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Abstract: Security has been identified as a critical dimension in the design of embedded systems for almost a decade. A well-
recognised critical threat against the security of embedded systems is represented by ‘side-channel attacks (SCAs)’, which
mandate the application of specially tailored countermeasures. These countermeasures are significantly demanding in terms of
computation effort, and have traditionally been applied by hand. The recent introduction of a methodology to gauge the
security margins provided by software cipher implementations, allows the integration of the automated application of
countermeasures into platform-based system-level design methodologies. The authors introduce in the design space of block
cipher implementations a new metric concerning the resistance against SCAs, provide a systematic method for the selection
of the most appropriate cipher given the security and performance trade-offs, and point out the performance requirements for
the random number generator. Moreover, they discuss the implications of the design space extension on system runtime
adaptivity. The experimental evaluation demonstrates that a single cipher does not cover optimally a range of convenient
operating points and that ciphers like a Serpent, which are considered slow in non-protected implementations, can outperform
primitives like the Advanced Encryption Standard when implementations with equal security guarantees against SCAs are
considered.

power consumption or the electromagnetic emissions of the 
device. All these environmental parameters provide
unintentional, and much unwanted, ‘side-channels’ over 
which a significant amount of information regarding the secret 
parameters of a cryptographic primitive is leaked. Indeed, 
exploiting a statistically significant number of side channel 
measurements, the attacker is able to infer the value of the 
secret parameters being used in the computation, regardless of 
the cipher robustness against theoretical cryptanalysis 
techniques. These attacks have been proven practically viable 
even with limited equipment, against production grade 
implementations of ciphers, thus representing a realistic threat 
[7]. To this end, a significant amount of work has been done 
to devise countermeasures
against ‘side-channel attacks’ (SCA), which try to prevent 
the attacker from collecting information from the
side-channel [8–12]. Countermeasures against SCAs are 
known to impose a very significant overhead on the block 
cipher execution, thus driving an effort to devise a 
methodology to apply them automatically only to the portions 
of the cipher which need to be protected [8, 9, 13]. The 
selective application of countermeasures has been recently 
enhanced in terms of efficiency and made tunable, thanks to 
the introduction of precise measurements of the security 
margins provided by them [14]. It is thus now possible to 
integrate SCA countermeasure application in the current 
platform-based system-level design methodologies [15], 
effectively integrating the security dimension in the

1 Introduction

An increasing need to consider security as a critical 
dimension in the design of embedded systems has been 
arising for almost a decade [1, 2], besides more traditional 
design dimensions such as performances, cost, area and 
energy. The need for ubiquitous security has increased 
because of the widespread diffusion of embedded systems 
in sensitive domains such as health-care, automotive and 
industrial control. While several works tackled the problem 
of providing security oriented solutions for hardware design
flows [3–5], a significant number of embedded systems are 
built on top of general purpose platforms, and thus rely on 
software-based encryption primitives. In addition, software 
solutions provide a greater design flexibility, a feature which 
has been acknowledged by the standardised cryptographic 
protocols allowing a choice in the algorithms to be employed. 
Software-based security layers are also employed as a fall-
back solution in case the hardware based ones are 
compromised, an increasing trend given the technological 
progress of IC debugging and testing tools [6]. A significant 
part of the security margin of a secure device is provided by 
its resistance against the attacks involving an adversary 
having temporary physical access to it. This enables the 
adversary to gather information regarding the secret 
parameters involved in a cryptographic algorithm through 
measuring related environmental parameters such as the time 
needed for the computation, the



runs, with different inputs. The attacker gains knowledge on 
a cumulative working parameter of the system, depending 
on one or more key bits. To obtain the actual key bits 
values, the attacker needs to compute a key dependent 
side-channel hypothesis for all their possible values, and 
compare its results against the actual measurements by 
means of a statistical test [7, 16].

2.2 Typical attack framework

A typical attack selects an intermediate value of the cipher 
depending on a small key portion (usually 8 bits) and a 
known value (either the plaintext or the ciphertext). The 
side-channel is continuously measured during the 
aforementioned operation, for a large set of randomly 
distributed inputs, as it is usually the case that the exact 
time instant where the sensitive operations take place is not 
precisely known. Subsequently, the attacker tries to predict 
the actual power consumption of the device relying on the 
knowledge of the inputs and making an hypothesis for all 
the possible values of the secret key portion taken into 
consideration. This leads to a set of predictions of the 
side-channel values (e.g. power consumption) for each 
value taken by the portion of the secret key.

2.3 Required computational effort

Consequentially, to recover a k-bit secret key, tackling b bits 
at once, the typical attacker will need to perform a 
computational effort not lower than Ω((k/b)2b). This effort is 
due to the fact that the side channel predictions have to be 
computed for all the 2b values of the b bits of the key involved 
in the computation. The aforementioned computation has to 
be repeated for (k/b) times in order to recover the whole cipher 
key.
The obtained predictions must then be compared with the 

actual side channel measurement performed in the time instant 
when the sensitive instruction(s) are computed. To this end, 
since it is technically challenging to spot with full precision 
the time instant when an instruction is computed, the usual 
attack flow collects a very small temporal series of l 
measurements around it and performs the aforementioned 
computations for each one of them. In our analyses, we will 
assume conservatively that the attacker is able to know 
exactly when the operation is executed in an unprotected 
implementation, and take into account the
Nyquist’s sampling theorem. Thus, the effort for an attacker is 
not lower than Ω(2.5(k/b)2bl), where l is the length, expressed 
in number of instructions, of the code portion targeted by the 
attack. In the case of an attack against an unprotected 
implementation l = 1, and the lower bound is Ω(2.5(k/b)2b).

2.4 SCA countermeasures

Countermeasures against SCAs are conventionally split in
two types: ‘hiding’ and ‘masking’. Hiding increases the 
uncertainty of the attacker regarding the time location of the 
sensitive instructions by means of random delays inserted in 
the computation [7, 10], whereas masking employs random 
values to split the computation of the sensitive values in 
multiple shares [7, 11, 17].
In case of hiding countermeasures, the best strategy for an 

attacker is to perform an attack after computing a moving 
window average of the measurements. The effects of the 
averaging compensate for the uncertainty at the cost of

design space. We note that considering the security as a 
dimension of the design space is a favourable choice in the 
case of embedded systems design, as the cost of a possible 
post-deployment patching mandated by a security breach is 
significantly higher than the one on general purpose systems.

1.1 Contribution

We provide the following main contributions: (i) we extend 
the system design space of block cipher implementations

with the definition of a metric (denoted as ‘attacker effort’) 
and input parameters related to the resistance to SCAs, 
including both automated countermeasures parameters and 
algorithm selection; (ii) we show that the extended design 
space provides critical insights for the selection of the most 
appropriate cipher to the system requirements, and we point 
out the fact that protecting an entire cipher suite is overly 
expensive and does not yield significant benefits; (iii) we 
show the impact of the security dimension on the hardware 
requirements, in particular on the performance of the
‘random number generators’ (RNGs), which is crucial to 
implement the countermeasures. Finally, we discuss the 
implications of the design space extension on system 
adaptivity.

1.2 Organisation of the paper

In Section 2, we introduce the preliminary notions on 
power-based SCAs, and quantify the computational effort 
needed to execute an attack against a secure cipher
implementation provided with ‘hiding’ and ‘masking’ 
countermeasures. In Section 3, we define the extended 
design space, while in Section 4 we provide an accurate 
experimental campaign to assess the impact of the security 
design dimensions, together with the classical ones, on the 
implementation choices for two hardware platforms, the 
issues of dynamic adaptivity and the impact of the RNGs 
on the overall throughput. Finally, in Section 5, we draw 
our conclusions.

2 SCA framework

The typical passive SCA workflow is an instance of either a
‘known plaintext attack or a known ciphertext attack’, 
aiming at the retrieval of the secret key being employed in 
the cipher implementation. The attacker is assumed to know 
the full details of the cipher implementation and to be able 
to measure an environmental parameter of his choice, from 
which he will derive the information regarding the secret 
key. The main strength of an SCA is the possibility of 
considering the effect of subsets of the secret-key bits on 
the computation separately. The direct consequence is that 
the attacker can perform an exhaustive search over a 
reduced amount of key of bits at once, significantly 
decreasing the computational effort. We will now provide a 
complexity analysis for the computational effort of the 
attacker, which will be one of the goals to be optimized in 
the design space.

2.1 Attacker model

In the passive side channel attack scenario, the attacker is able 
to perform a measurement of the side channel (e.g. power 
consumption) during the computation of a sensitive 
operation of the cipher, for an arbitrary number of cipher



instructions, which, in turn, implies a
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the computation effort as he has no information on how to
select the instructions. We note that an increase in the
knowledge of the mutual positions of the instructions
performing a masked operation may reduce the effect of
this term, and can be taken into account in case the design
scenario considers such an attacker model. Masking and
hiding have a strong synergy in enhancing the efforts
required by the attacker, as hiding provides an effective way
to raise the value of l, providing a significant boost to the
aforementioned computational effort. Currently, there is no
practical evidence of a high-order SCA beyond order 3,
which has been led in a partially simplified environment to
facilitate the measurements [12, 17].
Summing up, a lower bound for the computational effort

needed to attack a cipher implementation, protected with
both hiding and masking countermeasures, is given by:
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the application scenario, and the tunable parameters are 
those exposed by the software and hardware platforms 
adopted. Since the optimisation problem addresses multiple 
objectives such as performance and area, there is usually no 
single solution, but a Pareto-set of non-dominated solutions. 
An introduction to DSE techniques and a comparison of 
optimisation algorithms can be found in [20, 21].
In this framework, the strength of the countermeasures 

against SCA, together with the choice of a specific 
cryptographic algorithm, can be counted as a parameter 
exposed by the platform. At the same time, the effective 
computational effort required for an attacker to breach the 
security of the system should be taken into account as one of 
the goals of the multi-objective optimisation problem.
To this end, the evaluation of the security level, and a 

tunable application of the countermeasures must be performed 
automatically. Compiler-based tools such as those presented 
in [8, 13, 14, 22] serve to this purpose. In particular, the 
security-oriented data-flow analysis (SDFA) technique 
proposed in [14] to practically gauge the security margin 
provided by a countermeasure application does not require the 
use of ad-hoc domain specific languages, as in [22], and does 
not need profiling information obtained from a prototype as in 
[13]. Consequentially, the work in [14] represents an 
attractive solution for an application in DSE, where 
simulation and profiling are often very expensive, in particular 
in the early stages of design. We thus chose to employ the 
SDFA as the building block for our DSE.
The SDFA provides an instruction-level assessment of

SCA resistance, defining the ‘instruction resistance’ metric: a 
conservative approximation of the number of cryptographic 
key bits that influence, directly or indirectly, the computation 
of each intermediate value used in an unprotected cipher 
implementation. The instruction resistance effectively marks 
the lower bound for the value of the b bits to be guessed at 
once by an attacker targeting that specific instruction.

3.1 Design parameters

The design space parameters related to the security domain 
for considering SCA countermeasures are the following: the 
choice of the cryptographic algorithm; the security margin; 
and the masking order.

3.1.1 Cryptographic algorithm: The specific ciphersuite 
used in a system can be a design parameter of the platform, 
especially in the case where cipher flexibility should be 
provided to allow the product to be compliant with multiple 
standards. We note that, in some cases, the choice of the 
algorithm may be fixed by the application scenario: in those 
cases the effective design parameter space has the 
cryptographic algorithm choice as an enforced constraint.
To provide a comprehensive analysis, we allow the 

algorithm to be chosen in the design space from the following 
ones: (i) the Advanced Encryption Standard (AES), with all 
the standardised key lengths (128-, 192-and 256-bit keys) 
[23]; (ii) Camellia, developed by Mitsubishi and NTT, and 
recognised as ISO/IEC 18033-3 standard [24]; (iii) the 
strengthened variants of the Data Encryption Standard (DES), 
triple DES (with both 112- and 168-bit key lengths) and DES-
X (184-bit key) [25]; and (iv) Serpent, one of the finalists of 
the AES contest, highly regarded for its security margin and 
known to be slower than AES in SCA-unprotected 
implementations [26]. All the codebases to perform the SDFA 
were picked from the

adding extra noise to the measures and requiring 
measurements to be obtained [7]. We will consider the 
contribution of a countermeasure based on the temporal 
uncertainty of the executed instructions as an increase in the 
value of the parameter l employed in the aforementioned 
lower bound. Masking countermeasures act through 
padding the sensitive values with a freshly extracted 
random value for each one of them. The net effect is that 
the attacker is not able to build a correct side-channel 
leakage model as the random masks are changed every
time, effectively acting as a ‘one-time-pad’ on the sensitive 
values. The effect of the random masks is removed at the end 
of the computation. The attack strategy against this 
countermeasure mandates to collect measurements of two 
operations involving both the masked value and its mask, and 
find a way to combine their side-channel leakage so that it no 
longer depends on the random-pad value. The masking 
countermeasure can be enhanced to prevent this attack 
employing a higher number m of masks (m > 1), for
each sensitive operation, a procedure known as ‘high-order’ 
masking. It has been proven in [11] that given a proper 
masking scheme with m masks, the attacker needs at least 
m + 1 measurements to be able to combine them into a 
mask-independent leakage value. Such attacks are known in 
open literature as ‘high-order’ SCAs [7].
Masking raises the computational effort of the attacker as 

he should be able to pick the correct measures to be 
recombined into the mask independent value, that is, pick 
m + 1 samples out of the l contained in the measurement. In 
this work, we will assume that the attacker has no 
information on the execution order of the masked

3 Extending the design space with the 
security dimension

Modern embedded system design methodologies rely on 
platform-based design techniques, where the application is 
mapped to software and hardware platforms. However, many 
parameters can be tuned to satisfy the needs of the specific 
application scenario [15]. This tuning can be usefully 
automated to decrease both time to market and development 
costs through design space exploration (DSE) techniques [18, 
19]. This set of automated optimisation techniques aims at 
solving a multi-objective optimisation problem, where the 
goals and constraints are imposed by



degrading some of the others. Without additional subjective
preference information, all Pareto optimal solutions are
considered equally good. Therefore a DSE framework
identifies the Pareto optimal solutions leaving to the
designer the selection of the solution corresponding to the
most appropriate trade-off for the considered application
scenario [19].
In our analysis, we assume the design space to be used to

solve a multi-objective optimisation problem with the
following three goals, the first of which is specific to the
security dimension.

3.2.1 Attacker effort: A measure of the overall
computational effort an attacker needs to exert to break the
cipher, under the assumed attacker model. In this work, we
consider the attacker to be employing Pearson’s sample
linear correlation coefficient r as the statistical tool.
Consequentially, the effective attacker effort can be
obtained taking into account the lower bound on the effort
described in Section 2 and updating the one of computing

the metric. The total effort is V 10nmeas
k
b
2bl

l
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where nmeas is the number of measurements to be obtained
for the Pearson’s r to be statistically significant. In this
work, we consider the worst case scenario, that is, the one
more advantageous to the attacker, thus taking nmeas = 30,
which is the minimum to satisfy the Gaussian assumption
on the variable distribution needed in Pearson’s r index.
The measurements length l is taken to be exactly 2.5×
the number of instructions involved in the attack, that
is, the ones required to break the masking scheme, plus the
uncertainty provided by the hiding countermeasure. We
assume that the hiding countermeasures provide a ten
dummy instruction time window, a sensible value according
to common practice [7], into which the actual ones are
inserted.

3.2.2 Performance: The encrypted data throughput
provided by the protected cipher. Performance is the typical
metric which is taken into account by most of the design
frameworks. In particular, the computations that must be
performed in a system for the purpose of security can easily
overwhelm the computational capabilities of processors in
both low- and high-end embedded systems. This is because,
for example, to the augmented throughput demands on
components such as the true RNG, which in turn affects the
performance of the secure cipher implementation.

3.2.3 Code size: The code size of the protected cipher, like
the ‘performance’ one, it is a typical goal (especially for
designs involving platforms with limited instruction cache/
memory size), and is also directly impacted by the
countermeasures. This goal is especially relevant in
code-memory constrained devices such as microcontrollers,
or in the case where multiple protected cipher
implementations are stored for the sake of run-time
adaptivity.

4 Experimental evaluation

This section reports the results of an exploration of the design
space, showing the usefulness of the information provided by
the security oriented parameters and goals introduced in the
previous section. We chose as target platforms two ARM
SoCs: a TI-OMAP4460 SoC, which is the core of the
Pandaboard-ES, and a Marvel Kirkwoood SoC present on

libgcrypt [27], the backend encryption library employed 
by GNU Privacy Guard, save for AES, which is the reference 
implementation for small memory footprints, as we target an 
embedded system design. The choice of the cipher determines 
the value of the key length k in the computation of the 
attacker effort.

3.1.2 Security margin: This parameters specifies the 
maximum ‘resistance’ [14] value of the instructions to
which masking countermeasures should be applied to prevent 
the attacker from exploiting them. For each instruction of the 
cipher implementation, the instruction resistance is informally 
defined as the minimum number of key bits influencing any 
bit of its output value. To obtain this information 
automatically, a SDFA [14] is performed by a compiler 
extension to detect the amount of key material involved in the 
computation of any intermediate value of the cipher. The 
analysis is able to identify the portions of the executable 
program amenable to passive SCAs. In particular, an 
instruction is deemed to be vulnerable if computing a model 
of its behaviour for each possible value of the key bits b from 
which its output value depends is computationally feasible. 
Computing the aforementioned model is the ground on which 
passive SCAs are built (see Section 2), as its predictions are 
matched against the measured behaviour of the considered 
device. The information to be traced is the data-dependence 
between any bit computed by a program instruction and every 
bit of the cipher-key. Such a choice is mandated by the need 
to consider possible SCA models predicting the behaviour of 
the computation of a single bit within a word-wide value 
computed by the underlying platform.

When the cipher instructions with a resistance lower than 
the security margin are protected with a masking
countermeasure, the attacker’s choice for the value of the b 
bits of the secret key to be guessed in the attacker effort 
formula is lower bounded by the security margin itself. In 
the experiments, the considered range of b is 1–128.

3.1.3 Masking order: According to the attacker model 
against which protection is desirable, the designer picks the 
minimum masking order m to be employed [11, 12, 17]. 
However, it is possible that, in the case of high resource
availability, a higher order protection may be desirable – for 
example, to prolong the lifetime of the final product, or to 
widen its target market. The masking order ranges, in our 
experiments, from 1 to 2, since there is no evidence of a third 
order attack against real world devices in open literature.

3.2 Optimisation goals

In general, a multi-objective optimisation problem involves 
the minimisation (maximisation) of a function with several 
arguments which maps two or more goals (e.g. performance 
and security level), thus making the definition of optimality 
not unique. In particular, decisions need to be taken in the 
presence of trade-offs between two or more conflicting goals. 
Minimising cost (or/and maximising performance), while 
maximising the security level of a cryptographic 
implementation is an instance of a multi-objective 
optimisation problem involving two (or three) goals. For a 
non-trivial instance of the problem, there does not exist a 
single solution (i.e. a set of input argument values for the 
target function) that simultaneously optimises each goal. A
solution is called ‘non-dominated’ or ‘Pareto optimal’ if 
none of the goals can be improved in value without



Fig. 1 reports the results obtained through either first or 
second-order masking protections on the same plot. Different 
operating points with similar attacker effort may yield a 
different throughput because of the application of a masking 
countermeasure with a different order. The two separate 
trends in the attacker effort increase are caused by second-
order countermeasures being significantly computationally 
demanding w.r.t. the first-order ones (the cost grows 
quadratically with the order). For example, considering the 
Serpent algorithm, the dark blue data series refers to the 
application of the first-order masking, whereas the second-
order one is referred by the lower light blue one. To 
understand which ciphers should actually be used for the 
selected target platforms, we report the sets of Pareto-optimal 
solutions in Fig. 2. It is possible to see that the DES variants 
are definitely suboptimal, and provide no favourable solution. 
On the other hand, the Serpent cipher provides optimal 
solutions when code size is not an issue, whereas Camellia 
proves better when code size must be kept low – often a 
significant issue in embedded systems.
Despite being the world-wide standard, the AES 
implementations provide optimal solutions only where 
protection against SCA is a very limited issue (i.e. for
computational efforts in the range of 220–232, which are 
considered practically unsafe being below at least 80 bits of 
protection). It is interesting to note that the Serpent 
implementation considered turns out to be both faster and 
more compact in terms of code size with respect to the AES 
counterpart, despite being slower when SCA 
countermeasures are not considered.

4.2 Run-time adaptivity

While in traditional platform-based design the parameters of 
the system are set at design time, the increasing complexity of 
embedded systems makes it valuable to preserve flexibility 
after the design and deployment phases. To this end, 
adaptability to operating conditions can be added to a system 
by allowing it to change its behaviour among a set
of configurations (‘operating points’) at run-time, through the 
use of a Run-time Resource Manager [18, 28].

Fig. 1 Solution space for the design problem on the

a ARM-926 and
b ARM Cortex-A9 platforms
Attacker effort is expressed in bit, as the attacker should be able to perform at least 2bit computations to breach the system
Colours denote the code size of the output code segment in kiB

the Pogoplug NAS. The former, is based on a dual core 
Cortex-A9MPCore clocked at 1.2 GHz, 1 MiB L2 cache and 
1 GiB DDR2 RAM, running Linaro 12.09 Linux distribution 
(armv7l target), while the latter is based on an ARM 
926EJS core (armv5te target), clocked at 1.2 GHz, with 
256 MiB DDR RAM running Arch Linux 3.16.1.

4.1 Characterisation of the design space

Fig. 1 reports the set of feasible solutions for the considered 
design space for both target platforms. The three 
optimisation goals (throughput, attacker effort and code 
size) are depicted for each solution, together with the cipher 
selection parameter. The attacker effort computation has 
been made employing the lower bound formula reported in 
Section 3.2. We chose l to be 2.5 × ‘the number of samples 
picked by the attack’ (which is the ‘masking order’ plus 
one), to take into account a safety margin over sampling the 
side channel signal exactly at the bound required by the
Shannon’s theorem (which would mandate sampling at least 
twice as fast as the chip clock frequency). Considering a 
hiding countermeasure providing a time window made of 
ten dummy instructions, and a first-order masking (m + 1  =  
2), we obtain l = ⌈2.5(10 + 2)⌉ = 30 taking into account 
the side channel sampling. Similarly, taking into account 
a second-order masking strategy, m + 1 = 3 results in l = 
⌈2.5(10 + 3)⌉ = 33.
For all the ciphers, an increase in the attacker effort is 

characterised by a decrease of the throughput, because of the 
higher computational overhead introduced by the application 
of the share splitting countermeasure to a larger number of 
instructions. In particular, we note that the significant
throughput reduction which characterises the 20–48 bit 
attacker effort interval is due to the fact that the 
Ishai-Sahai-Wagner (ISW) masking countermeasure needs to 
be applied to a significant amount of non-linear operations 
(i.e. the ones different from xor) at each iteration of the 
block cipher round. This, in turn, results in a significant cost, 
as the Boolean and and or operations are the most 
expensive, given the countermeasure in use. The increase in 
the code size because of the larger amount of instructions is 
also evident for both platforms.



Fig. 2 Pareto-optimal solutions for the design problem on the

a ARM-926 and
b ARM Cortex-A9 platforms
Attacker effort b is expressed in bit, as the attacker should be able to perform at least 2b computations to breach the system
Colours denote the code size of the output code in kiB

Fig. 4 Required amount of random masks per ciphertext output

byte, considering a first-order masking

Fig. 3 Operating points for ARM-926, armv5te architecture
a Standard ISA and
b Cortex-A9 armv7 architecture, Thumb2 ISAE

As it is commonplace for cryptographic protocols to allow 
the choice of different block ciphers for their operation, most 
security libraries have already integrate multiple ciphers. An 
adaptive application which performs communication with 
symmetric key encryption can leverage this support for 
negotiating the use of a cipher that fits its current 
requirements. For example, critical information may be 
transmitted using a cipher implementation warranting a high 
attacker effort, whereas in a high-load condition, less 
sensitive information might be protected with a faster, albeit 
less secure, one. To take advantage of this opportunity, it is 
possible to extract from the design space a set of appropriate 
operating points. Considering the Pareto-optimal solutions in 
Fig. 2, we show in Fig. 3 the set of operating points that a 
designer, supported by a DSE tool, would choose. The 
solutions worthy of being actually deployed on the platform 
should include: (i) points with highest throughput and a 
minimum attacker effort of 80 bits; (ii) points with the



has very low RNG requirements up to 64 bits, as the key 
material is added to the plaintext after a thorough mixing, 
achieving a steep rise in the security margin with a very low 
amount of protected instructions. The DES family has 
considerable RNG throughput requirements as it is 
characterised by a large number of instructions, because of the 
large number of bitwise operations involved in its computation. 
The steep increase for the 3DES2 and 3DES3 is justified by 
the fact that increasing the security margin above 56 bits 
implies protecting two full DES executions (the first and the 
last), considerably raising the amount of masked instructions.
To provide practical grounding, Table 1 compares the actual 

throughput obtained from protected ciphers on the case study 
platforms against the one achievable with the speedup 
obtained through either removing the RNG overhead or 
removing the bottleneck caused by the CPU computation 
capabilities. The first value is computed through actually 
running the implementations with a constant value instead of 
invoking the RNG, while the second one is derived from the 
RNG requirements in Fig. 4 and considering the throughput of 
the RNG running alone on the platform. The results show that 
the only cipher which performances are limited by the RNG 
on both platforms throughput is Serpent, while AES and 
Camellia would benefit from a more performing CPU. The 
DES family is characterised by being roughly equally limited 
by both the CPU performances and the RNG throughput: this 
results in being slightly bound by the RNG speed on the faster 
platform, while  being capped by the  CPU on the  slower one.

5 Concluding remarks

We extended the system design space with security related 
metrics and parameters of software implementations against 
SCAs. We have shown that favourable trade-offs can be 
selected depending on the desired security margin, 
throughput and code size providing viable working points, 
which may also be used for runtime adaptivity purposes.
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11.96× 11.94× 11.96× 1.56× 1.76× 1.76× 1.06× 2.90×

ARM-926 80-bit throughput, kiB/s 61.20 64.02 63.30 163.03 18.12 17.59 348.02 384.10
speedup w/o the RNG bound 1.39× 1.30× 1.30× 1.78× 1.58× 1.58× 3.04× 1.24×
speedup w/o computation

bounds
11.57× 14.12× 14.28× 1.86× 2.20× 2.21× 1.23× 4.18×

128-bit throughput, kiB/s 55.66 55.44 54.81 125.01 17.19 16.70 253.41 186.22
speedup w/o the RNG bound 1.42× 1.41× 1.41× 1.76× 1.59× 1.57× 2.96× 1.39×
speedup w/o computation

bounds
11.09× 11.14× 11.26× 1.90× 2.20× 2.21× 1.24× 2.89×

Greyed out cells point to the factor being the most limiting to the implementation performances between the computational efficiency
of the platform and the RNG speed.

Table 1 Impact of the RNG throughput on the protected cipher implementation performance

highest absolute throughput; (iii) points with the highest 
attacker effort; (iv) and points corresponding to a total code 
size not exceeding 64 kiB (about 10× the size of the smallest 
Pareto-optimal solution). Performing a k-means clustering, 
we took one representative point per cluster fitting
requirements (i)–(iii), and we bounded the number of clusters 
taking into account the fourth constraint, thus obtaining four 
clusters. Fig. 3 depicts the extracted operating points: the 
results show that it is possible for the designer to instrument 
only the Camellia and Serpent out of the eight examined 
ciphers, and pick the operating point according to the 
throughput and security margin required by the operating 
conditions. In particular, we note that the operating points 
selected for the Serpent cipher provide a moderate and very 
high protection while retaining an acceptable code size (17 
and 21 kiB, respectively). The low protection point provided 
by the Camellia cipher may be useful to obtain a significant 
throughput improvement (roughly 10 × w.r.t. the other 
operating points) while retaining a minimal protection 
against casual attacker. The 80-bit operating point provided 
by Camellia represent a particularly interesting solution, as 
the cipher retains a small code size (8 kiB), while providing 
a very sound security margin and reasonable throughput.

4.3 Performance impact of random number 
generation

Since masking countermeasures require a significant amount of 
random data to pad the computations, it is useful to analyse 
this requirement, as an adequate RNG, either a hardware 
TRNG or a proper secure PRNG should be included in the 
platform. We note that the PRNG requirements are a function 
of the chosen security margin, masking order and cipher, with 
the masking order acting as a plain multiplicative factor on the 
throughput requirements. In the following, we will present the 
results on the requirement imposed on the RNG, considering 
the Pandaboard platform (Cortex-A9) employed in our 
previous experiments. Fig. 4 reports the amount of random 
bytes needed to compute a cipher byte for all the ciphers of 
our exploration, in logarithmic scale, considering a first-order 
masking. AES and Serpent are characterised by a linear 
dependence of the requirement from the security margin 
because of the regular structure of the cipher round. Camellia
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