e —

AN 7 rnpy o @

Design Specification for Test and Evaluation of the
NATO Common Ada Programming
Support Environment (APSE)
Interface Set (CAIS) Implementation

23 February 1989

¢
T

Deborah M. Haydon
Yo Annette Englehart
= Mike McClimens
N Jonathan D. Wood
i< Phil Yu
Q
<

£ T COLTEER
APR 06198

SPONSOR: ~]
Ada Joint Program Office (AJPO) CN i"g

Contract No.:

¥19628-89-2-0001
\hu
5,4 ?ED -
. MAR 2
"”‘.l-'il{u‘;:; Vo ’989 €.
RIS Ctice AR s 9 e
DEP/» n” G;ga. "L‘\,;Z" TGy,
oy vSE
The MITRE Corporauon
Washington C | Operations
7525 Colshire Drive
McLean, Virginia 22102
A
890910

e e o
) T release;

ETER PR

BRTON R % '
SR 89 4 06 100

. UNCLASSIFIED _

SECURITY CLASSIFICATION OF THIS PAGE (When Dais cntered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETEING FORM

1. REPONT NUMBER {2. GOVT ACCESSION NO.

3. RECIPIENT S CATALOG NUMBER

TITLE (2 ubt/tjf ‘PO TSI' \Li:valud,o Of Hu Nmo
t(.d:\'ltm ¥ n

Com on%« Trogromming Support S nvironmant
IVECThws seT IMPLﬁMSNTATIDIJ

5. TYPE OF REPORT & PERIOD COVERED'

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)
NAYDOW, D .
ENG Gﬂnrz.'r,ﬂ

McCirmens

—

NOOd/ J
Yu, P.

8. CONTRACT OR GRANT NUMBER(s)
——

F19625-89.-¢-000/

9. PERFORMING ORGANIZATION AND ADDRESS
MITREs dorp,
CoLsHiIre DR.
Mclean VA 238/02

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS
Ada Joint Prooram Office

3D139 (1211 S. FERN, C-107)
The Pentagon

12. REPURT DATE

T!‘.‘NUWBER OF PAGES

e/~ B9
s

- Washingion, D.C. 20301-3081 fferent from Controlling Office)

15. SECURITY CLASS (ofthisreport)
UNCLASSIFIED

15a. BEﬁksaEé FICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17.

UNCLASSIFIED

DISTRIBUTION STATEMENT (of the abstractentered in Block 20 If different from Report)

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and dentify by block number)

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

EDITION OF 1 NOV 65 IS OBSOLETE
S/N 0102-LF-014-6801

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

ABSTRACT

A North Atlantic Treaty Organization (NATO) Special Working Group (SWG) on Ada
Programming Support Environments (APSEs) was established in October 1986. Its charter is
to develop a tool set that constitutes an APSE, to evaluate the APSE on both an individual
component basis and on a holistic level, and to define a NATO interface standard for APSEs.
A specific task within the associated MITRE work program is to develop the design to perform
test and evaluation of SWG Common APSE Interface Set (CAIS) implementations. The SWG
CALIS is the agreed-upon tool interface set for the NATO effort and is a variant of the CAIS
standard, DOD-STD-1838. CAIS provides a standard set of kernel interfaces for APSE tools,
thus promoting portability of tools across disparate architectures.

The SWG CAIS is complex; there are over 500 unique interfaces defined in 29 Ada
packages with over 1,600 possible error conditions. This report outlines an approach and
specifies the design for the development of the test and evaluation environment. The design
outlines the tests to be developed and discusses attributes of the test environment that
influence the design of the test suite.~\This test suite will include two categories of tests. The
first category will test for nominall functionality and completeness of the interfaces by
exercising each of the interfuces deeméd critical in the Requirements for Test and Evaluation
of the NATO Common Ada Programming Support Environment (APSE) Interface Set (CAIS)
(Mularz, 1988). The sccond category will test for overall usability of SWG CAIS capabilities by
exercising combinations of the critical interfaces typically found in the APSE tools. There will
be two SWG CAIS implementations/installed on two different host architectures. This report
provides the design for the proposed test}nd evaluation of the SWG CAIS implementations.

" Accession
| Acces qu
CRTLS GRARI

TIOOTaE 0
R VIR rmad 3
Dot e e
R
C O He o

] B
. Distriduttiea/
i Av=iicot{lity Codes
! ‘hre oL andyzolt
DLst © noootal

[

ACKNOWLEDGMENTS

We would like to thank the MITRE peer reviewers,
for their thorough, conscientious, and timely critique of our
the U.S. Team members and Evaluation Review Board mem

drafts of this paper.

Robbie Hutchison and Tom Smith,
paper. Much credit is also due to

bers who reviewed preliminary

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

EXECUTIVE SUMMARY

1.0 INTRODUCTION

1.1 Background

1.2 Objective

1.3 Scope

1.4 Document Organization

2.0 SWG CAIS TEST AND EVALUATION APPROACH
2.1 Develop Test Environment

2.2 Develop Test Suite

2.3 Reuse Existing Technologv

2.4 Support Staged Test and Evaluation Capability
25 Incorporate Design Goals

2.5.1 Flexibility

2.5.2 Extensibility

2.5.3 Robustness

2.5.4 Portability

3.0 TEST ENVIRONMENT

3.1 Test Administration Procedures

3.2 Test Configuration Management Procedures

vil

Page

Xili

xi

13
13
13
14
14
14
17
18

19

TABLE OF CONTENTS (Continued)

Page
3.3 Test Invocation 19
3.4 Run-time Control 19
3.5 Implementation Assessment 19
3.6 Environment Configuration Assessment 20
3.7 User Requirements 20
3.8 External Interface Requirements 20
3.8.1 Hardware Interfaces 20
3.8.2 Software Interfaces 20
3.9 Performance Requirements 21
3.10 Test Support 21
3.10.1 Timing 22
3.10.2 Tree Walkers 22
10 TEST SUITE 23
4.1 General 23
4.1.1 Nominal Testing 23
4.1.2 Usability Testing 24
113 ‘Cest Name Standards 25
4.1.4 Input/Output Standards 26
4.1.5 Test Design Standards 26
1 1.6 Test Success Criteria Standards 31
4.2 Node Management Tests 31
4.2.1 Test Strategy 32
4.2.2 Specific Support Packages 32

4.2.3 Organization of Node Model 33

vii

TABLE OF CONTENTS (Continued)

4.2.4 Nominal Tests
4.2.5 Usability Tests

4.3 Attribute Management Tests

4.3.1 Test Strategy

4.3.2 Specific Support Packages

4.3.3 Organization of the Node Model
4.3.4 Nominal Tests

4.3.5 Usability Tests

4.4 Structural Node Management Tests

4.4.1 Test Strategy

4.4.2 Specific Support Packages

4.4.3 Organization of the Node Model
444 Nominal Tests

4.45 Usability Tests

4.5 Process Management Tests

4.5.1 Test Strategy

4.5.2 Specific Support Packages
4.5.3 Organization of Node Model
4.5.4 Nominal Tests

4.5.5 Usability Tests

4.6 Direct 10, Sequential IO/Text 10 Tests
4.6.1 Test Strategy

4.6.2 Specific Support Packages

4.6.3 Organization of Node Model

4.6.4 Nominal Tests

4.6.5 Usability Tests

4.7 Import_Export Tests

4.8 Page_Terminal IO Tests

Page

33
35

35

36
36
36
38
39

40

40
40
40
40
42

44

+H
4
41
45
48
51
3l
31
52
32
54

54

54

TABLE OF CONTENTS (Concluded)

Page
4.8.1 Nominal Tests 54
482 Usability Tests 54
4.9 List Management Tests 55
4.9.1 Test Strategy 55
4.9.2 Specific Support Packages 56
4.9.3 Organization of Node Model 56
4.9.4 Nominal Tests 56
4.9.5 Usability Tests 59
APPENDIX : SWG CAIS Test Suite Traceability Matrix 61
REFERENCES 67

GLOSSARY 7

LIST OF FIGURES

Figure Number Page
1 Elements of the NATO SWG APSE 2
2 SWG CAIS Input Data File Sample 27
3 SWG CAIS Output Data File Sample 28
4 SWG CAIS Procedure Documentation Sample 29
5 SWG CAIS Attribute Management Test Node Models 37
6 SWG CAIS Node Model Structures 41

X

LIST OF TABLES

Table Number

1 Scope of SWG CALIS Interface-Level Functional Testing
2 SWG CAIS Critical Packages/Critical Interfaces

3 SWG CAIS Package Dependencies

i

Page

10

EXECUTIVE SUMMARY

In October 1985, nine North Atlantic Treaty Organization (NATO) nations signed a
Memorandum of Understanding (MOU) that established a Special Working Group (SWG) on
Ada Programming Support Environments (APSEs). The SWG’s charter is to develop and
evaluate a tool set using an agreed-upon interface set that standardizes system support to the
tools. The SWG agreed upon an enhancement of the Common APSE Interface Set (CAIS),
which was established as a Department of Defense (DOD) standard in October 1986. This
enhancement, termed the SWG CAIS, was subsequently baselined on 25 August 1988. The
SWG CAIS serves as the portability layer in the APSE by providing a set of standard kernel
level interfaces to a tool developer, thus supporting system-level functionality in an abstract,
consistent manner. The United States (U.S.) is providing implementations of these interfaces
on two different architectures. As a member of the U.S. Team sponsored by the Ada Joint
Program Office (AJPO) and supporting the NATO SWG on APSEs, MITRE has responsibility
for the test and evaluation of the SWG CAIS implementations.

The SWG CAIS presents over 500 standard interfaces for use by a tool developer. These
interfaces manipulate an underlving node model that manages relevant objects such as users,
processes. files, and devices. A systematic approach must be defined to provide adequate
testing of these tool interfaces prior to integration of the SWG CAIS implementation with the
SWG APSE. There are two categories of testing activities. The first category includes
development of a test suite to perform nominal testing (i.¢., testing of individual interfaces) for
a critical subset of the SWG CAIS interfaces. The second category of testing activities
includes enhancement of the test suite to incorporate SWG CAIS usability testing (i.e., testing
combinations of interfaces typical of APSE tools).

This paper provides the design for the proposed test and evaluation of the SWG CAIS.
The design is based on a functional, or “black-box,” approach that precludes any knowledge of
an implementation’s internal operation. The design reflect the requirements put forth in
Requirements for Test and Evaluation of the NATO Common Ada Programming Support
Envircnment (APSE) Interface Set (Mularz, 1988). This paper also discusses attributes of the
test environment that influence the design of the test suite, including the following: test
corfiguration management, reporting of test results, documentation of procedures for executing
the tests, the need to assess partial SWG CAIS implementations, and efficient running of the
test suite. General design goals and stundards are described for the tests, and each test to be
developed is described in terms of the test objective, basic test approach, and results to be
reported.

Xl

1.0 INTRODUCTION

This document defines the design of the test suite and the approach for a test
environment to support test and evaluation of the Common Ada Programming Support
Environment (APSE) Interface Set (CAIS) implementation developed for the Ada Joint
Program Office (AJPO) in conjunction with the North Atlantic Treaty Organization (NATO)
Special Working Group (SWG) on APSE, hereafter referred to as the SWG CAIS
implementation.

1.1 Background

In the early 1970’s, the Department of Defense (DOD) determined that the proliferation
of computer languages for embedded system software was consuming an increasing portion of
the DOD software budget. To help address this problem, the Ada language was created and
standardized in the early 1980’s. However, it is recognized by the Department of Defense, the
software engineering community, and our NATO counterparts that a standardized language
alone is insufficient to address future large-scale development projects. To ensure the desired
improvements in future software development projects, a language needs to be coupled with
quality tools. The means to plan, analyze, design, code, test, integrate, and maintain such
systems on a common set of software is referred to as a programming support environment.

A STONEMAN-based APSE consists of a tool set and a system-level interface set
(STONEMAN, August 1980). The interface set provides kernel-level functionality in an
abstract, consistent manner with specific system mapping embodied in a particular interface
implementation. Use of these interfaces by a tool developer promotes transportability of
APSE tools across disparate architectures.

In October 1986, nine NATO nations signed a Memorandum of Understanding (MOU)
that estublished a SWG on APSEs. This SWG has several goals defined for it: development of
an APSE on two different host architectures using an agreed-upon interfuce set, evaluation of
the tools and the interface set as individual components, a holistic evaluation of the APSE (i.e,
as an integrated entity rather than as individual components), and specification of a NATO
interface standard for APSEs.

The NATO SWG APSE is based upon a STONEMAN model. While the goal of the
STONEMAN model is that tools will use an interface layer exclusively, the SWG APSE also
allows direct access to the underlying system, where necessary. Figure 1 illustrates the NATO
APSE and identites the NATO participants responsible for the development of each
component. DOD-STD-1838 defines o particular interface set named CAIS. The agrecd-upon
interface set for the NATO effort is a variant of DOD-STD-1838 named the SWG CAIS
(DOD,1986). The SWG CAIS will be developed for two host architectures: Digital Equipment
Corporation (DEC) VAX/VMS and a yet-to-be-determined architecture. Transportability of
the NATO APSE will be demonstrated by a porting of its component tools.

Four working boards were established to eflect the SWG goals. [ach board has an
individual charter that defines its objectives and its deliverables. These four hoards are the

Figure 1
Elements of the NATO SWG APSE

NORWAY

(Symbolic)
SPAIN Debug CANADA

NETHERLANDS

CANADA

Common APSE

INTERFACE SET NETHERLANDS
(CAIS)

UNITED STATES

Tools and Integration Review Board (TIRB), the Demonstration Review Board (DRB), the
Interface Review Board (IRB), and the Evaluation Review Board (ERB).

The TIRB coordinates the development and integration of the tools and the SWG CAIS
within the NATO APSE. Each participant identified in figure 1 is tasked with developing its
respective APSE component. Specifically, the United States is responsible for implementation
of the SWG CAIS on the two host architectures.

Since embedded systems support was a primary concern in the development of Ada and
APSEs, the NATO project includes APSE support for an MC68020 processor as a target
system. The DRB will employ the host APSE for development of two weapon system
scenarios that are targeted to the MC68020. This demonstration will be used to evaluate the
APSE from a holistic level.

The IRB is tasked with developing the requirements and specification of an interface
standard for APSEs. To perform this task, the IRB will analyze existing interface standards
such as CAIS; the planned upgrade, CAIS-A; a European standard known as the Portable
Common Tool Environment (PCTE), and an upgrade called PCTE+ The results of their
analysis will be an interface set specification that would define the recommended set to be used
on future NATO APSEs.

The ERB participants will develop evaluation technology and will use it to assess the
individua) components of the APSEs that are developed by the TIRB participants. Both the
United States and the United Kingdom (UK) have specific tasks within this board. The United
States is tasked with performing test and evaluation of the SWG CAIS implementations. The
United Kingdom is responsible for evaluation of tools within the NATO APSE.

The "Requirements for Test and Evaluation of the NATO Common Ada Programming
Support Environment (APSE) Interface Set (CAIS) Implementation” document identified the
technology required to support test and evaluation of the SWG CAIS implementation (Mularz,
1988). This document presents the design for those tests that cumpose the test and evaluation
activities.

1.2 Objective

The objective of this task is to design a limited set of tests that will test the SWG CAIS
implementation for functionality and usability and also provide a level of confidence to the
SWG CAIS users (i.e., tool developers), that the SWG CAIS implementation is sufficiently
tested prior to tool integration.

Evaluation is the process used to quantily the fitness for purpose of an item in terms of
its functionality, usability, performance, and user documentation. The test suite for the test
and evaluation of the SWG CAIS implementations comprises two categories: nominal tests and
usability tests. Nominal tests check for proper functionality of individual interfaces, and
usability tests check sequences of interface calls for both usability and performance. The
sequences of interface calls are chosen to reflect typical usage by tool writers. Procedures for a
detailed evaluation of documentation have not been developed because DOD-STD-1838 and
the SWG Addendum provide detailed descriptions of the functionality of SWG CAIS

3

implementations. Evaluation of users manuals and installation guides for SWG CAIS
implementations, however, will be performed using standard check lists.

1.3 Scope

The scope of this document is limited to defining the design for the tests that will be used
in test and evaluation activities for the SWG CAIS implementation. The scope of the test and
evaluation task has been defined as a set of testing activities that is independent of the SWG
CAIS developer. There are two categories of testing activities. The first category, nominal
testing, includes the testing for correctness in the functionality of critical interfaces. These
critical interfaces are defined in Section 2.2. The second category, usability testing, includes an
enhancement of the nominal test activities to test combinations of SWG CAIS interfaces
typical of APSE tools. Exhaustive testing is outside the scope of the current effort. This
design of the test and evaluation environment and test suite is specifically targeted to the DEC
VAX/VMS SWG CAIS implementation.

1.4 Document Organization

This document describes the design for the tests that will be used to perform test and
evaluation of the SWG CAIS implementation. Section 2 gives the approach for evaluation of
the SWG CAIS implementation. Section 3 identifies the test environment that will support the
testing of the SWG CAIS implementation. Section 4 includes design information on the test
suite used for both nominal and usability testing. The appendix provides a traceability matrix
showing the names of the interfaces exercised by each test.

2.0 SWG CAIS TEST AND EVALUATION APPROACH

The approach for test and evaluation of the SWG CAIS implementations takes into
account current test and evaluation techniques both in terms of methods and available
technology along with considerations that are unique to the NATO effort. The test and
evaluation approach includes development of a test environment, which will consist of a set of
manual and automated procedures that will address the execution of tests and the collection of
results, as well as the development of a test suite of Ada programs. The reuse of existing
technology and support of a staged test and evaluation capability is considered, as is the
incorporation of design goalare such as flexibility, extensibility, robustness, and portability.

The approach for the development of the test environment is described further in Section
2.1. The approach for the development of the test suite is further described in Section 2.2.
(Specific design information on the test environment is provided in Section 3, and information
on the test suite is provided in Section 4.) Reuse of existing technology is described in Section
2.3, support of a staged test and evaluation capability is described in Section 2.4, and
incorporation of design goals is described in Section 2.5.

2.1 Develop Test Environment

A test environment consisting of a set of test procedures (both automated and manual)
and guidelines in controlling the execution of the tests will be developed for the test and
evaluation process. The primary goal of the SWG CAIS test procedures is to support the test
and evaluation of a SWG CAIS implementation in a controlled manner and to be able to
support test and evaluation of partially completed SWG CAIS implementations. The design of
the tests takes into account the requirement that the SWG CAIS interfaces function in
accordance with the DOD-STD-1838 specification as modified by the SWG. The design of the
test procedures takes into consideration the need for the construction and execution of a large
number of repeatable tests on the SWG CAIS implementation.

2.2 Develop Test Suite

The evaluation capability will be developed using a functional or black-box approach to
test specification. Tests will be generated based on the specification of the SWG CAIS and not
on the specific structural details unique to a given implementation.

Some tests will be run to determine simple or nominal functionality and completeness of
the interfaces; other tests will be run to determine the usability of the SWG CAIS. The
intent is to determine that the tested SWG CAIS operations are syntactically and semantically
equivalent to the SWG CALIS specification and that the SWG CAIS implementation is usable.

The scope of the SWG CAIS test and evaluation effort currently includes only those
interfaces determined to be critical to NATO SWG APSE tool writers. Table 1 lists the
packages explicitly defined in the current SWG CAIS specification, the number of unique
interfaces associated with each package, and the number of parameters and exceptions
associated with each package. The unique exceptions defined for the SWG CAIS can be raised

-l

— e — —

by different interfaces for similar conditions resulting in over 1,600 possible exception
conditions.

Since not all of the interfaces listed in table 1 can be tested within the scope of this effort,
only those SWG CAIS packages determined a priori to be “critical” for the tool writers will be
tested. Critical SWG CAIS packages were selected based on the perception of anticipated
usage by the NATO SWG APSE tool writers. Ten of thirty-four SWG CAIS packages were
selected, and within these packages, the critical interfaces were determined. The five data
definition packages will be tested indirectly through testing of these ten selected SWG CAIS
packages. Table 2 lists the critical SWG CAIS packages and corresponding critical interfaces
that will be tested.

Packages within the SWG CAIS are hierarchically defined. This means that successful
use of an interface at one level in the SWG CAIS will in general depend on the successful
execution of other SWG CAIS packages on which it depends. Table 3 identifies the package
dependencies. The design of the test suite structure will account for these dependencies.

Given that test and evaluation of the SWG CAIS implementation is based on a functional
approach, the results of a test can only be analyzed from the inputs and outputs of a test; it
cannot make use of any internal structures or logic of an implementation to evaluate the
results. This implies that in some instances it will be necessary to execute one SWG CAIS
interface to determine the validity of the output of another interface. For example, a test
would be developed to evaluate the OPEN file interface. To ensure that the OPEN function
works correctly, the Boolean function IS_LOPEN could be used. Therefore, the OPEN test
depends on successful operation of the IS_OPEN interface. The order of interface tests
therefore becomes an important evaluation consideration. Lindquist identifies this evaluation
issue as a “hidden interface” (Lindquist, 1984).

Tests will be designed to exercise each interface independently. If there are hidden
interfaces, whenever possible, the dependent test is performed first. The evaluation tests will
measure interface timing and capacity limits. Some evaluation tests will mimic specific SWG
APSE tools/SWG CALIS interactions in assessing the usability of SWG CAIS interfaces and
strategies for making best use of SWG CAIS interfaces. The detailed design for this test suite
is defined in Section 4.

2.3 Reuse Existing Technology

Several technologies currently exist that were considered for incorporation into the SWG
CAIS test environment. The available technulogies were presented in the Requirements for
Test and Evaluation of the NATO Common Ada Programming Support Environment (APSE)
Interface Set (CAIS) Implementation document (Mularz, 1988) and included Ada Compiler
Validation Capability (ACVC) tests, CAIS prototype tests, CAIS Terminal Input/Output
(I/O) test, Naval Ocean Systems Center (NOSC) List Management tests, and the United
Kingdom test harness and test suite evaluation technology.

These existing tests and the UK test harness were all reviewed for possible reuse in the
SWG CAIS test and environment capability. All of the List Management tests originally
developed by NOSC and the CAIS Terminal I/O test were reused and composed the List

Table 1

Scope of SWG CAIS Interface-Level Functional Testing

SWG Package Interfaces | Parameters | Possible
CAIS ' , Exceptions
| Spec. Ref. Raised
511 CAIS_DEFINITIONS 0 0 0
512 CAIS.NODE_.MANAGEMENT 68 146 w7
513 CAIS_ATTRIBUTE_.MANAGEMENT 26 73 120
514 CAIS_ACCESS_CONTROL.. 12 7 48
: MANAGEMENT
5.1.5 + | CAISSSTRUCTURAL-NODE. 4 26 36
MANAGEMENT
521 CAIS_PROCESS_DEFINITIONS 0 0 0
522 CAIS_PROCESS . MANAGEMENT 38 114 166
§3.1 CAIS_DEVICES 0 0 0
§32 CAIS_IO_DEFINITIONS 0 0 0
533 CAISJO-ATTRIBUTES 16 16 60
534 CAIS_DIRECT_I0 16 4 28
835 CAIS_SEQUENTIAL.IO 11 34 28
536 CAIS_TEXT.IO 56 79 28
537 CAIS_QUEUE_MANAGEMENT 18 141 130
$38 CAIS_SCROLL_TERMINAL_IO 42 58 64
539 CAIS_PAGE.TERMINAL_IO 49 73 82
$.3.10 CAIS_ FORM_TERMINAL._IO 30 45 35
§3.11 CAISMAGNETIC_.TAPE 1O 19 32 43
§3.12 CAIS_IMPORT_EXPORT 2 12 24
5313 SWG_CAIS_HOST_-TARGET._10 8 10 10
54.1 CAIS_LIST_.MANAGEMENT 29 §5 98
54121 CAIS_LISTITEM 10 33 63
54122 CAIS_IDENTIFIER ITEM 11 31 69
54123 CAIS_LINTEGERITEM 4 31 70
54.1.2¢ CAIS_FLOATITEM 11 31 70
54.1.28 CAIS_STRING_ITEM 10 k 4] 67
55 CAIS_STANDARD 0 0 0
56 CAIS_.CALENDAR 15 2 s
57 CAIS_PRAGMATICS 0 0 0
Totals _S516 1610 1621

Determining the number of interfaces in & SWG CAIS package is not slways as simple as counting the
procedures and functions listed in the table of contents of DOD-STD-1838. For the CAIS 1/0 pack-
ages, some of the interfaces are “borrowed” from the Ads Language Reference Manual with both addi-

Table 2

SWG CAIS Critical Packages/Critical Interfaces

Critical SWG CAIS Packages

Critical Interfaces

CAISNODE_MANAGEMENT

CAIS ATTRIBUTE_MANAGEMENT

CAIS.STRUCTURAL.NODE MANAGEMENT
CAIS_PROCESS_MANAGEMENT

CAISDIRECT.IO

CAISIMPORT-EXPORT

CAIS_.FO AL 10

DELETE.NODE

OPEN

CLOSE

COPY.NODE

CREATE _SECONDARY_RELATIONSHIP
DELETE_SECONDARY.RELATIONSHIP
SET-CURRENT-NODE
GET-CURRENT-NODE
CREATENODE.ATTRIBUTE
CREATE-PATH-ATTRIBUTE
DELETE.NODE.ATTRIBUTE
DELETE_.PATH.ATTRIBUTE
SETNODE_ATTRIBUTE
SET-PATH-ATTRIBUTE
GET_NODE_ATTRIBUTE
GET_PATH.ATTRIBUTE
CREATE_NODE
SPAWN_PROCESS
CREATE.JOB
APPEND_RESULTS
GET-RESULTS
WRITE_RESULTS
GET-PARAMETERS
CURRENT.STATUS
OPEN_NODE_.HANDLE_COUNT
JIO_UNIT-COUNT
ABORT-PROCESS
DELETE_JOB

CREATE

OPEN

CLOSE

RESET

READ

WRITE

SYNCHRONIZE
IMPORT-CONTENTS
EXPORT-CONTENTS

N/A

— i e — —— - ——— T —

Table £

SWG CAIS Critical Packages/Critical Interfaces (Concluded) -

CAIS_SEQUENTIALJO

CAIS_TEXTJO

CAIS_LIST_.MANAGEMENT

| Critical SWG CAIS Packages Critical Interfaces

CREATE

OPEN

CLOSE

RESET

READ
WRITE

SYNCHRONIZE

CREATE

OPEN

CLOSE

RESET

PUT-LINE

GET-LINE

SYNCHRONIZE
SET-TO-EMPTY_LIST
COPY.LIST
CONVERT-TEXT-TO_LIST
SPLICE
CONCATENATE-LISTS
EXTRACT-LIST

REPLACE

INSERT

DELETE

ISEEQUAL

KIND_OF_LIST
KIND_OF_JTEM
NUMBER-OFITEMS
GET-ITEM.NAME
POSITION_.BY.NAME
POSITIONS_BY_VALUE
TEXT.FORM

TEXT-LENGTH
EXTRACT-VALUE
EXTRACTED_VALUE
MAKE.THISITEM-CURRENT
MAKE_CONTAINING.LIST-.CURRENT
POSITION.OF.CURRENT_LIST
CURRENTLIST.IS.OUTERMOST
CONVERT-TEXT-TO-TOKEN

COPY.TOKEN

Table 8§

SWG CAIS Package Dependencies

Package Name Dependent on Package | Contains/Exports
_Package
CAIS_PRAGMATICS N/A Noae
CAIS.STANDARD CAIS_PRAGMATICS None
CAIS_LIST_.MANAGEMENT CAIS_STANDARD CAIS_LISTITEM
CAIS_.PRAGMATICS CAIS_IDENTIFIER_ITEM
CAIS_INTEGERITEM
CAIS_ FLOATJTEM
CAIS_STRINGITEM
CAIS_DEFINITIONS CAIS_STANDARD None
CAIS_LIST_MANAGEMENT
CAIS_.CALENDAR CAIS_STANDARD None
CAIS_.NODE_MANAGEMENT CAIS_STANDARD None
CAIS_DEFINITIONS
CAIS_.CALENDAR
CAIS_LIST MANAGEMENT
CAIS_ACCESS_.CONTROL
CAIS_ACCESS_.CONTROL..
MANAGEMENT
CAIS_ ATTRIBUTE. CAIS_STANDARD None
MANAGEMENT
CAIS_DEFINITIONS
CAIS_LIST MANAGEMENT
CAIS_ACCESS.CONTROL- CAIS_DEFINITIONS None
MANAGEMENT
CAIS_ LIST_ MANAGEMENT
CAIS_STRUCTURAL-NODE. CAIS_DEFINITIONS None
MANAGEMENT
CAIS_ACCESS_CONTROL.
MANAGEMENT
CAIS_LIST.MANAGEMENT
CAIS_PROCESS_DEFINITIONS | CAIS_DEFINITIONS None
CAISLIST-MANAGEMENT

10

Table 8

SWG CAIS Package Dependencies (Continued)

Package Name

Dependent on Package

Contains/Exports
Package

CAIS_IO_DEFINITIONS

CAIS_IO-ATTRIBUTES

CAIS_DIRECT-IO (GENERIC)

CAIS_.PROCESS.MANAGEMENT

CAIS_SEQUENTIAL_IO(GENERIC)

CAIS_STANDARD
CAIS_CALENDAR
CAIS_DEFINITIONS
CAIS.LIST_.MANAGEMENT
CAIS_PROCESS.DEFINITIONS
CAJS-ACCESS_-CONTROL-
MANAGEMENT

CAIS_.STANDARD
CAIS_DEFINITIONS
CAIS_LIST.MANAGEMENT
CAIS_DEVICES

CAIS_STANDARD
CAIS_DEFINITIONS
CAJS_IO_DEFINITIONS
CAIS_DEVICES

CAIS_STANDARD
CAIS_DEFINITIONS
CAISIO_DEFINITIONS
CAIS_ LIST_ MANAGEMENT
CAIS-ACCESS_CNONTROL-
MANAGEMENT

CAIS_STANDARD
CAIS_DEFINITIONS
CAISJO_DEFINITIONS
CAIS_LIST_-MANAGEMENT
CAIS-ACCESS_-CONTROL-
MANAGEMENT

None

None

None

Self

Self

11

Table 8

SWG CAIS Package Dependencies (Concluded)

Package Name

Dependent on Package

Contains/Exports

Package

CAIS_TEXT-10 (GENERIC)

CAIS.QUEUE.MANAGEMENT

CAIS_SCROLL_-TERMINAL._IO

CAIS_PAGE_TERMINAL_1O

CAIS_.FORM_TERMINALO

CAIS_.MAGNETIC.TAPE_1O

CAIS.IMPORT_EXPORT

SWG_CAIS_HOST-TO-TARGET-JO

CAIS_STANDARD
CAIS_DEFINITIONS
CAIS_IO_DEFINITIONS
CAIS_LIST_.MANAGEMENT
CAIS_ACCESS_CONTROL-
MANAGEMENT

CAIS_.STANDARD
CAIS_DEFINITIONS
CAIS_IO.DEFINITIONS
CAIS_LIST_MANAGEMENT
CAIS_ACCESS_CONTROL-.
MANAGEMENT

CAIS.STANDARD
CAIS_DEFINITIONS
CAISJO.DEFINITIONS

CAIS_STANDARD
CAIS_DEFINITIONS
CAIS_IO_DEFINITIONS

CAIS.STANDARD
CAIS_DEFINITIONS
CAIS_IO_DEFINITIONS

CAIS_STANDARD
CAIS_DEFINITIONS

CAlS DEFINITIONS
CAIS_LIST_ MANAGEMENT

CAIS_STANDARD
CAIS_LIST MANAGEMENT

CAIS_10.DEFINITIONS

Self, INTEGERO,
FLOAT.O, FIXED.IO,
ENUMERATION_IO

None

None

None

None

None

None

None

12

Management and CAIS Terminal I/O portions of the test suite. The NOSC tests were
modified to allow batch processing instead of interactive processing, and to produce output files
that contain the test results.

The remaining tests were not directly usable, however, because they overlapped the
coverage provided by the NOSC list management tests, they focused on Ada issues rather than
SWG CAIS issues, they were heavily implementation-dependent, or they were packaged to
exercise large groups of interfaces rather than individual interfaces. The UK test harness was
not used originally because of risks in using it while developing tests on a partially completed
SWG CAIS implementation. The SWG CAIS test suite and test environment have been
designed to allow evolution towards use of the UK test harness once the test suite and SWG
CAIS implementation are complete. The test suite also incorporates methods of testing
exceptions and of performing automatic checking of test results that were used in the existing
test technology.

2.4 Support Staged Test and Evaluation Capability

The TIRB plans to stage delivery of tools and the SWG CAIS implementations. A
staged development approach was considered for the SWG CAIS test and evaluation
capability, but not incorporated into the final design. Designs for all tests are included in this
docnment. Included are test designs for testing nominal functionality as well as for usability.

The SWG CAIS developer of the first implementation will provide staged releases of the
SWG CAIS implementation during the development process. Each SWG CAIS implementation
release will be regression tested independently using the test and evaluation process. The test
configuration management procedures outlined in Section 3.3 address the issue of regression
testing.

2.5 Incorporate Design Goals

Additional design goals of flexibility, extensibility, robustness. and portability were
considered and where possible incorporated into the design. In each of the following sections.
examples of how each design goal was incorporated into the design are given.

2.5.1 Flexibility

Flexibility is the ability to change SWG CAIS test suite configurations with a minimum
of effort. Flexibility is accomplished by establishing and adhering to standards that will
support future eflorts in changing software to accommodate changes in requirements relating
to the mission, function, or associated data. Naming conventions, configuration management
guidelines that facilitate identification and collection of test results, and systematic techniques
in designing tests that exercise, where possible, only one interface all support this goal of
flexibility. As well, use of common reporting packages will make the tests more flexible by
improving modularity.

13

2.5.2 Extensibility

Extensibility is the ability to add new tests to the test suite at minimum cost.
Extensibility of the test suite can be accomplished by establishing and adhering to syntactic
and semantic standards for tests. One form of syntactic standard, the configuration
management of test names, has already been mentioned. The configuration management of
test names contributes to the overall extensibility as well as maintainability of the test suite by
providing a taxonomy of tests. It makes clear which tests have been written, which tests are
currently needed, and which intended purpose a SWG CAIS test serves.

The test design included, where possible, the setup of the state of the node model
instance required for the test and verification of its pre- and post-state. Therefore, each test
can be executed independently of any other test. This philosophy supports ease of test suite
extensibility.

Some of the tests will use input data files, aliowing test cases to be added or modified by
editing a data file.

The ability to extend the test environment to support SWG CAIS implementation
evaluation further was considered in its design. For instance, the tests do not preclude the
incluston and instrumentation of perforimance measurement functions if needed.

2.5.3 Robustness

Many tests in the test suite will raise exceptions. Two types of exceptions will be raised
by these tests, those which are expected to be raised and those which are not expected to be
raised. Scme ‘e<ts will be written explicitly to observe the correct raising of an exception
defined by the SWG CAIS specification. These exceptions are expected. If an unanticipated
exception is ramsed in the SWG CAIS implementation under test or if the test has an error
which raises the wrong exception, the exccption will be unexpected

In dealing with both types of exceptions, one overriding concern is to not have test
execution terminate because of an exception that was not anticipated in the test’s exception
handler. Rather, there should be orderly error 1 covery procedures from the SWG CAIS when
limits are exceeded or exceptions are encountered. Tests that are likely to raise exceptions
shall have exception handlers embedded within them. Tests that may cause one of several
exceptions to be raised shall explicitly handle the exceptions with relevant exception handlers
embedded within their bodies. An unexpected exception shall also be trapped at the test level
“-d its occurrence toported back.

2.5.4 Portability

Portability is the ability to move a software system from one computer to a dissimilar
computer with few or no changes to the source code. ldeally, recompilation to produce new
object code files and relinking arc the only changes required to effect a move to another “Ada
machine.”” Portability issues are addressed at three levels: the computer, the host operating
system, and the Ada compiler.

14

Portability can be achieved by limiting the use of implementation-dependent features of
the Ada language and the underlying machine. Some host dependencies will be required, such
as access to the file system to store test results and configurations of tests to be run, but
reliance on such features shall be justified in the design. The data base that contains the
results shall be portable. Both the test environment and individual tests shall also isolate
nonportable features into separate portability packages. The test environment shall be written
using Ada constructs that maximize its portability and minimize the rehosting effort. The test
design takes this design goal into account. Tests may also use packages that translate the
logical names referenced in the tests to host specific file names. The TG_Names package is an
example. Use of a single user node, specifically “current_user” will permit other users to
execute a test without modifying the source code of the test. The test suite and test
environment are designed to be portable; however, implementation-dependent features (e.g.,
Ada 1/0 statements and host command procedures) will be utilized. To the extent possible,
these implementation-dependent features will be isolated.

16

3.0 TEST ENVIRONMENT

The test environment is the set of manual and automatic procedures required to control
the execution of a large number of repeatable verifiable experiments on the SWG CAIS
implementations. Each test of the SWG CAIS implementation is realized as a sequence of Ada
statements. A test may be implemented as a main program, or several tests may be grouped
together as individual procedures under the control of the main Ada program. In either case,
the test environment must support the design goals of flexibility, extensibility, robustness, and
portability across the following processes required for running the tests:

e Compilation and linking of test code

e Installation of executable tests into the CAIS environment
o Initiation of test execution

o Collection of test results

e Generation of test reports

Furthermore, the test environment must support the requirement to test partially completed
SWG CAIS implementations. That is, each test must focus on a single SWG CAIS interface or
a group of closely related SWG CALIS interfaces, and a test must not depend upon other tests
being executed prior to its own execution (i.e., they must not rely on any resultant state of the
SWG CAIS).

The use of a comprehensive test harness normally offers the best approach for providing a
good test environment and was initially considered. However, the requirement to test partial
implementations of the SWG CALIS involves risks in integrating the implementation under test
with a large test harness. Therefore, environment support for the SWG CAIS test suite will be
provided first as a collection of manual and automated procedures, design considerations, and
organizational decisions that together form an environment for the efficient management of the
test suit.

The test environment will be designed to allow migration to the use of a test harness as
that technology, the SWG CAIS implementation, and the SWG CAIS test suite itself matures.
The fundamental requirements for this migration are that the tests be modularized for
individual execution and that the conventions for test naming and organizatidn ensure unique
identification of tests and test results. The use of a test harness will provide for automatic
report generation, increase the automation of the test procedures, and further the design goals
of flexibility, extensibility, and portability. Therefore, the initial test environment will contain
the following:

e Main Ada programs, where appropriate, that collect together several tests as

independent subprograms (thereby reducing the number of executable load
modules).

17

¢ Host command files to compile and link tests.
e Host command files to execute tests.
e Templates to assist the manual generation of test reports.

This initial test environment will then be enhanced, as the test suite, SWG CAIS
implementation, and test harness mature by undertaking the following:

1) Use of the test harness to collect test results and generate test reports.

2) Replacement of host command files with test harness abstract control files, i.e., test
control sequences.

The support required for testing SWG CAIS implementations includes test
administration procedures for establishing node model states, test configuration management,
test invocation, execution (i.e., run-time) control, the ability to assess partial SWG CAIS
implementations, identification of how the operational environment is affected by system
configuration, user documentation of test inputs and expected outputs, limitation of hardware
and software dependencies in the test, and test suite performance issues. These elements of
test support are individually defined in the following sections.

3.1 Test Administration Procedures

Many tests will be grouped together in sequences, such as the CAIS node management
tests and the CAIS list management tests. Tests will be organized into sequences that exercise
intrfaces from the same CAIS package or share the same type of testing approach. This
grouping approach of sequences of tests will permit more confidence that no relevant tests have
been overlooked as well as decrease the time needed to construct a test set and allow the
operator to rerun the same exact sequence of tests. The ability to form logical sequences of
tests will also be important since the order in which tests are executed is critical to ensuring
that SWG CAIS interfaces used to implement the test of another interface will have been
tested prior to the test that is dependent upon them. There will be a means of saving and re-
executing test sequences. Test sequences shall be saved either in job control files or in main
Ada programs.

The procedures for test administration also require that each test include methods for
creating and controlling the state of the node model as required for proper execution of each
pacticular test. The test setup includes establishing user-independent pathnames: defining and
maintaining an appropriate set of SWG CAIS node model instances (so that tests may be run
in either a single-user or multi-user mode); and creating the expected set of nodes,
relationships, and attributes prior to the actual invocation of series of tests and then deleting
any modifications to the node model upon test completion. The test setup and test cleanup
functions will be kept separate from the actual test code either as independent procedures or as
consequerccs of command procedure instructions.

18

3.2 Test Configuration Management Procedures

The purpose of the test configuration management procedures for the SWG CAIS test
and evaluation effort is to keep track of all of the information relevant during testing: test
source files, test libraries, test executables, input data files, formal output files, trace files,
logged session files, baselines of various versions of the SWG CAIS, and test results.

The configuration management scheme to support the tracking of this information may
be simple, but should be consistently enforced. Naming conventions will be adopted to
associate the various types of files that apply to the same test, and directories will be used to
maintain the separateness of these files and to group files of the same type. Source files, test
input data files, and test output report files should be maintained in separate directories. All
tests will obtain their test data from the input directory and will output formal reports and
trace files to the output directory. Tests may also output status messages to ihe screen.
Templates for reports will list all test names, and test output files will list the versions of both
the test source code and the test input file.

3.3 Test Invocation

The tests must be able to be run within the environment created by the SWG CAIS
implementation. The general approach is to set up a SWG CAIS node instance by creating a
user whose Default_Tool relation points to a file node that contains an executable that is either
a single SWG CAIS test or a controller that allows individual tests to be run. The test or
controller is then invoked by logging into the CAIS.

3.4 Run-time Control

The test environment is designed to run in batch mode as much as possible. Interactive
input and output are supported only where necessary, such as for testing of the TERMINAL
1,0 package and for debugging purposes.

3.5 Implementation Assessment

As mentioned in Section 2.4, a staged development approach was considered for the SWG
CALIS test and evaluation capability. The actual requirement is to be able to test partial SWG
CAIS implementations. This requirement does not relieve the SWG CAIS test and
environment capability from addressing the full scope of the SWG CAIS. Rather, it increases
the difficulty by constraining the test construction and requiring greater flexibility within the
test environment. Thus, tests must be targeted to individual interfaces or to small groups of
closely related interfaces. Each SWG CAIS implementation release will be regression tested
independently using the test and evaluation process. During regression testing, a new release is
tested against the standard test suite to determine whether previously failed tests now pass
and to verify that previously passed tests still pass. Thus, the extent of the SWG CAIS
implementation completion and conformance is determined.

19

3.6 Environment Configuration Assessment

Because each test must be compiled and linked with SWG CAIS implementations under
test, it is necessary to determine the exact configuration of the underlying software and
hardware environment. Installation of a SWG CAIS implementation will undoubtedly involve
the setting of various system capacities, access authorities, and other configuration options.
The setting of such system parameters will affect both the capacities and the efficiency of the
implementation. Proper and consistent setting of these variables will be required for correct
execution of the tests. The implementation-dependent characteristics of the Ada development
environment must be understood so that they can be taken into account during testing. The
behavior and results of tests (especially process management tests) will be affected by task or
process scheduling algorithms (priority allocation schemes).

As well, the SWG CAIS tests should not depend on all SWG CAIS interfaces during the
testing process since all SWG CAIS interfaces may not be fully operational. Therefore, some
host-dependent services must be used. These host-dependencies will be limited to dependencies
arising from the use of Ada I/O facilities. In particular, SWG CALIS tests will depend upon the
host compiler’s implementation of Text_Io and upon the syntax of host filenames.

3.7 User Requirements

The procedures for test setup, test execution, and interpretation of test results will be
documented in a user’s manual.

3.8 External Interface Requirements

The test environment will interact with th> host hardware and the host software
development environment. The following two sections address these interfaces.

3.8.1 Hardware Interfaces

There are no explicit hardware requirements in the SWG CAIS implementation test
environment. All host dependencies are limited to the Ada compilation system, the SWG CAIS
implementation, and the host operating system. The test environment does assume the ability
to print files and to interact via a terminal. Disk and memory capacities required by the test
environment correspond to those required by the SWG CAIS implementation and are within
the limits specified in the NATO SWG APSE requirements document (NATO, 1987).
3.8.2 voftware Interfaces

The following list is a minimum set of resources that will be available for test
environment execution:

e A validated Ada compilation system with Text_lo that compiles the SWG CAIS.

e A SWG CAIS implementation (possibly a partial implementation).

20

e Operating system support for command procedures, directory structures, and logical
pathnames.

Some parts of both the Ada development environment and the Ada run-time
environment will be present during SWG CAIS testing. SWG CAIS implementations are also
likely to incorporate the use of shared files and will likely require special capacity limits and
host privileges.

3.9 Performance Requirements

Two types of performance are applicable to the design of the SWG CAIS test
environment: timing and capacity. The tests must be simple, including only the complexity
required by the test objective. Therefore, both control and data structure complexity will be
avoided whenever possible.

The primary performance requirement for the test suite is that a tester be able to run the
entire test suite within a reasonable period of time, nominally one week. This is affected by
both the speed of the tests and the amount of user interaction required. Performance is also
important during test suite maintenance. The test suite is designed so that tests can be
independently compiled, linked, and executed. The design also allows the incremental addition
to or modification of the test suite. The minimal effort required to build a new suite is
localized to the tests being added or changed. The speed of execution of the test environment
is a secondary consideration to the more important issues of complete and reliable testing.
SWG CAIS tests are designed to minimize execution time especially in the area of user
interaction, but speed of execution is a secondary performance issue in the test environment as
a whole.

Capacity refers to the ability of an Ada compilation system to generate correct code for a
given number of Ada objects. For example, the test design takes into consideration that Ada
compilers may have limitations on the number of enumeration literals supported before they
exhaust symbol table space. For tests involving multiple instances of objects or loops to obtain
average execution times, the number of objects or loops will be abstracted within the test so
that these tests may be calibrated for the SWG CAIS implementation under test.

3.10 Test Support

Some test support packages were developed for the tests for the SWG CAIS
implementation. The first category of test support includes timing packages. The second
category of test support includes a Tree_Walkers package, which is used to determine the
current state of the node model instance. Other test support packages were also developed for
one or more sets of tests. These are described fully in the section(s) where the tests that
utilized them are described.

3.10.1 Timing

SWG CALIS interfaces will have their timing characteristics measured. The elapsed time
for some SWG CAIS interfaces will be measured. The Ada package Time_Recorder provides
these timing services through interfaces that start the measured time, stop the measured time,
and report the average of several timings.

3.10.2 Tree Walkers

The package Tree_Walkers is intended to be used as a resource by testers to determine
the current state of the node model. The Tree_Walkers package contains the following
utilities: Walk_Tree, Do_Something, Delete_Tree, Print_Tree, and Print_Node.

Walk_Tree is a generic Ada procedure that implements a general-purpose iterator for
identifying all descendants of any node. The Do_Something procedure provides a means of
encapsulating actions to be performed at each node of the tree. Delete_Tree and Print_Tree
are other examples of useful instantiations of Walk_Tree. The procedure Print_Node is the
action performed at each node of the tree when Print_Tree is invoked and is described fully in
the next paragraph.

Procedure Print_Node prints out the contents of a node, including the primary name,
node kind, all of the attributes, all of the primary relationships, and all of the secondary
relationships. While some SWG CAIS implementations may have implementation-dependent
services for printing the contents of a node model, this procedure is constructed specifically to
be independent of the implementation. The intended use of this procedure, Print_Node, and
the associated procedure Print.Tree is to "see” the state of the current node model. This is
necessary when running tests that require a method for determining "what else” may be hidden
in the node model.

N~
tv

4.0 TEST SUITE

This section defines the test suite required to support the SWG CAIS test and evaluation
approach. The tests are organized into sets that correspond to the functional sections of
DOD-STD-1838. While the design and style of the individual tests vary considerably across
these sets, the tests within each functional set are quite similar. Section 4.1 describes the
general design criteria that apply to all tests. Each of the sections 4.2 through 4.9 describes
the design for a set of related tests, which includes information on test strategy, specific
support packages, organization of the node model, as well as specific designs for both the
nominal and usability classes of testing. For each test, the interface(s) that will be exercised
will be identified along with the corresponding section number in the “Common Ada
Programming Support Environment (APSE) Interface Set (CAIS),” DOD-STD-1838.

4.1 General

This section consists of general information regarding the design of both the nominal and
usability categories of testings, as well as design standards with regard to test names,
input /output, actual test design, and test success criteria.

4.1.1 Nominal Testing

In nominal testing, each “critical” SWG CAIS interface as defined in table 2 shall be
individually examined at the simplest level, i.e. the results of a single call to an individual
interface will be compared against expected results. Nominal testing can be used to determine
the set of interfaces supported (i.e., existence testing) by the SWG CAIS implementation under
test. An interface is a primary interface, an overload, or an additional interface. Each
interface is unique even though some interfaces may be overloaded and therefore share the
same name. Although the focus of a nominal test is the test of a particular interface, the actual
test will often require the use of other SWG CAIS interfaces. For some tests the use of several
interfaces will be necessary to establish an initial state of a SWG CAIS node model instance, to
set a node(s) state, to traverse a part of the node model to a specific node prior to test
execution, to ensure correctness of the interface under test, or to remove any modifications
made to the state of the node model instance. Therefore, the ability to execute tests for most
interfaces will also depend on the success of other interface tests. However, all actions required
for test set up or for post-test clean up will be kept separate from the actual test code. The
dependencies between interfaces will be derived during test generation for the individual
interfaces. There are also dependencies among the SWG CAIS packages as previously
identified in table 3. Both forms of dependency will force a specific ordering of the nominal
tests or force the combining of interface tests.

It is possible to identify sets of SWG CAIS interfaces that, for testing purposes, are
mutually dependent, such as OPEN and IS_LOPEN. If identification of a small “core set” of
mutually dependent SWG CALIS interfaces upon which the rest of the SWG CAIS interfaces
depend were possible, the “core set” of interfaces could be tested by some other means (either
by verification or mathematical proof, for example). The rest of the SWG CAIS interfaces
could then be tested using only previously tested SWG CAIS interfaces. Testing would then

be a process of using only already-tested SWG CALIS interfaces to produce other tested SWG
CAIS interfaces. However, it is not possible to identify a small “core set” of mutually
dependent SWG CAIS interfaces upon which the remaining SWG CAIS interfaces depend.

The approach adopted for nominal testing, therefore, is to test mutually dependent
interfaces in a single test, to identify a small set of dependent interfaces for each set of related
tests, and as much as possible to order the tests so that dependent interfaces are tested prior to
their use in other tests.

Each test shall consist of a simple exercise of an interface. The purpose of each test is to
demonstrate minimal functionality through the use of a set of simple test cases. Existence
tests will check for the correct functioning of an interface using valid parameter values, and
exception tests will check for the ability of the SWG CAIS implementation to raise each
exception under the conditions specified in DOD-STD-1838. Input values will be defined for
each parameter of mode “in” or “in out” as well as the actual state of the node model instance
needed (if any) prior to test execution. Expected values will be defined for each parameter of
mode “in out” or “out” (if any), for each function return value (if any), for the expected
exception to be raised (if any), and for the expected state of the node model instance following
test execution (if any).

It is beyond the scope of the current test and evaluation effort to perform exhaustive
testing. Exhaustive testing would determine the thoroughness of the interface implementation
by aggressively attempting to locate errors in the semantics of each interface through even
more extensive test data sets and through more thorough exception testing. The current test
suite has been limited to the set of interfaces identified as critical and has concentrated
primarily on existence testing with only minimal coverage of exception handling.

4.1.2 Usability Testing

Usability testing builds on the tests included in the nominal testing category. This
usability category of tests will make use of predefined usability scenarios that chain SWG
CAIS interface calls together and the ability of the SWG CAIS implementation to meet the
needs of tool developers. These test sequences would reflect normal actions, as well as actions
that stress the limits of the implementation. Thus, the usability tests both mimic probable
usage by tool writers and test the robustness of the implementation. Guidelines for performing
a minimal evaluation of the SWG CAIS implementation capabilities were developed by Carney
(1988). These guidelines were helpful in the design of the SWG CAIS implementation usability
tests. As in nominal testing, only the set of critical interfaces in the critical packages, which
Y teen delined previously in table 2, will be considered. It is outside the scope of the current
testing effort to develop more than a minimal subset of possible scenarios.

The purpose of the usability tests is to exercise the SWG CAIS implementation based on
typical individual tool usage. The design of the tests will support single-user or multi-user
testing and include measurement of both capacity and timing measurements. This usability
test software will transform the state of the node model instance but will not actually emulate
the real tools and their functionality. The unportant factor is that nodes can be accessed. The
actual contents of nodes is not important.

The primary objective of the usability tests is to determine the extent to which typical
usage of SWG CAIS implementation interfaces by SWG CAIS tool users can be expected to
meet performance expectations. Whereas a nominal test might exercise one interface one time,
a usability test would exercise one or more related interfaces many times. Usability tests often
contain a scenario of several interface calls that would typically be performed by one or more
tools in the SWG APSE. For example, one nominal test might determine if a node can be
created and another nominal test might determine if an already-created node can be deleted.
A usability test would determine if a number of nodes could be created, determine the time
required to create the node(s), and then delete them and determine the time required to delete
the node(s). As well, a usability test might determine an implementation’s capacity limits for
nodes by creating nodes until no more could be created, or by alternately creating and deleting
nodes and thereby testing for proper collection of unused space.

4.1.3 Test Name Standards

Configuration management of the test suite is needed to associate tests with the section
of DOD-STD-1838 to which they apply. For each critical interface identified in Section 2.2, a
test will be constructed. Although there are a large number of SWG CAIS tests, a simple
naming convention, consistently applied, allows easy correlation of tests to corresponding
sections of DOD-STD-1838.

In accord with a naming convention originally adapted from conventions required by the
United Kingdom Test Harness, tests will be named using the format “T*nn.ada”. To represent
test numbers greater than 99, the “T*nnn.ada” format will be used. The “*” represents a
group letter, and “nn” or “nnn” represents the number of the test, which can span from “01”
through a maximum of “999. The groups and their corresponding packages are as follows:

e B- List Management

e C- Node Management

e D - Attribute Management

e G - Process Management (only nominal tests)

e I-Direct IO

e J- Sequential IO

e K-TextlO

e P -Page Terminal IO

e S- Structural Node Management

e V- Process Management (only usability tests)

Input files will be named “T*pn.IN”. Output files will be named “T*nn.OUT”. Trace
files will be named “T*nn.TRACE". Note that “nnn’” will be used when the corresponding
test file is of the form “T*nnn.ada”.

4.1.4 Input/Output Standards

Input/output standards were adopted for all three kinds of data files: input, output, and
trace files. In each data file, information in the form of comments precedes the data lines. All
data files associated with a test will be designed with a standard header. All input files will
contain version numbers and the date of the last change. Multiple data sets within an input
file will be separated by comments. A primary output file always will be produced and will
follow a standardized format that will include the name and version of the input file that was
used by the test. Tests will also be designed to produce trace files to print intermediate results
for use during debugging of tests. The format of trace file will vary to accommodate the
design of each particular test. Figure 2 includes a sample of an input data file. Figure 3
includes a sample of an output data file.

4.1.5 Test Design Standards

The test and evaluation of the SWG CAIS implementation is based on a black-box or
functional testing approach. The goals of this testing effort are wo ensure the existence and
syntactic correctness of the SWG CAIS interfaces in a given implementation, to ensure
compliance to the semantic intent of the specification, and to ensure usability by tool
developers. The first goal can be met in a straightforward manner since the syntax of the
interfaces is formally defined through Ada packages. The Ada compiler performs static syntax
checks (as well as some static semantic checks) of the SWG CAIS interface implementations.
Ensuring conformance to the semantics of the specification is more difficult, however, since the
semantics of the SWG CAIS are not formally specified. The last goal, that of usability, is
subjective in nature; however, objective statistics from the results of the usability tests will
form the basis for later determinations of the usability of SWG CAIS implementations with
respect to specific tool requirements.

The tests consist of two categories: nominal tests that exercise single interfaces and
usubility tests that exercise sequences of interfaces similar to those required by tools. The
second category uses tool usage scenarios that test the overall usability of the SWG CAls.
These usability tests will use the interfaces previously tested during the nominal testing to
check for erroneous interactions and artificial boundaries. In the design of both the nominal
and usability tests, all tests will adhere to the following design standards. Figure 4 includes an
~oamypas for docuintuting a procedure.

4.1.5.1 Minimize Use of Implementation-Dependent Interfaces. Minimize use
of implementation-supplied interfaces other than those specified in the SWG CAIS
specification. The top-level interfaces are those that are intended for tool writer use. An
implementation may make other, lower level interfaces visible, but these should not be used by
tests as this would jeopardize the portability of the code to another system.

26

Figure £
SWG CAIS Input Data File Sample

l Lt Lt L DD D D 2 P2 T 3 18 1 T T T ¥ -r F s

Input test data for testing COPY_LIST: TBO1

the same as the input. No attempt is made to check for ill-formed
lists: See TB17 for the CONVERT_TEXT_TO_LIST function which

!

!

1

H

! These data are in l-tuples. The expected result is always

!

t checks for ill-formed lists and lists exceeding normal capacity.

!
!-.-.-.-'.------ltElltﬂ.lnllﬂﬂﬂlﬂxﬂgtsn#B-.-----I.----.----------.--RII--.
)

(a,())

((2),(3))

((Iaﬂ'lb"’ lcl))
(A=>a)
(A=>(),B=>(C=>()))
(A=>2,B=>(3))
(A‘)'a',B-)('b','C"))
((A=>2),B=>3)

("ab cd ef")

("ab")

("ab”)

~quit

~~file to test copy function

~-modified to remove test cases which raise exceptions like syntax error
~~this file needs more test cases.

Figure 8
SWG CAIS Output Data File Sample

CAlS Version 3.2 10/24/88

TG30: Tests the following interfaces in
CAIS_PROCESS_MANAGEMENT

CAIS 5.2.2.14 - Open_Node_Handle_Count

Test Case 1 : Open 'Current_Job and get open node handles

Interface name tested: Open_Node_Handle Count
Interface numbexr tested: 5.2.2.14
Interface overload tested: A

Test Inputs:

No inputs
Expected Results:

Initially 1, then 6, open node handles
Actual Results:

Success - 1, then 6, node handles returned

Result of Test: PASSED

(3.2 10/24/88 TG30 1 5.2.2.14 A PASSED)

Summary of Test Procedures:
Number of Test Cases Passed: 4
Number of Test Cases Failed: 0
Total Number of Test Cases: 4

Result of Test Procedure: PASSED

Figure 4
SWG CAIS Procedure Documentation Sample

- —— o - - -

~=- Test Procedure: TGO 4

~- Author: Dave Hough MITRE Washington Software Center

- {Date> <#nn> {Name> (Description>

-- Purpose:

-- Provide functional testing of the SWG CAIS, a variant

-- of DOD-STD-1838, dated 9 October 1986. This work has been

-- performed in support of the NATO SWG on APSE pxoject, sponsored by
-= AJPO.

-- Interface(s) Tested:

- 5.2.2.1 (B) Spawn_Process Cais_Process_Management

-- Implementation:

-=- I/0: None
-- Machine/Compiler Dependencies: None

29

4.1.5.2 Use Test Utilities. Implementation-specific code should be isolated into test
utilities packages and made available across all tests.

4.1.5.3 Use Directed Input/Output. Use named input and output files in test
input/output versus using defaults. This practice not only allows better control over
input/output but also is more portable. The host specific names should be collected in a
package and declared as constant strings.

4.1.5.4 Use a Single User Node. Utilize only one user node. That is, create all
node model instance structures under the current user node only. Implementation-dependent
restrictions governing the login process and other practical considerations lead to this decision.
Furthermore, use the predefined constant “current._user’” or Root_Process to stand for the user
node, rather than using an existing user node such as ‘“‘user(smith)”. This allows other users to
execute the test with minimal trouble.

4.1.5.5 Ensure the Initial State of the Node Model Instance. Ensure that a
correct state of the SWG CAIS node model instance exists prior to execution of this test. This
implies the creation of a SWG CAIS node model instance and generation of an initial test
state, or the use of a predefined SWG CAIS node model instance with a predefined test state,
or the use of a previously generated node model instance with a test state as created by a
previously executed test. This will require the use of other SW(G CAIS interfaces.

4.1.5.6 Use Predefined Input Values. Execute the interface with predefined input
values, where practical. Tests that have an input data file can be expanded to include other
test cases by editing a source file.

4.1.5.7 Indicate Pass/Fail Results. All tests will contain their own expected
results, either in the input data file, or embedded in the test code. This data will be used to
determine and explicitly report the success or failure of the test. No test will merely print
results to be verified by the tester.

4.1.5.8 Handle All Exceptions. Each test will assume that unexpected exceptions
may occur at any time. Tests will contain handlers to check for the presence for unexpected
exceptions as well as experted exceptions.

4.1.5.9 Limit Test to Determining That an Error Exists. Do not attempt to
determine the cause of an error, only that an error according to the SWG CAIS specification
exists. Determining the cause of a SWG CAIS error is the responsibility of the SWG CAIS
tuplomenter. Tests will be desioned to spot errors only The tests will provide as much
information as required to have confidence in the discrepancy between the SWG CAIS
specification and the test results.

4.1.5.10 Protect against Unexpected Exceptions. Continue gathering data if an
unexpected exception condition happens. This can be achieved by liberal use of exception
blocks. Each test may be decomposcd into several test .1ses, each relatively independent of
the other.

30

4.1.5.11 Compare States of Node Model. Compare the resultant state of the
SWG CAIS node model instance with the expected state of the SWG CAIS node model
instance. This may involve the use of other SWG CAIS interfaces. The Tree_Walkers
package, described in section 3.10.2, provides interfaces that can determine the state of the
node model within the current user’s bounds.

4.1.8 Test Success Criteria Standards
A test will be considered successful if the following criteria are met:

e The test reaches completion. Note that an interface used to establish the
preconditions for this test could raise an exception. The test would then be
considered invalid.

e The expected output matches the actual output for an existence test. For an
exception test, the actual exception raised matches the expected exception.

o The expected state of the SWG CAIS node model instance matches the actual state.
The status returned from each test will be one of the following:
e Pass-the test was successful according to the stated success criteria.

e Fail/reason--the test was not successful according to the stated success criteria.
The reason portion of the status will identify which criterion was not met (i.e., state
of the SWG CAIS node model instance was not correct, an unexpected exception
was raised, a parameter was not correct, or the interface does not exist).

Note that some exceptions defined in the SWG CAIS cannot be raised directly through
an external testing mechanism in black-box testing. For instance, the exception
TOKEN_ERROR cannot be raised directly since a token is a limited private type that cannot
be explicitly provided as input to a test. Such exceptions cannot and will not be explicitly
tested.

4.2 Node Management Tests

These tests exercise the interfaces defined in the CAIS_.NODEMANAGEMENT
package (5.1.2). CAIS_NODE_MANAGEMENT provides the general primitives for
manipulating, copying, renaming, and deleting nodes and their relationships. The operations
tested here are generally applicable to all kinds of nodes and relationships. These tests also
vary the intents and pathnames associated with the nodes upon which are being operated.
Although these tests require that nodes be created, operations for creation of nodes reside
separately in packages specific to the node kind (structural, process, and file) and are explicitly
covered within those test sets.

The node management tests begin with the prefix “TC” and are divided into nominal

tests and usability tests. The nominal tests address specific operations and exercise all
overloaded forms of an operation. Usability tests are intended to test efficiently many

31

interfaces acting together in a realistic way. Some of them also time the interfaces or measure
their capacity. In addition, the nominal, rather than the usability, tests may include exception
testing.

4.2.1 Test Strategy

The node management tests are designed to perform black-box testing. However, each
test necessarily relies on node management interfaces to build the set of nodes upon which the
subtests are performed. The CAIS_NODE_MANAGEMENT interfaces used by other node
management tests are Create, Open, Close, and Is_Open. All three types of nodes (structural,
process, and file) are created, and they are opened with intents appropriate for the tests being
performed. Proper implementation of these four node management interfaces is essential for
proper testing of CAIS_ZNODE_MANAGEMENT using this test set. Therefore, the tests
exercising these four interfaces should be run prior to running the other node management
tests.

The node management tests follow a design that allows them to be driven by input files.
Because the number of subtests is generally small, however, the subtests are normally coded
directly in the test source rather than read from input files. Each test exercises a specific
operation and generally includes tests for all alternate interfaces associated with that
operation. Each test calls setup routines that create a set of nodes needed to test the operation
and then deletes this set of nodes upon completion of the tests. The tests are data driven even
to the extent that control flow (i.e., the procedures to be executed) is governed by the input
data. Data read from the input file not only determines calls to the appropriate procedures
that then read additional data and invoke the specified CAIS interfaces, but also controls
which setup and which trace procedures to call.

The nominal node managcment tests create both a log and a trace outpu' file. For each
subtest, a pass/fail message is printed based upon a comparison of actual and expected results.
At the end of the test, the number of failed subtests and the number of passed subtests are
printed. Whereas the trace file contains a compiete list of inputs, expected results, and actual
results, as well as trace commentary, the log file contains only a summary of the test results.

Exhaustive testing is outside the scope of the current eflort. Therefore, not all exceptions
will be tested, although the tests will be designed to accommodate future additions of
rxception testing.

4.2.2 Specific Support Packages

The node management tests make use of three formatting support packages:

e REPORT-Provides procedures for reporting test names, indicating pass/fail status

for sub-tests, and reporting an overall test result (that indicates passage only if all

sub-tests pass).

e PRINT_MODEL--Provides procedures to format and print descriptions of nodes,
relationships, and attributes.

e PRINT_OUTPUT-Provides standardized data structures and print procedures for
test headers, subtest results, and summary results.

All node management tests use a set of common procedures that standardize the reading
of input data and the formatting of output data. These procedures perform a particular 1/O
function and also place messages in the trace file that describe the actions taking place.
Procedures to read node numbers, strings, intent arrays, intent specifications, etc., are
available to each test. For output, procedures are provided for initializing a header as well as
the formatting routines described previously.

4.2.3 Organization of Node Model

Each node management test requires a set of related nodes so that the specific operation
can be tested via a variety of pathnames and via a variety of indicators made up of a base
node, a relationship, and a key. At the start of each test an appropriate set of nodes is
created, and these nodes are then deleted at the close of the test. The set of nodes created will
typically contain multiple levels of primary relationships, a few secondary relationships, and
nodes of all three types (structural, process, and file). For simplicity, the set of nodes is hard
coded into the test, rather than being read from the test input file.

4.2.4 Nominal Tests

Nominal tests were created for 17 of the more important interfaces. The interfaces
tested are 5.1.2.1 through 5.1.2.11, 5.1.2.19, 5.1.2.23, 5.1.2.25, 5.1.2.26, 5.1.2.37, and 5.1.2.338.

4.2.4.1 TCO1l. Exercise the Open interfaces (5.1.2.1). Perform tests using all four
interfaces for Open specifying nodes by pathname and by base-key-relation triplets and
specifying intentions both singly and via arrays. Use all three types (structural, process, and
file) of nodes in the TCOI subtests. Subtests are read from file TCO1.IN.

4.2.4.2 TCo02. Exercise the Close interface (5.1.2.2). The Close operation only has a
single interface that operates on a node handie. Exception tests need not be performed.
Subtests are read from file TCO2.IN.

4.2.4.3 TCO03. Exercise the Kind_of_Node interfaces (5.1.2.6). Check all three kinds
of nodes (process, structural, and file). Include subtests to check for proper propagation of
Status_Error exceptions.

4.2.4.4 TCO04. Exercise the Is_Open interfaces (5.1.2.4). Perform tests against both
opened and closed nodes. There are no exceptions associated with the Is Open interface.

4.2.4.5 TCO05. Exercise the Open_Parent interfaces (5.1.2.19). Perform tests against

Open_Parent interfaces with both single intentions and arrays of intentions. Exception tests
need not be performed.

33

— e — — —

4.2.4.6 TCO08. Exercise the Delete_Node interfaces (5.1.2.23). Check the Delete_Node
interfaces using both a node handle and a pathname to designate the node being deleted.
Exception tests need not be performed.

4.2.4.7 TCO7. Exercise the Create-Secondary.Relationship interfaces (5.1.2.25).
Check the Create_Secondary_Relationship operation using both a node handle and a pathname
to designate the object of the relationship. The inheritance parameter may be defaulted and
never tested. Exception tests need not be performed.

4.2.4.8 TCO08. Exercise the Delete_Secondary_Relationship interfaces (5.1.2.26).
Check the Delete_Secondary_Relationship operation using both an indicator (base, key, and
relation) and a pathname to designate the relationship being deleted. Deletion using the
default relationship need not be tested. Exception tests need not be performed.

4.2.4.9 TC09. Exercise the Set_Current_Node interfaces (5.1.2.37). The
Set._Current.Node operation is checked using both a node handle and a pathname to designate
the node being specified as current. Exception tests need not be performed.

4.2.4.10 TC10. Exercise the Get_Current_Node interfaces (5.1.2.38). Check the
Get_Current_Node interface using both single intents and arrays of intents. Exception tests
need not be performed.

4.2.4.11 TC11. Exercise the Change-Intent interfaces (5.1.2.3). Check the
Change_Intent interface using both single intents and arrays of intents. Exception tests need
not be performed.

4.2.4.12 TC12. Exercise the Intent interface (5.1.2.5). Perform tests over a wide
range of intents. Test for proper propagation of the Status_Error exception.

4.2.4.13 TC13. Exercise the Open.File_Handle_Count interfaces (5.1.2.7). Exception
tests need not be performed.

4.2.4.14 TCi14. Exercise the Primary-Name interfaces (5.1.2.8). Perform tests on all
three kinds of nodes (structural, process, and file). Also perform tests for proper propagation
of Status Error and Intent_Violation exceptions. Because of the smail number of possible
subtc ts, the subtests may be hard coded rather than driven by an input file.

4.2.4.15 TC15. Exercise the Primary_Key interfaces (5.1.2.9). Perform tests on all
three kinds of nodes (structural, process, and file). Also perform tests for proper propagation
of Status_Error and Intent_Violation exceptions,

4.2.4.16 TC16. Exercise the Primary_Relation interfaces (5.1.2.10). Perform tests on

all three kinds of nodes (structural, process, and file). Tests are also performed for proper
propagation of Status_Error and Intent_Error exceptions.

34

4.24.17 TC17. Exercise the Path_Key interfaces (5.1.2.11). Also perform tests for
proper propagation of Status_Error exceptions.

4.2.5 Usability Tests

For the node management package, there are four usability test, TC101 through TC104.
The usability test TC101 measures the elapsed time it takes to create a node, open it, test if it
is open, close it, and delete it. The usability tests TC102 through TC104 test the 41 node
management interfaces. TC102 will test interfaces 5.1.2.1 through 5.1.2.17. TC103 will test
interfaces 5.1.2.18 through 5.1.2.28, and 5.1.2.37 through 5.1.2.42. TC104 will test interfaces
5.1.2.30 through 5.1.2.36.

4.2,5.1 TC101l. Determine the elapsed time required by each of the five basic

interfaces whose performance is critical to the SWG CAIS implementation. They are
Create_Node, Open, Close, Is_Open, and Delete_Node.

Loop through each of these operations several times so that an average execution time for
each individual interface can be computed. Use an input file so that the top-level node name,
the intents, and the number of passes through the timing loop may be varied. Read in the
data and create nodes one at a time. In a second part of the test, create an array of nodes,
leaving them open. For all tests, report interim timings every 20 passes through the loop as
well as at the end of the test.

4.2.5.2 TC102. Test the 17 interfaces (5.1.2.1 through 5.1.2.17). Perform tests on all
three kinds of nodes and using all alternate interfaces.

4.2.5.3 TC103. Test the 17 interfaces (5.1.2.18 through 5.1.2.28 and 5.1.2.37 through
5.1.2.42). Perform tests on all three kinds of nodes and using all alternate interfaces. Report
pass/fail status when possible, and when a pass/fail decision cannot be made (as is the case for
operations that return time stamps) explicitiy report the information obtained from the test.

4.2.5.4 TC104. Test the iterator interfaces (5.1.2.30 through 5.1.2.36). Build
iterators over both primary and secondary relationships. Use nodes of all kinds (structural.
file, and process). Also use a variety of selection patterns. After building each iterator,
traverse it, printing out the names of all nodes in the iterator. These names should be
accompanied by enough information (e.g., node name, kind of relationships selected. and
pattern) so that the results can be verified.

4.3 Attribute Management Tests

The CAIS_ATTRIBUTE_MANAGEMENT package provides a set of interfaces that
support manipulation of attributes on either nodes or relationships. The package contains a
total of 17 unique interfaces-of which only eight are tested at the nominal level. The
interfaces that are not tested at the nominal level are those used to create and manipulate
attribute iterators. These interfaces are exercised in a more elaborate test, the Tree_Walker,
which is described in section 3.10.2.

35

— -

4.3.1 Test Strategy

The nominal tests for attribute management examine a subset of the interfaces at both
the existence and exception level. All exceptions corresponding to the interfaces are tested with
the exception of the Status_Error and Security_Violation. Testing for the Status_Error
exception is considered to be a secondary concern because it will be raised only if the node to
be used for attribute manipulation is not opened. The Security_Violation exception is raised
only in the event of mandatory access violations (which are not implemented for the SWG
CAIS), so this exception is also ignored in the test designs.

The usability tests for the attribute management package perform scenario type tests
using one or more of the interfaces in a single test. The tests have several primary objectives:
to determine if the limits defined by the CAIS_.PRAGMATICS are indeed achievable; if they
are not, to determine what the actual implementation limits are and if these limits are different
depending on initial conditions; and finally, to determine the robustness of the implementation
when a limit is reached. As a secondary objective, timing statistics are gathered for each CAIS
interface used in the execution of the test. The total test time, number of times each interface
is executed, and the average time per interface are reported. These times are currently wall
clock times and can be used to gauge relative execution times for the interfaces.

4.3.2 Specific Support Packages

Three support packages developed to supplement the performance of the individual tests
are listed as follows:

) CREATE_AN_INSTANCE-Creates an instance of the CAIS node model] based on

user-supplied test information.

¢ DATA MGMT_PKG--Provides the common procedures and data structures to
support the attribute management nominal tests (TDxx).

e STD_TEST_RESULTS_PKG--Defines a set of messages to be recorded for each
exception in the CAIS for both unexpected as well as expected instances.

4.3.3 Organization of the Node Model

Each attribute management test uses a simplistic node model for attribute manipulation.
In the case of node attribute tests, the interfaces are exercised against a structural node that
emanates from the current_user node along a path 'test(struct_node). For path attribute tests,
another structural node is created from the test(struct_node) node along the path
path. Figure 5 provides an illustration of the two node models and a mapping of tests to the
appropriate node model.

36

Figure 5
SWG CAIS Attribute Management Test Node Models

System
Level
Node

User(a_name) User(a_name)

Test(Struct_Node) Test(Struct_Node)

Test_Relation(Structural)
This structure 15 used on tests

TDO1, TDOJ, TDOS, TDO7

This structure is used on tests
TP02, TDO4, TDOS, TDOS

37

4.3.4 Nominal Tests

4.3.4.1 TDO1. Exercise the Create_Node_Attribute interface (5.1.3.1). First, attempt
to create a node attribute that has been previously created in an earlier test case—this is to
verify that an “Attribute_Error” exception will be appropriately raised. Then, test the
creation of a node for the first time. To exercise the Create_Node_Attribute, read and convert
an input character string to a list format, and use that input data as parameters of the
“Create_Node_Attribute” interface. The node is then either created for the first time, or
denied creation, depending on the input data.

4.3.4.2 TDO2. Exercise the Create_Path_Attribute interface (5.1.3.2) by verifying
that valid path attributes can be created, and verifying that the exception handling
accompanying the Create_Path_Attribute performs as expected.

Read attribute information entries from an input file into the Create_Path_Attribute
interface to create a path attribute. After the attribute information is accepted, perform a
Get_Path_Attribute to verify that the attribute exists. Use the same input data to inject
invalid attribute fields into the Create_Path_Attribute interface to verify that the correct
exceptions will be raised.

4.3.4.3 TDO03. Exercise the Delete_Node_Attribute interface (5.1.3.3) by attempting
to create and then delete an attribute named Delete_an_Attribute. Perform this test by
creating and deleting an attribute using the Create_Node_Attribute and
Delete_Node_Attribute interfaces. Then attempt a Get_Node_Attribute of the deleted
attribute. The test is successful in deleting the attribute if an Attribute_Error is raised by the
Get_Node_Attribute operation.

4.3.4.4 TDO4. Exercise the Delete_Path_Attribute interface (5.1.3.1) by verifying
that all created path attributes can be deleted using the Delete_Path_Attribute interface.
Achieve this by first establishing a structural node and a child node so that a user-defined path
may exist on which to create and delete attributes. Then test this interface by first creating
the path attribute using the Create_Path_Attribute interface. Immediately delete the created
path attribute using the Delete_Path_Attribute. The deletion is verified when the test
attempts to perform a Get_Path_Attribute of the path and an Attribute_Error exception is
raised.

4.3.4.5 TDO5. Exercise the Set-Node_Attribute interface (5.1.3.5) to verify that the
Set_Node..Attribute interface performs properly under normal conditions, and that the
exceptions Svntax.Error, Predefined_Attribute_Error, Attribute_Error, and Intent_Violation
are raised appropriately. Achieve this by first creating a node attribute and then attempting to
set the value for the attribute under various input conditions.

4.3.4.6 TDO8. Exercise the Set_Path_Attribute interface (5.1.3.6) to verify that the
Set_Path_Attribute interface performs properly under normal conditions, and that the
following exceptions corresponding to the interface are appropriately raised:
Pathname_Syntax_Error, Relationship_Error, Syntax_Iirror, Predefined_Relation_Error,

38

Predefined_Attribute_Error, and Attribute_Error. Achieve this by first creating a path
attribute and then attempting a Set Path_Attribute to set the value for the path attribute
under various input conditions.

4.3.4.7 TDO7. Exercise the Get_Node_Attribute interface (5.1.3.7) to verify that the
Get_Node_Attribute performs properly under normal conditions, and that the following
exceptions corresponding to the interfaces are raised when appropriate: Syntax_Error,
Attribute_Error, and Intent_Violation. Achieve this by creating several node attributes using
the Create_Node_Attribute interface, then attempting to retrieve the various node attributes
using the Get_Node_Attribute.

4.3.4.8 TDO8. Exercise the Get_Path Attribute interface (5.1.3.8) to verify that the
Get_Path_Attribute performs properly under normal conditions, and that the following
exceptions corresponding to the interfaces are raised when appropriate:
Pathname_Syntax_Error, Syntax_Error, Attribute_Error, and Intent_Violation. Achieve this
by creating several path attributes using the Create.Path_Attribute interface, then attempting
to retrieve the various path attributes using the Get_Path_Attribute.

4.3.5 Usability Tests

4.3.5.1 TD10i. Examine the limits imposed on the Create_Node_Attribute (3.1.3.1)
interface by determining the maximum number of node attributes that may be created at one
time. Achieve this by creating a node and then creating as many node attributes as possible.
Timing tests accompanying test case TD101 determine the amount of time to execute the
Create_Node_Attribute interface.

4.3.5.2 TD102. Examine the limits imposed on the Create_Path_Attribute interface
(5.1.3.2) by determining the maximum number of attributes that can be created on a path.
Achieve this by creating a path and then creating as many path attributes as possible. Timing
tests accompanying test case TD102 determine the amount of time to execute the
Create_Node" and Create_Path_Attribute interfaces.

4.3.5.3 TD103. Examine the limits imposed on the Set_Node_Attribute (5.1.3.5) and
Get_Node_Attribute (5.1.3.7) interfaces by creating a node attribute and sequencing through a
series of Set_Node_Attribute interfaces to set the value of the attribute and
Get_Node_Attribute interfaces which retrieves that attribute value. In addition to the
interface performance tests, test case TD103 provides timing tests to determine the amount of
time required to execute the Set_Node_Attribute and Get_Node_Attribute interfaces.

4.3.5.4 TD104. Examine the limits imposed on the Create_Path_Attribute (5.1.3.2),
the Create_Node_Attribute (5.1.3.1), and the Create_Node" (5.1.5.1) interfaces to determine
the total number of attributes that can be created on several nodes at one time. Achieve this
by creating a node model instance of 20 structural nodes. Then walk the tree adding
attributes to each node and to each path of each node until no new attributes can be added. In
addition to the interface performance tests, test case TD104 provides timing tests to determine
the time required to execute the Create_Node, Create-Node-Attribute,
Create.Path_Attribute, and Open interfaces.

39

4.4 Structural Node Management Tests

The CAISSTRUCTURAL_NODE_MANAGEMENT package provides a set of
interfaces that support the creation, deletion, and manipulation of structural nodes.

4.4.1 Test Strategy

The nominal tests for structural node management consist of one test package with four
test procedures. Each one tests one format of the Create_Node interface.

The usability tests for structural node management determine if varying node model
structures result in different limits being achieved by an implementation. For this type of test,
three node model instances are used: a “breadth-first” structure, a “depth-first” structure,
and a “binary-tree” structure all built from the “‘current_user’” node. Some tests are executed
against all three structures. Figure 6 illustrates the three structures.

4.4.2 Specific Support Packages

Three support packages developed to support the performance of the individual tests are
listed as follows:

o CREATE_AN_INSTANCE--Creates an instance of the CAIS node model based on
user-supplied test information.

e DATA MGMT-PKG--Provides the common procedures and data structures to
support the Structural Node Management tests.

o STD_TEST_RESULTS_PKG--Defines a set of messages to be recorded for each
exception in the CAIS for both unexpected as well as expected instances.

4.4.3 Organization of the Node Model

Each structural node management test uses a node model like the one described for the
attribute management tests (Section 4.3). All interfaces are exercised against a structural node
that emanates from the current_user node along a path 'test(struct_node). Here nodes and
relationships are created, deleted , or copied depending on the test objective.

4.4.4 Nominal Tests
The only nominal test is “TS01”. Exercise the four format types of the Create_Node
(5.1.5.1) interface by attempting to create one structural node using each of the formats

provided for Create_Node. When a structural node is created from each of these formats, a
result is recorded to an output file.

40

Figure 6

SWG CAIS Node Model Structures

System
Node

‘Current_User

Breadth(S_!) Breadtn(S_2)

Breadth-First

System
Node

‘Current_User

Depthi(s_1)

Depth2(s.2)

]

Depth-First

System
Node

‘Current_user

Deptni{s.1 Breaath!'
(5.2

Depth2(s_3) Breadtn2
(5.4)

Binary Tree

41

4.4.5 Usability Tests

4.4.5.1 TS101. Examine the limits imposed on the Create_Node (5.1.5.1) interface by
attempting to create as many nodes as possible in a breadth-first manner up to the pragmatic
limit, emanating from the current—user node. In addition to the functional evaluation of the
tests, test case TS101 provides timing tests to determine the amount of time required to
execute the Open and Create_Node interfaces.

4.4.5.2 TS102. Examine the limits imposed on the Create.Node (5.1.5.1) interface by
attempting to create as many nodes a possible in a depth-first manner, beginning at the
current_user node. Achieve this by creating a node and setting the current node to the newly
created node. Repeat until no more nodes can be created. In addition to the functional tests,
TS102 provides timing tests to determine the amount of time required to execute Create_Node
interface.

4.4.5.3 TS103. Exercise the limits imposed on the Create_Node (5.1.5.1) interface by
attempting to create as many nodes as possible using a binary tree structure up to the
pragmatic limit beginning at the current_user node. In addition to the functional tests, TS103
provides timing tests to determine the amount of time required to execute Open and
Create_Node interfaces.

4.4.5.4 TS104. Exercise the Create_Node (5.1.5.1) interface by examining the actual
limits of creating structural nodes in a breadth-first manner from the current_user node.
Achieve this by creating and closing a node, for as many nodes as possible up to the pragmatic
limit. In addition to these functional tests, TS104 provides timing tests to determine the
amount of time required to execute Open, Create_Node, and Close interfaces.

4.4.5.5 TS105. Exercise the Create_Node (5.1.5.1) interface by examining the actual
limits of creating structural nodes in a depth-first manner from the current_user node.
Achieve this by creating, closing, then reopening a node, for as many nodes as possible up to
the pragmatic limit. In addition to these functional tests, TS105 provides timing tests to
determine the amount of time required to execute the Open, Create_Node, and Close
interfaces.

4.4.5.6 TS106. Examine the limits imposed on the Create_Node (5.1.5.1) and the
Close (5.1.2.2) interfaces by creating, opening, and closing as many nodes as possible. In
addition to the functional tests, TS106 provides timing tests to determine the amount of time
required tc execute the Open and Create_Node interfaces.

4.4.5.7 TS107. Exercise the Create_Node (5.1.5.1) and the Delete_Node (5.1.2.23)
interfaces by creating and deleting nodes, then verifying that the node's primary relationship
has been deleted by using the CAIS_INODE_MANAGEMENT Boolean function Is_Obtainable.
Do this for as many nodes as possible in a breadth-first manner. In addition to the functional
tests, TS107 provides timing tests to determine the amount of time required to execute the
Open, Create_Node, and Delete_Node interfaces.

4.4.5.8 TS108. Exercise the Create_Node (5.1.5.1), the
Create_Secondary_Relationship (5.1.2.25), and ihe Delete_Node (5.1.2.23) interfaces in order to
determine whether deletion of one or more secondary relationships will permit more nodes to
be created. Achieve this by creating a node in a breadth-first manner from the ’current user,
then adding a secondary relationship between that node, and then deleting the node. Repeat
this sequence until no more nodes can be created. In addition to the functional tests, TS108
provides timing tests to determine the amount of time required to execute the Open,
Create_Node, Delete_Node, and Create_Secondary_Relationship interfaces.

4.4.5.9 TS109. Examine the performances of the Create_Node (5.1.5.1), Open
(5.1.2.1), and Close (5.1.2.2) i1 ‘erfaces to determine the average time to open and close a node
handle. Achieve this by creating a node model of 20 nodes and closing the nodes as they are
created. Then walk through the established node structure, opening and closing each node
handle. In addition to the functional tests, TS109 provides timing tests to determine the
amount of time required to execute the Open, Create_Node, and Close interfaces.

4.4.5.10 TS110. Exercise the limits imposed on the Create_Node (5.1.5.1) and the
Copy-Node (5.1.2.20) interfaces by creating a node and then copying it until no new nodes
may be made. In addition to the functional tests, TS110 provides timing tests to determine the
amount of time required to execute the Open, Create_Node, and Copy_Node interfaces.

4.4.5.11 TS111. Exercise the Create_Node (5.1.5.1) and the
Create_Secondarv_Relationship (5.1.2.25) interfaces by creating a node from the current_user
node and then creating secondary relationships op that path until no more can be created.
This verifies the number of secondary relationships that may be created. In addition to the
functional tests, TS111 provides timing tests to determine the amount of time required to
execute the Open, Create_Node, and Create_Secondary_Relationship interfaces.

4.4.5.12 TS112. Examine the limits imposed on the Create_Node (5.1.5.1) and the
Create_Secondary Relationship (5.1.2.25) interfaces by creating 20 nodes related as parent and
child, then creating secondary relationships throughout the tree until either a predefined Limit
is set, or no more relationships can be added. In addition to the functional tests, TS112
provides timing tests to determine the amount of time required to execute the Open.
Create_Node, and Create_Secondary_Relationship interfaces.

4.4.5.13 TS113. Examine the limits imposed on the Create_Node (5.1.5.1), the
Create.Secondary_Relationship (5,1,2,25), and the Delete_Secondary_Relationship (5.1.2.26)
interfaces by creating two nodes related as parent and child, then creating and deleting
secondary relationships on that path up to a predefined limit. In addition to the functional
tests, TS113 provides timing tests to determine the amount of time required to execute the
Open, Create_Node, Create_Secondary_Relationship, and Delete_Secondary_Relationship
interfaces.

4.4.5.14 TS114. Exercise the Set—Current_Node (5.1.2.37) and Get.Current_Node

(5.1.2.38) interfaces by creating a small number of unrelated nodes, then calling the
Set_Current_Node and Get_Current_Node interfaces for each. In addition to the functional

43

tests, TS114 provides timing tests to determine the amount of time required to execute the
Open, Close, Set_Current_Node, Get_Current_Node, and Create_Node interfaces.

4.5 Process Management Tests

Process management standardizes the initiation, running, and termination of host
processes. The nominal tests are found in the TG series of tests, and the usability tests are
found in the TV series.

4.5.1 Test Strategy

Most of the T'G tests use the login process current_user node as the process node which is
acted upon by the various process management interfaces.

All processes, when initiated through Spawn_Process, Invoke_Process, or Create_Job.
must designate a target file node, which contains the executable image that process is to
manage. Some of the earlier TV tests spawn processes that designate a particular file node.
TVLOOP periodically sends messages to the screen announcing its presence and stops only
when aborted with Abort_Process. To reduce the eflort in configuring file nodes, later TV
tests contain within themselves the TVLOOP function, and the test designates itself as the
target. These tests assume that the Get_Parameters interface and some List Management
interfuces work flawlessly.

The execution of a process management test is accomplished by first creating a file node
under the current user node, importing its executable contents from the host file system’s
correspending link file, creating target file node if necessary, importing its contents in like
manner. "nd retting the Default_Tool relationship of the user node to designate the file node
that contains the test. The SWG CAIS login procedure and Default_Tool relation are not
specified in any standard, but the result of logging in is that the executable contained in the file
node at the end of the Defauli_Tool relationship is executed

4.5.2 Specific Support Packages

Four packages and two additional fuuctions support process management testing.
Package TG Names translates logical file names found in the tests into host specific file names.
Package Report Package Print_Output formats output into standard f{ormats. Package
Time_Recorder provides timing utilities. Function CAIS_Version determines the version of
the CAIS being tested. Function Date returns a string that contains the date. This date is
contuined in the formal output files.

4.5.3 Organization of Node Model

Each process management test is contained in a file node directly under the current user
node with relationship formed from relation “‘test” and a key that is the same as the name of
the test or test target. For example, the test TVOl is contained in the file node TVLOOP 1s
normally contained in 'current_user’test{tvioop). All processes spawned by the tests have

44

names that, in part, reflect the name of the test, making it possible to simultaneously initiate
more than one test without pathname conflicts.

4.5.4 Nominal Tests

Each of the TG tests exercises a single overload of each interface in the package
CAIS_Process_ Management.

4.5.4.1 TGO4. Exercise the Spawn_Process interface (5.2.2.1). Determine if the
simplest form of process spawning works. Spawn a null process. The spawned process source
code is in a separate file.

4.5.4.2 TGO5. Test the Await_Process_.Completion interface (5.2.2.2a). That
interface is tested both with and without a time limit. The raising of several exceptions is also
attempted, including Node_Kind_Error, Status-Error, and Intent_Violation. A process is
spawned and Await_Process Completion is then called.

4.5.4.3 TGO068. Test the overload of th: Await_Process Completion interface
(5.2.2.2b). That interface is tested both with and without a time limit. The raising of several
exceptions is also attempted, including Node_Kind_Error, Status_Error, and Intent—Violation.
A process is spawned, and Await_Process Completion is then called.

4.5.4.4 TGO7. Exercise the Invoke_Process interface (5.2.2.3a). The target process is
to create and write to a file. Exceptions are not tested.

4.5.4.5 TGO8. Exercise the overload of the Invoke_Process interface (5.2.2.3b). The
target process is to create and write to a file. Exceptions are not tested.

4.5.4.6 TGO09. Exercise the Create_Job interface (5.2.2.4). The target process is to
create and write to a file. Exceptions are not tested.

4.5.4.7 TGI11. Exercise the Delete_Job interface (5.2.2.5a). Create a legitmate job
and immediately delete that job and check the status of the deleted job with Current_Status.
Attempt to raise Name_Error, Predefined_Relation—Error, Status_Error, Lock-Error, and
Intent_Violation.

4.5.4.8 TG12. Exercise the first overload of the Delete_Job interface (5.2.2.5b).
Create a legitmate job and immediately delete that job and check the status of the deleted job
with Current_Status. Attempt to raise Name_Error, Predefined_Relation_Error,
Status_Error, Lock—Error, and Intent_Violation.

4.5.4.9 TG13. Exercise the Append-Results interface (5.2.2.6). The interface

Get_Results is used to verify that the results list has been appended. The only specific
exception defined for this interface, Lock_Error, is general enough such that it is not tested.

435

4.5.4.10 TG14. Exercise the Write_Results interface (5.2.2.7) on the current job.
Attempt to raise a Lock_Error.

4.5.4.11 TG15. Exercise the Get_Results interface (5.2.2.8a) on the current job.
Results of the current job should be an empty list. Attempt to raise a Node_Kind_Error, a
StatusKind_Error, and an Intent_Violation.

4.5.4.12 TG16. Exercise the first overload of the Get.Results interface (5.2.2.8b) on
the current job. Results of the current job should be an empty list. Attempt to raise a
NodeKind_Error, a Status_Kind error, and an Intent_Violation.

4.5.4.13 TG17. Exercise the second overload of the Get_Results interface (5.2.2.8c)
on the current job. Results of the current job should be an empty list. Attempt to raise a
Node_Kind_Error, a Status_Kind_Error, and an Intent_Violation.

4.5.4.14 TG18. Exercise the third overload of the Get_Results interface (5.2.2.8d) on
the current job. Results of the current job should be an empty list. Attempt to raise a
Node_Kind_Error, a Status Kind_Error, and an Intent_Violation.

4.5.4.15 TG19. FExercise the Current_Status interface (5.2.2.9a) on the current job.
The current job should be Ready. Attempt to raise a Node Kind-Error, a Status_Kind error,
and an Intent—Violation.

4.5.4.16 TG20. Exercise the first overload of the Current_Status interface (5.2.2.9b)
on the current job. The current job should be Ready. Attempt to raise a Node_Kind_Error, a
Status_Kind_Error, and an Intent_Violation.

4.5.4.17 TG21. Exercise the Get_Parameters interface (5.2.2.10) on the current job.
The parameter list of the current job should be empty. Attempt to raise a Lock_Error.

4.5.4.18 TG22. Exercise the Abort_Process interface (5.2.2.11a) on a spawned
process. Attempt to raise a Node_Kind_Error, a Status Kind_Error, and an Intent_Violation.

4.5.4.19 TG23. Exercise the first overload of the Abort_Process interface (5.2.2.11b)
on a spawned process. Attempt to raise a Node_Kind_Error, a Status Kind-Error, and an
Intent_Violation.

4.5.4.20 TG24. Exercise the second overload of the Abort_Process interface
(5.22.11c) on a spawned process Attempt to raise a Node_Kind_Error, a Status Kind_Error.
and an Intent_Violation.

4.5.4.21 TG25. Exercise the third overload of the Abort_Process interface (5.2.2.11d)

on a spawned process. Attempt to raise a Node_Kind_Error, a Status Kind_Error, and an
Intent_Violation.

46

4.5.4.22 TG26. Exercise the SuspendProcess interface (5.2.2.12a) on a spawned
process. Attempt to raise a Node_Kind_Error, a Status Kind_Error, and an Intent_Violation.

4.5.4.23 TG27. [Exercise the first overload of the Suspend _Process interface
(5.2.2.12b) on a spawned process. Attempt to raise a Node_Kind_Error, a Status Kind_Error,
and an Intent_Violation.

4.5.4.24 TG28. Exercise the Resume_Process interface (5.2.2.13a) on a spawned then
suspended process. Attempt to raise a Node_Kind_Error, a Status Kind_Error, and an
Intent_Violation.

4.5.4.25 TG29. Exercise the first overload of the Resume_Process interface
(5.2.2.13b) on a spawned, then suspended process. Attempt to raise a Node_Kind_Error, a
Status Kind_Error, and an Intent_Violation.

4.5.4.26 TG30. Exercise the Open_Node_Handle_Count interface (5.2.2.14a) on the
current job. Attempt to raise a NodeKind_Error, a StatusKindError, and an
Intent_Violation.

4.5.4.27 TG31. Exercise the first overload of the Open_Node_Handle_Count
interface (5.2.2.14b) on the current job. Attempt to raise a Node-Kind-Error, a
Status.Kind_Error, and an Intent_Violation.

4.5.4.28 TG32. Exercise the lo_Unit_Count interface (5.2.2.15a) on the current job.
Determine if the interface correctly counts the number of lines of input and output generated
by the Text_IO, Get_Line, and Put_Line interfaces. Attempt to raise a Node_Kind_Error, a
Status_Kind_Error, and an Intent_Violation.

4.5.4.29 TG33. Exercise the first overload of the lo_Unit_Count interface (5.2.2.13b)
on the current job. Determine if the interface correctly counts the number of lines of input
and output generated by the Text1O, Get_Line, and Put_Line interfaces. Attempt to raise a
Node_Kind-Error, a Status_Kind_Error, and an Intent_Violation.

4.5.4.30 TG34. Exercise the Time_Started interface (5.2.2.16a) on the current job.
Attempt to raise a Node_Kind_Error, a Status Kind_Error, and an Intent_Violation.

4.5.4.31 TG35. Exercise the first overload of the Time_Started interface (5.2.2.16b)
on the current job. Attempt to raise a Node_Kind_Error, a Status Kind_Error, and an
Intent_Violation.

4.5.4.32 TG36. Exercise the Time_Finished interface (5.2.2.17a).

4.5.4.33 TG37. Exercise the first overload of the Time_Finished interface (5.2.2.17b).

47

4.5.4.34 TG38. Exercise the Machine_Time interface (5.2.2.18a) on the current job.
This interface should return 0.0 to indicate that the current job has not finished. Attempt to
raise a Node_Kind_Error, a Status_Kind._Error, and an Intent_Violation.

4.5.4.35 TG39. Exercise the first overload of the Machine_Time interface (5.2.2.18b)
on the current job. This interface should return 0.0 to indicate that the current job has not
finished. Attempt to raise a Node_Kind_Error, a Status Kind_Error, and an Intent_Violation.

4.5.4.36 TG40. Exercise the Process Size interface (5.2.2.19a) on the current job.
This interface should return a nonzero value. Attempt to raise a Node_Kind_Error, a
Status_Kind_Error, and an Intent—Violation.

4.5.4.37 TG41. Exercise the first overload of the Process_Size interface (5.2.2.19b) on
the current job. This interface should return a nonzero value. Attempt to raise a
Node_Kind_Error, a Status_Kind_Error, and an Intent_Violation.

4.5.5 Usability Tests

The following usability tests will be attempted. The list is extensive, but the critical
nature of the process management portion of the SWG CAIS merits full attention. No
attempt will be made at this time to instrument the tests for timing, although each test will be
connected to the test harness and have the standard output format. Each test is presented as
a goal with a possible implementation.

4.5.5.1 TVO1. Exercise the Spawn-Process interface (5.2.2.1). Find the limit of
sequentially spawned processes. Sequentially spawn new processes until no new processes can
be spawned. Determine which exception is raised after the last process is spawned and then
check the status of the previously spawned processes.

4.5.5.2 TVO02. Fxercise the Spawn-Process interface (5.2.2.1). Find the limit of
recursively spawned processes. Recursively spawn new processes until no new processes can be
spawned. Determine which exception is raised after the last process is spawned and then check
the status of the previously spawned processes.

4.5.5.3 TV03. Exercise the Spawn.Process interface (5.2.2.1). Determine if
predefined attributes, inherited relationships, and the current status of spawned processes are
correct. Spawn 5 to 10 processes and check the above.

4.5.5.4 TV04. Exercise the Invoke_Process interface (5.2.2.3). Determine if one
process can invoke another process for some small number (5 to 10) processcs. Recursively
invoke processes 5 to 10 times and determine if all processes except the last process are blocked
and if the last process is executing.

4.5.5.5 TVO08. Exercise the Create_Job interface (5.2.2.4). Find the limit of
sequentially created jobs. Sequentially create new jobs until no new jobs can be created.
Determine which exception is raised after the last job is created, and then clieck the status of
the previously created jobs.

48

4.5.5.8 TV09. Exercise the Create_Job interface (5.2.2.4). Find the limit of
recursively created jobs. Recursively create new jobs until no new jobs can be created.
Determine which exception is raised after the last job is created, and then check the status of
the previously created jobs.

4.5.5.7 TV1l. Exercise the Abort_Process interface (5.2.2.11). Make sure that a
large number of spawned processes can be aborted. Spawn 50 to 100 processes, and abort
each. Determine if the spawned processes are aborted.

4.5.5.8 TV12. Exercise the Abort_Process interface (5.2.2.11). Make sure that a
large number of created jobs can be aborted. Create 50 to 100 jobs, and abort each.
Determine if the jobs are aborted.

4.5.5.9 TV13. Exercise the Abort_Process interface (5.2.2.11). Determine if aborting
a spawned process aborts all descendant processes. Recursively spawn some small number (10
to 20) of processes. Abort the most ancient process, and determine if all descendant processes
are aborted, as they should be.

4.5.5.10 TV14. Exercise the Abort_Process interface (5.2.2.11). Determine if
aborting a job does not abort any other job. Recursively create some small number (10 to 20)
of jobs. Abort the most ancient job, and determine if all subsequent jobs are executing.

4.5.5.11 TV15. Exercise the Invoke_Process interface (5.2.2.3). Determine if an
invoked process, when aborted, does not block execution of the calling process. Invoke a
process, abort it, and determine if the calling process is again executing.

4.5.5.12 TV16. Exercise the Abort_Process interface (5.2.2.11). Determine if a
process that contains a task that aborts its containing process aborts the containing process.
Create a process that contains a task that aborts its containing process. Determine if the
containing process has been aborted.

4.5.5.13 TV17. Exercise the Delete_Process interface (5.2.2.5). Determine if
Delete_Job deletes an entire tree of recursively spawned processes. Recursively spawn some
small number of processes and call Delete_Job on the root process node. Determine if all
descendant process nodes have been deleted and if the main calling process is now executing.

4.5.5.14 TV18. Exercise the Delete_Process interface (5.2.2.5). Determine that
Delete_Job deletes only the job passed as a parameter and no others. Create several jobs,
delete them one at a time, ensuring that the remaining jobs have not been deleted.

4.5.5.15 TV19. Exercise the Await_Process_ Completion interface (5.2.2.2).
Determine if Await-Process_Completion indeed blocks the main process until the spawned
process is finished. From some main process, spawn a process, and then call
Await_Process_Completion. Determine if the main process is blocked while waiting for the
spawned process to complete. Determine if the actual time spent waiting for process
completion is at least equal to the time limit parameter of the function. Accomplish this with
and without the time limit.

49

4.5.5.16 TV20. Exercise the Await_Process.Completion interface (5.2.2.2).
Determine if Await_Process Completion blocks a main process until the created job completes.
From some main process, create a job, and then call Await_Process_Completion. Determine if
the main process is blocked while waiting for the created process to complete. Ensure that the
actual time spent waiting for process completion is at least equal to the time limit parameter
of the function.

4.5.5.17 TV2l. Exercise the Suspend Process (5.2.2.12) and Resume_Process
(5.2.2.13) interfaces. Determine if processes can be directly suspended and resumed. Spawn
some large (50 to 100) number of processes. Suspend each, and determine that all are
suspended; resume each and determine if all are executing.

4.5.5.18 TV22. Exercise the Suspend_Process (5.2.2.12) and Resume_Process
(5.2.2.13) interfaces. Determine if processes can be indirectly suspended and resumed. Spawn
some small (10 to 20) number of processes, each of which spawns another process. Suspend the
grandchild processes, and determine if the child processes are still executing. Resume the
grandchild processes, then suspend the child processes. Determine if the child and grandchild
processes are suspended.

4.5.5.19 TV23. Exercise the Suspend_Process (5.2.2.12) and Resume_Process
(5.2.2.13) interfaces. Detcrmine if trees of processes are suspended and resnmed correctly.
Recursively spawn some small number (5 to 10) of processes, and suspend the most ancient
one. Determine if all descendant processes are suspended. Resume the most ancient one, and
determine if all descendant processes are resumed.

4.5.5.20 TV24. Exercise the Spawn_Process (5.2.2.1) and Get_Parameters (5.2.2.10)
interfaces. Demunstrate a pop-up alarm clock. Create a process and pass it a time in seconds
to delay, then send output to the screen.

4.5.5.21 TV32. Exercise the Write_Results (5.2.2.7) and Get_Results (5.2.2.8)
interfaces. Determine if results can be consistently written to and read back from a process.
This is to be attempted a large number (1000) of times.

4.5.5.22 TV33. Exercise the Append Results (5.2.2.6) and Get-Results (5.2.2.8)
interfaces. Determine that the null string is the first result from a process. Determine what
exception is raised after appending results repeatedly

4.5.5.23 TV34. Exercise the TimeStarted (5.2.2.16), Time_Finished (5.2.2.17), and
Machine_Time (5.2.2.18) interfaces. Determine that when several processes are spawned. their
Time_Started attributes reflect the order of process initiation. Also, determine that reasonable
results are returned for the Time_Finished attribute when the processes are completed.

4.5.5.24 TV35. Exercise the Get_Parameters interface (5.2.2.10) by spawning

processes, invoking processes, and creating jobs with and without parameters and then
determining that the parameters that were passed arrived intact.

50

e e e ——— e - e e ey -

4.5.5.25 TV38. Exercise the Current_Status interface (5.2.2.9). Spawn processes,
invoke processes, and create jobs and determine their status just after initiation, suspension,
resumption, abortion, and termination. Recursively spawn several processes, abort the most
ancient, and determine that the Current_Status of all descendant processes is correct.

4.5.5.26 TV37. Exercise the lo_Unit_Count interface (5.2.2.15). Invoke some process
that makes a known number of Get/Put operations. After termination, determine that the
value of the Jo_Unit_Count attribute of the proces node is correct. Invoke some process that
makes a known number of Get/Put operations and that periodically suspends itself. During
periods of suspension determine that the value of the Io_Unit_Count attribute is correct.
Invoke some process that opens a known number of node handles and that periodically
suspends itself. During periods of suspension, determine that the value of the
Open_Node_Handle_Count is currently correct.

4.5.5.27 TV38. Exercise the Process-Size interface (5.2.2.19). Determine that the
size of a spawned process and the size of an aborted process are nonzero, and that the size of
two spawned processes with the same target is the same size.

4.8 Direct I0/Sequential I0/Text IO Tests

The CAIS_DIRECTO and CAIS_SEQUENTIAL_IO packages provide facilities for
directly accessing and sequentially accessing data elements in SWG CAIS files. The
CAIS_TEXT-IO package provides facilities for accessing textual data elements in SWG CAIS
files.

4.6.1 Test Strategy

The SWG CALIS input/output nominal tests are designed such that the same test strategy
is employed for each of the direct input/output and sequential input/output tests. text
input /output nominal tests are handled separately. The direct input/output test names begin
with TI followed by a two-digit number. The sequential input/output test names begin with
TJ followed by a two-digit number. All tests with the same two digits have identical test
executions. The text input/output nominal tests have a TK prefix.

Usability tests are intended to test efficiently many interfaces working jointly in a
realistic manner. However, because of the interdependencies in the interfaces, failure of an
early interface may leave later interfaces untested. The usability tests are limited to
CAIS_TEXTO interfaces.

4.6.2 Specific Support Packages
There are two support packages required for the proper execution of the SWG CAIS 1/0
tests. The first is a generalized report writer that formats expected outputs and reports

anomalous results. The second support package involves the ability to measure the delta time
between events.

51

4.6.3 Organization of Node Model

The node model will be a dynamic list of file node handles that may be accessed by an
index.

4.6.4 Nominal Tests

The tests with prefix TI and TJ use identical logic and structure in their tests. They will
be discussed as one test with TI representing CAIS_DIRECT_IO tests and with TJ
representing CAIS_ SEQUENTIAL IO tests.

In all test cases, each interface is executed with the following instantiations to check for
proper execution: “Integers”, “Strings”, “Enumeration”, “Fixed”, “Float”, “Boolean”,
“Character’”’, “Array”, “Records”. If all tests pass without errors, the test is sa.. to pass.
Otherwise, the test {ails.

4.6.4.1 TIO1 and TJO1. Exercise the Create interfaces (5.3.4.2 and 5.3.5.3).
Additional tests are executed to determine that a file of mode In.File can be created, that a file
of mode Out_File can be created, and that a file of mode Inout_File can be created.

4.6.4.2 TIO2 and TJ02. Additional tests are executed Lo determine that a true is
returned when Is_Open is applied to an open file of mode Out_File, that a true is returned
when Is_Open is appiied to an open file of mode In_File, that a true is returned when Is_Open
1s applied to an open file of mode Append_File, and that a false is returned when Is Open is
applied to a closed file of mode Out_File.

1.6.4.3 TIO3 and TJ03. Additional tests are executed to determine that mode
Out_File is returned when mode is applied on a file of mode Qut_File, that mode In-File is
returned when mode is applied on a file of mode In_File, that mode Append_File is returned
when mode is applied on a file of mode Append_File. and that exception Status Exception ix
returned when Mode is applied to a file already closed.

4.6.4.4 TIO4 and TJ04. Exercise all instantiations of the Close interfaces (5.3.4.4
and 5.3.5.4). Additional tests are executed to determine that an open file is closed when Close
1= apphed, and that no exception is raised when Close is applied to an already closed file.

4.6.4.5 TIO5 and TJO5. Exercise the Open interfaces (5.3.4.3 and 5.3.5.3)
Additional tests are executed to determine that a file with mode In_File can be successfully
opencd, that a file can be opened with mode Out_File, that a file can be opened with mod-
Append_File, and that a Status_Error exception is raised when opening an already opened file.

4.6.4.6 TIOB and TJOB. Exercise the Write interfaces (5.3.4 and 5.3.5). Additional
tests are executed to determine that an element can be written to a file. Also tests the
Synchronize interface (5.3.4.6 and 5.3.5.6), to determine that the exception Mode_Error is
raised when a Write is applied to an open file of mode In_File, and that the exception
Status_Error is raiscd when Write is applied to a closed file.

52

Vo e —— - v —

- v ———— —_— .-

4.6.4.7 TIO7 and TJO7. Exercise the Reset interfaces (5.3.4.5 and 5.3.5.5).
Additional tests are executed to determine that a file can be reset to mode In_Mode, that a file
can be reset to mode Out_File, that a file can be reset to mode Append File, and that the
exception Status. Error is raised when resetting a closed file.

4.6.4.8 TIO8 and TJO08. Exercise the End-of_File interfaces (5.3.4 and 5.3.5). In
addition to the complete set of instantiations being performed, tests are conducted to
determine that End_of File returns true when applied to an open file at End of-File as
expected, that false is returned when an End_of File test is made on a file containing
additional elements, that Mode_Error is raised when an End_of_File test is made on a file of
mode Out_File, and that Status Error is raised when a closed file is tested for End_of_File.

. 4.6.4.9 TIO9 and TJ09. Exercise the Read interfaces (5.3.4 and 5.3.5). In addition
to the usual instantiation tests, tests are run to determine that elements in a file can indeed be
read, that the exception End_Error is raised when if Read is applied to a file at the

‘End_of_File as expected, that the exception Mode_Error is raised when Read is applied to a

file not of mode In_File as expected, and that a Status_Error is raised when Read is applied to
a closed file as expected.

4.6.4.10 TKO1. This package tests the proper execution of the Create, Open, Close,
Is_Open, Mode, and End_of_File (5.3.6) for text files. The test strategy is to create a text file
node, attempt to apply Open to the text file, determine the proper operation of the Open with
Is_Open, apply Mode to the created file, determine that an open file can be closed, verifying
the proper execution of Close with Is_Open exception, and determine that a file can be re-
opened after a Close operation, and verify that an exception is raised when an End_of _File
check is made on a file of mode Out_File. Any exceptions raised during the execution of the
above tests will be reported. Execution will then proceed with the next test in sequence.

4.6.4.11 TKO02. This package executes test cases for Get, Put, New_Line, Skip_Line,
and End_of_File interfaces for text files. The test strategy employed is to create and open a
text file node for output, write predefined text to the output file and close it, reopen the file
and apply a Get to it, verifying for the same text that was previously written, apply Skip_Line
to the file and perform a Get_Line and compare to predefined results to verify proper
execution, verify that the file was properly constructed and accessed by performing a
Skip_Line and then another Get_Line and comparing to expected results, and execute
End-of_File and verify results. If any exceptions are raised during test execution, an error
message 1s reported with execution continuing at the next test in sequence.

4.6.4.12 TKO3. This package executes test cases for the Set_Input and Set_Output
interfaces for text files. The test strategy is to create and open two text files with Inout intent,
apply Is_Open to verify proper execution of the Open, write predefined text into each file and
reset both files to input, apply Set_Input to the first file and Set_Output to the second file,
apply Mode to determine the proper execution of Set_Input and Set_Output, and verify the
integrity of the file by performing Get_Line and comparing to the previously written
predefined text. Any unexpected exceptions raised cause an error to be reported with
execution continuing with the next test in sequence.

53

4.6.5 Usability Tests

Three usability tests will be executed to determine the performance characteristics of the
Put_Line, Get-Line, and Synchronize interfaces.

4.6.56.1 TK101. This package invokes the Put_Line interface for an open file node up
to the pragmatic limit. Output is made to the report file each 100 executions along with the
time required for the execution. The average time for each Put_Line is also calculated using
the interval timer results.

4.6.5.2 TK102. This package executes Get_Line interface for an open file node 1,000
times and computes the average time for each incidence. Qutput is made to the report file to
record interim results.

4.6.5.3 TK103. This package executes the Synchronize interface 100 times and
calculates the average time required for each execution. Interim results are recorded every 10
iterations.

4.7 Import_Export Tests

The IMPORT_EXPORT package interfaces are tested indirectly by all other tests.
Some tests will call the IMPORT_EXPORT interfaces, and other tests will rely on the
implementation-dependent SWG CAIS administrative services tools to import and export host
files directly. No explicit tests will be written for these interfaces.

4.8 Page_Terminal 10 Tests

The CAIS_PAGE_TERMINAL_IO package provides the capability to communicate with
page terminal devices. Positions on a display are directly addressable and are arranged into
horizontal rows and vertical columns. Each position on the display is identifiable by the
combination of a positive row number and a positive column number. The test strategy
involves the development of just one usability test.

4.8.1 Nominal Tests

No nominal tests were developed for this interface.
4.8.2 Usability Tests

An open file node handle with In_Out intent is required for the successful execution of the
Page_Terminal lo test called “TPO1”. This test is a modification of a NOSC page terminal
test of the same name.

TPO1 executes test cases for various instantiations of the CAIS_ PAGE_TERMINAL_O

package. The interfaces used in the test include the following: Open (5.3.9.2),
Erase_in_Display (5.3.9.30), Page_Size (5.3.9.12), Set_Artive_Position (5.3.9.10), Delete_Line

54

(5.3.9.28), Insert_Line (5.3.9.33), Erase_Line (5.3.9.31), Put (5.3.9.18), Get (5.3.9.19),
Select_Graphic-Rendition (5.3.9.35), and Close (5.3.9.3).

The test strategy is to open a file node handle for the page terminal device, obtain the
terminal characteristics, and exercise the terminal in a manner typically used for full screen
editors or for forms entry. The following sequence is executed to test the paged terminal
capabilities. Limited exception checking is performed during the test sequences.

e Label each line and place “#’ in reverse video.
o Test the retrieval of Ada characters by requesting the input.
o Test the deleting of lines.
s Test for the insertion of lines.
¢ Move the cursor on the screen in random positions.
o Get a string of Ada characters.
o Get a single Ada character or a function key.
4.9 List Management Tests

These tests exercise the interfaces defined in the CAIS_LIST_-MANAGEMENT package
(5.4.1). CAIS_LIST_.MANAGEMENT implements an abstract data type (i.e., list) that is
constructed of items that may be sublists, strings, integers, floats, or identifiers. Items within
lists may be either named or unnamed (i.e., positional). The operations provided in
CAIS_LIST_MANAGEMENT include insertion and deletion of items, identification of sub-
lists, replacement and extraction of items, conversions to and from text, and determination of
the kind of an item or list.

4.9.1 Test Strategy

The list management tests were able to take advantage of several previously written
tests. Tests originally developed by NOSC were used as the basis for all of the list
management nominal tests. These tests were modified to reflect changes in the CAIS and to
expand coverage. The modified NOSC tests were also used to develop the usability tests.

Both the nominal and the usability tests for list management follow the same basic
format. Similar interfaces (e.g., Extract_List and Extract_Value) are grouped together within
a single test; each test loops reading text input from an American standard code for
information exchange (ASCII) file and after reading a set of data, a subtest is performed in
which a list is created, the specified operation is performed, and actual results are compared
against expected results. Because lists are read from the textual input file, it is easy to specify
a variety of list forms so that the list management interfaces can be tested with respect to a

55

wide range of list structures and item values. It also allows new subtests to be run without
modifying or recompiling the Ada source code for that particular interface.

Usability tests differ from nominal tests in that they exercise interfaces using complex
lists, where a complex list is defined to be a list containing approximately 255 items and those
items are a mixture of various item_kinds. The usability tests also check for specific limits on

list sizes.

Because lists are abstract data types provided by CAIS and because these tests are
designed to perform black-box testing, each test necessarily relies on list management
interfaces other than the interfaces specifically being tested. The
CAIS_LIST_.MANAGEMENT interfaces used by other list management tests are
Convert_Text_To_List, Set_To_Empty_List, Text¥orm, Convert_Text_To_Token, and
Insert. Proper implementation of these interfaces is essential to the proper testing of

CAIS_LIST_.MANAGEMENT using this test set.

4.9.2 Specific Support Packages

The list management tests make use of a generalized REPORT package. REPORT
provides standardized interfaces for creating test reports. Procedures are provided for
reporting test names, indicating pass/fail status for subtests. and reporting an overall test
result (that indicates passage only if all subtests pass).

The usability tests for list management make use of additional support procedures:

¢ CREATE_COMPLEX LiST-Reads the text form of items from an input file and

inserts them one at a time into the complex list being created.

¢ PRINT_COMPLEX_LIST--Formats a complex list into 80-character lines and
prints it to the test output file.

4.9.3 Organization of Node Model

There is no need to interact with the CAIS node management facilities in order to test
the list management interfaces. These tests do not create or depend upon the existence of any
nodes or particular instance of the node model.

4.9.4 Nominal Tests

4.9.4.1 TBO1l. Exercise the Copy-List interface (5.4.1.2). Obtain input from file
TBO1.IN. Simply loop, reading a text string from TBO1.IN on each pass. For each list copied,
display both the original and the copied list, and report the result of the comparison as the test
either passing or failing. After performing all subtests, issue a summary result indicating
"pass” only if all lists were copied correctly.

56

4.9.4.2 TBO2. Exercise the three interfaces defined for the Delete interface (5.4.1.7).
Obtain input from file TBO2IN. Test all forms of delete (by position, by identifier, or by
token). After calling Delete to remove an item from a list, compare the resulting list to an
expected result. Display the original list, resulting list, expected result, kind of delete, and the
deleted item’s name or position, as well as an indication of pass/fail in the test results file.
After performing all subtests, report a summary result indicating "pass” only if all items were
deleted correctly.

4.9.4.3 TB03. Exercise the Is_Equal interface (5.4.1.6). Cbtain input from file
TBO3.IN. For each subtest compare the two input lists, and verify the result of this
comparison against an expected result of either true or false. Report the two input lists and
the expected result, as well as an indication of pas:/fail in the test results file. After
performing all subtests, report a summary result indicating "pass” only if all comparisons were
performed correctly.

4.9.4.4 TBO05. Exercise the Extract_List interface (5.4.1.12), the interface for
Get_Item.Name (5.4.1.19), and the three interfaces defined for Extract_Value (5.4.1.6).
Obtain input from file TB05.IN. For each subtest, invoke the appropriate extraction interface,
and then compare the result to the expected result. Report the kind of extraction, the original
list, the specified name or position (or start position and count), the result, and the expected
result, as well as an indication of pass/fail in the test results file. After performing all subtests,
report a summary result indicating "pass” only if all comparisons were performed correctly.

4.9.4.5 TBO7. Exercise all of the interfaces for CAIS_IdentifierItem {5.4.1.22.2 - 8).
This package provides interfaces for the manipulation of tokens within lists: Extract, Insert,
Replace, and Position_by_Value. It also supports comparison of tokens and converting text to
tokens. Test extraction, insertion, and replacement for all three forms of keys (i.e.. by
position, by identifier, and by token). Obtain input from file TBO7.IN. For each subtest,
invoke the appropriate CAIS_Identifier_Item interface, and print both the test inputs and the
test results. The test result file must be read to verify the correctness of tests.

4.9.4.6 TBO08. Exercise the three interfaces defined for Kind_of_Item (5.4.1.9). Test
all three forms of keys (by identifier, by position, and by token) allowed for specifying the list
item whose "kind" is being requested. OLtain input from file TBO8.IN. For each subtest,
compare an expected "kind” to the one actually returned. Report the test inputs, as well as an
indication of pass 'fail in the test results file. After performing all subtests, report a summary
result indicating "pass” only if all comparisons were performed correctly.

4.9.4.7 TB09. Exercise the three interfaces defined for Insert (5.4.1.21.3). Test all
three methods of inserting a sublist into a list (into an unnamed list, into a named list using an
identifier, and into a named list using a name token). Also check that exceptions are raised as
expected. Obtain input from file TB09.IN. Perform the insertion and either compare the
successful result to the expected result or, when an exception occurs, compare the exception to
an expected error. Report the test inputs, as well as an indication of pass/fail in the test
results file. After performing all subtests, report a summary result indicating "pass” only when
results occur as expected.

57

4.9.4.8 TBI10. Exercise all of the interfaces for CAIS_Integer_Item (5.4.1.23.1 through
5.4.1.23.5). This provides for manipulation of integers within lists: Extracted_Value, Insert,
Replace, and Position_by_Value. It also supports converting integer values to Text_Form.
Test extraction, insertion, and replacement for all three forms of keys (i.e., by position, by
identifier, and by token). Obtain input from file TB10.IN. For each subtest, invoke the
appropriate CAISINTEGER_ITEM interface, and print both the test inputs and the test
results, as well as a pass/fail indication.

4949 TB11l. Exercise the Number—ofItems interface (5.4.1.13) and the four
interfaces defined for Text.Length (5.4.1.21.3). Test all three methods (by position, by
identifier, and by token) of specifying a sublist whose length is requested. Also check that
exceptions are raised as expected. Obtain input from file TB11.IN. Perform the length
request and either compare the successful result to the expected result or, when an exception
occurs, compare the exception to an expected error. Report the test inputs, as well as an
indication of pass/fail in the test results file. After performing all subtests, report a summary
result indicating "pass” only when results occur as expected.

4.9.4.10 TB12. Exercise the Kind_of_List interface (5.4.1.6). Simply loop, reading
two inputs from TBI2.IN on each pass: a list to be checked, and an expected result of
Unnamed, Named, or Empty. Perform the Kind—of List operation on the input list, and
compare the result to the expected result. Report the list, actual result, and expected result,
as well as an indication of pass/fail in the test results file. After performing all subtests, report
a summary result indicating "pass” only if all comparisons were performed correctly.

4.9.4.11 TB13. Exercise the Position-by_Value interface (54.1.21.4) and both
interfaces (by identifier or by token) for the Position_by_Name operation (5.4.1.20). Also
check 'hat ~xceptions are raised as expected. Obtain input from file TB13.IN. Perform the
position request, and either compare the successful result to the expected resuit or, when an
excepticn occurs. compare the exception to the expected error. Report the test inputs, as well
us an ludication of pass/fuil in the test results file.

4.9.4.12 TB14. Exercise the three interfaces defined for Replace (5.4.1.6). Obtain
mmput from file TB14.IN. For each subtest, invoke the appropriate replacement interface, and
then compare the result to the expected result. Report the kind of replacement, the original
list, the specified identifier, token, or position being replaced, the resuit, and the expected
result, as well as an indication of pass/fail in the test results file.

4.9.4.13 TB15. Exercise the Splice interface (5.41.10) and Concatenate_Lists
izt rlace (5.4.1 11). Also cherk for proper propagation of exceptions. Obtain input from file
TBI15.IN. Perform the appropriate merge and either compare the successful result to the
expected result or, when an exception occurs, compare the exception to an expected error.
Report the inputs, as well as an indication of pass/fail in the test results file.

4.9.4.14 TB16. Exercise all of the interfaces for CAIS_String_Item (5.4.1.25 .1 - 4).
These interfaces support manipulations of strings within lists: Fxtracted_Value, Insert,
Replace, and Peoition_by_Value. Test extraction, insertion, and replacement for all three
forms of keys (ie., by position, by identifier, and by token). Simply loop, reading a test
mdicator and the appropriate number of inputs from TBI6 IN nn each pass. For each subtest,

58

invoke the appropriate CAIS_.SSTRING_ITEM interface, and print both the test inputs and the
test results, as well as a pass/fail indication.

4.9.5 Usability Tests

4.9.5.1 TB25. Perform five different checks on the maximum sizes supported for
simple lists. Create a list and add items (empty lists) to it until no more can be added.
Determine that the list can be at least as long as CAIS_List_Length (255 items) and that
Capacity_Error is raised when ro more items can be inserted. Determine the condition of the
node model at this point. Repeat the first test, creating the largest acceptable list. Determine
whether other lists can grow to be as large as the first. Recursively create a list containing
other lists until no more lists can be inserted. (Let each list contain nothing other than the
next nested list.) Determine whether, at this point, the limit is on depth of nesting or on total
number of contained items. Create, using calls to Insert and Set_To_Empty_List, the largest
list of lists acceptable to the implementation. Compare its size with that from test 3 above.
Create the largest list acceptable to the implementation; call Copy_List and determine that
the second list is the same as the first.

4.9.5.2 TB26. Evaluate the use of Insert to create large, complex lists. Create a list
of items of every type except floating point values. Repeat with each list having the deepest
level of nesting accepted by the implementation. Create these complex lists by repeated calls
to Insert (using all overloaded forms and using items of all types). Proper operation must be
checked by printing and verifying the lists that are created.

4.9.5.3 TB27. Evaluate the Replace operation (5.4.1.21.2) on large, complex lists.
Check all three forms (by position, by identifier, and by token) of specifying the replacement.
Create a complex (e.g., many levels of nesting) list using items of all types. Call Replace (using
all overloaded forms and using items of all types) some number of times to alter the list.
Proper operation must be checked by printing and verifying the lists that are created.

4.9.5.4 TB28. Evaluate the Number_of Items (5.4.1.13) and Text_Iength (5.4.1.18)
operations on large, complex lists. Call Text_Length on an empty list; determine that a
positive value is returned. Create a complex named list and call Text_Length. using all
interfaces. Determine that the results for each call are correct. Create an unnamed list and
repeat the applicable tests. Also call Number_of_Items for these tests and determine that the
results for each call are correct. Proper operation must be checked by printing and venfying
the lists that are created.

4.9.5.5 TB29. Evaluate the Extract (5.4.1.12), GetItem-Name (5.4.1.19) and
Extract_Value (5.4.1.21.1) operations on large, complex lists. Create a complex list containing
items of all types and with several levels of nesting. Call Extract_List on the resulting list to
extract one of the original lists. Determine that the extracted list is the same as the original.
Call Extract{ed}_Value for items of each type, using each overloaded form; determine that the
proper value has been extracted in each case. Use the same complex lists to exercise the
Get_Item_Name interface. Proper operation must be checked by printing and verifying the
lists that are created.

59

4.9.5.6 TB30. Evaluate the Delete operation (5.4.1.7) on large, complex lists. All
three forms {by position, by identifier, and by token) are evaluated. Create some complex lists
(e.g., with deeply nested lists and containing items of all types). Delete items from the list,
determining at each stage that the list is properly formed. Proper operation must be checked
by printing and verifying the lists that are created.

4.9.5.7 TB31. Evaluate the Splice (5.4.1.10) and Concatenate Lists (5.4.1.11)
operations on large, complex lists. Create two complex named lists (e.g., with several levels of
nesting). Concatenate and determine that the result list is properly formed. Repeat, with one
of the lists named and the other unnamed. Concatenate and determine that
ListKind_of_Error is raised. Repeat, concatenating an empty list to a named list, then to an
unnamed list. Determine in each case that the result list is the same as the original nonempty
list. Splice one named list into another; determine that the result list is properly formed.
Repeat with the two lists of different kinds; determine that List_Kind-Error is raised. Proper
operation must be checked by printing and verifying the lists that are created.

4.9.5.8 TB32. Evaluate the Kind—of_List operation (5.4.1.21.2) on large, complex
lists. Create complex lists from input, and compare the actual kind of list to the expected
kind. Display the complex list, actual kind, expected kind, and a pass/fail indication for each
sub-test.

4.9.5.9 TB33. Evaluate the Position_by_-Name (5.4.1.20) and Position_by_Value
(5.4.1.21.2} operations on large complex lists. Create complex lists from input, and perform
requests for positions. Test both forms (by identifier and by token) of Position_by_Name.
Also test for possible exceptions. For each test, the complex list, expected result, and actual
result are printed, as well as a pass/fail indication.

4.9.5.10 TB34. Evaluate the Kind_of Item (5.4.1.21.2) operation on large, complex
Jists. Test all three forms of Kind—of_Item (by position, by identifier, and by token). Report
the complex list, item indicator, expected item kind, and actual item kind, as well as a
pass, fail indication for each subtest.

60

APPENDIX

SWG CAIS Test Suite Traceability Matrix

CAIS_NODE_MANAGEMENT
{__Test Name Interface Tested
TCO1 Open(51.21)
TCO02 Close (5.122)
TCO03 Kind_Of_Node (51 26)
TCO4 Is_Open (512 4)
TCo5 Open_Parent (5.1219)
TCO06 Delete_Node (5 1 2 23)
TCo7 Create_Secondary.Relationship (5 1 2 25)
TCO08 Delete_Secondary.Relationship (5.1.2.26)
TCO9 Set_Current_Node (5 12 37)
TC10 Get_Current.Node (5 1 2 38)
TC11 Change_Intent (5.12 3)
TC12 Intent (512 5)
TC13 Open_File_Handle_Count (5127)
TC14 Primary_Name (5 1 2 8)
TC15 Primarv.Kev(5129)
TC16 Primary_Relation (5 1 2 10)
TC17 Path_Key (512 11)
TC101 Create_Node (515 1). Open (5121), Close (5122), Is-Open (512 4), and Delete
(51223)
TC102 17 interfaces from Open (5 12 1) through Is_Same (5 1.2.17)
TC103 Interfaces from Index (51218) thrcugh IsInhentable (51228) and
Set_Current_Node (5 1 2 37) through Time_Attnibute_Wntten (5.1 2 42)
TC104 Iterator interfaces Create_lterator (51 2 30) through Delete_Iterator (512 36

61

CAIS.ATTRIBUTE.MANAGEMENT
Test Name Interface Tested

TDO1 Create_node_attribute (5.1.3.1)

TDO2 Create_Path_Attribute (5.1.3.2)

TDo03 Delete_Node_Attribute (5.1.3.3)

TDO04 Delete_Path_Attribute (5.1.3.4)

TDO05 Set.Node_Attribute (51.35)

TDO06 Set_Path_Attribute (5.1.3.6)

TDO7 Get_Node Attribute (5.1.3.7)

TDO8 Get_Path Attribute (5.1.38)

TD101 Create_Node_Attribute (5.1.3.1)

TD102 Create_Path_Attribute (5.1.3 2)

TD103 Set_Node_Attribute (5.1.3.5) and Get_Node_Attribute (51.3.7)

TD104 Create_Path_Attribute (513 2), Create_Node_Attribute (5.1.3.1), and Create Node
{5151)
CAIS_STRUCTURAL_NODE_MANAGEMENT

Test Name Interface Tested

TS101 Create_Node (5 1.5 1}

TS102 Create_Node (515 1)

TS103 Create_Node (515 1)

TS104 Create_Node (S 151)

TS5105 Create_Node (515 1)

TS106 Create_Node {515 1) and Cleee (5122)

Ts107 Create_Node (315 1) and Delete_Node (512 23)

TS108 Create_Node (5.1.5.1), Create_Secondary_Relationship, (5.1 2 25), and Delete_Node
(51223)

TS109 Create_Node (515 1), Open {5121} and Close {53122)

TS110 Create-Node (515 1) a:d Copy (5.12.20)

TS1H Create_Node (5.1.5.1) and Create_Secondary_Relationship (5.1 2 25)

Ts112 Create_Node (515 1) and Cieate_Secondary Relationship (5.1.2 25)

TS113 Create_Node (5.151), Create.Secondary_Relationship (5 1.2.25), and
Delete_Secondary_Relationship (5.1.2 26}

| TS114 Set Current_Node (512 37)

CAIS_PROCESS MANAGEMENT

__Test Name Interface Tested
TG4 Spawn_Process (5.2.2.1)

TGO05 Await_Process_Completion (5.2.2.2a)
TGO06 Await._Process_Completion (5 2.2.2b)
TGo7 Invoke_Process (5.2 2 3a)

TGos Invoke_Process (5.2.2 3b)

TG09 Create.Job (5.2.2.4)

TG11 Delete_Job (5.2.2.5a)

TG12 Delete_Job (5.2.2 5b)

TG13 Append_Results (5 2 2.6)

TG14 Write_Results (52.2.7)

TG15 Get Results (52 2 8a)

TG16 Get_Results (5.2 2 8b)

TG17 Get_Results (5.2.2 8¢)

TG18 Get_Results (5.2.2 &)

TG19 Current_Status (5.2 2 9a)

TG20 Current_Status (5 2 2 9b)

TG21 Get.Parameters (5 2 2.10}

TG22 Abort_Process (52 2 11a)

TG23 Abort_Process (52 2.11b)

TG24 Abort_Process (52 2 11¢)

TGZ5 AbortProcess (52 2 11d)

TG26 Suspend_Process (5 2 2 12a)

TG27 Suspend_Process (5.2 2.12b)

TG28 Resume_Process (5 2 2 13a)

TG29 Resume_Process (5 2 2 13b)

TG30 Open-Node_Handle_Count (5 2 2 14a,
TG31 Open_Node_Handle_Count (5.2.2 14b)
TG32 In_Unit_Count (5.2.2 15a)

TG33 lo_Unit_Count (52 2 15b)

TG34 Time_Started (5 2 2 16a)

TG35 Time_Started (5 2 2 16b)

TG36 Time_Finished (52 2 17a)

TG37 Time_Finished (52 2 17b)

TG38 Machine_Time (5 2 2 18a)

TG39 Machine_Time (5 2 2 18b)

TG40 Process_Size (5.2 2 19a)

TG41 Process_Size {5 2.2 19b)

TVo1 Spawn.Process (52 2 1)

TV02 Spawn_Process (522 1)

TVo3 Spawn.Process (5221)

TVo4 Invoke_Process (5 2 2 3)

TV0S Create_Job (522 4)

TVO9 Create_Job {52 2 4)

63

CAIS._PROCESS_MANAGEMENT
|__Test Name Interface Tested
TV1l Abort._Process (52.2 11)
TVi12 Abort._Process (5.2.2 11)
! TV13 Abort_process (5.2 2.11)
y TVi4 Abort_Process {5.2.2.11)
TVis Invoke_Process (5.2 2.3)
' TVi6 Abort_Process (5.2.2.11)
! TV17 Delete_Job (5.2.2.5)
.’ TV18 Delete_Job {5.2.2.5)
' TV19 Await_Process_Completion (5.2.2.2)
' TV20 Await_Process Completion {52 2 2)
' TV21 Suspend.Process (5 2.2 12) and Resume_Process (5.2.2.13)
| TV22 Suspend_Process (5 2 2 12) and Resume_Process (5.2 2 13)
1 TV23 Suspend_Process (5 2 2 12) and Resume_Process (5.2 2 13)
| TV24 Spawn_Process {5 2 2.1) and Get_Parameters (5 2.2 10)
f TV32 Wnte Results (52 2 7) and Get_Results (52.2 8)
,‘ TV33 Append_Results (52 2 6) and Get_Results (52.2 8)
} TV34 Time_Started (5 2 2 16), Time-Finished (5 2 2 17), and Machine_Time (52 2 18)
| TV35 Get_Parameters (5 2 2.10)
} TV36 Current.Status (52 2 9)
! TV37 To_Umit_Count (5.2 2 15)
}P TV3R Process Size {5 2 2 19)
!

CAIS_DIRECT 10 / CAIS_SEQUENTIAL-IO .
Test Name _Interface Tested
T101-TJO1. Create (5342/5352)
Tlo2, TJO2. IsOpen (53 4/535)
TI03,TJO3. Mode (53 4/535)
TI104,7T.J04. Close (534 4/5354)
T105,'1.J05. Open (5343/5353)
T106/TJO6. Wrnite (534/535)
T107,TJO7. Reset (5345/5355)
Tios, TJoS. End_Of _File (53 4/535)
Ti09/TJ0g. Read (534/535)
64

CAIS_TEXT_IO
Test Name Interface Tested
TKO1 Create, Open, Close, Is_Open, Mode, and End_Of_File for text files (53.6)
TKO02 Get, Put, New_Line, Skip_Line, and End_Of_File for text files (5 3 6)
TKO03 Set_Input and Set_Output interfaces for text files (5.3.6)
TK101 Put_Line (5.36)
TK102 Get_Line (5.3 6)
TK103 Synchronize (5 3.6 6)
CAIS_PAGE_TERMINAL_IO
|L__Test Name anterface Tested
TPO1 Page_Terminal interfaces (5 3.9)
CAIS_LIST MANAGEMENT
Test Name Interface Tested
TBo1 Copy-List (5.4.12)
TBO02 Delete (541 7)
TBO03 Is Equal (5.4.16)
TBO05 Extract_List (541 12), Get_Item_Name (54 1.19), Extract Value (54 16)
TBo07 CAIS_Identifier_Item (541222 - &)
TBOS8 Kind_Of_Item (541 9)
TB09 Insert (541213)
TB10 CAIS_Integer_Item (541231 - 5)
TB11 Number_Of_Items (5 4 1 13) and TextLength (54 121 3)
TB12 Foand_Of_List {5 118)
TB13 Position-By_Value (5 4 1 21 4) and Position By_Name (5 4 1 20)
TB14 Replace (54 1 6)
TB15 Splice {5.4 1.10) and Concatenate_Lists (541 11)
TB16 CAIS_String_Item (54125 1 - 4)
TB25 Insert (5413) Copv_List (5412) and Set_To_Emptv (541 1)
TB26
TB27 Replace (54121 2)
TB28 Number_UfJtems (5 41 13) and Text_Length (54 1 18)
TB29 Extract (54 112), Get_Item_Name (5 4 1 19) and Extract_Value (54121 1)
TB30 Delete (5417)
TB31 Splice (5.4 1.10) and Concatenate_Lists (5 4 1.11)
TB32 Kind_Of_List (541212)
TB33 Position. By Name (5 4 1 20) and Position_By_Value {541 21 2)
TB34 Kind_Of_Jtem (541212)

65

REFERENCES

Andrews, Dorothy M., “Automation of Assertion Testing: Grid and Adaptive Techniques,” in
Proceedings of the Eighteenth Hawaii International Conference on System Sciences, ed.
Sprague, R. H., Jr., vol. 2, pp. 692-9, Honolulu, HI: Western Periodicals Co., , 1985.

Arizona State University, Introduction to the CAIS Operational Definition Documentation, ,
October, 1986.

Beizer, Boris, Software Testing Technigues, Van Nostrand Reinhold Company, 1983.

Benzel, T. V., “Analysis of a Kernel Verification,” in Proceedings of the 1984 Sympossum on
Security and Privacy, pp. 125131, IEEE Computer Society Press, 29 April-2 May, 1984.

Besson, M. and B. Queyras, “GET: A Test Environment Generator for Ada,” in Ada
Components: Libraries and Tools, Proceedings of the Ada-Furope International Conference,
ed. Sven Tafvelin, pp. 237-250, Cambridge University Press, 26-28 May 1987.

Booch, Grady, Software Engineering Components tn Ada, 1987.

Bowerman, Rebecca, Helen Gill, Charles Howell, Tana Reagan, and Thomas Smith,
“Distributing the Common APSE (Ada Programming Support Environment) Interface Set
(CAIS) " MTR-86W00181, McLean, VA: The MITRE Corporation, January 1987.
Bowerman, Rebecca E., Study of the Common APSE Interface Set (CAIS), 1 October 1985

Carney, David J,, “On The CAIS Implementation,” IDA Memorandum Report M-482,
Institute For Defense Analyses, June 1988

Choquet, N., “Test Data Generation Using a Prolog with Constraints,” in Workshop on
Software Testing, Banff, Canada, 1985.

Collofello, Dr. James S. and Anthony F. Ferrara, “An Automated Pascal Multiple Condition
Test Coverage Tool,” in Proceedings COMPSAC 84., pp. 20-26, IEEE Computer Society
Press, 7-9 November 1984.

Department of Defense, “Ada Programming Language,” ANSI/MIL-STD-1815A, 22 January
1983.

Department of Defense, “Common Ada Programming Support Environment (APSE) Interface
Set (CAIS),” DOD-STD-1838, 9 October 1986.

Department of Defense, “Military Standard Common APSE Interface Set (CAIS),” Proposed
MIL-STD-CAIS, 31 January 1985.

67

np——

Glass, Robert L., Software Reliability Guidebook, Prentice Hall, 1979,

Henke, Friedrich W. von, David Luckham, Bernd Krieg-Brueckner, and Olaf Owe, “Semantic
Specification of Ada Packages,” in Ada in Use: Proceedings of the Ada International
Conference, Paris 14-16 May 1985, ed. Gerald A. Fisher, Jr., vol. V, pp. 185-196, Cambridge
University Press, September, October 1985.

Ince, D. C., “The Automatic Generation of Test Data,” The Computer Journal, vol. 30, no. 1,
pp. 63-69, February 1987.

Lindquist, Timothy E., Jefl Facemire, and Dennis Kafura, “A Specification Technique for the
Common APSE Interface Set,” 84004-R, Computer Science Dept., VP, April 1984,

Lindquist, Timothy E., Roy S. Freedman, Bernard Abrams, and Larry Yelowitz, “Applying
Semantic Description Techniques to the CAIS,” in the Formal Specification and Verification
of Ada, ed. W. Terry Mayfield, pp. 1-1 through 1-30, 14-16 May 1986.

Luckham, David and Friedrich W. von Henke, “An Overview of Anna, A Specification
Language for Ada,” Technical Report No. 81-265, Computer Systems Laboratory, Stanford
University, September 1984,

McCabe, Thomas J., Structured Testing, 1980.

McKinley., Kathryn L. and Carl F. Schaefer, “DIANA Reference Manual.” IR-MD-078,
Intermetrics, Inc., 5 May 1985.

Myers Glenford J., The Art of Software Testing. John Wiley X~ Sons. 1979.

Nvberg, Karl A., Audrey A. Hook, and Jack F. Kramer, “The Status of Verification
Technology for th: Ada Language,” 1DA Paper P-1859, Institute for Defense Analvses. July
1985,

Osterand, T. J., “The Use of Formal Specifications in Program Testing,” in Third
Int2rnational Workshop on Software Specification and Design, pp. 253-235, IEEE Computer
Society Press, 26-27 August 1985.

Pesch, Herbert, Schnupp, Perter, Hans Schaller, and Anton Paul Spirk, “Test Case Generation
Using Prolog,” in Proceedings of the 8th International Conference on Software Engineering,
b 252258, 28-30 August, 1985,

Sneed, Harry M., “Data Coverage Measurement in Program Testing,” IEEE, pp. 34-10, IEEE
Computer Society Press, 1986.

W. R., Adrion et al.,, “Validation, Verification, and Testing of Computer Software,” ACM
Computing Surveys, vol. 14, no 2, pp. 159-192, ACM, June 1982,

68

U.S. Department of Commerce/National Bureau of Standards, “Guideline for Lifecycle
Validation, Verification, and Testing of Computer Software,” FIPS-PUB-101, 6 June 1983.

“Using the ACVC Tests ,” ACVC Version 1.9.

Walker, B. J., R. A. Kemmerer, and G. J. Popek, “Specification and Verification of the UCLA
UNIX Security Kernel,” in Proceedings of the Seventh Symposium on Operating Systems
Principles, pp. 64-65, New York: ACM, 10-12 December 1979.

Wu, Liqun, Victor R. Basili. and Karl Reed, “A Structure Coverage Tool for Ada Software
Systems,” in Proceedings of the Joint Ada Conference, pp. 294-301., 1987.

NATO, Ada Programming Support Environments (APSEs) Memorandum of Understanding
{MOU), , 10 October 1986.

NATO, “Specifications for the Special Working Group Common Ada Programming Support
Environment (APSE) Interface Set (CAIS) Implementations,” US-Trondheim-002, 18 June
1987.

NATO, “NATO SWG APSE Requirements,” , 25 August 1987.

NATO, Requirements for Ada Programming Support Environments, STONEMAN, . August
1980.

NATO, Terms of Reference for the Evaluation Review Board for the Special Working Group
on Ada Programming Support Environments, , 11 December 1986.

NATO, Terms of Reference for the Tools and Integration Review Board for the Special
Working Group on Ada Programming Support Environments, , 11 December 1986.

69

Acronyms

ACVC

AIE

AJPO

ALS

APSE

CAIS

CAIS-A

CAISOD

CIVC
CMS

DEC
DIANA
DOD

GLOSSARY

Ada Compiler Validation Capability

Ada Integrated Environment. An Ada Programming Support
Environment project funded by the Air Force and contracted
to Intermetrics Inc.

Ada Joint Program Office. The office charged with the
success of the Ada programming language.

Ada Language System. An Ada Programming Support
Environment project funded by the Army and contracted to
Softech, Inc.

Ada Programming Support Environment. The complete set
of Ada development tools described by the “‘Stoneman”
document, including the Ada compiler, linker, editor,
debugger, etc.

Common APSE Interface Set. The proposed standard
(DOD-STD-1838) operating system interfaces for all Ada
projects.

Common Ada Programming Support Environment (APSE)
Interface Set Upgrade

CAIS Operational Definition; a partial implementation of
MIL-STD-CAIS, January 1985,

CAIS Implementation Validation Capability.

Conversational Monitoring System. A trademark of
International Business Machines, Inc.

Digital Equipment Corporation
Descriptive Intermediate Attributed Notation for Ada

Department of Defense.

DRB

ERB

IBM
1,0
'RB

VLV

KAPSE
KIT
MC68020
MMI

MOU

NATO

0Os

PCTE

Demonstration Review Board. One of four boards established
by the NATO MOU. The main objective of the board is to
coordinate and review the demonstration of an APSE
capability through the use of two weapons systems scenarios,
as the basis for the holistic APSE evaluation.

Evaluation Review Board. One of four boards established by
the NATO MOU. The main objective of the work is to
coordinate and review the specification and development of
methods and tools for the evaluation of APSE tools and the
demonstration of this technology, where possible, on the tools
and the SWG CAIS.

International Business Machines

Input/output

Interface Review Board. One of four boards established by
the NATO MOU. The main objective of the board is to
coordinate and review the development of the requirements
and specification of an interface standard for APSEs, based
upen review of the evolutionary interface developments
(inctuding CAIS and PCTE), to be recommended for adoption
and use by NATO and nations.

Independent Verification and Validation

Kernel APSL. The leve] of an APSE that presents a machine
independent portability interface to an Ada program.

KAPSE Interface Team.

A 32-bit microprocessor produced by the Nlotorola
Corporation.

Man Machine Interface.
Memorandum of Understanding.

North Atlantic Treaty Organization.

Operating System

Portable Common Tool Environment

-]
(]

PCTE+
SWG
SWG CAIS

TIRB

UK
UNIX

VMS

Portable Common Tool Environment upgrade
Special Working Group

Title given to the document which provided the specifications
specific CAIS implementation is being developed for the
NATO effort.

Tools and Integration Review Board. One of four boards
established by the NATO MOU. The main objective of the
work 1s to coordinate and review the specification,
development and integration of a group of software tools
representative of a usable APSE through their initial
implementation on two distinct computer architectures using
an agreed interface set.

United Kingdom

A widely-used operating system originally developed by Bell
Telephone Laboratories.

Virtual Address eXtension. A trademark of Digital
Equipment Corporation. The name of a widely-used
computer system from Digital Equipment Corporation.

Virtual Memory System. A trademark of Digital Equipment
Corporation. An operating system for a VAX computer.

73

Terms

Ada package

Debugging

Black-box testing

Dynamic analysis

Evaluation

Exception

Feroo o, o fiention L tuage

Frrmal verification

Funetional testing

Girey-pox testiug

Interface

A program unit that allows for the specification of a group of
logically related entities. A package normally contains a
specification and a body.

The process of intentionally introducing errors into a program
as a means of determining effectiveness of program testing.

A testing approach that examines an implementation from an
external or “black-box” perspective. The test cases are
designed based on the functional specification and do not
make use of any structural or iuternal knowledge.

A salidation technique that evaluates a product through
actual execution of it.

The process used to quantify the fitness for purpose of an
item in terms of its functionality, usability, performance and
user documentation.

Errr or other exceptional situation that arises during the
execution of a program.

A roase Doeuage used to ecnvey the -emuttics or mieaning
of an wtemn.

A process that employs formal mathematical proofs to sheaw
correctiess of a specification or implementation with respect
toats predecessor specification.

See bla k-box testing

A form o testing that Blendds techniques from both Flokabos
and white-box testing.

A funet o or procedure defined in a CAIS package
specification It provides a tool writer with a standard
mechanstn for performing a o tem level service withont
knowledee - racees to the underlving system architecture

Metric

Node Mode! Instance

Stoneman

Subprogram

Test case generation

Test data

Test driver

Validation

Verification

White-box testing

A quantifiable indication of the state of an entity.

A particular realization of nodes, relationships and attributes
produced through execution of a set of CAIS interfaces. The
state of a node model instance is the current status of that
instance. Prior to test execution, an initial state of the node
model instance should be defined.

The requirements document for an APSE; published by the
Department of Defense.

A program unit that is executed by a subprogram call. The
call can be in either the form of a function or a procedure.

The process of determining both the inputs to drive a test and
the expected test results.
The set of inputs needed to execute a test.

A software component that is used to exercise another
software component under test.

The process used to determine the degree of conformance of
an end product to its original specification.

The process used to determine the carrectness of each
transformation step in the development process.

A class of testing that examines the internal structure of
software.

