
IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 100

Design space pruning through early estimations of
area / delay trade-offs for FPGA implementations

Sebastien Bilavarn, Guy Gogniat, Jean-Luc Philippe and Lilian Bossuet

Abstract

Early performance feedback and design space exploration of complete FPGA designs are still time consuming tasks. We propose an
original methodology based on estimations to reduce the impact on design time. We promote a hierarchical exploration to mitigate the
complexity of the exploration process. Therefore this work takes place before any design step, such as compilation or behavioral synthesis,
where the specification is still provided as a C program. The goal is to provide early area and delay evaluations of many RTL implementations
to prune the design space. Two main steps compose the flow: (1) a structural exploration step defines several RTL implementations, and
(2) a physical mapping estimation step computes the mapping characteristics of these onto a given FPGA device. For the structural
exploration, a simple yet realistic RTL model reduces the complexity and permits a fast definition of solutions. At this stage, we focus on the
computation parallelism and memory bandwidth. Advanced optimizations using for instance loop tiling, scalar replacement or data layout
are not considered. For the physical estimations, an analytical approach is used to provide fast and accurate area / delay trade-offs. We do
not consider the impact of routing on critical paths or other optimizations. The reduction of the complexity allows the evaluation of key
design alternatives, namely target device and parallelism that can also include the effect of resource allocation, bitwidth or clock period. Due
to this, a designer can quickly identify a reliable subset of solutions for which further refinement can be applied to enhance the relevance of
the final architecture and reach a better use of FPGA resources, i.e. an optimal level of performance. Experiments performed with Xilinx
(VirtexE) and Altera (Apex20K) FPGAs for a 2D Discrete Wavelet Transform and a G722 speech coder lead to an average error of 10% for
temporal values and 18% for area estimations.

Keywords

Design Space Exploration, area and delay estimation, C specification, H/CDFG representation, graph scheduling, architectural synthesis,
technology projection, FPGA device.

I. Introduction

THE continuous increase in the complexity of applications and architectures leads to prohibitively long design cycles.
Usually, designers perform hardware exploration through several iterations of a synthesis flow to reach a good

constraint compliant solution. As a result, exploring solutions able to match the parallelism potential of the application
with the architecture is an uncertain and time consuming process often left to designer experience. To address such
an issue, we present an automated exploration approach applicable from system specifications given in the form of a
C program. FPGAs are considered for implementation because of their ability to cope with future design perspectives
[1][2] and to exploit vast amounts of parallelism within new generations of high performance computing and reactive
applications (adaptive video streaming, software radio, . . .)[3][4].

Basically, the approach computes early area and delay values of RTL designs at a glance. So it is important to
know what are its limits and the impact on the exploration space we analyze. There is obviously a trade-off between the
exploration space coverage and the relevance of the architectural solutions, especially because of the abstraction level gap
between a behavioral specification at the input and the FPGA layout characteristics at the output. The key point here
has been to reduce complexity enough in order to allow fast exploration of a large space. For that, we defined a two-step
process: (1) structural exploration performs automatic definition of several RTL solutions, and (2) physical mapping
estimation computes the corresponding FPGA layout characteristics in the form of area / performance trade-offs.

The structural step considers a realistic architectural model including datapath, control and memory units. It focuses
on the exploration of the parallelism potential (memory bandwidth and computation) but advanced optimizations such
as loop tiling, scalar replacement, data layout, data reusing, memory sharing and memory pipelining are not considered.
Also, a simplified execution model for loop unrolling and folding is used in the current state of the tool. Concerning
the physical step, the analytical estimation of the mapping results is based on area and delay predictions. Advanced
considerations at the logic level such as the impact of routing on critical path (that is on clock period) or others are
not analyzed. In other words, we do not take into account all the possible optimization models in the exploration, we
restrict its scope from the reliable parameters we can consider at a system level. The motivation is to prune the design
space to point out a set of promising solutions for further refinement. We believe such a pragmatic approach permits
mitigating the complexity of exploring the design space. Finally, the dependence of the estimations on a target device
and low level synthesis tools is thus reported on the physical step, and simplified through the use of libraries. This
way, application to several FPGA families (including recent devices) has been made possible. This approach has been
integrated in a CAD framework for the codesign of heterogeneous SoCs called Design Trotter.

S. Bilavarn is with the Signal Processing Institute School of Engineering, Swiss Federal Institute of Technology, CH 1015 Lausanne
Switzerland (email:sebastien.bilavarn@epfl.ch).

G. Gogniat, J.L. Philippe and L. Bossuet are with the Laboratory of Electronic and REal Time Systems (LESTER), University of South
Britanny (UBS), Lorient, France (email: guy.gogniat@univ-ubs.fr; jean-luc.philippe@univ-ubs.fr; lilian.bossuet@univ-ubs.fr).

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 101

Authors Estimator Input Estimator Outputs Design Space exploration Architecture Model FPGA Model Complexity Accuracy

Xu and Kurdahi Netlist Area, Delay No Datapath, Control logic XC4000, LUT O(n) ±10%
1996 Tool Partitioning + analytical Operator, Register Interconnections O(n2log(n))

[10][11] optimization Min-cut

Enzler et al. DFG Area, Delay Yes, direct Datapath XC4000E, LUT O(n) ±20%
2000 Pipelining Operator, Register
[8] Replication

Decomposition
Analytical

Nayak et al. MATLAB Area, Delay Yes, iterative compilation Datapath, Control logic XC4010, LUT O(n2) ±15%
2002 to RTL VHDL Tool Loop unrolling, pipelining Operator, Register Interconnections FDS
[7] optimization Scheduling + analytical Left-edge

Bjureus et al. MATLAB Area, Delay Yes, iterative Datapath ? O(n) ±10%
2002 to DFG Stream data rate Operator, Register
[12] Device clock speed

Trace + analytical

Kulkarni et al. SA-C Area Yes, iterative compilation Datapath XCV1000, LUT O(n) ±5%
2002 to DFG Tool Parallelization Operator, Register
[3] optimization Loop unrolling

Analytical

So et al. C Area, Delay Yes, iterative compilation Datapath, Memory bandwidth XCV1000, LUT O(n) ±20%
2003 to DFG Parallelization Operator, Register
[4][15] (loop body) Loop unrolling

Memory bandwidth
Analytical

Authors C Area, Delay Yes, direct Datapath, Control logic XCV400, EP20K200 O(n) ±20%
This paper to HCDFG Parallelization Operator LUT, BRAM

Loop Unrolling Memory bandwidth DSP blocks
Memory bandwidth
Scheduling + analytical

TABLE I

Most relevant estimator tools dedicated to FPGAs

The remainder of the paper is organized as follows: Section II reviews some prior contributions in the fields of design
space exploration and area / delay estimators for FPGAs. Section III focuses on the exploration and estimation flow.
This section provides the necessary information to understand the detailed description of the flow reported in sections
IV and V. Section IV exposes the structural exploration principles whereas section V presents the physical estimations.
Section VI illustrates the approach on several examples to stress the benefits of providing such system level estimations
to a designer and the ability to enhance design space exploration compared to classical iterative methods. Section VII
presents future work and concludes the paper.

II. Related Work

The Design Space Exploration (DSE) problem related to FPGA implementation is the task of exploring different
RTL architectures, where the FPGA architecture is set and different implementation possibilities of an application
are analyzed: computation parallelism, pipelining, replication, resource binding, clock value, . . . Such an exploration is
motivated by vast amounts of resources available within an FPGA that can speedup the execution of the algorithm
until several orders of magnitude. Three types of exploration approaches can be considered: (1) synthesis [5][6]; (2)
compilation [3][4][7]; and (3) estimation [8]. The third approach (namely estimate and compare) relies on estimations
to perform DSE. In that case the synthesis or compilation steps are replaced by low complexity estimators. Once
estimations are completed, each RTL architecture is characterized by an area and delay doublet corresponding to the
system characteristics when the application is mapped onto the FPGA. As for the second approach, synthesis steps are
still required to actually design the final RTL architecture. In the following section, a detailed presentation of some
major contributions in the fields of DSE and area / delay estimators for FPGAs is presented. Table I summarizes their
main characteristics.

A. DSE and area / delay estimators for FPGAs

A first technique proposed in [9] by Miller and Owyang is based on a library of benchmarks. A set of circuits
is implemented and characterized for several FPGAs. Area and delay estimation is performed by partitioning the
application into several circuits, that are then substituted by the most similar benchmark. The drawback of this is
related to the difficult task of maintaining the library for different devices and applications. Another methodology
described in [10][11] by Xu and Kurdahi computes area and delay values from an estimation of the mapping and place
& route steps. Starting from a logic level description, they first build a netlist which is then used to compute the actual
performance of the system. During the estimation task, wiring effects and logic optimizations are considered to obtain
more accurate results. However, this method does not address the DSE problem and is very technological dependent

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 102

since it is dedicated to the XC4000 family (CLB-based architecture).
The method defined by Enzler et al. [8] performs an estimation from higher abstraction levels (Data Flow Graph,

namely DFG). Area and delay are estimated using a combination of both an algorithm characterization (e.g. number of
operations, parallelism degree) and an FPGA mapping model (based on operation characteristics in terms of area and
delay). The DSE is performed by analyzing the improvements when using pipelining, replication and decomposition
of the DFG specification. Their estimator targets a XC4000E device (CLB-based architecture) and uses an analytical
approach. Extension to other architectures is not obvious and may need further developments. Their approach is
interesting but the limitation to DFG specifications does not allow considering the control and multidimensional data
overhead.

The five next methods are based on the compilation of high level specifications and target loop transformations (except
[12]). Nayak et al. [7] propose an estimation technique dealing with a MATLAB specification. Their method computes
area and delay estimates for a XC4010 device through a two-step approach: first they use the MATCH compiler [13] to
perform the DSE (e.g. code parallelization, loop unrolling) and generate a RTL code in VHDL. Then, estimators are
used to compute area and delay: area estimation is processed through scheduling and register allocation (to define the
number and the type of operators), delay estimation is based on IP characterization and considers the interconnection
cost overhead. They also consider some synthesis optimizations (through a multiplicative factor) to obtain more accurate
results. Another interesting feature of their approach is to take into account the datapath and control logic in the RTL
implementation model. The main limitations are due to the memory unit left unconsidered and control implementation
using CLBs, whereas recent FPGAs permit efficient integration of product terms and ROMs using dedicated resources
(e.g. Apex Embedded System Blocks [14]).

Bjureus et al. [12] propose a simulation-based approach that computes area and delay from MATLAB specifications.
During the simulation of the MATLAB code, a trace is generated to build an acyclic DFG that contains all the operations
needed to execute the algorithm. Note that all loops are unfolded to build this DFG. Scheduling and binding are then
applied using greedy algorithms. The FPGA architecture is represented through a performance model that is used to
compute area and delay estimations. Each resource is modeled with a function that maps an operation to an area and
delay tuple. DSE is iteratively processed and considers several design alternatives like the number of input channels,
the bitwidth of the input stream, the device clock speed or the device area. Their approach is interesting but limited
by the dataflow representation: it is dedicated to applications dealing with scalar variables since they do not consider
memory and control units. In [12] the authors do not provide which CLB-based architecture has been used to build
their performance model.

Kulkarni et al. [3] propose an iterative compilation-based method starting from an SA-C specification. Their approach
expects the compiler to apply extensive transformations to achieve a code that exploits more efficiently the available
parallelism. For each transformation, a DFG is generated to derive the impact on area. Their estimator is based on
the mapping of the DFG nodes onto the FPGA architecture where each node is represented through an approximation
formula. The method also takes into account some synthesis optimizations to enhance accuracy (e.g. shift operations
instead of multiplication by a power of 2), but it is restricted to loop bodies and does not consider the memory and
control overhead. Moreover like in [8], the estimation of area is restricted to one kind of FPGA resource (Configurable
Logic Cells in [8] or number of Look Up Tables in [3]) and does not allow considering dedicated high performance
resources like embedded operators and memories.

So et al. [4] also propose a compiler-based approach starting from a C specification. However, compared to [7] and [3]
they introduce a key parameter that impacts greatly the DSE problem: memory bandwidth. Their approach is based on
the DEFACTO compiler [15] that can successfully identify multiple accesses to the same array location across iterations
of multi-dimensional loop nests. This analysis is used to identify opportunities for exploiting parallelism, eliminating
unnecessary memory accesses and optimizing the mapping of data to external memories. Thus, their approach deals
with advanced optimizations and provides behavioral VHDL codes for each transformation. Area and delay estimation
is based on the synthesis results of a HLS tools. The simplified performance model of the FPGA results in an estimation
accuracy that depends on the complexity of the loop body.

Finally, Shayee et al. [16] propose a very accurate area and delay modeling approach using analytical and empirical
techniques. Their method targets loop nests described as a C specification and evaluates the impact of multiple loop
transformations on the datapath and memory interface resources. DSE is iterative and estimations include datapath,
memory and control costs.

To summarize previous efforts, the following analysis can be done (Table I). Most studies deal with loop nests and
derive a DFG to compute area and delay estimations. Most of them apply iterative DSE. Some studies consider design
optimizations to enhance accuracy but they mainly rely on a corrective factor. Datapath estimation is always targeted
and memory and / or control units are only considered in a few studies. Finally, most efforts consider a single RTL
architecture except [7][8][16] that propose several implementation models (e.g. pipelining, replication). Concerning this
point, Choi et al. [17] propose an interesting contribution based on the definition of efficient performance models for
specific application domains. Due to this, they are able to analyze a large design space and to take into account the

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 103

High Level Language

Set of explored solutions
Each solution is fully

characterized and matches
the constraints

RTL Architecture
Model

Parser C to HCDFG

Structural
Estimation

Physical
Estimation

HCDFG
FPGA Architecture
and Performance

Model
RTL Design Space

Exploration

FPGA Estimation

Set of explored solutions
Each solution is

characterized at the RTL
level

C code
RTL Architecture
Characterization

Number
of RTL resources

Number
of clock cycles

RTL Architecture
mapped onto the FPGA

Characterization

Number
of FPGA resources

Delay

opk

op1

ram_rd

ram_wr

rom

1

Ncmin Ncmax

Nop1,max

Nopk,max

Nc

Nopk(Nc)

Tmin Tmax

Amin

Amax

A(T)

T

High Level Language

Set of explored solutions
Each solution is fully

characterized and matches
the constraints

RTL Architecture
Model

Parser C to HCDFG

Structural
Estimation

Physical
Estimation

HCDFG
FPGA Architecture
and Performance

Model
RTL Design Space

Exploration

FPGA Estimation

Set of explored solutions
Each solution is

characterized at the RTL
level

C code
RTL Architecture
Characterization

Number
of RTL resources

Number
of clock cycles

RTL Architecture
mapped onto the FPGA

Characterization

Number
of FPGA resources

Delay

opk

op1

ram_rd

ram_wr

rom

1

Ncmin Ncmax

Nop1,max

Nopk,max

Nc

Nopk(Nc)

Tmin Tmax

Amin

Amax

A(T)

T

Fig. 1. Exploration / Estimation Flow: a two-step approach composed of 1) the structural definition of several solutions (i.e. at the RTL
Level) and 2) the estimation of the physical characteristics of each solution (i.e. FPGA use rate vs. algorithm execution time).

important features of the applications. The main limitation is related to the difficult task of defining the performance
model which requires expertise of the application domain.

B. Discussion

The work presented in the paper differs from these efforts in several respects. First, we target a more global exploration
as we do not restrict our input specification to basic blocks or loop nests. We consider applications including control
structures, arrays and computations (due to the use of the H/CDFG as will be described in the paper). We target a
single FPGA-based system, that is datapath, memory and control units are all implemented within the FPGA which
differs from [4][16] who consider external memories and from other works as they do not consider any memories. We
perform an exploration for a RTL architecture model composed of a control unit, a memory unit and a datapath
(up to our knowledge, no current work consider such a complete characterization). Our automatic DSE methodology
exhibits the memory and computation parallelism potential, this point is original since most efforts only consider the
computation parallelism potential and perform iterative DSE (except [4][16]). However, as we aim to prune the design
space using low complexity estimators, the RTL architecture does not capture all of the optimizations which can be
considered as a limitation. Compared to [3][4][7][16] our RTL architecture model is simpler (but obviously realistic)
since we do not consider loop tiling [16], scalar replacement [4][16], data layout [4][7][16], data reusing [4][16], memory
sharing [4][16] and memory pipelining [16]. Furthermore, we only deal with a simplified model of loop unrolling and
folding. However, the simplicity of our model corresponds to a trade-off to achieve a low complexity exploration: our
approach requires only a few minutes to prune the design space for a complete application which enables designers to
focus on the highlighted subset of the design space using for example some of the efforts presented above. Concerning
the area and delay performance model, we take into account both dedicated resources (embedded memory, DSP block)
and LUT. However, compared to [3][7] we do not take into account routing impact on critical path, that is on clock
period and logic optimizations. Furthermore like most efforts, we need to maintain a library of operators for each new
FPGA which can be considered as a limitation unless it is a first step toward tool and technology independence.

In conclusion, the main contribution of our approach compared to previous efforts consists of dealing with both a
complete application, a complete RTL architecture model (even if relatively simple), and a complete FPGA model. We
perform an automatic DSE of main design parameters to highlight most promising subsets of the design space which
then have to be refined to actually implement the final solution.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 104

III. Exploration & Estimation Flow

In this section we present a general overview of the exploration approach. It is based on two main steps: (1) Structural
Exploration and (2) Physical Mapping Estimation [18][19]. The first step performs an exploration at the RTL level that
leads to highlight several architectures and characterize them in terms of execution resources and execution cycles. To
provide a reliable characterization, Processing, Control and Memory units are considered and modeled through the
following parameters:
• For the processing unit (datapath):
– number and type of each operator;
– bitwidth of each operator;
– number of registers;
• For the control unit:
– number of control states;
– number of control signals;
• For the memory unit:
– total memory size;
– number of simultaneous reads from the RAMs;
– number of simultaneous writes to the RAMs;
– number of simultaneous reads from the ROMs;
The goal of this is to provide the main characteristics of several RTL architectures in order to point a relevant subset

of the design space; we do not actually build the RTL architectures but instead we define their main characteristics
based on the RTL model presented in Section III-B. The upper right corner of Fig. 1 provides the 2D chart used for
a convenient exhibition of the results: each solution corresponds to a number of execution cycles Nc on the horizontal
axis and the previously described parameters on the vertical axis.

The second step is called ”physical mapping estimation”; it computes the expected physical values of area and delay
corresponding to the previous RTL solutions mapped onto an FPGA. Device characteristics such as operator / memory
area and delay are used to compute accurate estimations of:
• the execution time;
• the number of required FPGA resources, including specific resources like dedicated operators / embedded memories;
• the corresponding FPGA use rate;
FPGA resources considered are logic cells (e.g. slices, logic elements), dedicated cells (e.g. embedded memories, DSP
operators), I/O pads and tristate buffers. The results are gathered in a 2D chart illustrated in the lower right corner of
Fig. 1. Each solution corresponds to an execution time value (on the horizontal axis) and is characterized by the number
of FPGA resources of each type used (on the vertical axis). At the end of the DSE process, several implementation
alternatives are thus provided and characterized through area vs. delay trade-offs.

Additional information concerning the inputs of the methodology is introduced now. First, we describe the interme-
diate representation model (H/CDFG), then the underlying implementation model is detailed.

A. From C to the H/CDFG model

The input specification is given in a subset of the C language. The use of a high level software language for the
purpose of hardware implementation imposes some restrictions: only a basic subset of the C language is used namely
for the specification of control structures (conditional / iterative structures), basic data types, arrays, function calls.
Complex constructs like pointers / records / dynamic memory size allocation are not accepted.

The C code is automatically parsed into a Hierarchical Control and Data Flow Graph (H/CDFG) that has been
specifically defined for our exploration & estimation purpose [20][21]. This model is composed of three types of elementary
(i.e. non hierarchical) nodes: processing, memory and conditional nodes. A processing node represents an arithmetic
or logic operation. A memory node is a data access and a conditional node, a test / branch operation (e.g. if, case,
loops). A Data Flow Graph (DFG) is a basic block, it contains only elementary memory and processing nodes. Namely
it represents a sequence of non conditional instructions in the source code. For example the graph on the right of Fig.
2 is a DFG. A CDFG represents conditional or loop structures with their associated DFGs. The graph in the center of
Fig. 2 is a CDFG. Finally, a H/CDFG is a composite graph that can include other H/CDFGs and / or CDFGs. It is
used to encapsulate the entire application hierarchy, i.e. the nesting of control structures and graphs executed according
to sequential or parallel patterns. The graph on the left of Fig. 2 is a H/CDFG.

A key point is the notion of I/O, local and global data. The parser automatically does a distinction between several
types of memory nodes:
• ηG

I/O: global I/O which is an I/O data of the entire H/CDFG (whole application)
• ηL

I/O: local I/O which is an I/O data of a given subgraph. This data crosses the hierarchical levels of the H/CDFG
representation.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 105

• ηL
data: local data used to store internal processing results (temporary data within a DFG).

• ηconstant: constant data.

data1#0

HCDFG1#0

data2#0

data1#1

HCDFG2#0

data3#0arrayA#0

HCDFG1FOR#0

data4#1arrayB#0

HCDFG6#0HCDFG3#0

HCDFG4#0

HCDFG5#0

arrayB#1 arrayC#0

arrayB#2

arrayC#1

arrayA#0

DFGFOR1#0

data3#0

data4#1

i#0

DFGEVOL1#0

i#1

i#0

DFGEVAL1#0

V#0

BeginFOR#0

EndFOR#0

arrayA#0 data3#0

data5#0

+

data4#0

data4#1

××××

DFGINDA#0

ind#0

H/CDFG

Memory
Node

(array)

Processing
Nodes

DFG
CDFG

Memory
Node

(index of an array)

DFG evolutionDFG evaluation DFG index graph

data4#0

data4#0

Local data

Global I/O

Local I/O

data1#0

HCDFG1#0

data2#0

data1#1

HCDFG2#0

data3#0arrayA#0

HCDFG1FOR#0

data4#1arrayB#0

HCDFG6#0HCDFG3#0

HCDFG4#0

HCDFG5#0

arrayB#1 arrayC#0

arrayB#2

arrayC#1

arrayA#0

DFGFOR1#0

data3#0

data4#1

i#0

DFGEVOL1#0

i#1

i#0

DFGEVAL1#0

V#0

BeginFOR#0

EndFOR#0

arrayA#0 data3#0

data5#0

+

data4#0

data4#1

××××

DFGINDA#0

ind#0

H/CDFG

Memory
Node

(array)

Processing
Nodes

DFG
CDFG

Memory
Node

(index of an array)

DFG evolutionDFG evaluation DFG index graph

data4#0

data4#0

Local data

Global I/O

Local I/O

Fig. 2. Elements of a H/CDFG

The creation rules of a H/CDFG from a C code are based on a depth-first search algorithm [22]. A H/CDFG is created
each time a conditional instruction (control or loop) is found in the original C code. When no conditional instructions
remain in the current hierarchy level, a DFG is built.

B. RTL Architecture Model

As pointed out before, Processing, Control and Memory units have been considered to provide more realistic evalua-
tions. Regarding this, some architectural assumptions have been made. We expose those choices that have been mainly
defined to cope with FPGA specificities:
• The processing unit is composed of registers, operators and multiplexers. A general bus-based architecture has been
preferred compared to a general register-based architecture since this solution minimizes the number of interconnections
between resources within the processing unit and promotes parallel execution. We assume that each output of an
operator is connected to a register (within the same logic cell). This assumption is directly derived from the fact that a
logic cell always includes one or two registers for output synchronization in an FPGA. So doing this does not introduce
any area overhead and prevents from applying a register allocation step.
• Concerning the control unit, Moore Finite State Machines (FSMs) are considered. We assume the use of microcode
ROMs since recent devices permit efficient ROM integration using dedicated resources, way to keep the logic cells for
the processing unit.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 106

Memory

FU1 FU2

C
o

n
tr

o
l

FUK-1

AD DOUT

Datapath

C
U

1

R_AD W_AD DINDOUTWE

RAM_DP1ROM1 RAM_DPNROMM
R

O
M

S
T

A
T

E
 R

E
G

IS
T

E
R

C
U

P

R
O

M

FUK

S
T

A
T

E
 R

E
G

IS
T

E
R

Fig. 3. RTL Architectural Model

• The memory unit is composed of one or several RAM / ROM memories. ROMs are dedicated to constant storage and
concerning RAMs, only dual port memories are considered since embedded memories are based on their use.

The choices presented above imply some design permissions / restrictions. However, this underlying implementation
model is required to promote the definition of realistic solutions. It also allows reducing the gap between the estimation
values of area and execution time (results of the physical mapping estimation step) and the actual design characteristics
(results of the final physical synthesis). Other models could have been defined. In the following section, we will focus
on the one presented in Fig. 3 and refer to it as our architecture template. Possibility to change / adapt the design
template will be addressed in the Result Discussion section (Section VI-D).

IV. Structural Exploration

The structural definition step performs an exploration at the RTL level using the model of Fig. 3. Compared
to a typical DSE flow, our approach is not iterative: an automated parallelism exploration is applied. Each RTL
solution corresponds to a parallelism degree characterized for a cycle budget Nc by the number and the type of required
resources (respectively Nopk(Nc) and opk). Nc ranges from a sequential execution (when only one resource of each type
is allocated) to the most parallel execution scenario (maximum number of resources is allocated; it corresponds to the
critical path).

The definition of several RTL architectures starts with the scheduling of the DFGs (section IV-C). Then analytical
heuristics are used to deal with control patterns (section IV-D, CDFG estimation) and application hierarchy (section IV-
E.3, H/CDFG combination). Then a progressive bottom-up combination approach allows deriving an efficient schedule of
the entire graph at low complexity costs. During the exploration step, both processing resources and memory bandwidth
are considered through:
• The number and the type of execution units Nopk

(Nc)
• The number of simultaneous reads (writes) from (to) the RAMs Nram rd(Nc) and Nram wr(Nc)
• The number of simultaneous reads from the ROMs Nrom rd(Nc).
• The number of control states Ns(Nc).

Each solution is thus characterized in terms of Processing (number of execution units) Control (number of control
steps) and Memory (number of memory accesses). The computation is divided into five steps: (1) Pre-estimation, (2)

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 107

FPGA
OK?

HCDFG

Set of explored solutions

Each solution is characterized at the

RTL level

RTL Architecture

Model
Pre-estimation

 Input/Output

 Memory

Selection/Allocation

FPGA Architecture

and Performance

Model

No
Yes

DFG Scheduling

CDFG estimation

Conditional

Loop

HCDFG combination

« Combination rules »

Sequential

Parallel

Fig. 4. Structural Estimation Flow

Selection, (3) DFG scheduling, (4) CDFG Estimation and (5) H/CDFG Combination (Fig. 4).

A. Pre-estimation

Pre-estimation checks whether a given FPGA device is suited or not in terms of I/O pads and memory resources for
the application. During that step, the set of data nodes labeled ηG

I/O are compared to the number of I/O pads in the
target device. As stated before, ηG

I/O is automatically derived from the number of formal parameters in the C code.
Thus, from the number of data in the set ηG

I/O and their corresponding bitwidth, the number of I/O pads required is
computed and compared to the number of I/O pads available in the device. This information is described in a technology
file called the FPGA Technology Architecture and Performance Model (TAPM, section V-A). Multiplexing techniques
of I/O data are not considered.

The estimation of the total RAM size is computed from the set ηL
I/O. The technique used is the one proposed by

Grun et al. [23] to compute a fast and reliable RAM size estimation from high level specifications. The estimation of
the ROM size is derived from the number of elements in the set ηconstant. Once computed, RAM and ROM sizes are
compared to the amount of memory resources available in the FPGA.

If I/O pads and memory size conditions are satisfied, the next step of the flow is performed otherwise the designer
has to select another device for evaluation.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 108

data

data

add

mult

data

data

data

add

mult

data

data

add

data data

x1#0[i#0] x2#0[i#0]

C&1 C&1

y#1[i#0]

Example of DFG

�

Number
of RTL resources

Number
of clock cycles

1

���� Nmult
���� Nadd
���� Nram_rd
×××× Nram_wr
++++ Nrom

2

5 6 7

�

� �
� �

�

�××××++++ ++++ ++++××××

�

××××

Operation

State S2 S3 S4S1 S5

Ram
Read

Add Mult Add
Ram
Write

Ram
Read

Add Mult

Rom
Read

Rom
Read

Parallel solution

Nc=5;
Nmult=2; Nadd=2;
Nram_rd=2; Nram_wr=1
Nrom=1;
Ns=5;

State

Operation

S2 S3 S4S1 S5

Ram
Read

Add Add Mult Add

Ram
Read

Rom
Read

Mult

Rom
Read

Ram
Write

S6

Intermediate solution

Nc=6;
Nmult=1; Nadd=1;
Nram_rd=2;
Nram_wr=1
Nrom=1;
Ns=6;

Operation

S2 S3 S4 State S1 S5

Ram
Read

Ram
Read

Add Add Mult

Rom
Read

Rom
Read

Mult

Add
Ram
Write

S6 S7

Sequential solution

Nc=7;
Nmult=1; Nadd=1;
Nram_rd=1;
Nram_wr=1
Nrom=1;
Ns=7;

data

data

add

mult

data

data

data

add

mult

data

data

add

data data

x1#0[i#0] x2#0[i#0]

C&1 C&1

y#1[i#0]

Example of DFG

�

Number
of RTL resources

Number
of clock cycles

1

���� Nmult
���� Nadd
���� Nram_rd
×××× Nram_wr
++++ Nrom

2

5 6 7

�

� �
� �

�

�××××++++ ++++ ++++××××

�

××××

Operation

State S2 S3 S4S1 S5

Ram
Read

Add Mult Add
Ram
Write

Ram
Read

Add Mult

Rom
Read

Rom
Read

Parallel solution

Nc=5;
Nmult=2; Nadd=2;
Nram_rd=2; Nram_wr=1
Nrom=1;
Ns=5;

State

Operation

S2 S3 S4S1 S5

Ram
Read

Add Add Mult Add

Ram
Read

Rom
Read

Mult

Rom
Read

Ram
Write

S6

Intermediate solution

Nc=6;
Nmult=1; Nadd=1;
Nram_rd=2;
Nram_wr=1
Nrom=1;
Ns=6;

Operation

S2 S3 S4 State S1 S5

Ram
Read

Ram
Read

Add Add Mult

Rom
Read

Rom
Read

Mult

Add
Ram
Write

S6 S7

Sequential solution

Nc=7;
Nmult=1; Nadd=1;
Nram_rd=1;
Nram_wr=1
Nrom=1;
Ns=7;

Fig. 5. DFG scheduling example

B. Selection of Execution Units

First, a depth-first search algorithm [22] is used to list all the operations in the H/CDFG. The selection of the execution
units is applied using a greedy algorithm. All available execution units are described and classified (speed decreasing
order) in the TAPM file. For each operation, the first execution unit supporting the operation in the TAPM file is
selected. Although, such an approach may not always give the best solution, it permits a first and rapid evaluation.
However, regarding the greedy algorithm limitations, the designer has also the possibility to apply a manual selection in
order to choose the most interesting execution resources, on the basis of his design experience. This approach can also
be considered to refine the results obtained from a first greedy approach. Then, a clock value can be set. As previously,
the designer has the possibility to manually choose a clock value, otherwise it is set to Tclk max which is the propagation
delay of the slowest execution unit. An example of clock period exploration and related limitations is given in section
VI-C.

C. DFG Scheduling

When the execution units have been selected and a clock value has been set, scheduling is applied to each DFG. A
time-constrained list-scheduling heuristic extended to deal with both processing and memory nodes [24] is used with
the goal to minimize the number of execution units and bandwidth requirements. Several time constraints (Nc) are
considered and range from the most parallel solution (fastest execution) to the most sequential one (slowest execution)
as illustrated in Fig. 5. Thus, the whole DFG parallelism is explored and each parallelism solution corresponds to a
given Nc value (on the horizontal axis of the 2D chart).

In the example of Fig. 5, three solutions representing different number of resources / clock cycles trade-offs are
provided. To implement the first solution (most parallel one), the processing unit must include 2 adders and 2 multipliers,
and the memory unit must permit 2 simultaneous read accesses (and 1 write access). Note here that only I/Os of the
graph and constants are mapped to the memories since internal data are assigned to registers (there is no register
allocation as stated in section III-B). Finally, the control unit requires 5 states to manage the scheduling of this DFG.

Once scheduled, a DFG is replaced in the graph by its estimation results (resources vs. clock cycles curve). Then,
progressive combination of the curves is applied using a bottom-up approach and leads to the estimation results of the

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 109

data1

DFG1

data2

data1

HCDFG1IF

data3data4

HCDFG1FOR

data6data5

DFG5DFG2

DFG3

DFG4

data7 data9

data8

data10

DFGFOR

DFGEVOL

DFGEVAL

BeginFOR

EndFOR

DFGEVAL

BeginIF

EndIF

DFGTRUE DFGFALSE

Loop structure

Conditional structure

RES1

HCDFG1IF

HCDFG1FOR

RES5RES2

RES3

RES4

DFGFOR

DFGEVOL

DFGEVAL

DFGEVAL

RESTRUE

RESFALSE

RES1

HCDFG1IF

HCDFG1FOR

RES5RES2

RES3

RES4

Sequential

execution

Sequential

execution

Parallel

execution

Fig. 6. Combination schemes

entire specification. The combination rules that are used depend on the type of dependence between the parent graphs
(Fig. 6). A H/CDFG may be composed of four types of dependences: two of them correspond to control dependences
(conditional and loop structures) and the two others correspond to execution dependences (sequential and parallel
execution). For each type of dependence, the estimation curves are combined according to the equations presented
below.

D. CDFG estimation

This section explains how control constructs (CDFGs) are combined. DFG cores within CDFGs are processed as
explained previously. Then we have to deal with two types of control: (1) conditional structures (tests) and (2) loop
structures (iterations).

D.1 CDFG conditional structures

Conditional structures correspond to CDFGs. They are equivalent to an ”if” statement in a programming language.
An ”if” structure is composed of three subgraphs (DFGs): one for the evaluation of the condition and two for the true
and false branches (respectively corresponding to the three subscript 0, 1 and 2 in the following equations). Branching
probabilities (Pb) are used to balance the execution time of each branch. Application profiling is used to obtain the
execution probabilities.

Each scheduled DFG is characterized by a set of solutions with different trade-offs representing the number of execution
units vs. clock cycles. In our approach, we first compute the exhaustive combination of all these solutions and then
we remove all non optimal results (i.e. we only keep the Pareto solutions [25]). Thus, the estimation of the solutions
(characterized by a cycle budget N ′

c) is obtained as follows:

N ′
c = d[Nc0 + (Pb1 ∗Nc1) + (Pb2 ∗Nc2) + 1]e

N ′
s(N

′
c) = Ns0 (Nc0) + Ns1 (Nc1) + Ns2 (Nc2) + 1

N ′
opk

(N ′
c) = MAX[Nopk0

(Nc0), Nopk1
(Nc1), Nopk2

(Nc2)]

where Nsi(Nci) and Nopki
(Nci) are respectively the number of states and the number of operators / memory accesses

in the DFG labeled i for an execution time of Nci cycles. Execution units and memory accesses are estimated under the
assumption of maximum sharing between the three DFGs by taking the maximum value (since they are never executed
simultaneously). We assume data are always available in the expected memories. The total number of control states
is the sum of the number of states of each DFG, plus one for the branching to the first state of the branch to execute.
The equations above are computed for each possible combination of solutions, i.e. each possible combination of Nc

(exhaustive approach) and results in a new resources vs. clock cycle curve.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 110

D.2 CDFG loop structures

The most common scheme used to estimate a loop structure is based on a sequential execution. This scenario is
considered when the number of iterations is not known statically or in case of data dependences between iterations. In
that case, the estimation is computed like this: (1) first, the three subgraphs composing the loop (evaluation, core and
evolution) are processed through DFG scheduling. (2) then, a sequential combination of the three subgraphs is applied.
(3) and finally, the entire loop structure is estimated by repeating Niter times the loop pattern (with Niter the number
of iterations). This last step leads to the equations below.

• Sequential execution:

N ′
c = Niter ∗ (Nc + 1)

N ′
s(N

′
c) = Ns(Nc) + 1

N ′
opk

(N ′
c) = Nopk (Nc)

where N ′
c, N ′

s(N ′
c) and N ′

opk
(N ′

c) correspond to the solution resulting from the combination.

In this case the execution model does not take into account memory and computation pipelining of loop iterations, the
execution of the iterations is totally sequential. However, we also propose a low complexity technique to unfold loops
(partial unrolling and folding execution) in a way to explore more efficiently the available parallelism. Unfolding loops
leads to the exploration of the memory and computation parallelism and to reduce the critical path. This technique is
based on a simplified execution model since data sharing, data layout and advanced unrolling schemes are not considered.
Several parallelism factors fp are defined to help exploring this intra-loop parallelism.

• Partial unrolling and folding:

N ′
c = Nc + (Niter/fp − 1)

N ′
s(N

′
c) = Ns(Nc) + (Niter/fp − 1)

N ′
opk

(N ′
c) = Nopk (Nc) ∗ fp

where fp corresponds to the number of parallel executions of the loop kernel (fp takes a value between 1 and Niter).
A fp value equal to one corresponds to a full pipeline execution of each iteration of the loop kernel. When fp is set to
Niter, it corresponds to a full parallel execution of each iteration of the loop kernel. This estimation of pipelined and
parallel executions reduces the total number of execution cycles. Consequently, the number of resources (thus area)
increases according to the parallelism factor fp.

This approach may not always be applicable especially in case of dependences (resource, control and data). But it
can be very helpful to exhibit the parallelism level that will allow respecting a given time constraint. Then, one can
partially unfold the loop specification according to the parallelism factor and apply a full DFG schedule. This way of
proceeding is close to optimality but it is at the expense of complexity. We are developing by now a new heuristic able
to consider data dependences based on the analysis of array index variations.

E. H/CDFG exploration

This section explains how we derive the entire estimation of a H/CDFG. When conditional and loop structures
have been estimated (section IV-D), the two following combination rules are applied to address sequential and parallel
combinations of CDFGs.

E.1 H/CDFG sequential execution

The analytical equations for the combination of two CDFGs executed sequentially (labeled 1 and 2 in the following
equations) are based on the assumption of a maximum reuse of the execution units. This means that the execution units
are shared for the execution of both graphs:

N ′
c = Nc1 + Nc2

N ′
s(N

′
c) = Ns1 (Nc1) + Ns2 (Nc2)

N ′
opk

(N ′
c) = MAX(Nopk1

(Nc1), Nopk2
(Nc2))

First, an exhaustive combination of the solutions between the two graphs is computed according to the equations above.
Then, all non optimal solutions are rejected. The same combination scheme is repeated for each opk and for the memory
accesses.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 111

E.2 H/CDFG parallel execution
The estimation results for a parallel execution of two graphs are computed as follows:

N ′
c = MAX(Nc1 , Nc2)

N ′
s(N

′
c) = Ns1 (Nc1) + Ns2 (Nc2)

N ′
opk

(N ′
c) = Nopk1

(Nc1) + Nopk2
(Nc2)

The execution time is the maximum of both execution times. Execution units and memory accesses are estimated
in the worst case by taking the maximum value. Resource sharing is not considered (unlike sequential execution) and
may lead to an overhead in some cases. The reason of this is that such an analysis requires the storage and the analysis
of each operation schedule. We believe the impact on the exploration algorithm complexity is too high regarding the
improvement of the estimation accuracy.

Given this, the number of states N ′
s(N

′
c) is the sum of the number of states of each graph since we do not merge FSMs,

again for complexity reasons. Instead, we suppose each sub part of the architecture has its own FSM. This results in
a hierarchical FSM composed of several microcode ROMs. Like in the case of sequential execution, this combination
scheme is repeated for each possible combination of solutions Nc and each opk, for both execution units and memory
accesses.

Alg. 1 H/CDFG exploration algorithm

HCDFG Expl(graph current G)
{
nb composite = 0
for each node in current G do

if current node is a composite node then
nb composite = nb composite + 1
if composite node is not a result node then

temp G ← sub graph of the composite node
HCDFG Expl(graph temp G)

end if
end if

end for

father type = type of current G father
if father type = if then

Apply if combination for current G
else if father type = for then

Apply for combination for current G
else if nb composite > 1 then

Apply execution combination for current G
end if
}

execution combination(graph current G)
{
Initialize the list of current node LCN with root nodes in current G
while LCN non-empty do

LCN = successors(LCN)
for each node ∈ LCN do

Parallel combination of predecessor nodes
Sequential combination of current node and predecessor node

end for
end while
}

E.3 H/CDFG global combination algorithm

The goal of that step is to correctly take into account the control and execution dependences for the entire H/CDFG.
At the beginning, all the nodes of the H/CDFG are analyzed with a depth-first search algorithm [22]. When a node
is identified as a composite one (namely a hierarchical node containing subgraphs), a recursive function is called until
a DFG is reached (Algorithm 1). All the DFGs are scheduled this way and replaced by their corresponding struc-
tural characterization. Then, conditional / loop structures are analyzed with respectively the if combination and
for combination routines (implementing the heuristics of Sections IV-D.1 and IV-D.2) until there remains zero CDFG
unprocessed. The execution combination routine is invoked to process all the possible sequential / parallel execution
of subgraphs (heuristics of Sections IV-E.1 and IV-E.2). And finally, the global combination algorithm combines recur-
sively all the nodes until there exists only a single node corresponding to the entire application. These combinations are
illustrated on the example of Fig. 6. They lead to the final characterization curve of the whole specification. The last

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 112

step to complete the Exploration / Estimation flow is to compute the FPGA resources use vs. execution time estimates
(Physical Mapping Estimation) for each RTL solution.

V. Physical Mapping Estimation

The physical characterization provides the FPGA resources use A(T) vs. temporal constraint T (physical time unit,
ns, µs). It is derived from previous structural characterization of each solution. The resources of the FPGA considered
to compute A(T) are logic cells, dedicated cells, tristate buffers and I/O pads. An FPGA characterization file is used
to describe a given device (Technology Architecture and Performance Model). It contains the following information:
• The number and the type of the FPGA resources (i.e number of LCs, DCs, multiplexers / tri-state buffers and I/O
resources);
• The area and delay of operators;
• The area and access times of memories (dual port RAMs and ROMs);

This information is obtained from the data sheet of the target device and from the synthesis of basic arithmetic /
logic operators and memories.

Set of explored solutions

Each solution is characterized at the

RTL level

RTL Architecture

ModelMemory Unit

FPGA Architecture

and Performance

Model

Processing Unit

Control Unit

Global Cost

Area

Delay

Set of explored solutions

Each solution is fully characterized

and matches the constraints

Fig. 7. Physical Estimation Flow

A. FPGA Technology Architecture and Performance Model

Table II gives a simplified example of characterization for a Virtex V400EPQ240-7 device [26]. This FPGA contains
4800 Logic Cells and 40 Dedicated Cells (Slices and BRAM respectively). Each operator is characterized for usual
bitwidths (8, 16 and 32 bits) by the number of FPGA resources used, by the corresponding delay and the number of
control signals. To give an example, an eight bits adder is characterized as follows: 4 slices, 4.9ns, 8 bits, 1 control line
(corresponding to the signal to drive the output register of the adder). Those values are obtained after a logic synthesis
step. Memories are characterized by the type of FPGA resources needed for implementation, the storage capacity and
read / write delays. A generic characterization (i.e. independent from size and bitwidth) has been defined on the basis
of the number of memory bits per cell and the worst case access time. Furthermore, two choices are left to implement

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 113

Virtex V400EPQ240-7
FPGA LC # LC DC # DC # Tri # I/O

characteristics
slice 4800 BRAM 40 4800 48

Execution op impl latency area bitwidth ctl lines
units
adder + LC 4.9ns 4 8 1
sub - LC 4.9ns 4 8 1
mult × LC 12.3ns 36 8 1
comp <,>,>=,<= LC 4.8ns 6 8 1
equal = LC 5.0ns 4 8 1

shift reg <<,>> LC 4.9ns 4 8 1
reg LC 4 8 1
mux Tri 4 8 2

Memory impl access bit per latency latency
time cell read write

RAM DP LC rw 32 13.4ns 13.4ns
RAM DP DC rw 4096 7.2ns 7.2ns

ROM DC r 4096 7.2ns

TABLE II

Virtex V400EPQ240-7 FPGA characterization

a memory in both Xilinx and Altera devices. For example in an Apex EP20K200RC208-1, logic cells (logic elements)
or dedicated cells (ESBs) are available for implementation. The respective characterizations are 16 bits / logic element,
11.2ns and 2048 bits / ESB, 4ns. As we can notice, dedicated cell implementation is faster, but it is also more area
efficient. In our approach, dedicated cell implementation is always a preferable solution since it allows saving the logic
cells for custom user defined functions.

B. Technology projection

From the characteristics of a given RTL solution and a target FPGA, we derive a simple and accurate estimation
of the expected FPGA use rate and algorithm execution time. For better accuracy, a specific ”projection” process has
been defined for each unit of the architecture.

B.1 Memory unit

A simple approach is applied to evaluate the area of the memory unit. It is based on the total memory size, the
number of simultaneous accesses, and the characteristics of the memory resources within the FPGA. As stated before,
two types of implementation are considered: logic cells or dedicated cells. According to the type of cells used, the area
of the memory unit is estimated as follows:
• Logic cell implementation:

Nram
lc = d(MSRAM ∗Wram/Nram

bits/lc)e
Nrom

lc = d(MSROM ∗Wrom/Nrom
bits/lc)e

where MSRAM and MSROM are respectively the total memory size for the RAM and the ROM memories. Nram
bits/lc and

Nrom
bits/lc are the number of memory bits per logic cell and Wram, Wrom, the bitwidth of the data to be stored.

• Dedicated cell implementation:
In a first approach, the number of memories can be approximated to the maximum of the number of simultaneous

read and write operations Nram
mem = MAX[Nram rd, Nram wr]. However, the type of resource used is important because

only one memory can be integrated in a single dedicated cell. So in this case, the number of embedded memories is
computed by taking the maximum value between the number of dedicated cells needed to implement the total memory
size and the number of simultaneous accesses:

Nram
dc = MAX[d(MSRAM ∗Wram/Nram

bits/dc)e, Nram rd, Nram wr]

Nrom
dc = MAX[d(MSROM ∗Wrom/Nrom

bits/dc)e, Nrom]

Nram
bits/dc and Nrom

bits/dc correspond to the number of memory bits per dedicated cell and Wram, Wrom, the bitwidth of
the data to be stored.

Once the number of memories of each type is known, the number of control signals to drive the RAM (Nram
cs) and

ROM memories (Nrom
cs) are derived. They correspond to the address and write enable signals (Fig. 3):

Nram
cs = (2 ∗W ram

adr + 1) ∗MAX(Nram rd, Nram wr)

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 114

Nrom
cs = W rom

adr ∗Nrom

where the sizes of the address bus (W ram
adr and W rom

adr) are derived from the number of words in the memories:

W ram
adr = dlog2(MSRAM/MAX(Nram rd, Nram wr))e

W rom
adr = dlog2(MSROM/Nrom)e

The current RTL model does not include a specific address generator. Hence, the control of the address signals of the
RAMs and ROMs is left to the control unit. Thus, the expressions of Nram

cs and Nrom
cs take respectively into account

W ram
adr and W rom

adr . The total number of control signals for the memory unit is:

Nmu
cs = Nram

cs + Nrom
cs

B.2 Processing unit (datapath)

The area of the processing unit is computed by adding the contribution of each execution unit (Nopk

lc and Nopk

dc):

Npu
lc

=
∑
opk

Nopk ∗N
opk
lc

Npu
dc

=
∑
opk

Nopk ∗N
opk
dc

For example, three eight bits adders require 12 slices in a Virtex V400E (Nadd8bit

lc = 4 slices). Like in the case of the
memory unit, the number of control signals required to drive the datapath is considered. There are four types of control
signals, according to the current model of Fig. 3:
• signals to control the output register of each execution unit. The number of signals of this type is equal to the number
of execution units Nop

cs .
• signals to select the operation for multi-functional units Nmulti op

cs .
• signals to control the registers of the memories read / write ports Nreg

cs = Nram
reg + Nrom

reg .
• signals to control multiplexors / tristates Nmux

cs .
The number of control signals for the processing unit is then

Npu
cs = Nop

cs + Nmulti op
cs + Nreg

cs + Nmux
cs

and the total number of control signals for the entire architecture is

Ncs = Npu
cs + Nmu

cs

B.3 Control unit

The area of the control unit is derived from the number of states and the number of control lines [27]. Control logic
is supposed to be integrated in a ROM memory. The area is computed from its number of words and data bitwidth.

Nbits state reg = dlog2(Ns)e
Nbits rom = Nbits state reg + Ncs

where Ns is the total number of states needed to schedule the entire graph. The area of the control logic is obtained
from the area used by a Ns ∗Nbits rom ROM. Then, the corresponding FPGA resources for a logic cell or a dedicated
cell implementation are respectively:

Nrom
lc = d(Ns ∗Nbits rom/Nrom

bits/lc)e

Nrom
dc = d(Ns ∗Nbits rom/Nrom

bits/dc)e

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 115

B.4 Global cost characterization

The total area in term of FPGA use is computed for each type of FPGA resource by adding the contribution of each
unit of the architecture.

Nlc = Nmu
lc + Npu

lc
+ Ncu

lc

Ndc = Nmu
dc + Npu

dc + Ncu
dc

Ntristate = Npu
tristate

The physical value of the execution time is computed from the value of the clock period defined during the selection
step (section IV-B):

T = Nc ∗ Th

The above computation process is then iterated for each architectural solution resulting from the structural explo-
rations and leads to the final cost vs. performance characterization (figure 1).

VI. Experiments and Results

This section is organized as follows: first, we apply the exploration methodology on several examples representative
of different algorithmic complexities and processing characteristics (intense data processing, control dominated, high /
low parallelism potential). Then, we address the problem of estimation accuracy. For this purpose, we compare the
synthesis results of one architectural solution with the area and delay estimates given by our exploration tool. Three
approaches have been considered for comparison: the first one is based on hand coded design, the second one on HLS
design and the last one is based on pre-characterized IPs. Then, we apply the methodology on a 1D Discrete Wavelet
Transform to illustrate how easy and independent from any design experience background the exploration process can
be performed. Finally, a discussion is provided in order to analyze the drawbacks / benefits of the approach and stress
the differences compared to existing works.

Virtex V400EPQ240 Apex EP20K200EFC484
sol. expl. time sol. expl. time

FIR 5 0.04 sec 5 0.03 sec
Volterra 11 5.6 sec 11 4.2 sec

F22 40 2.3 sec 40 2.6 sec
Adaptive 4 2.6 sec 4 1.8 sec

FFT 56 0.4 sec 56 0.4 sec
DWT 342 8.7 min 342 9.4 min
DCT 14 1.5 sec 14 1.6 sec
G722 16 0.7 sec 16 0.4 sec

MPEG 2 3.1 sec 2 3.1 sec
Huffman 4 4.2 sec 4 4.5 sec

TABLE III

Number of solutions generated vs. exploration times for several DSP applications

A. Applications

The methodology presented in this paper has been integrated in a framework for the codesign of SoCs called Design
Trotter [21]. With the help of this tool, early exploration and design space pruning of applications from C specifications
are fast and easy. Applications representative of several algorithmic complexities and processing characteristics have been
used to analyze the design space coverage vs. exploration time trade-offs. The first seven examples in table III tackle
typical DSP processing: filtering (FIR, Volterra, F22 and Adaptive), transforms (Fast Fourier Transform, 2D Discrete
Wavelet Transform and Discrete Cosine Transform). These examples exhibit high amounts of memory and computation
parallelism with intense data processing / storage, especially in the case of the 2D DWT. The last examples (G722
speech coding recommendation, MPEG and Huffman coding) are more control dominated systems with low parallelism
potential.

Table III presents the number of solutions explored and the related exploration time obtained with a Pentium 3
processor running at 1.2 GHz. The results show the ability of the tool to define several architectural solutions in a
reasonable amount of time, even in the case of complex specifications. In the 2D DWT for instance Design Trotter
generates about 350 RTL solutions and the corresponding area / delay estimates within 10 minutes. For comparison,

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 116

Virtex V400EPQ240-7 Apex EPK20K200EFC484-2X
Estimation Synthesis Estimation Synthesis

slices Tex slices Tex lgc elt Tex lgc elt Tex

(ns) (ns) (ns) (ns)
Parrec 9 6 10 6 17 9 19 9
Recons 9 6 10 6 17 9 19 9
Upzero 217 1224 255 1171 608 1504 400 1272
Uppol2 257 292 303 300 857 358 718 302
Uppol1 216 230 275 254 589 282 612 236
Filtez 150 77 163 88 518 94 648 103
Filtep 181 593 177 511 484 728 497 515
Predic 9 6 10 6 17 9 49 9

G722Predictor 1166 1224 1263 1317 3132 1504 3027 1318

TABLE IV

Estimation vs. Synthesis for the G722 Predictor function

the time required to perform only the logic synthesis of one single solution is several orders of magnitude higher (about
one day).

The results of table III show the effectiveness of a global ”low complexity” estimation framework operating from
early specifications and exploring several RTL solutions characterized in terms of processing, control and memory. In the
following, we address the problem of estimation accuracy in order to evaluate the relevance of the estimates provided.

B. Accuracy

To make a valuable evaluation of accuracy, three approaches have been carried out: compare estimations with hand
coded designs, compare estimations with HLS design and compare estimations with pre-characterized IPs. The first
approach is needed because the accuracy of the estimations is strongly related to the RTL model of Fig. 3. Thus,
it highlights the accuracy of the physical mapping estimation which is important since it provides the designers with
reference values allowing reliable comparison of area / performance trade-offs. The second and the third approaches can
lead to more significant variations because the RTL models used are different. But on the other hand, a comparison with
an automated architectural synthesis tool and with IP designs is required to discuss the relevance of the architectural
solutions provided.

B.1 Comparison with hand coded designs

The two applications considered are a speech coder (G722) [28] and a 2D Discrete Wavelet Transform [29]. Concerning
the G722 recommendation, we focused on the predictor which is the processing core of the application. The predictor
is composed of eight sub-functions that are executed concurrently and represents an average of 260 lines of C codes.
The DWT algorithm considered is based on a lifting scheme process composed of twelve filtering functions applied
sequentially. Six loops are first executed to compute the horizontal transform and then six loops are executed to
compute the vertical transform. Each loop is a second order nested loop. The complexity of the algorithm is about 250
lines of C codes that corresponds to almost 500 lines of H/CDGH grammar.

In the following, we compare exploration times vs. logic synthesis times (it does not include the time spent for
architecture synthesis), for two representative devices of recent FPGA families: Virtex V400EPQ240-7 [26] and Altera
Apex EP20K200EFC484-2X [14]. The ISE Foundation and Quartus synthesis tools have been used to target the
respective device.

In order to provide a significant evaluation, the entire applications have been synthesized in both cases (G722 Predictor
and 2D DWT), as well as each sub-function independently. This way, the average accuracy has been computed on a total
of 22 designs. Results are given in Table IV and Table V. Table IV reports the number of slices and logic elements after
estimation and synthesis. Table V gives the average error in percent and reports the exploration vs. synthesis time.
The average accuracy is about 13.5% and 10% respectively for area and execution time values. Some variations may
be noticed locally, like in the case of function upzero, that are due to logic optimizations applied by the logic synthesis
tool. In that case, the difference is due to the simplification of a multiplier with one of its operands remaining constant.
Other variations like horizontal and vertical rearrange in the DWT are caused by the address generation model left to
the control unit. This is especially significant in the case of this function where memory accesses are critical.

Concerning the processing times, only the logic synthesis times have been reported for comparison. The exploration
times in the case of the G722 predictor and DWT are respectively 1 second and 5 minutes (to generate 16 and 342
solutions) while the respective logic synthesis times (for only one solution) are respectively 10 minutes and more than
1 day, plus the additional time needed to write the RTL description by hand (about 1 month). These results stress the
benefits of the approach on the design times and the ability to rapidly select the most interesting solutions based on
relatively accurate results.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 117

Virtex V400EPQ240-7 Apex EPK20K200EFC484-2X
Accuracy (%) Explo vs lgc synth Accuracy (%) Explo vs lgc synth
slices Tex Texpl Tsynth lgc elt Tex Texpl Tsynth

(sec) (min) (sec) (min)
Parrec -10 0 0.05 1 -10.5 0 0.05 1
Recons -10 0 0.05 1 -10.5 0 0.05 1
Upzero -14.9 +4.5 0.22 5 +52 +18.2 0.06 5
Uppol2 -15.2 -2.7 0.11 5 +19.4 +18.2 0.11 5
Uppol1 -21.5 -9.4 0.11 5 -3.8 +19.5 0.11 5
Filtep -8 -12.5 0.05 1 -20.1 -8.7 0.05 1
Filtez +2.2 +16 0.05 2 -2.6 +41.4 0.05 2
Predic -10 0 0.05 1 -10.5 0 0.06 1

G722Predictor -7.7 -7.1 0.9 15 +3.4 +14.1 0.4 10

1stHLftStep +6.9 +7.1 0.1 5 +1.4 +7.6 0.05 8
1stHDLftStep +4 +0.6 0.05 5 +2.6 +1.9 0.06 8
2ndHLftStep +5.1 +13.9 0.06 5 +2.8 +9.3 0.05 8

2ndHDLftStep +2.5 +9.8 0.06 5 -0.2 +1.7 0.05 8
Hscaling +2.7 +3.6 0.1 5 +4.9 +3.6 0.1 8

Hrearrange +46.8 -25 0.06 5 +67 +9.1 0.05 8
1stVLftStep +7.1 +25.5 0.1 5 -0.2 +2.9 0.05 8

1stVDLftStep +5 +16.9 0.05 5 -0.6 +5.1 0.06 8
2ndVLftStep +5.1 +18.5 0.06 5 +1.1 +2.9 0.05 8

2ndVDLftStep +3.4 +18.3 0.06 5 -2.6 +7.7 0.05 8
Vscaling +3.4 +5.5 0.1 5 +3.2 +3.8 0.1 8

Vrearrange +50.9 -5.5 0.06 5 +61 +3.8 0.05 8

DWT 2D +35.9 +18.2 5min 1.5days +37 +3.1 5min 2days

TABLE V

Estimation vs. Synthesis error and Exploration vs. (logic) Synthesis time for G722 Predictor function and DWT 2D

function

FIR 16 (Design Trotter) FIR16 (GAUT)
1 add 16 bit 1 add 16 bit
1 mult 16 bit 1 mult 16 bit
3 reg 16 bit 6 reg 16 bit

1 RAM, 1 ROM Mem unit not generated
19 control steps 19 control steps

0.3 sec to generate 5 solutions 1 min to generate this solution
+ area / time estimates + 5 minutes for logic synthesis

TABLE VI

Design Trotter FIR 16 vs. HLS (GAUT) FIR 16

B.2 Comparison to HLS design

In this section, we propose to compare our exploration / estimation methodology with a High Level Synthesis approach.
Thus, we perform an exploration using both Design Trotter (DT) approach and a HLS tool (GAUT HLS [30]). The
example is a 16-tap FIR filter for which DT generates 5 RTL solutions. For the purpose of our comparison, we selected
one of those 5 solutions and constrained GAUT HLS tool with the corresponding time constraint (304 ns) and clock
period (16 ns). The left row of Table VI reports the characteristics of the DT solution and gives the necessary
information to design the RTL architecture with the HLS tool. As we can see, there are some slight differences which
are mainly due to the different RTL models used in both tools:
• concerning the number of registers, the difference is due to the fact that each functional unit is assumed to be
associated with an output register in our approach (section III-B). So the actual number of registers is equal to 3
(originally estimated) plus 2 (one at the output of adder and multiplier).
• concerning memory, Design Trotter computes a basic estimation of the number of memories that is based on the
analysis of simultaneous accesses (Nram rd, Nram wr and Nrom). GAUT HLS does not address the memory requirements
in the current version used for this evaluation.

Finally, from the analysis of the processing times (bottom of Table VI) it arises the complementarity of the exploration
methodology with High Level Synthesis more than an opposition: the use of a HLS tool may need several time consuming
iterations before defining a suitable architecture. With our tool, several parallelism solutions are automatically generated
with an average accuracy of 11.6%. Once a suitable solution has been selected, the designer can then constrain the HLS
tool (using DT based directives about local / global time constraints, parallelism, scheduling, allocation, . . .) to meet
the solution. The confidence in finding more surely a suitable implementation is thus significantly enhanced.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 118

Solutions
pipelined sequential

Xilinx DT Xilinx DT
BRAM 1 16 1 1
Slice 1542 2368 157 168

Delay (ns) 306 304 2394 3213
Frequency(MHz) 81.5 62.5 116 62.5

TABLE VII

Design Trotter FIR 16 vs. IP (Xilinx) FIR 16

B.3 Comparison with pre-characterized IPs

To compare our exploration approach with existing IPs, we also considered a 16-tap FIR filter obtained from the
Xilinx core generator [31]. Two IPs have been used: the first one is a full pipelined filter whereas the second is a full
sequential filter. Design Trotter provides 5 solutions, we considered the fastest and the slowest ones for comparison
with Xilinx’s IPs in table VII. For the fastest solution, 16 BRAMs are needed because a maximum of 16 simultaneous
memory accesses have been estimated while Xilinx’s solution uses only one single BRAM. The clock value we have set
corresponds to the delay of the slowest execution unit (multiplier in our case). It keeps the same value for both solutions
because we do not consider any logic optimizations. Compared to Xilinx’s solutions, the differences are due to the high
optimization effort on the IP core. Unfortunately no information is available on this to permit comparison, for obvious
confidentiality reasons. However, we believe the accuracy of estimations is reasonable regarding the abstraction level of
the input specification. Further improvement on this point is possible and will be discussed in section VI-D.

The last part of this section emphasizes the possibility of design analysis introduced by our methodology (analysis of
design parameters, exploration / synthesis relation).

Fig. 8. Horizontal DWT exploration results (Virtex) - slices vs. time

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 119

C. Exploration Approach

The application considered is a 1D Discrete Wavelet Transform, Fig. 8 presents the estimation trade-offs for a Virtex
V400EPQ240-7 device (Xilinx). For this example, the tool evaluates a total of 342 architectures, each one corresponding
to a particular parallelism solution.

If we consider the solution highlighted (respectively 1941 slices / 4265.7ns) that corresponds to the most interesting
area / delay trade-off, the designer can refine the exploration around that solution. In this example, the exploration of
several clock values and data bitwidths have been performed, results have been reported in figure 9 (labels correspond
to clock period - data bitwidth values).

When a solution has been pointed out (for example clock = 20ns, bitwidth = 16), analyzing the details of the RTL
architecture results provides useful information. In the example of table VIII, we are aware of that the solution is
composed of 4 multipliers and 8 adders for an execution of 223 cycles. Mapped onto the FPGA, it corresponds to an
occupation of 1941 (/4000) slices, 12 (/40) BRAMs and 256 (/4960) tristate buffers for a 4.3µs physical execution time.
Due to the hierarchical approach of combinations, partial results are available at each level of the graph hierarchy. To
refer our example, the For12 body sub-function is composed of 1 multiplier and 2 adders for the datapath and the RAM
memory bandwidth is 1 write and 3 reads. Such partial results characterize each architectural solution and provide key
design information. All this information can also be used to guide a HLS tool in the design of the solution.

Fig. 9. Bitwidth and clock period exploration for a Virtex implementation

D. Result Discussion

The experiments performed pointed out some benefits / limitations of the exploration methodology. Hereafter, we
discuss the relevance of the results and propose some possible enhancements. In the next section, we will focus on the
contribution over related work in the context of future complex / heterogeneous system designs.

The structural exploration represents the core of the methodology which efficiency strongly depends on the feasibility
and the relevance of the different parallelism solutions. As a starting point, we defined a first approach based on DFG
scheduling and analytical CDFG combinations using simple execution models. The main reason of doing this was to
reach a complexity level that could permit a large coverage of the design space from early specifications. This has been
shown possible as regard to the accuracy and processing times reported (table V). Moreover, some enhancements are
possible, of course at the expense of processing complexity, these are exposed below:

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 120

Graph Cycles States Mul16 Add16 Reg16 RAM RAM ROM
(wr) (rd)

For12 body 5 5 1 2 1 3 1
H1stLftStep 32 32 4 8 4 12 4
For22 body 5 5 1 2 1 3 1

H1stDLftStep 32 32 4 8 4 12 4
For32 body 5 5 1 2 1 3 1
H2ndLftStep 32 32 4 8 4 12 4
For42 body 5 5 1 2 1 3 1

H2ndDLftStep 32 32 4 8 4 12 4
For52 body 3 3 2 2 2 2
Hscaling 66 66 4 4 4 4

For62 body 2 2 2 2
Hrearrange 33 33 8 8

HDWT 223 223 4 8 28 8 12 4
Tex = 4.3µs slice = 1941 BRAM = 12 3state = 256

TABLE VIII

Solution details for the selected RTL architecture leading to the following performance: 1941 slices, execution time

4265.7ns

• Parallelism exploration: the weak point of our approach is the simplicity of the combination heuristics and the
underlying execution model as we do not consider loop tiling and only consider a simplified model for loop unrolling
and folding. On the other hand, an optimal schedule of the whole graph is something that would greatly impact on the
estimation complexity. That’s the reason we decided to schedule only the DFGs of the graph as a trade-off. A solution
to enhance the quality of the solutions would be to apply a finer schedule of the critical processings, especially in the case
of iterative structures with data dependences. We believe this is something that can be done without too much penalty
on the exploration times, regarding the current complexity of the exploration methodology. We are investigating new
loop scheduling heuristics able to analyze array index variations and consider all dependences to reach better schedules
of loop iterations.
• Simplicity of the memory model: in the current version, memory estimation is based on a basic load / store model
and characterized through the estimation of memory size and bandwidth requirements. We do not consider scalar
replacement, data layout, data reusing, memory sharing and memory pipelining. This is justified in part by the storage
resources within an FPGA that is composed of several distinct memories. For complex memory structures and execution
model (using caches, pipelined execution modes, resources sharing), suited models and heuristics must be defined. There
exist relevant works in this field that could be efficiently used for this purpose [4][16][32].
• Another way to enhance the quality of the RTL solutions is to allow the characterization of IP cores in the FPGA
characterization (TAPM) file. For example, a Discrete Cosine Transform implementation can be described in the TAPM
file (in terms of FPGA resources and delay) and used for estimation provided a specific DCT node is present in the
H/CDFG. This possibility is enabled by the H/CDFG representation and could greatly enhance the exploration reliabil-
ity. As an extension, any processing sequence or common functionality can be associated with an actual implementation
provided information on area and delay is available in the technology file (in the manner of [9]). This could greatly
help the problem of software compilation with the extraction of processing patterns associated with specific VLIW
implementations (multiply-accumulate typically) or even including pre-characterized IPs for significant acceleration of
critical kernels.

Concerning the physical estimations, some variations have been noticed when comparing physical synthesis results
with area and performance estimates (table V). This is mainly due to some unconsidered low level optimizations.
• Control unit / address generation: variations may occur in case of high data processing / address generation. A
solution is to consider a separate address generation unit from the control unit model.
• Logic optimizations: improvements are possible by considering some low level optimizations like operator area reduc-
tion when one operand remains constant, or a shift operation instead of a multiplication by a power of two.
• Clock period: clock value is defined before actually placing and routing the entire design and relies only on the
characteristics described in the TAPM file. Thus, the actual critical path may be different than the estimated one. This
difference might increase with the FPGA use rate since routing becomes more complex.
The impact of these low level effects is not critical since the average estimation accuracy is already around 15%. We
believe the structural estimation step is a more important concern where additional processing complexity should focus
on. Other scheduling strategies can be defined to better cope with the processing requirements of an application domain,
a HLS tool procedure or an architectural implementation style. The architecture and scheduling models may have to
be adapted in this case.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 121

E. Comparison with existing approaches

Compared to the works presented in Table I, our approach can be summarized as follows:
• The estimator deals with a behavioral C description which is then parsed into a H/CDFG representation. So a complete
characterization of the application is achieved in terms of Processing, Control and Memory unlike most approaches.
• Although it may be considered simplistic, the underlying implementation model is realistic since datapath, control
and memory units are considered. It has been defined to cope with FPGA specificities and used in a way to enhance
the complexity / accuracy trade-off in the exploration process. Other models are currently under study to refine the
exploration of loop nests.
• The estimator provides area and delay values. No optimizations at the logic level are currently considered.
• The exploration of the design space is automatic. This means that several RTL solutions are defined for a given
specification, without making several iterations of the exploration process.
• A variety of design parameters can be explored: implementation device, resource selection, clock period, data bitwidth,
parallelism, . . .
• The choice of an FPGA device is large and includes up to date devices. The TAPM characterization file includes
logic cells as well as dedicated cells (DSP operators, embedded memories) which are important features in modern
reconfigurable devices.
• The complexity of the algorithm is low (O(n)) since only a list-scheduling algorithm combined with a simple analytical
method are applied. We are exploring finer schedule heuristics that could be applied to better analyzed critical parts of
the application (complex loop processing with data dependences).
• The average accuracy is 10% for delay estimations and 20% for area values.

The application of this work has shown the possibility of using accurate estimations from behavioral C specifications to
perform early design space pruning. The use of such low complexity estimations permits comparing very quickly different
implementation alternatives and making reliable choices that are derived directly from the processing characteristics (in
particular the parallelism) of the specification. The main conditions that have enabled this are the use of (1) a complete
representation model, (2) a realistic implementation model and (3) scheduling heuristics combined with analytical
approaches. These 3 conditions can be changed / adapted to cope with a specific design flow / application domain.

Concerning this, the definition of new models suited to the design procedure of a specific High Level Synthesis flow (we
are currently exploring the use of Celoxica DK suite) would greatly enhance a complete design process by providing the
HLS tool with essential information, especially concerning the location and the amount of parallelism in the behavioral
specification. Moreover, an extension to ASIC design is possible through the definition of an appropriate TAPM file.
This could lead to a complete framework for fast hardware prototyping.

VII. Conclusion and Perspectives

The starting objective of this work was to define an accurate estimation methodology from early specifications to
move more efficiently through a design space pruning process. The accuracy available in the current (first) version of
the exploration tool is high considering the abstraction level at the input. This results from the use of a complete
specification model (H/CDFG) and realistic implementation models for the datapath, control and memory units. The
interest of a scheduling approach is to bring both confidence concerning the feasibility of the solutions (compared to a
true estimation approach) and reliable information to guide their design. The simplification of the scheduling process is
important to quickly explore a wide range of parallelism solutions. The drawback maybe the relevance of the solutions
defined in some cases, which is unavoidable given the abstraction level of the specification. But the complexity / design
space coverage trade-off provided lets us expect easy adaptation to other implementation and execution models in a way
to provide better quality to the final design.

The benefits of this methodology on a design process are multiple: it allows significantly reducing the design cycle
(especially if used in complementarity with a HLS tool), to be less dependent from designer experience and synthesis
tools (thus from technology evolution perspectives), and to converge faster toward an efficient and constraint compliant
solution. Better application / architecture / device matching is reached due to the exploration coverage in terms of
parallelism, devices, clock period, and functional unit allocation.

This approach has been integrated in a CAD framework for the codesign of heterogeneous SoCs called Design Trotter
(https://designtrotter.univ-ubs.fr/).

References

[1] R. Hartenstein, Are we ready for the Breakthrough ?, Proceedings of the 10th Reconfigurable Architectures Workshop 2003 (RAW 2003),
Nice, France, April 22, 2003.

[2] N. Tredennick and B. Shimamoto, The Rise of Reconfigurable Systems, In Proceedings of Engineering of Reconfigurable Systems and
Application Conference (ERSA’2003), June 23-26, 2003, Las Vegas, Nevada, USA.

[3] G. Kulkarni, W. A. Najjar, R. Rinker, F. J. Kurdahi, Fast Area Estimation to support Compiler Optimizations in FPGA-based Recon-
figurable Systems, Proceedings of International Symposium on Field-Programmable Custom Computing Machines (FCCM’02), April
21-24, 2002, Nappa, California, USA.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL. XX, NO. Y, MONTH 200X 122

[4] B. So, P. C. Diniz and M. W. Hall, Using Estimates from Behavioral Synthesis Tools in Compiler-Directed Design Space Exploration,
Proceedings of IEEE Design Automation Conference (DAC’03), June 2-6, 2003, Anaheim, California, USA.

[5] MATLAB-based IP for DSP Design of FPGAs and ASICs, White Paper, May 2004, www.accelchip.com
[6] The application of retiming to the synthesis of C based languages using the Celoxica DK Design Suite, White Paper, March 2004,

www.celoxica.com
[7] A. Nayak, M. Haldar, A. Choudhary and P. Banerjee, Accurate Area and Delay Estimators for FPGAs, Proceedings of International

Conference on Design Automation and Test in Europe (DATE’02), March 4-8, 2002, Paris, France.
[8] R. Enzler, T. Jeger, D. Cottet, and G. Tröster, High-level area and performance estimation of hardware building blocks on FPGAs,

Proceedings of International Conference on Field-Programmable Logic and Applications (FPL’00), volume 1896 of Lecture Notes in
Computer Science, pages 525-534. Springer, 2000.

[9] W. Miller and K. Owyang, Designing a high performance FPGA – using the PREP benchmarks, Proceedings of WESCON’93 Conference,
pages 234-239, 1993.

[10] M. Xu and F.J. Kurdahi, Area and Timing Estimation for Lookup Table Based FPGAs, Proceedings of the European Design and Test
Conference (ED&TC’96), March, 1996.

[11] M. Xu and F.J. Kurdahi, Layout-Driven RTL Binding Techniques for High-Level Synthesis Using Accurate Estimators, in ACM Trans-
actions On Design Automation of Electronic System, Vol. 2, No. 4, p313-343, October 1997.

[12] P. Bjureus, M. Millberg and A. Jantsch, FPGA Resource and Timing Estimation from Matlab Execution Traces, Proceedings of Tenth
International Symposium on Hardware/Software Codesign (CODES’02), May 6-8, 2002, Estes Parks, Colorado, USA.

[13] P.Banerjee, N. Shenoy, A. Choudhary, S. Hauck, A. Nayak and S. Periyacheri, A MATLAB Compiler for Distributed, Heterogeneous,
reconfigurable Computing Systems, Procedings of IEEE Symposium on FPGA as Custom Computing Machines (FCCM 2000), 17-19
April 2000 - Napa Valley, CA.

[14] ALTERA, APEX 20K Programmable LogicDevice Family, August 2001, www.altera.com
[15] P. Diniz, M. Hall, J. Park, B. So and H. Ziegler, Bridging the Gap between Compilation and Synthesis in the DEFACTO System,

Proceedings of the Languages and Compilers for Parallel Computing Workshop (LCPC’01), Aug 2001, Cumberland Falls, KY, USA.
[16] K. R. S. Shayee, J. Park, and P. C. Diniz, Performance and Area Modeling of Complete FPGA Designs in the Presence of Loop

transformations, Proceedings of International Conference on Field-Programmable Logic and Applications (FPL’03), volume 2778 of
Lecture Notes in Computer Science, pages 313-323. Springer, 2003

[17] S. Choi, J.W. Jang, S. Mohanty and V.K. Prasanna, Domain-Specific Modelling for Rapid System-Wide Energy Estimation of Recon-
figurable Architectures, Engineering of Reconfigurable Systems and Algorithms (ERSA’02), June 2002.

[18] S. Bilavarn, Exploration Architecturale au Niveau Comportemental - Application aux FPGAs, PhD, University of South Britanny, Feb
2002.

[19] S. Bilavarn, G. Gogniat and J.L. Philippe, Fast Prototyping of Reconfigurable Architectures: An Estimation And Exploration Method-
ology from System-Level Specifications, Proceedings of Eleventh ACM International Symposium on Field-Programmable Gate Arrays
(FPGA’03), February 23-25, 2003, Monterey, California, USA.

[20] J.P. Diguet, G. Gogniat, P. Danielo, M. Auguin, J.L. Philippe, The SPF Model, Proceedings of International Forum on Design Languages
(FDL’00), Tübingen, Germany, September 2000.

[21] Y. Moullec, J.P. Diguet and J.L. Philippe, Design-Trotter: a Multimedia Embedded Systems Design Space Exploration Tool, Proceedings
of International IEEE Workshop on Multimedia Signal Processing (MMSP’02) December 9-11, 2002, St. Thomas, US Virgin Islands.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, Second Edition, MIT Press and McGraw-Hill,
September 2001.

[23] G. Grun, N. Dutt and F. Balasa, System Level Memory Size Estimation, Technical Report, University of California, 1997.
[24] D. Gajski, N. Dutt, A. Wu and S.Lin, High-Level Synthesis: Introduction to Chip and System Design, Kluwer Academic Publishers,

1992.
[25] S. A. Blythe and R. A. Walker, Efficient Optimal Design Space Characterization Methodologies, in ACM Transactions On Design

Automation of Electronic System, Vol. 5, No. 3, July 2000.
[26] XILINX, Virtex-II 1.5 Field Programmable Gate Arrays, July 2001, www.xilinx.com
[27] S. Narayan and D.D. Gajski, Area and Performance Estimation from System-Level Specifications, Technical Report, University of

California, 1992.
[28] Recommandation G722, Codage audiofrequence a 7KHz a un debit inferieur ou egal a 64Kbits/s, Melbourne, 1988.
[29] I. Daubechies, The Wavelett Transform, time-frequency localization and signal analysis, IEEE Transactions on Information Theory, Vol.

36, No. 5, September 1990.
[30] E. Martin, O. Sentieys, H. Dubois, J. L. Philippe, GAUT, an Architecture Synthesis Tool for Dedicated Signal Processors, Proceedings

of International EURO-DAC Conference, pp. 14-19, 1993.
[31] Creating a CORE Generator Module, ISE 6 In-Depth Tutorial, www.xilinx.com
[32] F. Catthoor, S. Wuytack, E. DeGreef, F. Balasa, L. Nachtergaele and A. Vandecappelle, Custom Memory Management Methodology,

Kluwer Academic Publishers, 1998.

