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ABSTRACT 
This paper describes a hardware-software co-design approach for 
flexible programmable Galois Field Processing for applications 
which require operations over GF(2m), such as RS and BCH 
codes, Elliptic Curve Cryptography and the AES. Complexities of 
flexible implementations of different applications on a same 
computation architecture can be migrated to software during 
design time. However, the underlying GF(2m) arithmetic 
architecture needs to be designed with software programmability 
(or reconfigurability) in mind. We describe novel reconfigurable 
subword parallel GF(2m) arithmetic architectures designed with an 
associated instruction set architecture for different applications 
over GF(2m) and same applications with differing parameters. 
Design space exploration is carried out with two simple 
parameters P and Q which can be changed at design time and will 
affect the performance of different applications and flexibility of 
the final implementation. We show  implementation results given 
for an FPGA prototype of the processor and programmed for RS 
and BCH coding, AES and elliptic curve cryptography with 
differing parameters. Complexity figures and configuration 
overheads for subword parallel GF(2m) arithmetic architectures 
are also estimated and discussed. 

Categories and Subject Descriptors 
C.3 [Special-Purpose And Application-Based Systems]: Real-time 
and embedded systems; B.2 [Arithmetic And Logic Structures]: 
Design Styles---Parallel 

General Terms:  
Design, Algorithm, Performance 

Keywords 
Galois Field Processor, GF(2m) Arithmetic, Forward Error Control 
Coding, Reed-Solomon Code, BCH Code, Cryptography, Elliptic 
Curve Cryptography, Advanced Encryption Standard, Hardware-
Software Co-design, Design Space Exploration 

1. INTRODUCTION 
GF(2m) arithmetic has been used extensively in the domains of 
Forward Error Correction (FEC) Codes and Cryptography. Well 
known examples include Reed Solomon and BCH Codes for FEC 
[1], Elliptic Curve Cryptography (ECC) [2] for Public Key 
Cryptography and lately, the Advanced Encryption Standard [3] 
(AES) using the Rijndael Algorithm for Private Key 
Cryptography.  

As systems get increasingly complex, more and more effort has 
being channelled into re-usable implementations, particularly 
software controlled architectures, by allowing design re-use 
simply through re-programming. Some examples are described in 
[4-7]. Here, we define two parameters P and Q: P is the number of 
parallel arithmetic computation units (multiplication, division and 
Addition) and Q is the bit size of each unit. This paper will 
concentrate on the design space exploration of a software driven 
hardware architecture for applications over GF(2m) with P and Q 
as the central design parameters.  

A hardware-software co-design approach is described for 
hardware architectures over GF(2m) whereby software allows the 
same hardware to be re-used for different applications. This 
entails a design space exploration where the requirements of 
different applications over GF(2m) are systematically explored, 
and also the formulation of a hardware architecture to facilitate 
these applications. This design space can be broadly define into 
three levels of abstraction as shown in Table 1. The top level 
determines the global requirements of the specific applications. 
For example, application area (cryptography or FEC), code rate 
and error correction capability of a RS or BCH code (N,K), key 
size of the AES and the curve parameters of ECC.. etc. 

The bottom level consists of the basic arithmetic circuits that form 
the basis of the applications. Choices here include the size and 
type of the arithmetic for example in terms of field size, 
irreducible polynomial and basis representation. These are of 
course influenced by the global requirements. The middle level 
provides the “bridge” between the top and bottom levels. Usually, 
this middle level determines the overall structure of a derived 
architecture and is determined by the primitive operations of an 
application. For each application, we identify these primitive 
operations, and this is an important first step towards designing 
efficient hardware/software architectures. Table 2 shows the 
requirements of various different operations.  

There has been a trend towards using parallel arithmetic 
computation units driven by software for FEC algorithms as 
evident in [5, 6], since there is  substantial inherent parallelism in 
these algorithms. The same principle can be applied directly to the  
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AES. Due to the large field size, parallel arithmetic computations 
are not considered for ECC as these need multiple arithmetic 
units. Obviously a simplistic implementation of ECC would be 
achieved by setting: P = 1 and Q equals the field size over which 
the ECC is defined. To bridge the gap of an architecture flexible 
enough for RS codes, BCH codes and the AES is relatively 
simple, however, the same cannot be said if ECC is to be included 
with other applications. Although a GF(2163) processor designed 
for ECC can be used directly for GF(28) computations for the AES 
(or RS/BCH codes), it will be highly inefficient as only 8 out of a 
possible 163 bits are used at any one time. (Assuming the 
underlying arithmetic units can support variable field sizes and 
irreducible polynomials). This is one main obstacle towards 
developing efficient processor architectures for the domain of 
GF(2m).  

Table 1 : Abstraction Levels  

Abstraction 
Levels Application 

Cryptography FEC 
Algorithm 

Level AES Diff Key Lengths 
ECC  Diff Curve sizes 

RS(N, K) codec 
BCH (N,K) codec 

Key Equation Solving 
Using BMA or 

Euclidean Algorithm, 
Systematic Non 

Systematic Encoding 
Primitive 

Operations 

Point Additions/ 
Doubling over Projective 
or Affine Co-ordinates 

 
 Different Polynomial 

Operations 
Arithmetic 

Level 
Variable Field Size, Variety of Bases,  

Variable Irreducible Polynomials 

Table 2 : Requirements Analysis of Applications over GF(2m) 

Application RS Codes BCH AES ECC 
Ranges 3-8 Bits 3-16 Bits 8 Bits >100 Bits 

Primitive 
Operations Polynomial 

Matrix and 
Polynomial 

like  

Quadratic 
Equations 

 

Subword parallelism (SWP) is a concept from computer 
architecture first introduced by Lee in [8]. Multiple subwords are 
packed into a word and processed with a single instruction, which 
can be seen as a form of SIMD (Single instruction Multiple Data). 
This concept can be extended to the domain of GF(2m) as well. It 
can provide the flexibility without loss of efficiency required for a 
GF(2m) processor and solves the problem of large data size 
mismatch for different applications. A SWP GF(2m) processor is 
defined as an entity with a data path of m = PxQ bits and can 
operate in two modes : Single Instruction Single Data (SISD) and 
Single Instruction Multiple Data (SIMD) mode. A SWP GF(2m) 
arithmetic circuit allows the processor to compute P GF(2n) 
arithmetic operations (n ≤ Q) or one GF(2n) arithmetic  operation  
(Q < n ≤ PxQ) per instruction. This means by suitable selection of 
P and Q, it is possible to define a structure that can be utilized 
efficiently for both large and small field size operations. For e.g, if 
P = 21 and Q = 8, m = 168. The processor can be used for one 
large GF(2n) computation (n ≤ 168) or 21 parallel smaller GF(2n) 
computations (n ≤ 8), the former useful for ECC and the latter 
useful for AES, RS and BCH codecs. 

The process of design space exploration is very much top 
down/bottom up. In the very first pass, the top down approach will 

attempt to identify the requirements of each application at each 
level as given in table 1. The bottom up approach will attempt to 
formulate suitable architectures to suit these requirements at each 
level, and this may take several iterations before a compromise is 
reached for a given cost function in terms of  speed versus area 
versus power for example. To reach a compromise on all of these 
requirements plus considerations for flexibility is not a trivial task 
and further work are needed here. In this paper, we will be 
concentrating primarily on the requirements issues for the domain 
of GF(2m) which is not a common subject in the published 
literature.  

The SWP type architectural structure of the arithmetic circuits of 
the GF(2m) processor forms the middle abstraction level in Table 
1 in this paper. An Instruction Set Architecture can then be 
defined over this architecture which allows the processor to 
compute the primitive operations for different applications. 

2. SUBWORD PARALLEL 
ARCHITECTURES 

This section describes the architecture of a Subword Parallel 
GF(2m) processor which consists of the SWP GF(2m) arithmetic 
circuits.  

2.1. SWP GF(2m) Arithmetic Circuits 
We briefly describe how a subword parallel GF(2m) multiplier can 
be designed using a simple example for m = 4. The GF 
multiplication algorithm used here is based on the well known 
MSB first algorithm operating over a polynomial basis which is 
outlined in [9] and reproduced briefly below. We need to compute 
C(y) = A(y).B(y) mod G(y).  

Multiplication Algorithm [9] 
1  C'(y) = all zeros 
2  for i = 0 to m-1  
3 C’(y) = C’(y) + G(y).c’m + A(y).bm-1 
4  B(y) = y.B(y) mod (ym) 
5  C'(y) = y.C'(y) mod (ym+1)  
6 end loop; 
 
We can break line 3 of the algorithm into bit slices, ( :)0 mk ≤≤  

)()( 1−•⊕′•⊕′=′ mkmkkk bacgcc  

Figure 1 shows a 4-bit bit slices cascaded together. This performs 
one iteration of the multiplication algorithm. By feeding the 
intermediate result back into the same structure m times, a m-bit 
GF(2m) multiplication can be performed. Notice that as long as the 
data are MSB justified, the same m-bit structure can be used for 
GF(2n) multiplications )( mn ≤  by varying the number of iterations 
n. From the algorithm, we can see that at every iteration, bm-1 and 
c’m are used to determine whether C’(y) is added with A(y) and 
G(y). We call these global signals. 

B(y) is loaded into a shift register and is MSB shifted n times 
during the course of the algorithm. At the ith iteration, the most 
significant bit of the shift register will be the ith bit of B(y), bi. 
Line 4 and 5 of the algorithm is simply the mathematical 
representation of logical shift with the MSB discarded. Shifting of 
Line 5 can be hardwired as shown in Figure 1. Suppose the 
structure in Figure 1 is cut into two parts of 2-bits each, and 
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additional configuration circuitry (basically multiplexers and basic 
gates) are added to each 2-bits parts called Logic Units (LU). The 
configuration circuitry of each LU is controlled by a set of control 
signals MSBlock and LSBlock. Setting both MSBlock and 
LSBlock of a LU to ‘1’ “isolates” that particular LU such that all 
global signals are derived from the same LU, and shifting signals 
do not cross into other LUs. In fact, both LUs in this situation can 
be seen as independent 2-bit multipliers. Similarly, setting 
LSBlock[2] and MSBlock[1] to ‘0’, and setting LSBlock[1] and 
MSBlock[2] to ‘1’ configures the structure in Figure 2 to behave 
as if it is a 4-bit multiplier, as the global signals are now 
multiplexed from the MSB LU (LU 2) and shifting signals are 
allowed to pass between LUs. In general, we can thus break-up a 
large M-bits GF(2m) multiplier into P smaller Q-bits LUs, which 
essentially are Q-bits GF(2Q) multipliers. In practice, it will be 
easier to design a LU of a specific size (Q-bits) and couple as 
many of them together to achieve the required large field size. 

 

c’ 4(i - 1) 

c’ 0(i) 

c’ 0(i - 1) 

a 0 g 0 

c’ 1(i) 

c’ 1(i - 1) 

a 1 g 1 

c’ 2(i) 

c’ 2(i - 1) 

a 2 g 2 

c’ 3(i) 

c’ 3(i - 1) 

a 3 g 3 

4 - bits Shift Register containing B(x) 

c’ 1(i+1) c’ 2(i+1) c’ 3(i+1) c’ 0(i+1) c’ 

4 - bits Shift Register containing B(x) 4 - bits Shift Register containing B(x) 

4(i+1) 
‘0’ Hardwired 

Shift 

b 3(i - 1) 

 

Figure 1: 4-bit GF(2m) Multiplier 
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Figure 2: Modified GF(2m) multiplier with 2 LUs. 

The same procedure can be applied to a GF(2m) division 
algorithm, although this is not described here it due to length 
constraints. In particular, Brunner in [10] described a polynomial 
basis GF(2m) division algorithm which can be used for 
modification into the SWP structure as it is regular in structure 
and computation cycles. This regularity is important as it makes 

modifications easier. GF(2m) addition needs no modifications  as 
it only involves bit-wise XOR operations.  

2.1.1. Complexity Analysis 
Table 3 shows the complexity figures of the SWP GF(2m) 
arithmetic circuits in terms of P and Q. The size of the arithmetic 
circuits without modification are comparable to that outlined in [9, 
10], which is expected since they use the same algorithm. Due to 
the configuration circuitry, the overall area and time complexity 
incurs a penalty. For reasonable choices of P and Q, this added 
complexity represents a small percentage overall. For example, if 
P = 21 and Q = 8 giving M = 168, the percentage overhead due to 
the configuration circuitry will be 4.01% for the multiplier and 
5.81% for the divider circuit. The added propagation delay due to 
the configuration circuits for multiplication and division 
corresponds to TMUX2 and to TMUX2 + TMUXQ respectively. (Note: 
TMUXi is the propagation delay through an i-input multiplexor.)  

Table 3 : Complexity Figures of SISD/SIMD ALU 

 Gates for P, Q-bits Logic 
Unit without Control 

Gates for 
Config. Cct. 

Overall 
Propagation 

Delay 

M
ul

tip
lie

r 2PQ  
2PQ  
2PQ 
PQ 

XOR 
AND 
F/F 

MUX2 

2P 
2P 

MUX2 
AND 

TMUX2 + 2 TXOR + 
TAND 

D
iv

id
er

 P(4Q + 1) 
P(3Q + 1) 
P(5Q + 2) 
P(Q + 1) 

  P(16Q + 7) 

XOR 
AND 
F/F 

NOT 
MUX2 

5P 
P 

4P 

MUX2 
MUXQ 
AND 

TXOR + TAND + 2 
TMUX2+ TMUXQ 

2.2. SWP GF(2m) Processor Architecture 

LU 1
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Subword 
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And Data
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Rb
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File
Register 

File

SWP GF(2m) 
Arithmetic
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Figure 3 : Processor Datapath Block Diagram 

A simplified processor datapath block diagram is shown in Figure 
3. It consists of the SWP arithmetic circuits (multiplication, 
division and addition over GF(2m) and subword permutation 
circuits which are necessary to handle subword manipulations. 
The register file is made up of many Register Locations each with 
a word size of M bits wide and each Register Location (a word) 
can be seen as P number of Coefficient Locations (subwords), 
each Q bits wide (i.e. m=PxQ). In SIMD mode, the data in each 
Register location can be viewed as a polynomial of degree P-1, 
with coefficients as elements of a Galois Field up to a size of 
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GF(2Q) (i.e. the name coefficient locations). A polynomial with 
degree larger than P can be stored in two or more Register 
Locations. In SISD mode, each Register Location will only have 
one data element in it. See Figure 4. 

R1  Polynomial A(x) 
of degree P-1 

R2  )2( nGFb ∈  
n ≤ m 

R3, R4  Polynomial 
D(x) of degree P+2 

ap-1a1 a2 a3a0

Q-Bits
PxQ-Bits

b

R1

R2

dp-1d1 d2 d3d0R3

0dP+1 dP+2 0dPR4

C0 C1 C2 C3 CP-1

00 0 00 00 0 00Rk

 

)2(, q
ii GFda ∈  
q ≤ Q 

Figure 4 : Register File Structure with different contents 

2.3. Core Instruction Set Architecture 
For each different sets of applications, the instruction set 
architecture maybe different. This is because for different 
applications, additional specialized instructions maybe included to 
improve significantly the performance of the processor running 
these applications. However, it is possible to identify a core set of 
instructions that will be applicable for a majority of applications, 
and these are usually present regardless of the applications the 
processor is designed for. 

2.3.1. Core Instructions 
We denote Rj (Ci) as the ith Coefficient Location of the jth Register 
Location. In SIMD Mode, MULT, DIVI and ADDP instructions 
operate on p parallel data pairs in a pair of Register Locations. In 
SISD Mode, they will operate on only one data pair per pair of 
Register Locations. The other instructions are required for 
subword re-arrangement, data alignment and movement (shifting, 
copying, Subword copying etc).  

Table 4: Core Arithmetic Instructions 

ADDPSIMD Rdes (Ci) [Ra(Ci) + Rb(Ci) ]mod 
G(y) for i = 0 to P-1 

ADDPSISD Rdes   [Ra + Rb] mod G(y)  

SUMASIMD Rdes (Ca)  ∑ −

=

1

0

P

i
Ra(Ci)  

MULTSIMD  Rdes (Ci) [Ra(Ci) x Rb(Ci) ]mod G(y) for i = 0 to P-1 
MULTSISD Rdes  Ra x Rb mod G(y)  

DIVISIMD Rdes (Ci)  [Ra(Ci) / Rb(Ci) ]mod 
G(y) for i = 0 to P-1 

DIVISISD Rdes  [Ra / Rb]mod G(y)  
REPASIMD [Rdes (Ci)]  Ra (Ca) for i = 0 to P-1 
REPOSIMD Rdes (Cdes)  Ra(Ca) 

SHPX Rdes  LSB/MSB Bit Shift Ra by x-bits. Pad with Zeros 
COPY Rdes  Ra  

SETC Setup Instruction for SIMD/SISD mode, Irreducible 
Polynomial etc 

3. PRIMITIVE OPERATIONS 
In this section, we show that almost all of the primitive operations 
for different applications over GF(2m) can be synthesized from the 
core ISA. 

3.1. Reed Solomon and BCH codes 
All of the primitive operations required in RS and BCH codec can 
be broken down into polynomial operations over GF(2m) of one 
form or another. They are: Polynomial Multiplications (PM), 
Polynomial Divisions (PD) and Polynomial Evaluations (PE). 
Non-Systematic RS encoding is basically a PM whereas 
systematic RS Encoding is a PD. Syndrome Computation and 
Chien Search of the decoding stage are PEs. Key Equation 
Solving using Extended Euclidean Algorithm is a combination of 
PDs and PMs. Therefore, deriving efficient ways of computing 
these polynomial operations are crucial. This section will briefly 
describe some ways these polynomial operations can be 
synthesized simply by the core ISA described before and are by 
no means definitive. It will be straightforward to extend the 
techniques presented here to more general polynomial operations. 

3.1.1. Polynomial Multiplication 

bDeg B(x)

aDeg A(x)a1 a2 a3a0R1

C0 C1 C2 C3 CDeg A(x)

b1 b2 b3b0R2

C0 C1 C2 C3 CDeg B(x)

0

CP-1

CP-1

0bDeg B(x)

aDeg A(x)a1 a2 a3a0R1

C0 C1 C2 C3 CDeg A(x)

b1 b2 b3b0R2

C0 C1 C2 C3 CDeg B(x)

0

CP-1

CP-1

0
 

Figure 5 : Data Orientation of A(x) and B(x) for PM 

Let ∑ =
=

))(deg(

0
)( xA

i
i
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))(deg(

0
)( xB

i
i

i xbxB , )2(, m
ii GFba ∈ . 

The polynomial multiplication of )()()( xBxAxD ×=  is given by: 

ji
j

xA

i

xB

j
i xbaxD +

= =
∑ ∑=

))(deg(

0

))(deg(

0
)(   

Assuming the degrees of A(x) and B(x) is less than P-1, then each 
of the polynomial can be fitted into a single Register Location 
LSB justified as shown in Figure 5. Using the core Arithmetic 
Instructions, a PM can thus be synthesised: 

• R1  A(x); R2  B(x); RTemp1  Zero Polynomial 
• For i = 0 to deg (A(x)) Loop 
•   RTemp2   REPA  R1(Ci) 
•   RTemp3   MULT RTemp2, R2 
•   RTemp1   ADDP RTemp3, RTemp1 
•   RResult (Ci)   REPO  RTemp1(Ci) 
•   RTemp1  SHPX  LSB, RTemp1, Q-Bits 
• End Loop; 
• For j = 0 to deg(B(x)) – 1 Loop 
•   RResult(Cdeg(A(x)) + j)  REPO  RTemp1(Cj) 
• End Loop; 
 
This is basically a multiply-add-shift operation of A(x) and B(x). 
The result D(x) will be stored in RResult. Note that if deg(A(x) + 
deg(B(x)) > P-1, the result D(x) maybe exceed the size of one 
Register Location and have to be stored accordingly. Since the 
degrees of A(x), B(x) and D(x) of all PMs present in RS and BCH 
codes can be predetermined, it is relatively easy determine the 
storage required. 
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3.1.2. Polynomial Division 
Again, let A(x) and B(x) follows the same notation as before.  
Given A(x) and B(x), calculate find D(x) and E(x) which satisfies 
the expression: 

 D(x) ×  B(x) + E(x) = A(x) 

In other words, we want to calculate A(x)/B(x) and get the 
quotient D(x) and the remainder which is E(x). Assuming the 
deg(A(x)) = deg(B(x)) + 1, then deg(E(x)) = 1 and deg(D(x)) = 
deg(B(x)) – 1. For simplicity, here we assume that each A(x) and 
B(x) can be fitted into a single Register Location MSB justified. 
The steps involved in the polynomial division (also commonly 
known as Polynomial Long Division) are: 

1. R1  A(x); R2  B(x);  
2. RTemp1   REPA  R1(CP-1) 
3. RTemp2   MULT RTemp1, R2 
4. RTemp1   REPA  R2(CP-1) 
5. RTemp2   DIVI  RTemp2, RTemp1 
6. RQuotient(C1)  REPO  RTemp2(CP-1) 
7. RTemp3  ADDP  RTemp2, R1  
8. RTemp1  REPA  RTemp3(CP-2) 
9. RTemp2   MULT RTemp1, R2 
10. RTemp1   REPA  R2(CP-1) 
11. RTemp2   DIVI  RTemp2, RTemp1 
12. RQuotient(C0)  REPO  RTemp2(CP-2) 
13. RRemainder   ADDP RTemp3, RTemp2 
14. RQuotient = D(x), RRemainder = E(x) 
 
The number of instructions needed to compute a polynomial 
division will be minimum when A(x) and B(x) can be fitted into a 
single register. Polynomial division is the fundamental primitive 
operation in Key Equation Solving using the Euclidean Algorithm 
and it can be concluded that as long as P ≥ 2t, where t is the error 
correcting capability of a BCH or RS code, the number of 
instructions needed for the Euclidean Algorithm will be at a 
minimum. 

3.1.3. Polynomial Evaluation 

0aP+1 aP+2 0aPR2

ap-1a1 a2 a3a0R1

1R3
2α 3α 1−pαα

R4
1+pα 2+pαpα 00

C0 C1 C2 C3 CP-1

0aP+1 aP+2 0aPR2

ap-1a1 a2 a3a0R1

1R3
2α 3α 1−pαα

R4
1+pα 2+pαpα 00

C0 C1 C2 C3 CP-1

 

Figure 6 :Data Orientation for Polynomial Evaluation 

Compute ∑ =
=

))(deg(

0
)(A xA

i
i

ia αα where )2( mGF∈α . As an 

example, we assume that A(x) in this case spans two Register 
Locations as shown in Figure 6. To save on computation cycles, 
P-1 multiple powers of α  are pre-computed and stored in 
multiple Register Locations as well. To evaluate )(A α ; 

1. R1, R2  A(x); R3, R4  Pre-computed Powers of α ;  
2. RTemp1   MULT R1, R3 
3. RTemp2   MULT R2, R4 
4. RTemp1   ADDP RTemp1, RTemp2 
5. RResult(C0)   SUMA RTemp1 
6. )(A α  = RResult(C0); 

3.2. Advanced Encryption Standard 
In general, the basic operations of the AES can be synthesized 
using the core ISA (with the exception of the Affine Transform 
required in the SubWord Transformation). We can easily modify 
the DIVI instruction so that an Forward Affine Transform (FAT) 
or Inverse Affine Transform (IAT) is computed after and before 
an inversion is computed respectively (See Table 5). There is 
substantial parallelism in the AES algorithm, which makes its 
implementation in a SWP architecture very attractive. An AES 
State is stored in the register file in the way as shown in Figure 7, 
where a 128-bit Block (or a state) is stored across 4 Registers 
Locations. If P > 4, multiple blocks of data can be stored in the 
same 4 Register Locations. In the example of Figure 7, P = 8, 
hence we can store 2 AES states every 4 register locations. This 
also means that multiple AES encryptions or decryptions can be 
computed at the same time. On closer examination, it is evident 
that the ShiftRow Operation of the AES is the bottleneck of the 
system if it is implemented with just the core ISA. A new 
instruction SHPW is created specifically for the ShiftRow 
Operation in AES. 

Table 5 : Extended Instructions for AES 

DIVI 
(SIMD-
AES) 

Rdes (Ci)  FAT[1/Rb(Ci)] mod G(y) 
Rdes (Ci)  1/ IAT[Rb(Ci)] mod G(y) 

for i = 0 
to P-1 

SHRW  Rdes   Shift-Row-Index, Ra  
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Figure 7 : Storage of AES state in Register File 

3.3. Elliptic Curve Cryptography 
The primitive operations of the Elliptic Curve Cryptography can 
be broken down simply into Point Additions and Point Doubling. 
A Non-Supersingular Elliptic Curve [2] is defined over Affine Co-
ordinates as: 

6
2

2
32 axaxxyy ++=+  where 2a and )2(6

mGFa ∈   

Given that two points A = (x1,y1) and B = (x2,y2) lie on an Elliptic 
Curve, point addition D = A + B is defined as below, where D = 
(x3,y3). If A ≠ B then 

12

12
xx
yy

−
−

=θ , 212
2

3 axxx ++++= θθ , 1133 )( yxxy −+=θ  

If A=B then 
1

1
1 x

yx +=θ  or 
2

2
2 x

yx +=θ             

and, 2
2

3 ax ++= θθ , 3
2

3 )1( xxy ++= θ . 

These operate over quadratic equations defined over GF(2m). and 
can be synthesized using the core ISA, primarily ADDP, MULT 
and DIVI operating in SISD mode 
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4. RESULTS & CONCLUSIONS 
It is evident that once the requirements of the primitive operations 
are determined and a processor architecture is designed to meet 
these requirements, a stable platform is available that can be 
tailored for different applications or different groups of 
applications by changing P and Q at design time. We show an 
example where P and Q are fixed and determine the range of 
applications this processor can be used for without re-design. This 
is to show the inherent flexibility of the processor architecture for 
different applications and does not represent a practical design 
flow, where applications usually determine the values of P and Q.  

4.1. P = 8, Q = 8 for RS, BCH, AES and ECC 
The largest small field size the processor can compute in parallel 
is constrained by Q. For a BCH or RS (N,K) codes, this will 
constrain the maximum value of N. Table 6 shows the ranges of 
(N,K) codecs that can be computed without re-design for Q = 8. 
For the AES, the only variable is the different key schedule 
computation and P/4 denotes the number of parallel AES blocks 
that can be computed at the same time for a specific value of P. 
The largest field size the processor can operate on in this case is 
GF(264) (m = PxQ. In practical applications, P can be chosen to be 
large enough for secure elliptic curve cryptography. A proof of 
concept prototype GF Processor has been implemented on Field 
Programmable Gate Arrays ( Xilinx Virtex XCV-800) using the 
concepts outlined in this paper for the parameters of P=8 and Q=8 
and Table 7 shows the throughput of a few applications from 
Table 6. The processor was designed using VHDL on Xilinx 
Foundation 3.1e and occupies 2505 Slices with an equivalent gate 
count of 43,251 gates. Through analysis, it can be determined that 
the size of the processor scales more or less linearly with m ( i..e. 
PxQ). 

Table 6: Ranges of Applications for P= 8 and Q=8 

Application Variables for Q = 8 

RS, BCH 
codec 

(255,K) 
(127,K) 
(63,K) 

(31,K) 
(15,K) 
(7,K) 

AES 128, 192, 256 Bits Key size. 
P/4 Parallel Blocks Computations 

ECC Up to GF(264) 

Table 7 : Throughput of GF(264) Processor for P = 8, Q = 8 

Results for m = 64     P = 8, Q = 8 Speed 40MHz Clock 
RS(255,247) Decoder 11 Mbps 

RS(31,25) Decoder 6.6Mbps 
BCH(31,16) Decoder* 1.33Mbps 

128-Bit Key AES (10 Rounds) without key 
Expansion. 2 Parallel Computations 3.8 Mbps 

128-but Key Schedule Computation  42.5 µs 
Elliptic Curve Point Addition Affine 

Coordinates GF(261) 7.125 µs 

Elliptic Curve Point Doubling Affine 
Coordinates GF(261) 8.425 µs 

*Uses the same program as RS(31,25) Codec. i.e. not optimised for 
BCH Codec. 

4.2. Conclusions  
Flexibility of a given architecture cannot be measured easily in 
quantifiable terms. Yet, as systems get increasingly complex, 
issues of design re-use makes a flexible architecture with 

programmable parameters over a large range of applications 
increasingly important. There has been a general trend to migrate 
complexity of traditionally application specific implementations 
towards software controlled architectures, where flexibility of 
software automatically allows the maximum flexibility over 
different applications. However, not all such migrations can be 
achieved easily, with problems ranging from designing flexible 
arithmetic circuits to supporting flexible software controlled 
architectures. This paper has outlined a design space exploration 
for domain applications based on Galois Fields. The applications 
are broken down into their primitive operations and a flexible 
software programmable processor has been designed to handle 
these primitive operations. This in turn allows the same 
architecture to be used for all applications that can be defined 
using these primitive operations. This paper focuses mainly on 
designing for maximum flexibility across different applications 
over the same domain, and further work is needed to address 
design issues at each abstraction level for other constraints like 
speed, area and power trade-offs with flexibility for a given 
application in the GF domain. A design methodology can then be 
defined for primitive based hardware/software co-design 
techniques. 
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