to GF(264)

Table 7 : Throughput of GF(264) Processor for P = 8, Q = 8

Results for m = 64 P = 8, Q = 8 Speed 40MHz Clock
RS(255,247) Decoder 11 Mbps

RS(31,25) Decoder 6.6Mbps
BCH(31,16) Decoder* 1.33Mbps

128-Bit Key AES (10 Rounds) without key
Expansion. 2 Parallel Computations 3.8 Mbps

128-but Key Schedule Computation 42.5 µs
Elliptic Curve Point Addition Affine

Coordinates GF(261) 7.125 µs

Elliptic Curve Point Doubling Affine
Coordinates GF(261) 8.425 µs

*Uses the same program as RS(31,25) Codec. i.e. not optimised for
BCH Codec.

4.2. Conclusions
Flexibility of a given architecture cannot be measured easily in
quantifiable terms. Yet, as systems get increasingly complex,
issues of design re-use makes a flexible architecture with

programmable parameters over a large range of applications
increasingly important. There has been a general trend to migrate
complexity of traditionally application specific implementations
towards software controlled architectures, where flexibility of
software automatically allows the maximum flexibility over
different applications. However, not all such migrations can be
achieved easily, with problems ranging from designing flexible
arithmetic circuits to supporting flexible software controlled
architectures. This paper has outlined a design space exploration
for domain applications based on Galois Fields. The applications
are broken down into their primitive operations and a flexible
software programmable processor has been designed to handle
these primitive operations. This in turn allows the same
architecture to be used for all applications that can be defined
using these primitive operations. This paper focuses mainly on
designing for maximum flexibility across different applications
over the same domain, and further work is needed to address
design issues at each abstraction level for other constraints like
speed, area and power trade-offs with flexibility for a given
application in the GF domain. A design methodology can then be
defined for primitive based hardware/software co-design
techniques.

5. Reference
[1] B. Wicker Stephen, Error control systems for digital

communication and storage. Englewood Cliffs, N.J. ; London:
Prentice Hall : Prentice-HallInternational, 1995.

[2] M. Rosing, Implementing Elliptic Curve Cryptography.
Greenwich, CT.: Manning, 1999.

[3] J. Daemen and V. Rijmen, "AES Proposal : The Rijndael
Block Cipher," http://csrc.nist.gov/encryption/aes/rijndael/,
2000.

[4] L. Song, K. K. Parhi, I. Kuroda, and T. Nishitani,
"Hardware/software codesign of finite field datapath for low-
energy Reed-Solomon codecs," IEEE-Transactions-on-Very-
Large-Scale-Integration-VLSI-Systems. April 2000; 8(2): 160-
72, 2000.

[5] H. M. Ji, "An optimized processor for fast Reed-Solomon
encoding and decoding," 2002-IEEE-International-
Conference-on-Acoustics,-Speech,-and-Signal-Processing.-
Proceedings-Cat.-No.02CH37334. 2002: III-3097-100 vol.3,
2002.

[6] W. Drescher, M. Mennenga, and G. Fettweis, " An
architectural study of a digital signal processor for block
codes," Proceedings-of-the-1998-IEEE-International-
Conference-on-Acoustics,-Speech-and-Signal-Processing,-
ICASSP-'98-Cat.-No.98CH36181. 1998: 3129-32 vol.5, 1998.

[7] M. Hasan and A. Wassal, "VLSI Algorithms, Architectures,
and Implementation of a Versatile GF(2m) Processor," IEEE
Transactions On Computers, vol. 49, pp. 1064-1073, 2000.

[8] R. B. Lee, "Subword parallelism with MAX-2," in IEEE-
Micro. Aug. 1996; 16(4): 51-9, 1996.

[9] P. A. Scott, S. E. Tavares, and L. E. Peppard, "A Fast VLSI
Multiplier for GF(2m)," IEEE Journal Selected Areas in
Communications, vol. SAC-4, pp. 62-66, 1986.

[10] H. Brunner, A. Curiger, and M. Hofstetter, "On Computing
Multiplicative Inverses in GF (2m)," IEEE Transactions On
Computers C, vol. 42, pp. 1010, 1993.

58

