
 Received on 28th February 2014
Revised on 10th September 2014
Accepted on 18th September 2014

Design space extension for secure implementation of
block ciphers
Giovanni Agosta, Alessandro Barenghi, Massimo Maggi, Gerardo Pelosi

Department of Electronics, Information and Bioengineering – DEIB, Politecnico di Milano, Piazza Leonardo da Vinci, 32,

I-20133 Milano, Italy

E-mail: gerardo.pelosi@polimi.it

Abstract: Security has been identified as a critical dimension in the design of embedded systems for almost a decade. A well-
recognised critical threat against the security of embedded systems is represented by ‘side-channel attacks (SCAs)’, which
mandate the application of specially tailored countermeasures. These countermeasures are significantly demanding in terms of
computation effort, and have traditionally been applied by hand. The recent introduction of a methodology to gauge the
security margins provided by software cipher implementations, allows the integration of the automated application of
countermeasures into platform-based system-level design methodologies. The authors introduce in the design space of block
cipher implementations a new metric concerning the resistance against SCAs, provide a systematic method for the selection
of the most appropriate cipher given the security and performance trade-offs, and point out the performance requirements for
the random number generator. Moreover, they discuss the implications of the design space extension on system runtime
adaptivity. The experimental evaluation demonstrates that a single cipher does not cover optimally a range of convenient
operating points and that ciphers like a Serpent, which are considered slow in non-protected implementations, can outperform
primitives like the Advanced Encryption Standard when implementations with equal security guarantees against SCAs are
considered.

power consumption or the electromagnetic emissions of the
device. All these environmental parameters provide
unintentional, and much unwanted, ‘side-channels’ over
which a significant amount of information regarding the secret
parameters of a cryptographic primitive is leaked. Indeed,
exploiting a statistically significant number of side channel
measurements, the attacker is able to infer the value of the
secret parameters being used in the computation, regardless of
the cipher robustness against theoretical cryptanalysis
techniques. These attacks have been proven practically viable
even with limited equipment, against production grade
implementations of ciphers, thus representing a realistic threat
[7]. To this end, a significant amount of work has been done
to devise countermeasures
against ‘side-channel attacks’ (SCA), which try to prevent
the attacker from collecting information from the
side-channel [8–12]. Countermeasures against SCAs are
known to impose a very significant overhead on the block
cipher execution, thus driving an effort to devise a
methodology to apply them automatically only to the portions
of the cipher which need to be protected [8, 9, 13]. The
selective application of countermeasures has been recently
enhanced in terms of efficiency and made tunable, thanks to
the introduction of precise measurements of the security
margins provided by them [14]. It is thus now possible to
integrate SCA countermeasure application in the current
platform-based system-level design methodologies [15],
effectively integrating the security dimension in the

1 Introduction

An increasing need to consider security as a critical
dimension in the design of embedded systems has been
arising for almost a decade [1, 2], besides more traditional
design dimensions such as performances, cost, area and
energy. The need for ubiquitous security has increased
because of the widespread diffusion of embedded systems
in sensitive domains such as health-care, automotive and
industrial control. While several works tackled the problem
of providing security oriented solutions for hardware design
flows [3–5], a significant number of embedded systems are
built on top of general purpose platforms, and thus rely on
software-based encryption primitives. In addition, software
solutions provide a greater design flexibility, a feature which
has been acknowledged by the standardised cryptographic
protocols allowing a choice in the algorithms to be employed.
Software-based security layers are also employed as a fall-
back solution in case the hardware based ones are
compromised, an increasing trend given the technological
progress of IC debugging and testing tools [6]. A significant
part of the security margin of a secure device is provided by
its resistance against the attacks involving an adversary
having temporary physical access to it. This enables the
adversary to gather information regarding the secret
parameters involved in a cryptographic algorithm through
measuring related environmental parameters such as the time
needed for the computation, the

runs, with different inputs. The attacker gains knowledge on
a cumulative working parameter of the system, depending
on one or more key bits. To obtain the actual key bits
values, the attacker needs to compute a key dependent
side-channel hypothesis for all their possible values, and
compare its results against the actual measurements by
means of a statistical test [7, 16].

2.2 Typical attack framework

A typical attack selects an intermediate value of the cipher
depending on a small key portion (usually 8 bits) and a
known value (either the plaintext or the ciphertext). The
side-channel is continuously measured during the
aforementioned operation, for a large set of randomly
distributed inputs, as it is usually the case that the exact
time instant where the sensitive operations take place is not
precisely known. Subsequently, the attacker tries to predict
the actual power consumption of the device relying on the
knowledge of the inputs and making an hypothesis for all
the possible values of the secret key portion taken into
consideration. This leads to a set of predictions of the
side-channel values (e.g. power consumption) for each
value taken by the portion of the secret key.

2.3 Required computational effort

Consequentially, to recover a k-bit secret key, tackling b bits
at once, the typical attacker will need to perform a
computational effort not lower than Ω((k/b)2b). This effort is
due to the fact that the side channel predictions have to be
computed for all the 2b values of the b bits of the key involved
in the computation. The aforementioned computation has to
be repeated for (k/b) times in order to recover the whole cipher
key.
The obtained predictions must then be compared with the

actual side channel measurement performed in the time instant
when the sensitive instruction(s) are computed. To this end,
since it is technically challenging to spot with full precision
the time instant when an instruction is computed, the usual
attack flow collects a very small temporal series of l
measurements around it and performs the aforementioned
computations for each one of them. In our analyses, we will
assume conservatively that the attacker is able to know
exactly when the operation is executed in an unprotected
implementation, and take into account the
Nyquist’s sampling theorem. Thus, the effort for an attacker is
not lower than Ω(2.5(k/b)2bl), where l is the length, expressed
in number of instructions, of the code portion targeted by the
attack. In the case of an attack against an unprotected
implementation l = 1, and the lower bound is Ω(2.5(k/b)2b).

2.4 SCA countermeasures

Countermeasures against SCAs are conventionally split in
two types: ‘hiding’ and ‘masking’. Hiding increases the
uncertainty of the attacker regarding the time location of the
sensitive instructions by means of random delays inserted in
the computation [7, 10], whereas masking employs random
values to split the computation of the sensitive values in
multiple shares [7, 11, 17].
In case of hiding countermeasures, the best strategy for an

attacker is to perform an attack after computing a moving
window average of the measurements. The effects of the
averaging compensate for the uncertainty at the cost of

design space. We note that considering the security as a
dimension of the design space is a favourable choice in the
case of embedded systems design, as the cost of a possible
post-deployment patching mandated by a security breach is
significantly higher than the one on general purpose systems.

1.1 Contribution

We provide the following main contributions: (i) we extend
the system design space of block cipher implementations

with the definition of a metric (denoted as ‘attacker effort’)
and input parameters related to the resistance to SCAs,
including both automated countermeasures parameters and
algorithm selection; (ii) we show that the extended design
space provides critical insights for the selection of the most
appropriate cipher to the system requirements, and we point
out the fact that protecting an entire cipher suite is overly
expensive and does not yield significant benefits; (iii) we
show the impact of the security dimension on the hardware
requirements, in particular on the performance of the
‘random number generators’ (RNGs), which is crucial to
implement the countermeasures. Finally, we discuss the
implications of the design space extension on system
adaptivity.

1.2 Organisation of the paper

In Section 2, we introduce the preliminary notions on
power-based SCAs, and quantify the computational effort
needed to execute an attack against a secure cipher
implementation provided with ‘hiding’ and ‘masking’
countermeasures. In Section 3, we define the extended
design space, while in Section 4 we provide an accurate
experimental campaign to assess the impact of the security
design dimensions, together with the classical ones, on the
implementation choices for two hardware platforms, the
issues of dynamic adaptivity and the impact of the RNGs
on the overall throughput. Finally, in Section 5, we draw
our conclusions.

2 SCA framework

The typical passive SCA workflow is an instance of either a
‘known plaintext attack or a known ciphertext attack’,
aiming at the retrieval of the secret key being employed in
the cipher implementation. The attacker is assumed to know
the full details of the cipher implementation and to be able
to measure an environmental parameter of his choice, from
which he will derive the information regarding the secret
key. The main strength of an SCA is the possibility of
considering the effect of subsets of the secret-key bits on
the computation separately. The direct consequence is that
the attacker can perform an exhaustive search over a
reduced amount of key of bits at once, significantly
decreasing the computational effort. We will now provide a
complexity analysis for the computational effort of the
attacker, which will be one of the goals to be optimized in
the design space.

2.1 Attacker model

In the passive side channel attack scenario, the attacker is able
to perform a measurement of the side channel (e.g. power
consumption) during the computation of a sensitive
operation of the cipher, for an arbitrary number of cipher

instructions, which, in turn, implies a
l

m+ 1

()

increase in

the computation effort as he has no information on how to
select the instructions. We note that an increase in the
knowledge of the mutual positions of the instructions
performing a masked operation may reduce the effect of
this term, and can be taken into account in case the design
scenario considers such an attacker model. Masking and
hiding have a strong synergy in enhancing the efforts
required by the attacker, as hiding provides an effective way
to raise the value of l, providing a significant boost to the
aforementioned computational effort. Currently, there is no
practical evidence of a high-order SCA beyond order 3,
which has been led in a partially simplified environment to
facilitate the measurements [12, 17].
Summing up, a lower bound for the computational effort

needed to attack a cipher implementation, protected with
both hiding and masking countermeasures, is given by:

V 2.5k
b
2bl

l

m+ 1

()()

.

the application scenario, and the tunable parameters are
those exposed by the software and hardware platforms
adopted. Since the optimisation problem addresses multiple
objectives such as performance and area, there is usually no
single solution, but a Pareto-set of non-dominated solutions.
An introduction to DSE techniques and a comparison of
optimisation algorithms can be found in [20, 21].
In this framework, the strength of the countermeasures

against SCA, together with the choice of a specific
cryptographic algorithm, can be counted as a parameter
exposed by the platform. At the same time, the effective
computational effort required for an attacker to breach the
security of the system should be taken into account as one of
the goals of the multi-objective optimisation problem.
To this end, the evaluation of the security level, and a

tunable application of the countermeasures must be performed
automatically. Compiler-based tools such as those presented
in [8, 13, 14, 22] serve to this purpose. In particular, the
security-oriented data-flow analysis (SDFA) technique
proposed in [14] to practically gauge the security margin
provided by a countermeasure application does not require the
use of ad-hoc domain specific languages, as in [22], and does
not need profiling information obtained from a prototype as in
[13]. Consequentially, the work in [14] represents an
attractive solution for an application in DSE, where
simulation and profiling are often very expensive, in particular
in the early stages of design. We thus chose to employ the
SDFA as the building block for our DSE.
The SDFA provides an instruction-level assessment of

SCA resistance, defining the ‘instruction resistance’ metric: a
conservative approximation of the number of cryptographic
key bits that influence, directly or indirectly, the computation
of each intermediate value used in an unprotected cipher
implementation. The instruction resistance effectively marks
the lower bound for the value of the b bits to be guessed at
once by an attacker targeting that specific instruction.

3.1 Design parameters

The design space parameters related to the security domain
for considering SCA countermeasures are the following: the
choice of the cryptographic algorithm; the security margin;
and the masking order.

3.1.1 Cryptographic algorithm: The specific ciphersuite
used in a system can be a design parameter of the platform,
especially in the case where cipher flexibility should be
provided to allow the product to be compliant with multiple
standards. We note that, in some cases, the choice of the
algorithm may be fixed by the application scenario: in those
cases the effective design parameter space has the
cryptographic algorithm choice as an enforced constraint.
To provide a comprehensive analysis, we allow the

algorithm to be chosen in the design space from the following
ones: (i) the Advanced Encryption Standard (AES), with all
the standardised key lengths (128-, 192-and 256-bit keys)
[23]; (ii) Camellia, developed by Mitsubishi and NTT, and
recognised as ISO/IEC 18033-3 standard [24]; (iii) the
strengthened variants of the Data Encryption Standard (DES),
triple DES (with both 112- and 168-bit key lengths) and DES-
X (184-bit key) [25]; and (iv) Serpent, one of the finalists of
the AES contest, highly regarded for its security margin and
known to be slower than AES in SCA-unprotected
implementations [26]. All the codebases to perform the SDFA
were picked from the

adding extra noise to the measures and requiring
measurements to be obtained [7]. We will consider the
contribution of a countermeasure based on the temporal
uncertainty of the executed instructions as an increase in the
value of the parameter l employed in the aforementioned
lower bound. Masking countermeasures act through
padding the sensitive values with a freshly extracted
random value for each one of them. The net effect is that
the attacker is not able to build a correct side-channel
leakage model as the random masks are changed every
time, effectively acting as a ‘one-time-pad’ on the sensitive
values. The effect of the random masks is removed at the end
of the computation. The attack strategy against this
countermeasure mandates to collect measurements of two
operations involving both the masked value and its mask, and
find a way to combine their side-channel leakage so that it no
longer depends on the random-pad value. The masking
countermeasure can be enhanced to prevent this attack
employing a higher number m of masks (m > 1), for
each sensitive operation, a procedure known as ‘high-order’
masking. It has been proven in [11] that given a proper
masking scheme with m masks, the attacker needs at least
m + 1 measurements to be able to combine them into a
mask-independent leakage value. Such attacks are known in
open literature as ‘high-order’ SCAs [7].
Masking raises the computational effort of the attacker as

he should be able to pick the correct measures to be
recombined into the mask independent value, that is, pick
m + 1 samples out of the l contained in the measurement. In
this work, we will assume that the attacker has no
information on the execution order of the masked

3 Extending the design space with the
security dimension

Modern embedded system design methodologies rely on
platform-based design techniques, where the application is
mapped to software and hardware platforms. However, many
parameters can be tuned to satisfy the needs of the specific
application scenario [15]. This tuning can be usefully
automated to decrease both time to market and development
costs through design space exploration (DSE) techniques [18,
19]. This set of automated optimisation techniques aims at
solving a multi-objective optimisation problem, where the
goals and constraints are imposed by

degrading some of the others. Without additional subjective
preference information, all Pareto optimal solutions are
considered equally good. Therefore a DSE framework
identifies the Pareto optimal solutions leaving to the
designer the selection of the solution corresponding to the
most appropriate trade-off for the considered application
scenario [19].
In our analysis, we assume the design space to be used to

solve a multi-objective optimisation problem with the
following three goals, the first of which is specific to the
security dimension.

3.2.1 Attacker effort: A measure of the overall
computational effort an attacker needs to exert to break the
cipher, under the assumed attacker model. In this work, we
consider the attacker to be employing Pearson’s sample
linear correlation coefficient r as the statistical tool.
Consequentially, the effective attacker effort can be
obtained taking into account the lower bound on the effort
described in Section 2 and updating the one of computing

the metric. The total effort is V 10nmeas
k
b
2bl

l

m+ 1

()()

,

where nmeas is the number of measurements to be obtained
for the Pearson’s r to be statistically significant. In this
work, we consider the worst case scenario, that is, the one
more advantageous to the attacker, thus taking nmeas = 30,
which is the minimum to satisfy the Gaussian assumption
on the variable distribution needed in Pearson’s r index.
The measurements length l is taken to be exactly 2.5×
the number of instructions involved in the attack, that
is, the ones required to break the masking scheme, plus the
uncertainty provided by the hiding countermeasure. We
assume that the hiding countermeasures provide a ten
dummy instruction time window, a sensible value according
to common practice [7], into which the actual ones are
inserted.

3.2.2 Performance: The encrypted data throughput
provided by the protected cipher. Performance is the typical
metric which is taken into account by most of the design
frameworks. In particular, the computations that must be
performed in a system for the purpose of security can easily
overwhelm the computational capabilities of processors in
both low- and high-end embedded systems. This is because,
for example, to the augmented throughput demands on
components such as the true RNG, which in turn affects the
performance of the secure cipher implementation.

3.2.3 Code size: The code size of the protected cipher, like
the ‘performance’ one, it is a typical goal (especially for
designs involving platforms with limited instruction cache/
memory size), and is also directly impacted by the
countermeasures. This goal is especially relevant in
code-memory constrained devices such as microcontrollers,
or in the case where multiple protected cipher
implementations are stored for the sake of run-time
adaptivity.

4 Experimental evaluation

This section reports the results of an exploration of the design
space, showing the usefulness of the information provided by
the security oriented parameters and goals introduced in the
previous section. We chose as target platforms two ARM
SoCs: a TI-OMAP4460 SoC, which is the core of the
Pandaboard-ES, and a Marvel Kirkwoood SoC present on

libgcrypt [27], the backend encryption library employed
by GNU Privacy Guard, save for AES, which is the reference
implementation for small memory footprints, as we target an
embedded system design. The choice of the cipher determines
the value of the key length k in the computation of the
attacker effort.

3.1.2 Security margin: This parameters specifies the
maximum ‘resistance’ [14] value of the instructions to
which masking countermeasures should be applied to prevent
the attacker from exploiting them. For each instruction of the
cipher implementation, the instruction resistance is informally
defined as the minimum number of key bits influencing any
bit of its output value. To obtain this information
automatically, a SDFA [14] is performed by a compiler
extension to detect the amount of key material involved in the
computation of any intermediate value of the cipher. The
analysis is able to identify the portions of the executable
program amenable to passive SCAs. In particular, an
instruction is deemed to be vulnerable if computing a model
of its behaviour for each possible value of the key bits b from
which its output value depends is computationally feasible.
Computing the aforementioned model is the ground on which
passive SCAs are built (see Section 2), as its predictions are
matched against the measured behaviour of the considered
device. The information to be traced is the data-dependence
between any bit computed by a program instruction and every
bit of the cipher-key. Such a choice is mandated by the need
to consider possible SCA models predicting the behaviour of
the computation of a single bit within a word-wide value
computed by the underlying platform.

When the cipher instructions with a resistance lower than
the security margin are protected with a masking
countermeasure, the attacker’s choice for the value of the b
bits of the secret key to be guessed in the attacker effort
formula is lower bounded by the security margin itself. In
the experiments, the considered range of b is 1–128.

3.1.3 Masking order: According to the attacker model
against which protection is desirable, the designer picks the
minimum masking order m to be employed [11, 12, 17].
However, it is possible that, in the case of high resource
availability, a higher order protection may be desirable – for
example, to prolong the lifetime of the final product, or to
widen its target market. The masking order ranges, in our
experiments, from 1 to 2, since there is no evidence of a third
order attack against real world devices in open literature.

3.2 Optimisation goals

In general, a multi-objective optimisation problem involves
the minimisation (maximisation) of a function with several
arguments which maps two or more goals (e.g. performance
and security level), thus making the definition of optimality
not unique. In particular, decisions need to be taken in the
presence of trade-offs between two or more conflicting goals.
Minimising cost (or/and maximising performance), while
maximising the security level of a cryptographic
implementation is an instance of a multi-objective
optimisation problem involving two (or three) goals. For a
non-trivial instance of the problem, there does not exist a
single solution (i.e. a set of input argument values for the
target function) that simultaneously optimises each goal. A
solution is called ‘non-dominated’ or ‘Pareto optimal’ if
none of the goals can be improved in value without

Fig. 1 reports the results obtained through either first or
second-order masking protections on the same plot. Different
operating points with similar attacker effort may yield a
different throughput because of the application of a masking
countermeasure with a different order. The two separate
trends in the attacker effort increase are caused by second-
order countermeasures being significantly computationally
demanding w.r.t. the first-order ones (the cost grows
quadratically with the order). For example, considering the
Serpent algorithm, the dark blue data series refers to the
application of the first-order masking, whereas the second-
order one is referred by the lower light blue one. To
understand which ciphers should actually be used for the
selected target platforms, we report the sets of Pareto-optimal
solutions in Fig. 2. It is possible to see that the DES variants
are definitely suboptimal, and provide no favourable solution.
On the other hand, the Serpent cipher provides optimal
solutions when code size is not an issue, whereas Camellia
proves better when code size must be kept low – often a
significant issue in embedded systems.
Despite being the world-wide standard, the AES
implementations provide optimal solutions only where
protection against SCA is a very limited issue (i.e. for
computational efforts in the range of 220–232, which are
considered practically unsafe being below at least 80 bits of
protection). It is interesting to note that the Serpent
implementation considered turns out to be both faster and
more compact in terms of code size with respect to the AES
counterpart, despite being slower when SCA
countermeasures are not considered.

4.2 Run-time adaptivity

While in traditional platform-based design the parameters of
the system are set at design time, the increasing complexity of
embedded systems makes it valuable to preserve flexibility
after the design and deployment phases. To this end,
adaptability to operating conditions can be added to a system
by allowing it to change its behaviour among a set
of configurations (‘operating points’) at run-time, through the
use of a Run-time Resource Manager [18, 28].

Fig. 1 Solution space for the design problem on the

a ARM-926 and
b ARM Cortex-A9 platforms
Attacker effort is expressed in bit, as the attacker should be able to perform at least 2bit computations to breach the system
Colours denote the code size of the output code segment in kiB

the Pogoplug NAS. The former, is based on a dual core
Cortex-A9MPCore clocked at 1.2 GHz, 1 MiB L2 cache and
1 GiB DDR2 RAM, running Linaro 12.09 Linux distribution
(armv7l target), while the latter is based on an ARM
926EJS core (armv5te target), clocked at 1.2 GHz, with
256 MiB DDR RAM running Arch Linux 3.16.1.

4.1 Characterisation of the design space

Fig. 1 reports the set of feasible solutions for the considered
design space for both target platforms. The three
optimisation goals (throughput, attacker effort and code
size) are depicted for each solution, together with the cipher
selection parameter. The attacker effort computation has
been made employing the lower bound formula reported in
Section 3.2. We chose l to be 2.5 × ‘the number of samples
picked by the attack’ (which is the ‘masking order’ plus
one), to take into account a safety margin over sampling the
side channel signal exactly at the bound required by the
Shannon’s theorem (which would mandate sampling at least
twice as fast as the chip clock frequency). Considering a
hiding countermeasure providing a time window made of
ten dummy instructions, and a first-order masking (m + 1 =
2), we obtain l = ⌈2.5(10 + 2)⌉ = 30 taking into account
the side channel sampling. Similarly, taking into account
a second-order masking strategy, m + 1 = 3 results in l =
⌈2.5(10 + 3)⌉ = 33.
For all the ciphers, an increase in the attacker effort is

characterised by a decrease of the throughput, because of the
higher computational overhead introduced by the application
of the share splitting countermeasure to a larger number of
instructions. In particular, we note that the significant
throughput reduction which characterises the 20–48 bit
attacker effort interval is due to the fact that the
Ishai-Sahai-Wagner (ISW) masking countermeasure needs to
be applied to a significant amount of non-linear operations
(i.e. the ones different from xor) at each iteration of the
block cipher round. This, in turn, results in a significant cost,
as the Boolean and and or operations are the most
expensive, given the countermeasure in use. The increase in
the code size because of the larger amount of instructions is
also evident for both platforms.

Fig. 2 Pareto-optimal solutions for the design problem on the

a ARM-926 and
b ARM Cortex-A9 platforms
Attacker effort b is expressed in bit, as the attacker should be able to perform at least 2b computations to breach the system
Colours denote the code size of the output code in kiB

Fig. 4 Required amount of random masks per ciphertext output

byte, considering a first-order masking

Fig. 3 Operating points for ARM-926, armv5te architecture
a Standard ISA and
b Cortex-A9 armv7 architecture, Thumb2 ISAE

As it is commonplace for cryptographic protocols to allow
the choice of different block ciphers for their operation, most
security libraries have already integrate multiple ciphers. An
adaptive application which performs communication with
symmetric key encryption can leverage this support for
negotiating the use of a cipher that fits its current
requirements. For example, critical information may be
transmitted using a cipher implementation warranting a high
attacker effort, whereas in a high-load condition, less
sensitive information might be protected with a faster, albeit
less secure, one. To take advantage of this opportunity, it is
possible to extract from the design space a set of appropriate
operating points. Considering the Pareto-optimal solutions in
Fig. 2, we show in Fig. 3 the set of operating points that a
designer, supported by a DSE tool, would choose. The
solutions worthy of being actually deployed on the platform
should include: (i) points with highest throughput and a
minimum attacker effort of 80 bits; (ii) points with the

has very low RNG requirements up to 64 bits, as the key
material is added to the plaintext after a thorough mixing,
achieving a steep rise in the security margin with a very low
amount of protected instructions. The DES family has
considerable RNG throughput requirements as it is
characterised by a large number of instructions, because of the
large number of bitwise operations involved in its computation.
The steep increase for the 3DES2 and 3DES3 is justified by
the fact that increasing the security margin above 56 bits
implies protecting two full DES executions (the first and the
last), considerably raising the amount of masked instructions.
To provide practical grounding, Table 1 compares the actual

throughput obtained from protected ciphers on the case study
platforms against the one achievable with the speedup
obtained through either removing the RNG overhead or
removing the bottleneck caused by the CPU computation
capabilities. The first value is computed through actually
running the implementations with a constant value instead of
invoking the RNG, while the second one is derived from the
RNG requirements in Fig. 4 and considering the throughput of
the RNG running alone on the platform. The results show that
the only cipher which performances are limited by the RNG
on both platforms throughput is Serpent, while AES and
Camellia would benefit from a more performing CPU. The
DES family is characterised by being roughly equally limited
by both the CPU performances and the RNG throughput: this
results in being slightly bound by the RNG speed on the faster
platform, while being capped by the CPU on the slower one.

5 Concluding remarks

We extended the system design space with security related
metrics and parameters of software implementations against
SCAs. We have shown that favourable trade-offs can be
selected depending on the desired security margin,
throughput and code size providing viable working points,
which may also be used for runtime adaptivity purposes.

6 References

1 Ravi, S., Kocher, P.C., Lee, R.B., et al.: ‘Security as a new dimension in
embedded system design’. Proc. Design’ Automation Conf. 2004, San
Diego, CA, USA, June 7–11 2004, pp. 753–760

Platform Attacker
effort

AES DES family Serpent Camellia

128 192 256 DES-X 3DES2 3DES3

Cortex-A9 80-bit throughput, kiB/s 92.43 95.30 95.55 310.99 36.83 35.61 654.20 617.74
speedup w/o the RNG bound 1.40× 1.32× 1.30× 1.69× 1.88× 1.88× 4.23× 1.24×
speedup w/o computation

bounds
12.44× 15.40× 15.36× 1.58× 1.76× 1.77× 1.06× 4.22×

128-bit throughput, kiB/s 83.80 83.98 83.81 248.04 34.89 34.01 479.92 301.80
speedup w/o the RNG bound 1.44× 1.43× 1.41× 2.06× 1.89× 1.87× 4.23× 1.39×
speedup w/o computation

bounds
11.96× 11.94× 11.96× 1.56× 1.76× 1.76× 1.06× 2.90×

ARM-926 80-bit throughput, kiB/s 61.20 64.02 63.30 163.03 18.12 17.59 348.02 384.10
speedup w/o the RNG bound 1.39× 1.30× 1.30× 1.78× 1.58× 1.58× 3.04× 1.24×
speedup w/o computation

bounds
11.57× 14.12× 14.28× 1.86× 2.20× 2.21× 1.23× 4.18×

128-bit throughput, kiB/s 55.66 55.44 54.81 125.01 17.19 16.70 253.41 186.22
speedup w/o the RNG bound 1.42× 1.41× 1.41× 1.76× 1.59× 1.57× 2.96× 1.39×
speedup w/o computation

bounds
11.09× 11.14× 11.26× 1.90× 2.20× 2.21× 1.24× 2.89×

Greyed out cells point to the factor being the most limiting to the implementation performances between the computational efficiency
of the platform and the RNG speed.

Table 1 Impact of the RNG throughput on the protected cipher implementation performance

highest absolute throughput; (iii) points with the highest
attacker effort; (iv) and points corresponding to a total code
size not exceeding 64 kiB (about 10× the size of the smallest
Pareto-optimal solution). Performing a k-means clustering,
we took one representative point per cluster fitting
requirements (i)–(iii), and we bounded the number of clusters
taking into account the fourth constraint, thus obtaining four
clusters. Fig. 3 depicts the extracted operating points: the
results show that it is possible for the designer to instrument
only the Camellia and Serpent out of the eight examined
ciphers, and pick the operating point according to the
throughput and security margin required by the operating
conditions. In particular, we note that the operating points
selected for the Serpent cipher provide a moderate and very
high protection while retaining an acceptable code size (17
and 21 kiB, respectively). The low protection point provided
by the Camellia cipher may be useful to obtain a significant
throughput improvement (roughly 10 × w.r.t. the other
operating points) while retaining a minimal protection
against casual attacker. The 80-bit operating point provided
by Camellia represent a particularly interesting solution, as
the cipher retains a small code size (8 kiB), while providing
a very sound security margin and reasonable throughput.

4.3 Performance impact of random number
generation

Since masking countermeasures require a significant amount of
random data to pad the computations, it is useful to analyse
this requirement, as an adequate RNG, either a hardware
TRNG or a proper secure PRNG should be included in the
platform. We note that the PRNG requirements are a function
of the chosen security margin, masking order and cipher, with
the masking order acting as a plain multiplicative factor on the
throughput requirements. In the following, we will present the
results on the requirement imposed on the RNG, considering
the Pandaboard platform (Cortex-A9) employed in our
previous experiments. Fig. 4 reports the amount of random
bytes needed to compute a cipher byte for all the ciphers of
our exploration, in logarithmic scale, considering a first-order
masking. AES and Serpent are characterised by a linear
dependence of the requirement from the security margin
because of the regular structure of the cipher round. Camellia

2 Ravi, S., Raghunathan, A., Kocher, P.C., et al.: ‘Security in embedded

systems: design challenges’, ACM Trans. Embed. Comput. Syst., 2004,

3, (3), pp. 461–491

3 Guo, X., Fan, J., Schaumont, P., Verbauwhede, I.: ‘Programmable and

parallel ECC coprocessor architecture: tradeoffs between area, speed

and security’, in Clavier, C., Gaj, K. (Eds.): ‘Cryptographic hardware

and embedded systems, CHES 2009’ (Springer, 2009), pp. 289–303

4 Narayanan, S.H.K., Kandemir, M.T., Brooks, R.R.: ‘Performance aware

secure code partitioning’. Proc. Design Automation and Test in Europe

2007, Nice, France, 16–20 April 2007, pp. 1122–1127

5 Tiri, K., Verbauwhede, I.: ‘A VLSI design flow for secure side-channel

attack resistant ICs’. Proc. Design Automation and Test in Europe 2005,

Munich, Germany, 7–11 March 2005, pp. 58–63

6 Boit, C., Helfmeier, C., Kerst, U.: ‘Security risks posed by modern IC

debug & diagnosis tools’. Proc. 2013 Workshop on Fault Diagnosis

and Tolerance in Cryptography 2013, Los Alamitos, CA, USA,

20 August 2013, pp. 3–11

7 Mangard, S., Oswald, E., Popp, T.: ‘Power analysis attacks-revealing the

secrets of smart cards’ (Springer, 2007)

8 Agosta, G., Barenghi, A., Pelosi, G.: ‘A code morphing methodology to

automate power analysis countermeasures’. Proc. Design Automation

Conf. 2012, San Francisco, CA, USA, 3–7 June 2012, pp. 77–82

9 Agosta, G., Barenghi, A., Pelosi, G., Scandale, M.: ‘A multiple

equivalent execution trace approach to secure cryptographic embedded

software’. Proc. Design Automation Conf. 2014, San Francisco, CA,

USA, 1–5 June 2014, pp. 1–6

10 Coron, J.-S., Kizhvatov, I.: ‘Analysis and improvement of the random

delay countermeasure of CHES 2009’, in Mangard, S., Standaert,

F.-X. (Eds.): ‘Cryptographic hardware and embedded systems, CHES

2010’ (Springer, 2010), pp. 95–109

11 Ishai, Y., Sahai, A., Wagner, D.: ‘Private circuits: securing hardware

against probing attacks’, in Boneh, D. (Ed.): ‘Advances in cryptology –

CRYPTO 2003’ (Springer, 2003), pp. 463–481

12 Tillich, S., Herbst, C.: ‘Attacking state-of-the-art software

countermeasures-a case study for AES’, in Oswald, E., Rohatgi, P.

(Eds.): ‘Cryptographic hardware and embedded systems, CHES 2008’

(Springer, 2008), pp. 228–243

13 Bayrak, A.G., Regazzoni, F., Brisk, P., et al.: ‘A ‘First step towards

automatic application of power analysis countermeasures’. Proc.

Design Automation Conf. 2011, San Diego, California, USA, 5–10

June 2011, pp. 230–235

14 Agosta, G., Barenghi, A., Maggi, M., Pelosi, G.: ‘Compiler-based Side

channel vulnerability analysis and optimized countermeasures

application’. Proc. Design Automation Conf. 2013, Austin, TX, USA,

29 May–7 June 2013, pp. 81:1–81:6

15 Keutzer, K., Newton, A., Rabaey, J., et al.: ‘System-level design:
orthogonalization of concerns and platform-based design’, IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., 2000, 12, (19),
pp. 1523–1543

16 Barenghi, A., Pelosi, G.: ‘On the security of partially masked software
implementations’. Proc. 11th Int. Conf. on Security and Cryptography,
Vienna, Austria, 28–30 August 2014, pp. 138:1–138:8

17 Schramm, K., Paar, C.: ‘Higher order masking of the AES’. Topics in
Cryptology – CT-RSA 2006, The Cryptographers’ Track at the RSA
Conf. 2006, 2006, pp. 208–225

18 Mariani, G., Avasare, P., Vanmeerbeeck, G., et al.: ‘An industrial design
space exploration framework for supporting run-time resource
management on multi-core systems’. Proc. Design Automation and
Test in Europe 2010, Dresden, Germany, 8–12 March 2010,
pp. 196–201

19 Palesi, M., Givargis, T.: ‘Multi-objective design space exploration using
genetic algorithms’. Proc. Tenth Int. Symp. on Hardware/Software
Codesign, CODES 2002, Estes Park, CO, USA, 6–8 May 2002,
pp. 67–72

20 Calborean, H., Jahr, R., Ungerer, T., et al.: ‘A comparison of
multi-objective algorithms for the automatic design space exploration
of a superscalar system’, in Dumitrache, L. (Ed.): ‘Advances in
intelligent systems and computing’ (Springer Berlin Heidelberg,
2013), pp. 489–502

21 Silvano, C., Fornaciari, W., Palermo, G., et al.: ‘MULTICUBE:
multi-objective design space exploration of multi-core architectures’.
Proc. 2010 IEEE Computer Society Annual Symp. on VLSI
(ISVLSI), Lixouri, Kefalonia, 5–7 July 2010, pp. 488–493

22 Moss, A., Oswald, E., Page, D., et al.: ‘Compiler assisted masking’, in
Prouff, E., Schaumont, P. (Eds.): ‘Cryptographic hardware and
embedded systems, CHES 2012’ (Springer, 2012), pp. 58–75

23 Daemen, J., Rijmen, V.: ‘The design of Rijndael: AES-the advanced
encryption standard’ (Springer, 2002)

24 Aoki, K., Ichikawa, T., Kanda, M., et al.: ‘Specification of Camellia-A
128-Bit Block Cipher’. https://www.info.isl.ntt.co.jp/crypt/eng/
camellia/dl/01espec.pdf, accessed September 2014

25 NIST: ‘FIPS-46-3: Data Encryption Standard (DES)’, http://www.itl.nist.
gov/fipspubs/, accessed September 2014

26 Anderson, R.J., Biham, E., Knudsen, L.R.: ‘The case for serpent’. Proc.
AES Candidate Conf., New York, USA, 13–14 April 2000, pp. 349–354 27

Koch, W.: ‘FSF: Libgcrypt’, http://www.directory.fsf.org/wiki/
Libgcrypt, accessed September 2014

28 Ykman-Couvreur, C., Avasare, P., Mariani, G., et al.: ‘Linking run-time
resource management of embedded multi-core platforms with automated
design-time exploration’, IET Comput. Digital Techn., 2011, 2, (5),
pp. 123–135

