
Design Specification for Test and Evaluation of the

NATO Common Ada Programming

Support Environment (APSE)

Interface Set (CAIS) Implementation

qt
Lfl

Deborah M. Haydon

Annette Englehart
o Mike McClimens
NM Jonathan D. Wood

Phil Yu

23 February 1989

APR 0 619q

SPONSOR: D
Ada Joint Program Office (AJPO)

Contract No.:

F 19628-89-.-0001

'MAR 21989

The MITRE Corporation
Washington C31 Operations

7525 Colshire Drive

McLean, Virginia 22102

890910

89 4 6100

_ UNCLA 3 SIFIED
SECURITY CLASSIFICATION OF THIS PAGE (WhenDai..Yntered)

READ IN'STRUCTIONS
REPORT DOCUMENTATION PAGE BEFOREOCOMPLETEINGFM

1. REPOnT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4 TITLE (ubti ,' O 1 IT TYPE OF REPORT & PERIOD COVERED'

Al PL M PL 9f4v 7A'r/o 6. PERFORMING ORG. REPORT NUMBER

7, AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

14 A adI
Q- E: M, A. YI d'.1 ------ "

C-//",- V.s , P4 •
9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

M /T TA -.-d "A,tp AREA & WORK UNIT NUMBERS

COL5H/rz D#.

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPnRT DATE
Ada Joint Prooramr Off ica A-641.- 12 C)
3D139 (1211 S. FERN, C-107) 13. NUMtL OF PA S
The Pentagon _S z, __

Washington, D.C. 20301-3081 'erent from Controlling Office) 15. SECURITY CLASS (ofthis report)

UNCLASSIFIED
15a. R S JFICATIONDOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstractenteredinBlock20 If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

DO ,u1 1473 EDITION OF I NOV 65 IS OBSOLETE

I JAN 73 SIN OICOZ-LF-014-600I UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (WhenData Entered)

ABSTRACT

A North Atlantic Treaty Organization (NATO) Special Working Group (SWG) on Ada
Programming Support Environments (APSEs) was established in October 1986. Its charter is
to develop a tool set that constitutes an APSE, to evaluate the APSE on both an individual
component basis and on a holistic level, and to define a NATO interface standard for APSEs.
A specific task within the associated MITRE work program is to develop the design to perform
test and evaluation of SWG Common APSE Interface Set (CAIS) implementations. The SWG
CAIS is the agreed-upon tool interface set for the NATO effort and is a variant of the CAIS
standard, DOD-STD-1838. CAIS provides a standard set of kernel interfaces for APSE tools,
thus promoting portability of tools across disparate architectures.

The SWG CAIS is complex; there are over 500 unique interfaces defined in 29 Ada
packages with over 1,600 possible error conditions. This report outlines an approach and
specities the design for the development of the test and evaluation environment. The design
outlines the tests to be developed and discusses attributes of the test environment that

influence the design of the test suite.->This test suite will include two categories of tests. The
first category will test for nominalV functionality and completeness of the interfaces by

exercising each of the iiitcrfaces deemed critical in the Requirements for Test and Evaluation

of the NATO Common Ada Programoing Support Environment (APSE) Interface Set (CAIS)

(Mularz, 1988). The .ccond category Will test for overall usability of SWG CAIS capabilities by
exercising combinations of the critica1 interfaces typically found in the APSE tools. There will
be two SWG CAIS implementations/installed on two different host architectures. This report
provides the design for the proposed test nd evaluation of the SWG CAIS implementations.

Accesson For

A1 C,,llty Codes
S '. . and/o

Dt. t

iiIDr ,tI :[' ~

ACKNOWLEDGMENTS

We would like to thank the MITRE peer reviewers, Robbie Hutchison and Tom Smith,

for their thorough, conscientious, and timely critique of our paper. Much credit is also due to

the U.S. Team members and Evaluation Review Board members who reviewed preliminary

drafts of this paper.

v

TABLE OF CONTENTS

Page

LIST OF FIGURES Xiii

LIST OF TABLES X

EXECUTIVE SUMMARY xi

1.0 INTRODUCTION 1

1,1 Background 1

1.2 Objective 3

1.3 Scope 4

1.4 Document Organization 4

2.0 SVG CAIS TEST AND EVALUATION APPROACH 5

2.1 Develop Test Environment 5

2.2 Develop Test Suite 5

2.3 Reuse Existing Technology 6

2.4 Support Staged Test and Evaluation Capability 13

2 .3 Incorporate Design Goals 13

25.1 Flexibility 13

2.5.2 Extensibility 14

2.5.3 Robustness 14

2.5.4 Portability 14

3.0 TEST ENVIRONMENT 17

3.1 Test Administration Procedures 18

3.2 Test Configuration Management Procedures 19

vii

TABLE OF CONTENTS (Continued)

Page

3.3 Test Invocation 19

3.4 Run-time Control 19

3.5 Implementation Assessment 19

3.6 Environment Configuration Asessment 20

3.7 User Requirements 20

3.8 External Interface Requirements 20

3.8.1 Hardware Interfaces 20

3.8.2 Software Interfaces 20

3.9 Performance Requirements 21

3.10 Test Support 21

310.1 Timing 22

3.10.2 Tree Walkers 22

1.0 TEST SUITE 23

4.1 General 23

4,1.1 Nominal Testing 23

4.1.2 Usability Testing 24

t.1.3 "Fost Name Standards 25

4,1.4 Input/Output Standards 26

4,1.5 Test Design Standards 26

11.6 Test Success Criteria Standards 31

4.2 Node Management Tests 31

4.2.1 Test Strategy 32

4.2.2 Specific Support Packages 32

4.2.3 Organization of Node Model 33

Viil

TABLE OF CONTENTS (Continued)

Page

4.2.4 Nominal Tests 33

4.2.5 Usability Tests 35

4.3 Attribute Management Tests 35

4.3.1 Test Strategy 36
4.3.2 Specific Support Packages 36
4.3.3 Organization of the Node Model 36

4.3.4 Nominal Tests 38

4.3.5 Usability Tests 39

4.4 Structural Node Management Tests 40

4.4.1 Test Strategy 40
4.4.2 Specific Support Packages 40
4.4.3 Organization of the Node Model 40

4.4.4 Nominal Tests 40
4.4.5 Usability Tests 42

4.5 Process Management Tests 44

4.5.1 Test Strategy .14

4.5.2 Specific Support Packages -14
4.5.3 Organization of Node Model -4-1
4.5.4 Nominal Tests 45
4.5.5 Usability Tests 48

4.6 Direct 10, Sequential IO1 Text 10 Tests 51

4.6.1 Test Strategy 51
4.6.2 Specific Support Packages 51
4.6.3 Organization of Node Model 52

4.6.4 Nominal Tests 52

4.6.5 Usability Tests 54

4.7 Import..Export Tests 54

4.8 PageTerminal-O Tests 54

1K

TABLE OF CONTENTS (Concluded)

Page

4.8.1 Nominal Tests
54

4.8.2 Usability Tests
54

4.9 List Management Tests
55

4.9.1 Test Strategy
55

4.9.2 Specific Support Packages
56

4.9.3 Organization of Node Model
56

4.9.4 Nominal Tests
56

4.9.5 Usability Tests
59

APPENDIX : SWG CAIS Test Suite Traceability Matrix 61

REFERENCES
67

71

GLOSSARY

x

LIST OF FIGURES

Figure Number Page

1 Elements of the NATO SWG APSE 2

2 SWG CAIS Input Data File Sample 27

3 SWG CAIS Output Data File Sample 28

4 SWG CAIS Procedure Documentation Sample 29

5 SWG CAIS Attribute Management Test Node Models 37

6 SWG CAIS Node Model Structures 41

xi

LIST OF TABLES

Table Number Page

I Scope of SWG CAIS Interface-Level Functional Testing 7

2 SWG CAIS Critical Packages/Critical Interfaces 8

3 SWG CAIS Package Dependencies 10

vii

EXECUTIVE SUMMARY

In October 1985, nine North Atlantic Treaty Organization (NATO) nations signed a
Memorandum of Understanding (MOU) that established a Special Working Group (SWG) on
Ada Programming Support Environments (APSEs). The SWG's charter is to develop and
evaluate a tool set using an agreed-upon interface set that standardizes system support to the
tools. The SWG agreed upon an enhancement of the Common APSE Interface Set (CAIS),
which was established as a Department of Defense (DOD) standard in October 1986. This

enhancement, termed the SWG CAIS, was subsequently baselined on 25 August 1988. The
SWG CAIS serves as the portability layer in the APSE by providing a set of standard kernel

level interfaces to a tool developer, thus supporting system-level functionality in an abstract,
consistent manner. The United States (U.S.) is providing implementations of these interfaces
on two different architectures. As a member of the U.S. Team sponsored by the Ada Joint
Progi .in Office (AJPO) and supporting the NATO SWG on APSEs, MITRE has responsibility

for thL, test and evaluation of the SWG CAlS implementations.

The S\VG CAIS presents over 500 standard interfaces for use by a tool developer. These

interfaces manipulate an underlying node model that manages relevant objects such as users,
processes. files, and devices. A systematic approach must be defined to provide adequate
testing of these tool interfaces prior to integration of the SWG C.XIS implementation with the
SWG APSE. There are two categories of testing activities. The first category includes

development of a test suite to perform nominal testing (i.e., testing of individual interfaces) for
a critical subset of the SWG CAIS interfaces. The second category of testing activities
includes enhancement of the test suite to incorporate SWG CAIS usability testing (i.e., testing
combinations of interfaces typical of APSE tools).

This paper provides the design for the proposed test and evaluation of the S\\G CAlS.
The design is based on a functional, or "black-box," approach that precludes any knowledge of
an implementation's internai operation. The design reflect the requirements put forth in
Requirements for Test and Evaluation of the NATO Common Ada Programming Support
Environment (APSE) Interface Set (Mularz, 1988). This paper also discusses attributes of the

tent environment that influence the design of the test suite, including the following: test
c-IQguration management, reportang of tes-t isult. documentation of procedures for executing

the tests, the need to assess partial SWG CAIS implementations, and efficient running of the
test suite. General design goalb and standards are described for the tests, and each test to be
developed is described in terms of the test objective, basic test approach, and results to be

reported.

xlii

1.0 INTRODUCTION

This document defines the design of the test suite and the approach for a test
environment to support test and evaluation of the Common Ada Programming Support
Environment (APSE) Interface Set (CAIS) implementation developed for the Ada Joint
Program Office (AJPO) in conjunction with the North Atlantic Treaty Organization (NATO)
Special Working Group (SWG) on APSE, hereafter referred to as the SWG CAIS
implementation.

1.1 Background

In the early 1970's, the Department of Defense (DOD) determined that the proliferation
of computer languages for embedded system software was consuming an increasing portion of
the DOD software budget. To help address this problem, the Ada language was created and
standardized in the early 1980's. However, it is recognized by the Department of Defense, the
software engineering community, and our NATO counterparts that a standardized language
alone is insufficient to address future large-scale development projects. To ensure the desired

improvements in future software development projects, a language needs to be coupled with
quality tools. The means to plan, analyze, design, code, test, integrate, and maintain such
systems on a common set of software is referred to as a programming support environment.

A STONEMAN-based APSE consists of a tool set and a system-level interface set
(STONE.AL-N, August 1980). The inierface set provides kernel-level functionality in an
abstract, consistent manner with specific system mapping embodied in a particular interface
implementation. Use of these interfaces by a tool developer promotes transportability of
APSE tools across disparate architectures.

In October 1986, nine NATO nations signed a Memorandum of Understanding ('MOU)
that established a S\VG on APSEs. This SWG has several goals defined for it: development of
an APSE on two different host architectures using an agreed-upon interfao,, set, evaluation of
the tools and the interface set as individual components, a holistic evaluation of the APSE (i.e,
as an integrated entity rather than as individual components), and specification of a NATO
interface standard for APSEs.

The NATO SWG APSE is based upon a STONEMAN model. While the goal of the
STONEMAN model is that tools will use an interface layer exclusively, the SWG APSE also
allows direct access to the underlying system, where necessary. Figure 1 illustrates the NATO
APSE and identities the NATO participants responsible for the development of each
component. DOD-STD-183S defines a particular interface set named CAIS. The agreed-upon
interface set for the NATO effort is a variant of DOD-STD-1838 named the SWG CAIS
(DOD,1986). The SWG CAIS will be developed for two host architectures: Digital Equipment
Corporation (DEC) VAX/VMS and a yet-to-be-determined architecture. Transportability of
the NATO APSE will be demonstrated by a porting of its component tools.

Four working boards were established to effect the SWG goals. Each board has an
individual charter that defines its objectives and its deliverables. These four boards are the

I

Figure 1

Elements of the NATO SWG APSE

SPAINCANADA

N TERAESTH~ERLANDS 00. % qm
(CAIS)f Sswl ntrree

UNITEDr STTE

Tools and Integration Review Board (TIRB), the Demonstration Review Board (DRB), the
Interface Review Board (IRB), and the Evaluation Review Board (ERB).

The TIRB coordinates the development and integration of the tools and the SWG CAIS
within the NATO APSE. Each participant identified in figure 1 is tasked with developing its
respective APSE component. Specifically, the United States is responsible for implementation
of the SWG CAIS on the two host architectures.

Since embedded systems support was a primary concern in the development of Ada and
APSEs, the NATO project includes APSE support for an MC68020 processor as a target
system. The DRB will employ the host APSE for development of two weapon system
scenarios that are targeted to the MC6820. This demonstration will be used to evaluate the
APSE from a holistic level.

The IRB is tasked with developing the requirements and specification of an interface
standard for APSEs. To perform this task, the IRB will analyze existing interface standards
such as CAIS; the planned upgrade, CAIS-A; a European standard known as the Portable
Common Tool Environment (PCTE); and an upgrade called PCTE+ The results of their
analysis will be an interface set specification that would define the recommended set to be used
on future NATO APSEs.

The ERB participants will develop evaluation technology and will use it to assess the
individual components of the APSEs that are developed by the TIRB participants. Both the
United States and the United Kingdom (UK) have specific tasks within this board. The United
States is tasked with performing test and evaluation of the SWG CAIS implementations. The
United Kingdom is responsible for evaluation of tools within the NATO APSE.

The 'Requirements for Test and Evaluation of the NATO Common Ada Programming
Support Environment (APSE) Interface Set (CAIS) Implementation" document identified the
technolugy required to support test and evaluation of the SWG CAIS implementation (Mularz,
1988). This document presents the design for those tests that compose the test and evaluation
activities.

1.2 Objective

The objective of this task is to design a limited set of tests that will test the SWG CAIS
implementation for functionality and usability and also provide a level of confidence to the
SWG CAIS users (i.e., tool developers), that the SWG CAIS implementation is sufficiently
tested prior to tool integration.

Evaluation is the process used to quantify the fitness for purpose of an item in terms of
its functionality, usability, performance, and user documentation. The test suite for the test
and evaluation of the SWG CAIS implementations comprises two categories: nominal tests and
usability tests. Nominal tests check for proper functionality of individual interfaces, and
usability tests check sequences of interface calls for both usability and performance. The
sequences of interface calls are chosen to reflect typical usage by tool writers. Procedures for a
detailed evaluation of documentation have not been developed because DOD-STD-1838 and
the SWG Addendum provide detailed descriptions of the functionality of SWG CAIS

3

implementations. Evaluation of users manuals and installation guides for SWG CAlS

implementations, however, will be performed using standard check lists.

1.3 Scope

The scope of this document is limited to defining the design for the tests that will be used
in test and evaluation activities for the SWG CAIS implementation. The scope of the test and
evaluation task has been defined as a set of testing activities that is independent of the SWG
CAIS developer. There are two categories of testing activities. The first category, nominal
testing, includes the testing for correctness in the functionality of critical interfaces. These
critical interfaces are defined in Section 2.2. The second category, usability testing, includes an
enhancement of the nominal test activities to test combinations of SWG CAIS interfaces
typical of APSE tools. Exhaustive testing is outside the scope of the current effort. This
design of the test and evaluation environment and test suite is specifically targeted to the DEC
VA-X/VMS SWG CAIS implementation.

1.4 Document Organization

This document describes the design for the tests that will be used to perform test and
evaluation of the SWG CAIS implementation. Section 2 gives the approach for evaluation of
the SVG CAIS implementation. Section 3 identifies the test environment that will support the

testing of the SWG CAIS implementation. Section 4 includes design information on the test
suite used for both nominal and usability testing. The appendix provides a traceability matrix
showing the names of the interfaces exercised by each test.

4

2.0 SWG CAS TEST AND EVALUATION APPROACH

The approach for test and evaluation of the SWG CAIS implementations takes into
account current test and evaluation techniques both in terms of methods and available
technology along with considerations that are unique to the NATO effort. The test and
evaluation approach includes development of a test environment, which will consist of a set of
manual and automated procedures that will address the execution of tests and the collection of
results, as well as the development of a test suite of Ada programs. The reuse of existing
technology and support of a staged test and evaluation capability is considered, as is the
incorporation of design goalare such as flexibility, extensibility, robustness, and portability.

The approach for the development of the test environment is described further in Section
2.1. The approach for the development of the test suite is further described in Section 2.2.
(Specific design information on the test environment is provided in Section 3, and information
on the test suite is provided in Section 4.) Reuse of existing technology is described in Section
2.3, support of a staged test and evaluation capability is described in Section 2.4, and
incorporation of design goals is described in Section 2.5.

2.1 Develop Test Environment

A test environment consisting of a set of test procedures (both automated and manual)
and guidelines in controlling the execution of the tests will be developed for the test and
evaluation process. The primary goal of the SWG CAIS test procedures is to support the test
and evaluation of a SWG CAIS implementation in a controlled manner and to be able to
support test and evaluation of partially completed SWG CAIS implementations. The design of
the tests takes into account the requirement that the SWG CAIS interfaces function in
accordance with the DOD-STD-1838 specification as modified by the SWG. The design of the
test procedures takes into consideration the need for the construction and execution of a large
number of repeatable tests on the SWG CAIS implementation.

2.2 Develop Test Suite

The evaluation capability will be developed using a functional or black-box approach to
test specification. Tests will be generated based on the specification of the S\VG C.M\I and not
on the specific structural details unique to a given implementation.

Some tests will be run to determine simple or nominal functionality and completeness of
the interfaces; other tests will be run to determine the usability of the SWG CAIS. The
intent is to determine that the tested SWG CAIS operations are syntactically and semantically
equivalent to the SWG CAIS specification and that the SWG CAIS implementation is usable.

The scope of the SWG CAIS test and evaluation effort currently includes only those
interfaces determined to be critical to NATO SWG APSE tool writers. Table I lists the
packages explicitly defined in the current SWG CAIS specification, the number of unique
interfaces associated with each package, and the number of parameters and exceptions
associated with each package. The unique exceptions defined for the SWG CAIS can be raised

5 mm m

by different interfaces for similar conditions resulting in over 1,600 po&sible exception

conditions.

Since not all of the interfaces listed in table 1 can be tested within the scope of this effort,
only those SWG CAIS packages determined a priori to be "critical" for the tool writers will be

tested. Critical SWG CAIS packages were selected based on the perception of anticipated
usage by the NATO SWG APSE tool writers. Ten of thirty-four SWG CAIS packages were
selected, and within these packages, the critical interfaces were determined. The five data
definition packages will be tested indirectly through testing of these ten selected SWG CAIS

packages. Table 2 lists the critical SWG CAIS packages and corresponding critical interfaces
that will be tested.

Packages within the SWG CAIS are hierarchically defined. This means that successful

use of an interface at one level in the SWG CAIS will in general depend on the successful

execution of other SWG CAIS packages on which it depends. Table 3 identifies the package

dependencies. The design of the test suite structure will account for these dependencies.

Given that test and evaluation of the SWG CAIS implementation is based on a functional
approach, the results of a test can only be analyzed from the inputs and outputs of a test; it
cannot make use of any internal structures or logic of an implementation to evaluate the
results. This implies that in some instances it will be necessary to execute one SWG CAIS
interface to determine the validity of the output of another interface. For example, a test
would be developed to evaluate the OPEN file interface. To ensure that the OPEN function
works correctly, the Boolean function IS-OPEN could be used. Therefore, the OPEN test
depends on successful operation of the IS-OPEN interface. The order of interface tests
therefore becomes an important evaluation consideration. Lindquist identifies this evaluation
issue as a "hidden interface" (Lindquist, 1984).

Tests will be designed to exercise each interface independently. If there are hidden
interfaces, whenever possible, the dependent test is performed first. The evaluation tests will
measure interface timing and capacity limits. Some evaluation tests will mimic specific S\VG
APSE tools/SWG CAIS interactions in assessing the usability of SWG CAIS interfaces and
strategies for making best use of SWG CAIS interfaces. The detailed design for this test suite
is defined in Section 4.

2.3 Reuse Existing Technology

Several technologies currently exist that were considered for incorporation into the SWG
CAIS tost Pnvironment. The available technulogies were presented in the Requirements for
Test and Evaluation of the NATO Common Ada Programming Support Environment (APSE)

Interface Set (CAIS) Implementation document (Mularz, 1988) and included Ada Compiler
Validation Capability (ACVC) tests, CAIS prototype tests, CAIS Terminal Input/Output
(I/O) test, Naval Ocean Systems Center (NOSC) List Management tests, and the United
Kingdom test harness and test suite evaluation technology.

These existing tests and the UK test harness were all reviewed for possible reuse in the
SWG CAIS test and environment capability. All of the List Management tests originally
developed by NOSC and the CAIS Terminal I/O test were reused and composed the List

6

Table 1
Scope of SWG CAIS Interface-Level Functional Testing

SWG Package Interfaces Parameters Posible
CAIS Exceptions
Spec. Ref. Raised

5.1.1 CAJS.DEFITIONS 0 0 0

5.1.2 CALNODF-MANAG EMNT 66 146 277
5.1.3 CAIS..ATTRITLMANAGEMENT 26 73 120

5.1.4 CAS.ACCESS.CONTROL. 12 27 48
MANAGEMENT

5.1.5 CASSTRUCTURAL.NOD- 4 26 36
MANAGE4ENT

5.2.1 CAIS-PROCESS-DEFINITIONS 0 0 0

5.2.2 CAIS-PROCESS-MANAGEMENT 38 114 166

5.3.1 CAS.LDEVICES 0 0 0
5.3.2 CAS.O-DEFINITIONS 0 0 0
5.3.3 CAISIOATTRIBTFES 16 16 60
5.3.4 CAISD!RECT_1O 16 44 28
5.3.5 CAIS..SEQUENTIALJO 11 34 28

5.3.6 CAISTEXTJO 56 79 28

5.3.7 CAJS-QUEUE.MANAGEMENT 18 141 130

5.3.8 CAjSSCROLLTEUM NAL-O 42 58 64
5.3.9 CAIS..PAGLTERMINALJO 49 73 82

5.3.10 CAS.FORMITERMINAL..O 30 45 35
5.3.11 CAS..MAGNETIC-TAPE-1O 19 32 43
5.3.12 CAIS.MPORT.EWORT 2 12 24
5.3.13 SWG-CAIS..OSTTARGET-1O 6 10 10

5.4.1 CA1SLISTdMANAGEDENT 29 55 98

S.4.1.21 CA1SLISTITEM 10 33 63

5.4.1.22 CAIS-1DENTIFIDL.TEM 11 31 69
5.4.1.23 CAIS.INTEGEFUT.M 14 31 70
5.4.1.24 CAIS-LOATITEM 11 31 70

5.41.25 CAIS.STRING.JTEM 10 30 67

5.5 CAIS..STANDARD 0 0 0
5.6 CAS.CALENDAR 15 29 5

5.7 CALS.PRAGMATICS 0 0 0

Totals 516 1610 1621

Determining the number of intatafa in a SWG CAS pckage is not alway. as simple a counting the
plocedurem and functions lsted in the table of contents of DOD-STD-1838. For the CAIS 1/O pack-

so, some of the intefacs re "borrowed" from the Ads Language Reference Manual with both addi-
tions and deletions.

7

Table 2
SWG CAIS Critical Packages/Critical Interfaces

Critical SWG CAIS Packaxes Critical Interfaces

CA1L-NOD-MANAGMNT DEETE-NODE
OPEN

CLOSE

COPY-NODE
CREATE-SEcoNDARY-RELAT1ONSH1P

DELETE-SECONDARY-ELATIONUJ

SET-.CURRENT-.NODE

GET-.CURRENT-NODE
cAls..ATTRIBUITLMANAGEMENT CREATE-NODL-ATTRIBUT1E

CREATL-PATH-ATTRIBUTE
DELETE-NODE-ATTRIBUTE
DELETE-PATH-ATTRIBUTE

SET-NODE-ATTRIBUTE
SET-.PATHATTRIBUTE
GET-NODL-ATTRBUT
GET-.PATILATTRIBUTE

CAJ&.STRUCTURAL..NODE-MANAGEMENT CREATE-NODE
CAI&..PROCESS-MANAGEMENT SPAWN-.PROCESS

CREATE-JOB
APPEND..RESULTS
GET-.RESULTS
WRITE-RESULTS

GET-.PARANIETRS

CURRENT-.STATUS
opEN-NODL-HANDLL.COUNT

IO-UNIT-COUNT
ABORT-PROCESS

DELETE-JOB
CAIS-DIRECT-10 CREATE

OPEN
CLOSE

RESET

READ
WRITE
SYNCHRONIZE

CA1IPORTWORT INWORT..CONTENTS

EPORT-CONTENTS

CAYS.FORMPAGEL.TI2WINAL 10 NIA

Table £
SWG CAIS Critical Packages/Critical Interfaces (Concluded)

Critical SWG CATS Packages Critical Interfas

CAIS-SEQUENTIALJO CREATE

OPEN

CLOSE

RESET
READ
WRITE
SYNCHRONIZE

CAISTEYT-1O CREATE
OPEN

CLOSE

RESET

PUT-LINE
GET-LINE

SYNCHRONIZE

CAISLIST-MANAGEMENT SETTO-EMPTY-LIST
COPY .LIST

CONVERT-TEXT-TO-LIST
SPLICE
CONCATENATE-LISTS

EXTRACT.LIST
REPLACE
INSERT

DELETE
IS-EQUAL

KINDOF.LIST

KIND-OFJTEM

NUMBRLOFJTM4S
GETITEM-NAME
POSITION.BY.NAME

POSITIONS-BYVALUE

TEXT-FORM

TEXT-LENGTH
EXTRACTVALUE

EXTRACTED-VALUE

MAK)-THIS.1TMCURRENT
MLC NTAININGJM.CURENT

POSITION-OF-CURRENT-LIST

CURRENT-USTiS-OUTERMOST
CONVERT-TEXT-TO-TOKEN

_________________GOPYTOKEN

9

Table 9
SWG CAIS Package Dependencies

Package Name Dependent on Package Contains/ Exports
____ ___ ____ ___ __ _ ___ ____ ___ ___ Packare

CALPRAGMATICS NIA None

CAILSTANDARD CAILPtGMATICS None

CAMS-UST-MANAGEMENT CALS-STANDARD CAM-LISTJTE4

CAISLPRAGMATICS CA1S.DENTFIERITEMV
CALSJINTEGERJMT
CA1s-FLOAT-JTEM

CALSSTRING-ITEM

CA1S-.DEFINITIONS CAIS-STANDA1RD None

CA1IS T-isMANAGEMENT

CA1S-.CALENDAR CAIS..STANDARD None

CA1s-NoDE-%MANAGEMENT CAIS..STANDARD None

CAIS-DEFINITIONS

CAIS-.CALENDAR

CAISJL1ST-.MANAGDVENT

CA1L-ACCESS-.CONTROL-
~ sACS-OTO

MANAGMNT

CAIS-ATTRIBUTE& CAIS-STANDARD None

MANAGEMENT
CAIS..DEINTIONS

CA1S-L1STM&NAGEMENT

CAIS-ACCESS-CONTROL- CA1S-DEFINITIONS None

MANAGEMENT

CAILISTMAN&Gi2MffNT

CA1S..STUCTLRALNODL. CALS..DEFNITIONS None

MANAGN
CA1LACCESS-CONTROL-
MANAGEMENT
CAIS..LIST..MANAGEMENT

C.AS.pROcESs-DEFMNTIONS CAIS-DEFINITIONS None

10

Table 3
SWG CAIS Package Dependencies (Continued)

Package Name Dependent on Package Contains/Exports
Packaze

CAIL-PROC!ESS-MANAGEMENT CALS-STANDARD None
CAILCALENDAR
CAIS..DEFINITIONS

CA1L-LIST-.MANAGEMENT
CALS..PROCESS..DEFINITIONS

CAL1LACCESS-CONTROL-
MANAGEMENT

CAIS4O..DEFIN TIONS CAILSTANDARD None

CA1S.-DFINTIONS
CAIS...LIST..MANAGEMEINT

CAJS-DEVICS

CAIS-O.0-ATTRIBUTES CAIS-STANDARD None

CAIS..DE'1NTIONS

CAISJO..DEFINITIONS

CAIS-DEVICES

CAIS-.DIRECT-10 (GENERIC) CAILSTANDARD sell

CAIS-DEINITIONS

CAIS-10-.DEFIMITIONS

CAISJSTMANAGEM~ENT

CAI&ACCESS-CONTROL-
MANAGEMENT

CAIS..SEQUMNTALJO(GENERIC) CAISRSTANDARD sell
CAISLDEF1N1TIONS

CAISJO..DEIJTIONS
CAILSTMANAGE24ENT
CA1SACCESS..CONTROL.

_________________MANAGEMAENT_________

Table 8
SWO CAIS Package Dependencies (Concluded)

Package Name Dependent on Package Contains/Exports

CAIS-.TEXT-10 (GENERIC) CAM..STANDARD Self, INTEGEIUO,

CAM-DEI1NITIONS FLOATJO, FDOEDJO,
CAILUO.DE7INITIONS ENUIATON-JO
CAIS-UST..MANAGI24ENT

CALACCESS.-CONTROL-

MANAGEMAENT

CAIS..QUEUE-MANAGEMENT CAM-.STANDARD None
CAM-DEFENITIONS

CAMSJO..DEINITJONS
CAI IST-MANAGEMENT

CAIS.ACCESS-.CONTROL-
MANAGEMENT

CAIS-SCROLL-TERMNAL-10 CA1S-STANDARD None
CAIS-DEFINITIONS

CAISJO-.DEFINITIONS

CAM-~PAGE-TERMNAL10 CAIS-STANDARD None

CA1S-DEFENITIONS
CA1SU.O..DEF1NITIONS

CA1S-FORN..TERMINAL-1O CAM-STANDARD None

CA1S..DEFINITIONS
CAIS-10-.DEFINITIONS

CAMS-MAGNETIC..TAPE-1O CAIS-STANDARD None
CAIS..DEFINITIONS

CA1M- ORTEXORT CAIS DEFINITIONS None
CAMS MT.MANAGEMENT

SWG..CAIS..HOST-.TO-.TARGET-JO CAMSJANDARD None
CAMSJIST..MANAGUE4ENT

____ ____ ____ ____ ___ CAISJO..DEFINIT]ONS I _ _ _ _ _ _ _ _

Management and CAIS Terminal I/O portions of the test suite. The NOSC tests were

modified to allow batch processing instead of interactive processing, and to produce output files

that contain the test results.

The remaining tests were not directly usable, however, because they overlapped the

coverage provided by the NOSC list management tests, they focused on Ada issues rather than
SWG CAIS issues, they were heavily implementation-dependent, or they were packaged to

exercise large groups of interfaces rather than individual interfaces. The UK test harness was

not used originally because of risks in using it while developing tests on a partially completed

SWG CAIS implementation. The SWG CAIS test suite and test environment have been

designed to allow evolution towards use of the UK test harness once the test suite and SWG

CAIS implementation are complete. The test suite also incorporates methods of testing

exceptions and of performing automatic checking of test results that were used in the existing

test technology.

2.4 Support Staged Test and Evaluation Capability

The TIRB plans to stage delivery of tools and the SWG CAIS implementations. A

staged development approach was considered for the SWG CAIS test and evaluation

capability, but not incorporated into the final design. Designs for all tests are included in this

dociurent. Included are test designs for testing nominal functionality as well as for usability.

The SWVG CAIS developer of the first implementation will provide staged releases of the

SWG CAIS implementation during the development process. Each SWG CAIS implementation

release will be regression tested independently using the test and evaluation process. The test
configuration management procedures outlined in Section 3.3 address the issue of regression
testing.

2.5 Incorporate Design Goals

Additional design goals of flexibility, extensibility, robustness, and portability were

considered and where possible incorporated into the design. In each of the following sections.

examples of how each design goal was incorporated into the design are given.

2.5.1 Flexibility

Flexibility is the ability to change SWG CAIS test suite configurations with a minimum

of effort. Flexibility is accomplished by establishing and adhering to standards that will
support future efforts in changing software to accommodate changes in requirements relating

to the mission, function, or associated data. Naming conventions, configuration management

guidelines that facilitate identification and collection of test results, and systematic techniques

in designing tests that exercise, where possible, only one interface all support this goal of

flexibility. As well, use of common reporting packages will make the tests more flexible by

improving modularity.

13

2.5.2 Extensibility

Extensibility is the ability to add new tests to the test suite at minimum cost.
Extensibility of the test suite can be accomplished by establishing and adhering to syntactic

and semantic standards for tests. One form of syntactic standard, the configuration
management of test names, has already been mentioned. The configuration management of
test names contributes to the overall extensibility as well as maintainability of the test suite by
providing a taxonomy of tests. It makes clear which tests have been written, which tests are
currently needed, and which intended purpose a SWG CAIS test serves.

The test design included, where possible, the setup of the state of the node model
instance required for the test and verification of its pre- and post-state. Therefore, each test
can be executed independently of any other test. This philosophy supports ease of test suite
extensibility.

Some of the tests will use input data files, allowing test cases to be added or modified by
editing a data file.

The ability to extend the test environment to support SWG CAIS implementation
evaluation further was considered in its design. For instance, the tests do not preclude the
inclusion and instrumentation uf performance measurement functions if needed.

2.5.3 Robustness

Many tests in the test suite will raise exceptions. Two types of exceptions will be raised
by these tests, those which are expected to be raised and those which are not expected to be
raised. S,nee '(ts will be written explicitly to observe the correct raising of an exception
defined by the 5\WG CAIS specification. These exceptions are expected. If an unanticipated
exception is raised in the SWG CAIS implementation under test or if the test has an error
which raises the wrong exception, the e.\,.,ption Il be unexpected

In dealing with both types of exceptions, one overriding concern is to not have test
execution terminate because of an exception that was not anticipated in the test's exception
handler. Rather, there should be orderly error r, covery procedures from the SWG CAIS when
limits are exceeded or exceptions are encountered. Tests that are likely to raise exceptions
shall have exception handlers embedded within them. Tests that may cause one of several
exceptions to be raised shall explicitly handle the exceptions with relevant exception handlers

embedded within their bodies. An unexpected exception shall also be trapped at the test level
.d its occ(riece roported back.

2.5.4 Portability

Portability is the ability to move a software system from one computer to a dissimilar
computer with few or no changes to the source code. Ideally, recompilation to produce new

object code files 'ind relinking are the only changes required to effect a move to another "Ada
machine." Portability issues are addressed at three levels: the computer, the host operating
system, and the Ada compiler.

11

Portability can be achieved by limiting the use of implementation-dependent features of
the Ada language and the underlying machine. Some host dependencies will be required, such
as access to the file system to store test results and configurations of tests to be run, but
reliance on such features shall be justified in the design. The data base that contains the
results shall be portable. Both the test environment and individual tests shall also isolate
nonportable features into separate portability packages. The test environment shall be written
using Ada constructs that maximize its portability and minimize the rehosting effort. The test
design takes this design goal into account. Tests may also use packages that translate the
logical names referenced in the tests to host specific file names. The TGNames package is an
example. Use of a single user node, specifically "current-user" will permit other users to
execute a test without modifying the source code of the test. The test suite and test
environment are designed to be portable; however, implementation-dependent features (e.g.,

da 1/0 statements and host command procedures) will be utilized. To the extent possible,
these implementation-dependent features will be isolated.

1.5

16

3.0 TEST ENVIRONMENT

The test environment is the set of manual and automatic procedures required to control
the execution of a large number of repeatable verifiable experiments on the SWG CAlS
implementations. Each test of the SWG CAIS implementation is realized as a sequence of Ada
statements. A test may be implemented as a main program, or several tests may be grouped
together as individual procedures under the control of the main Ada program. In either case,
the test environment must support the design goals of flexibility, extensibility, robustness, and
portability across the following processes required for running the tests:

* Compilation and linking of test code

* Installation of executable tests into the CAIS environment

* Initiation of test execution

" Collection of test results

* Generation of test reports

Furthermore, the test environment must support the requirement to test partially completed
SWG CAIS implementations. That is, each test must focus on a single SWG CAIS interface or
a group of closely related SWG CAIS interfaces, and a test must not depend upon other tests
being executed prior to its own execution (i.e., they must not rely on any resultant state of the
SWG CAIS).

The use of a comprehensive test harness normally offers the best approach for providing a
good test environment and was initially considered. However, the requirement to test partial
implementations of the SWG CAIS involves risks in integrating the implementation under test
with a large test harness. Therefore, environment support for the SWG CAlS test suite will be
provided first as a collection of manual and automated procedures, design considerations, and
organizational decisions that together form an environment for the efficient management of the
test suit.

The test environment will be designed to allow migration to the use of a test harness as
that technology, the SWG CAlS implementation, and the SWG CAIS test suite itself matures.
The fundamental requirements for this migration are that the tests be modularized for
individual execution and that the conventions for test naming and organizatidn ensure unique
identification of tests and test results. The use of a test harness will provide for automatic
report generation, increase the automation of the test procedures, and further the design goals
of flexibility, extensibility, and portability. Therefore, the initial test environment will contain
the following:

0 Main Ada programs, where appropriate, that collect together several tests as
independent subprograms (thereby reducing the number of executable load
modules).

17

* Host command files to compile and link tests.

* Host command files to execute tests.

* Templates to assist the manual generation of test reports.

This initial test environment will then be enhanced, as the test suite, SWG CAIS

implementation, and test harness mature by undertaking the following:

1) Use of the test harness to collect test results and generate test reports.

2) Replacement of host command files with test harness abstract control files, i.e., test

control sequences.

The support required for testing SWG CAIS implementations includes test
administration procedures for establishing node model states, test configuration management,
test invocation, execution (i.e., run-time) control, the ability to assess partial SWG CAIS
implementations, identification of how the operational environment is affected by system
configuration, user documentation of test inputs and expected outputs, limitation of hardware
and software dependencies in the test, and test suite performance issues. These elements of
test support are individually defined in the following sections.

3.1 Test Administration Procedures

Many tests will be grouped together in sequences, such as the CAIS node management
tests and the CAIS list management tests. Tests will be organized into sequences that exercise
int, fi.ces from the same CAIS package or share the same type of testing approach. This
grouping approach of sequences of tests will permit more confidence that no relevant tests have
been overlooked as well as decrease the time needed to construct a test set and allow the
operator to rerun the same exact sequence of tests. The ability to form logical sequences of
tests will also be important since the order in which tests are executed is critical to ensuring

that SWG CAIS interfaces used to implement the test of another interface will have been
tested prior to the test that is dependent upon them. There will be a means of saving and re-
executing test sequences. Test sequences shall be saved either in job control files or in main
Ada programs.

The procedures for test administration also require that each test include methods for
creating and controlling the state of the node model as required for proper execution of each

,;ii'ti..ii.r test. The test setup includes establishing user-independent pathnames: defining and
maintaining an appropriate set of SWG CAIS node model instances (so that tests may be run
in either a single-user or multi-user mode); and creating the expected set of nodes,
relationships, and attributes prior to the actual invocation of series of tests and then deleting
any modifications to the node model upon test completion. The test setup and test cleanup

functions will be kept separate from the actual test code either as independent procedures or as

,onsequei-ccs of command procedure instructions.

18

3.2 Test Configuration Management Procedures

The purpose of the test configuration management procedures for the SWG CATS test
and evaluation effort is to keep track of all of the information relevant during testing: test
source files, test libraries, test executables, input data files, formal output files, trace files,
logged session files, baselines of various versions of the SWG CAIS, and test results.

The configuration management scheme to support the tracking of this information may
be simple, but should be consistently enforced. Naming conventions will be adopted to
associate the various types of files that apply to the same test, and directories will be used to
maintain the separateness of these files and to group files of the same type. Source files, test
input data files, and test output report files should be maintained in separate directories. All
tests will obtain their test data from the input directory and will output formal reports and
trace files to the output directory. Tests may also output status messages to Lhe screen.
Templates for reports will list all test names, and test output files will list the versions of both
the test source code and the test input file.

3.3 Test Invocation

The tests must be able to be run within the environment created by the SWG CAlS
implementation. The general approach is to set up a SWG CATS node instance by creating a
user whose Default-Tool relation points to a file node that contains an executable that is either
a single SWG CAIS test or a controller that allows individual tests to be run. The test or
controller is then invoked by logging into the CATS.

3.4 Run-time Control

The test environment is designed to run in batch mode as much as possible. Interactive
input and output are supported only where necessary, such as for testing of the TERNIINAL
ljO package and for debugging purposes.

3.5 Implementation Assessment

As mentioned in Section 2.4, a staged development approach was considered for the S\VG
CAIS test and evaluation capability. The actual requirement is to be able to test partial SWG
CAIS implementations. This requirement does not relieve the SVG CAlS test and
environment capability from addressing the full scope of the SWG CAIS. Rather, it increases
the difficulty by constraining the test construction and requiring greater flexibility within the
test environment. Thus, tests must be targeted to individual interfaces or to small groups of
closely related interfaces. Each SWG CATS implementation release wi!l be regression tested
independently using the test and evaluation process. During regression testing, a new release is
tested against the standard test suite to determine whether previously failed tests now pass
and to verify that previously passed tests still pass. Thus, the extent of the SWG CATS
implementation completion and conformance is determined.

19

3.6 Environment Configuration Assessment

Because each test must be compiled and linked with SWG CAIS implementations under

test, it is necessary to determine the exact configuration of the underlying software and

hardware environment. Installation of a SWG CAIS implementation will undoubtedly involve

the setting of various system capacities, access authorities, and other configuration options.
The setting of such system parameters will affect both the capacities and the efficiency of the

implementation. Proper and consistent setting of these variables will be required for correct
execution of the tests. The implementation-dependent characteristics of the Ada development

environment must be understood so that they can be taken into account during testing. The

behavior and results of tests (especially process management tests) will be affected by task or

process scheduling algorithms (priority allocation schemes).

As well, the SWG CAIS tests should not depend on all SWG CAIS interfaces during the
testing process since all SWO CAIS interfaces may not be fully operational. Therefore, some

host-dependent services must be used. These host-dependencies will be limited to dependencies

arising from the use of Ada I/O facilities. In particular, SWG CAIS tests will depend upon the

host compiler's implementation of TextIo and upon the syntax of host filenames.

3.7 User Requirements

The procedures for test setup, test execution, and interpretation of test results will be

documented in a user's manual.

3.8 External Interface Requirements

The test environment will interact with t:? host hardware and the host software

development environment. The following two sections address these interfaces.

3.8.1 Hardware Interfaces

There are no explicit hardware requirements in the SWG CAIS implementation test
environment. All host dependencies are limited to the Ada compilation system, the SWG CAIS

implementation, and the host operating system. The test environment does assume the ability

to print files and to interact via a terminal. Disk and memory capacities required by the test

environment correspond to those required by the SWG CAIS implementation and are within
the limits specified in the NATO SWG APSE requirements document (NATO, 1987).

3.8.2 Software Interfaces

The following list is a minimum set of resources that will be available for test

environment execution:

* A validated Ada compilation system with Text.lo that compiles the SWG CAIS.

* A SWG CAIS implementation (possibly a partial implementation).

20

Operating system support for command procedures, directory structures, and logical
pathnames.

Some parts of both the Ada development environment and the Ada run-time
environment will be present during SWG CAIS testing. SWG CAIS implementations are also
likely to incorporate the use of shared files and will likely require special capacity limits and
host privileges.

3.9 Performance Requirements

Two types of performance are applicable to the design of the SWG CAIS test
environment: timing and capacity. The tests must be simple, including only the complexity
required by the test objective. Therefore, both control and data structure complexity will be
avoided whenever possible.

The primary performance requirement for the test suite is that a tester be able to run the
entire test suite within a reasonable period of time, nominally one week. This is affected by
both the speed of the tests and the amount of user interaction required. Performance is also
important during test suite maintenance. The test suite is designed so that tests can be
independently compiled, linked, and executed. The design also allows the incremental addition
to or modification of the test suite. The minimal effort required to build a new suite is
localized to the tests being added or changed. The speed of execution of the test environment
is a secondary consideration to the more important issues of complete and reliable testing.
SWG CAIS tests are designed to minimize execution time especially in the area of user
interaction, but speed of execution is a secondary performance issue in the test environment as
a whole.

Capacity refers to the ability of an Ada compilation system to generate correct code for a
given number of Ada objects. For example, the test design takes into consideration that Ada
compilers may have limitations on the number of enumeration literals supported before they
exhaust symbol table space. For tests involving multiple instances of objects or loops to obtain
average execution times, the number of objects or loops will be abstracted within the test so
that these tests may be calibrated for the SWG CAIS implementation under test.

3.10 Test Support

Some test support packages were developed for the tests for the SWG CAIS
implementation. The first category of test support includes timing packages. The second
category of test support includes a Tree-Walkers package, which is used to determine the
current state of the node model instance. Other test support packages were also developed for
one or more sets of tests. These are described fully in the section(s) where the tests that
utilized them are described.

21

3.10.1 Timing

SWG CAIS interfaces will have their timing characteristics measured. The elapsed time
for some SWG CAIS interfaces will be measured. The Ada package Time-Recorder provides
these timing services through interfaces that start the measured time, stop the measured time,
and report the average of several timings.

3.10.2 Tree Walkers

The package Tree-Walkers is intended to be used as a resource by testers to determine
the current state of the node model. The Tree..Walkers package contains the following
utilities: Walk-Tree, Do-Something, Delete-Tree, Print-Tree, and PrintNode.

Walk-Tree is a generic Ada procedure that implements a general-purpose iterator for
identifying all descendants of any node. The Do-Something procedure provides a means of
encapsulating actions to be performed at each node of the tree. Delete-Tree and Print-Tree
are other examples of useful instantiations of Walk-Tree. The procedure Print-Node is the
action performed at each node of the tree when Print-Tree is invoked and is described fully in

the next paragraph.

Procedure Print-Node prints out the contents of a node, including the primary name,
node kind, all of the attributes, all of the primary relationships, and all of the secondary
relationships. While some SWO CAIS implementations may have implementation-dependent
services for printing the contents of a node model, this procedure is constructed specifically to
be independent of the implementation. The intended use of this procedure, Print-Node, and
the associated procedure Print-Tree is to "see" the state of the current node model. This is
necessary when running tests that require a method for determining "Nvhat else" may be hidden
in the node model.

22
")

4.0 TEST SUITE

This section defines the test suite required to support the SWG CAIS test and evaluation
approach. The tests are organized into sets that correspond to the functional sections of
DOD-STD-1838. While the design and style of the individual tests vary considerably across
these sets, the tests within each functional set are quite similar. Section 4.1 describes the
general design criteria that apply to all tests. Each of the sections 4.2 through 4.9 describes
the design for a set of related tests, which includes information on test strategy, specific
support packages, organization of the node model, as well as specific designs for both the
nominal and usability classes of testing. For each test, the interface(s) that will be exercised
will be identified along with the corresponding section number in the "Common Ada
Programming Support Environment (APSE) Interface Set (CATS)," DOD-STD-1838.

4.1 General

This section consists of general information regarding the design of both the nominal and
usability categories of testings, as well as design standards with regard to test names,
input/output, actual test design, and test success criteria.

4.1.1 Nominal Testing

In nominal testing, each "critical" SWG CATS interface as defined in table 2 shall be
individually examined at the simplest level, i.e. the results of a single call to an individual
interface will be compared against expected results. Nominal testing can be used to determine
the set of interfaces supported (i.e., existence testing) by the SWG CATS implementation under
test. An interface is a primary interface, an overload, or an additional interface. Each
interface is unique even though some interfaces may be overloaded and therefore share the
same name. Although the focus of a nominal test is the test of a particular interface, the actual
test will often require the use of other SWG CATS interfaces. For some tests the use of several
interfaces will be necessary to establish an initial state of a SWG CATS node model instance, to
set a node(s) state, to traverse a part of the node model to a specific node prior to test
execution, to ensure correctness of the interface under test, or to remove any modifications
made to the state of the node model instance. Therefore, the ability to execute tests for most
interfaces will also depend on the success of other interface tests. However, all actions required
for test set up or for post-test clean up will be kept separate from the actual test code. The
dependencies between interfaces will be derived during test generation for the individual
interfaces. There are also dependencies among the SWG CATS packages as previously
identified in table 3. Both forms of dependency will force a specific ordering of the nominal
tests or force the combining of interface tests.

It is possible to identify sets of SWG CAIS interfaces that, for testing purposes, are
mutually dependent, such as OPEN and IS-OPEN. If identification of a small "core set" of
mutually dependent SWG CATS interfaces upon which the rest of the SWO CATS interfaces
depend were possible, the "core set" of interfaces could be tested by some other means (either
by verification or mathematical proof, for example). The rest of the SWG CATS interfaces
could then be tested using only previously tested SWG CATS interfaces. Testing would then

23

be a process of using only already-tested SWG CAIS interfaces to produce other tested SWG
CAIS interfaces. However, it is not possible to identify a small "core set" of mutually
dependent SWG CAIS interfaces upon which the remaining SWG CAIS interfaces depend.

The approach adopted for nominal testing, therefore, is to test mutually dependent
interfaces in a single test, to identify a small set of dependent interfaces for each set of related
tests, and as much as possible to order the tests so that dependent interfaces are tested prior to
their use in other tests.

Each test shall consist of a simple exercise of an interface. The purpose of each test is to
demonstrate minimal functionality through the use of a set of simple test cases. Existence
tests will check for the correct functioning of an interface using valid parameter values, and
exception tests will check for the ability of the SWG CAIS implementation to raise each
exception under the conditions specified in DOD-STD-1838. Input values will be defined for
each parameter of mode "in" or "in out" as well as the actual state of the node model instance
needed (if any) prior to test execution. Expected values will be defined for each parameter of
mode "in out" or "out" (if any), for each function return value (if any), for the expected
exception to be raised (if any), and for the expected state of the node model instance following
test execution (if any).

It is beyond the scope of the current test and evaluation effort to perform exhaustive
testing. Exhaustive testing would determine the thoroughness of the interface implementation
by aggressively attempting to locate errors in the semantics of each interface through even
more extensive test data sets and through more thorough exception testing. The current test
suite has been limited to the set of interfaces identified as critical and has concentrated
primarily on existence testing with only minimal coverage of exception handling.

4.1.2 Usability Testing

Usability testing builds on the tests included in the nominal testing category. This
usability category of tests will make use of predefined usability scenarios that chain SWG
CAIS interface calls together and the ability of the SWG CAIS implementation to meet the
needs of tool developers. These test sequences would reflect normal actions, as well as actions
that stress the limits of the implementation. Thus, the usability tests both mimic probable
usage by tool writers and test the robustness of the implementation. Guidelines for performing
a minimal evaluation of the SWG CAIS implementation caLpabilities were developed by Carney
(1988). These guidelines were helpful in the design of the SWG CAIS implementation usability
tests. As in nominal testing, only the set of critical interfaces in the critical packages, which

,:n d m, pieviously in table 2, will be ',cunsidered. It i, outside the scope of the current
testing effort to develop more than a minimal subset of possible scenarios.

The purpose of the usability tests is to exercise the SWG CAIS implementation based on
typical individual tool usage. The design of the tests will support single-user or multi-user
testing and include measurement of both capacity and timing measurements. This usability
test software will transform the state of the node model instance but will not actually emulate
the real tools and their functionality. The important factor is that nodes can be accessed. The
actual contents of nodes is not important.

24

The primary objective of the usability tests is to determine the extent to which typical
usage of SWG CAIS implementation interfaces by SWG CAIS tool users can be expected to
meet performance expectations. Whereas a nominal test might exercise one interface one time,
a usability test would exercise one or more related interfaces many times. Usability tests often
contain a scenario of several interface calls that would typically be performed by one or more
tools in the SWG APSE. For example, one nominal test might determine if a node can be
created and another nominal test might determine if an already-created node can be deleted.
A usability test would determine if a number of nodes could be created, determine the time
required to create the node(s), and then delete them and determine the time required to delete
the node(s). As well, a usability test might determine an implementation's capacity limits for
nodes by creating nodes until no more could be created, or by alternately creating and deleting
nodes and thereby testing for proper collection of unused space.

4.1.3 Test Name Standards

Configuration management of the test suite is needed to associate tests with the section
of DOD-STD-1838 to which they apply. For each critical interface identified in Section 2.2, a
test will be constructed. Although there are a large number of SWG CAIS tests, a simple
naming convention, consistently applied, allows easy correlation of tests to corresponding
sections of DOD-STD-1838.

In accord %ith a naming convention originally adapted from conventions required by the
United Kingdom Test Harness, tests will be named using the format "T*nn.ada". To represent
test numbers greater than 99, the "T*nnn.ada" format will be used. The "' represents a
group letter, and "nn" or "nnn" represents the number of the test, which can span from "01"
through a maximum of "999". The groups and their corresponding packages are as follows:

* B - List Management

* C - Node Management

• D - Attribute Management

* G - Process Management (only nominal tests)

* I - Direct 10

S J - Sequential 10

* K -Text IO

* P - Page Terminal 10

* S - Structural Node Management

* V - Process Management (only usability tests)

25

Input files will be named "T*nn.IN". Output files will be named "T*nn.OUT". Trace
files will be named "T*nn.TRACE". Note that "nnn" will be used when the corresponding

test file is of the form "T*nnn.ada".

4.1.4 Input/Output Standards

Input/output standards were adopted for all three kinds of data files: input, output, and
trace files. In each data file, information in the form of comments precedes the data lines. All

data files associated with a test will be designed with a standard header. All input files will

contain version numbers and the date of the last change. Multiple data sets within an input
file will be separated by comments. A primary output file always will be produced and will
follow a standardized format that will include the name and version of the input file that was
used by the test. Tests will also be designed to produce trace files to print intermediate results

for use during debugging of tests. The format of trace file will vary to accommodate the
design of each particular test. Figure 2 includes a sample of an input data file. Figure 3

includes a sample of an output data file.

4.1.5 Test Design Standards

The test and evaluation of the SWG CAIS implementation is based on a black-box or
functional testing approach. The goalk of this testing effort are tu ensure the existence and
syntactic correctness of the SWG CAIS interfaces in a given implementation, to ensure

compliance to the semantic intent of the specification, and to ensure usability by tool
developers. The first goal can be met in a straightforward manner since the syntax of the
interfaces is formally defined through Ada packages. The Ada compiler performs static syntax
checks (as well as some static semantic checks) of the SWG CAIS interface implementations.
Ensuring conformance to the semantics of the specification is more difficult, however, since the
semantics of the SWG CAIS are not formally specified. The last goal, that of usability, is
subjective in nature; however, objective statistics from the results of the usability tests will
form the basis for later determinations of the usability of SWG (.AIS implementations with

respect to specific tool requirements.

The tests consist of two categories: nominal tests that exercise single interfaces and
u1Lility tests that exercise sequences of interfaces similar to those required by tools. The
second category uses tool usage scenarios that test the overall usability of the SWG CAIS.
These usability tests will use the interfaces previously tested during the nominal testing to
check for erroneous interactions and artificial boundaries. In the design of both the nominal
and usability tests, all tests will adhere to the following design standards. Figure 4 includes an

for documnating a procedure.

4.1.5.1 Minimize Use of Implementation-Dependent Interfaces. Minimize use
of implementation-supplied interfaces other than those specified in the SWG CAIS
specification. The top-level interfaces are those that are intended for tool writer use. An

implementation may make other, lower level interfaces visible, but these should not be used by

test- as this would jeopardize the portability of the code to another system.

'26

Figure 2
SWG CAIS Input Data File Sample

Input test data for testing COPY-LIST: T90l

I These data are in 1-tuples. The expected result is always
I the same as the input. No attempt is made to check for ill-formed

lists: See TB17 for the CONVERTTEXTToLIST function which
*I checks for ill-formed lists and lists exceeding normal capacity.

(0)
(a,0)

((2),(3))

(A->a)

A->2,B=-)(l)

((A-)2) ,B>3)

(lab cd ef*)

nab")

nasb"

_quit

--file to test copy function

--modified to remove test cases which raise exceptions like syntax error
-- this file needs more test cases.

27

Figure S

SWG CAIS Output Data File Sample

CAIS Version 3.2 10/24/88

TG30: Tests the following interfaces in

CAISPROCESS_MANAGEMENT

CAIS 5.2.2.14 - OpenNodeHandleCount

Test Case 1 :Open 'Current_Job and get open node handles

Interface name tested: Open Node_Handle-Count

Interface number tested: 5.2.2.14

Interface overload tested: A

Test Inputs:

No inputs

Expected Results:

Initially 1, then 6, open node handles

Actual Results:

Success - 1, then 6, node handles returned

Result of Test: PASSED

(3.2 10/24/88 TG30 1 5.2.2.14 A PASSED)

9

----------------------------------- ---

Summary of Test Procedures:

Number of Test Cases Passed: 4

Number of Test Cases Failed: 0

Total Number of Test Casess 4

Result of Test Procedure: PASSED

28

Figure 4
SWG CAIS Procedure Documentation Saumple

-- Test Procedure: T G 0 4

-- Author: Dave Hough MITRE Washington Software Center

-- Revision History:

-- (Date> (#nn> (Name> (Description>

-- Purpose:

-- Provide functional testing of the SWG CAIS, a variant
-- of DOD-STD-1838, dated 9 October 1986. This work has been

-- performed in support of the NATO SWG on APSE project, sponsored by

-- AJPO.

-- Interface(s) Tested:

-- 5.2.2.1 (B) Spawn-Process Cais ProcessManagement

-- Implementation:

-- Exceptions Raised, Handled, Propagated:

1- /0: None

M-Nachine/Compiler Dependencies: None

29

4.1.5.2 Use Test Utilities. Implementation-specific code should be isolated into test
utilities packages and made available across all tests.

4.1.5.3 Use Directed Input/Output. Use named input and output files in test
input/output versus using defaults. This practice not only allows better control over
input/output but also is more portable. The host specific names should be collected in a
package and declared as constant strings.

4.1.5.4 Use a Single User Node. Utilize only one user node. That is, create all
node model instance structures under the current user node only. Implementation-dependent
restrictions governing the login process and other practical considerations lead to this decision.
Furthermore, use the predefined constant "current-user" or Root-Process to stand for the user
node, rather than using an existing user node such as "user(smith)". This allows other users to
execute the test with minimal trouble.

4.1.5.5 Ensure the Initial State of the Node Model Instance. Ensure that a
correct state of the SWG CAIS node model instance exists prior to execution of this test. This
implies the creation of a SWG CAIS node model instance and generation of an initial test
state, or the use of a predefined SWG CAIS node model instance with a predefined test state,
or the use of a previously generated node model instance with a test state as created by a
previously executed test. This will requi~e the use of other S\, CAIS interfaces.

4.1.5.6 Use Predefined Input Values. Execute the interface with predefined input
values, where practical. Tests that have an input data file can be expanded to include other
test cases by editing a source file.

4.1.5.7 Indicate Pass/Fail Results. All tests will contain their own expected
results, either in the input data file, or embedded in the test code. This data will be used to
determine and explicitly report the success or failure of the test. No test will merely print
results to be verified by the tester.

4.1.5.8 Handle All Exceptions. Each test will assume that unexpected exceptions
may occur at any time. Tests will contain handlers to check for the presence for unexpected
exptions qs well as expoted exceptions.

4.1.5.9 Limit Test to Determining That an Error Exists. Do not attempt to
determine the cause of an error, only that an error according to the SWG CAIS specification
exists. Determining the cause of a SWG CAIS error is the responsibility of the SWG CAIS
!:iip, mPtiter. "Fezts \%ill be desirned tco spot errors only Thp tests will provide as much
information as required to have confidence in the discrepancy between the SWG CAIS
specification and the test results.

4.1.5.10 Protect against Unexpected Exceptions. Continue gathering data if an
unexpected exception condition happens. This can be achieved by liberal use of exception
blocks. Each test nitay be decompos cd into several test ses, each relatively independent of
the other.

30

4.1.5.11 Compare States of Node Model. Compare the resultant state of the
SWG CAIS node model instance with the expected state of the SWG CATS node model
instance. This may involve the use of other SWG CAS interfaces. The Tree-Walkers
package, described in section 3.10.2, provides interfaces that can determine the state of the
node model within the current user's bounds.

4.1.6 Test Success Criteria Standards

A test will be considered successful if the following criteria are met:

" The test reaches completion. Note that an interface used to establish the
preconditions for this test could raise an exception. The test would then be
considered invalid.

" The expected output matches the actual output for an exist.ence test. For an
exception test, the actual exception raised matches the expected exception.

* The expected state of the SWG CATS node model instance matches the actual state.

The status returned from each test will be one of the following:

" Pass--the test was successful according to the stated success criteria.

" Fail/reason--the test was not successful according to the stated success criteria.
The reason portion of the status will identify which criterion was not met (i.e., state
of the SWG CATS node model instance was not correct, an unexpected exception
was raised, a parameter was not correct, or the interface does not exist).

Note that some exceptions defined in the SWG CATS cannot be raised directly through
an external testing mechanism in black-box testing. For instance, the exception
TOKEN-ERROR cannot be raised directly since a token is a limited private type that cannot
be explicitly provided as input to a test. Such exceptions cannot and will not be explicitly
tested.

4.2 Node Management Tests

These tests exercise the interfaces defined in the CAIS._NODE_\LkNAGEMENT
package (5.1.2). CAIS-..NODEvIANAGEMENT provides the general primitives for
manipulating, copying, renaming, and deleting nodes and their relationships. The operations
tested here are generally applicable to all kinds of nodes and relationships. These tests also
vary the intents and pathnames associated with the nodes upon which are being operated.
Although these tests require that nodes be created, operations for creation of nodes reside
separately in packages specific to the node kind (structural, process, and file) and are explicitly
covered within those test sets.

The node management tests begin with the prefix "TC" and are divided into nominal
tests and usability tests. The nominal tcsts address specific operations and exercise ,ll
overloaded forms of an operation. Usability tests are intended to test efficiently many

31

interfaces acting together in a realistic way. Some of them also time the interfaces or measure
their capacity. In addition, the nominal, rather than the usability, tests may include exception
testing.

4.2.1 Test Strategy

The node management tests are designed to perform black-box testing. However, each
test necessarily relies on node management interfaces to build the set of nodes upon which the
subtests are performed. The CAISNODEMANAGEMENT interfaces used by other node
management tests are Create, Open, Close, and Is_.Open. All three types of nodes (structural,
process, and file) are created, and they are opened with intents appropriate for the tests being
performed. Proper implementation of these four node management interfaces is essential for
proper testing of CAISNODEMANAGEMENT using this test set. Therefore, the tests
exercising these four interfaces should be run prior to running the other node management
tests.

The node management tests follow a design that allows them to be driven by input files.
Because the number of subtests is generally small, however, the subtests are normally coded
directly in the test source rather than read from input files. Each test exercises a specific
operation and generally includes tests for all alternate interfaces associated with that
operation. Each test calls setup routines that create a set of nodes needed to test the operation
and then deletes this set of nodes upon completion of the tests. The tests are datta driven even
to the extent that control flow (i.e., the procedures to be executed) is governed by the input
data. Data read from the input file not only determines calls to the appropriate procedures
that then read additional data and invoke the specified CAIS interfaces, but also controls
which setup and which trace procedures to call.

The nominal node managc.,nent tests create both a log and a trace outpu' rik. For each
subtest, a pass/fail message is printed based upon a comparison of actual and expected results.
At the end of the test, the number of failed subtests and the number of passed subtests are
printed. Whereas the trace file contains a compiete list of inputs, expected results, and actual
results, as well as trace commentary, the log file contains only a summary of the test results.

Exhaustive testing is outside the scope of the current effort. Therefore, not all exceptions
will be tested, although the tests will be designed to accommodate future additions of
oxception testing.

4.2.2 Specific Support Packages

The node management tests make use of three formatting support packages:

" REPORT-Provides procedures for reporting test names, indicating pass/fail status
for sub-tests, and reporting an overall test result (that indicates passage only if all
sub-tests pass).

" PRINT_..MODEL--Provides procedures to format and print descriptions of nodes,
relationships, and attributes.

32

. PRINTOUTPUT-Provides standardized data structures and print procedures for
test headers, subtest results, and summary results.

All node management tests use a set of common procedures that standardize the reading
of input data and the formatting of output data. These procedures perform a particular I/O
function and also place messages in the trace file that describe the actions taking place.
Procedures to read node numbers, strings, intent arrays, intent specifications, etc., are
available to each test. For output, procedures are provided for initializing a header as well as
the formatting routines described previously.

4.2.3 Organization of Node Model

Each node management test requires a set of related nodes so that the specific operation
can be tested via a variety of pathnames and via a variety of indicators made up of a base
node, a relationship, and a key. At the start of each test an appropriate set of nodes is
created, and these nodes are then deleted at the close of the test. The set of nodes created will
typically contain multiple levels of primary relationships, a few secondary relationships, and
nodes of all three types (structural, process, and file). For simplicity, the set of nodes is hard
coded into the test, rather than being read from the test input file.

4.2.4 Nominal Tests

Nominal tests were created for 17 of the more important interfaces. The interfaces
tested are 5.1.2.1 through 5.1.2.11, 5.1.219, 5.1.2.23, 5.1.2.25, 5.1.2.26, 5.1.2.37, and 5.1.2.38.

4.2.4.1 TCOL. Exercise the Open interfaces (5.1.2.1). Perform tests using all four
interfaces for Open specifying nodes by pathname and by base-key-relation triplets and
specifying intentions both singly and via arrays. Use all three types (structural, process, and
file) of nodes in the TC01 subtests. Subtests are read from file TCOI.IN.

4.2.4.2 TC02. Exercise the Close interface (5.1.2.2). The Close operation onlv has a
single interface that operates on a node handle. Exception tests need not be performed.
Subtests are read from file TC02.IN.

4.2.4.3 TC03. Exercise the Kind--ofoNode interfaces (5.1.2.6). Check all three kinds
of nodes (process, structural, and file). Include subtests to check for proper propagation of
Status-Error exceptions.

4.2.4.4 TC04. Exercise the Is-Open interfaces (5.1.2.4). Perform tests against both
opened and closed nodes. There are no exceptions associated with the Is_Open interface.

4.2.4.5 TC05. Exercise the Open-Parent interfaces (5.1.2.19). Perform tests against
Open-Parent interfaces with both single intentions and arrays of intentions. Exception tests
need not be performed.

33

4.2.4.6 TC06. Exercise the Delete-Node interfaces (5.1.2.23). Check the Delete-..Node
interfaces using both a node handle and a pathname to designate the node being deleted.
Exception tests need not be performed.

4.2.4.7 TCO7. Exercise the CreateSecondaryRelationship interfaces (5.1.2.25).

Check the Create-Secondary..Relationship operation using both a node handle and a pathname
to designate the object of the relationship. The inheritance parameter may be defaulted and
never tested. Exception tests need not be performed.

4.2.4.8 TCOS. Exercise the Delete-SecondaryRelationship interfaces (5.1.2.26).
Check the Delete..Secondary..Relationship operation using both an indicator (base, key, and
relation) and a pathname to designate the relationship being deleted. Deletion using the
default relationship need not be tested. Exception tests need not be performed.

4.2.4.9 TC09. Exercise the Set-CurrentNode interfaces (5.1.2.37). The
SetCurrent-Node operation is checked using both a node handle and a pathname to designate
the node being specified as current. Exception tests need not be performed.

4.2.4.10 TC10. Exercise the Get-Current-Node interfaces (51.2.38). Check the
GetCurrent.Node interface using both single intents and arrays of intents. Exception tests
need not be performed.

4.2.4.11 TC1l. Exercise the Change-Intent interfaces (5.1.2.3). Check the
ChangeIntent interface using both single intents and arrays of intents. Exception tests need

not be performed.

4.2.4.12 TC12. Exercise the Intent interface (5.1.2.5). Perform tests over a wide

range of intents. Test for proper propagation of the Status..Error exception.

4.2.4.13 TC13. Exercise the OpenFileHandleCount interfaces (5.1.2.7). Exception

tests need not be performed.

4.2.4.14 TC14. Exercise the Primary-Name interfaces (5.1.2.8). Perform tests on all
three kinds of nodes (structural, process, and file). Also perform tests for proper propagation
of Status-Error and Intent-Violation exceptions. Because of the small number of possible
suht(.ts, the subtvsts may be hard coded rather than driven by an input file.

4.2.4.15 TCI5. Exercise the Primary..Key interfaces (5.1.2.9). Perform tests on all
three kinds of nodes (structural, process, and file). Also perform tests for proper propagation
of Status-Error and Intent-Violation exceptions.

4.2.4.16 TC16. Exercise the Primary-Relation interfaces (5.1.2.10). Perform tests on
all three kinds of nodes (structural, process, and file). Tests are also performed for proper
propagation of Status..Error and Intent-Error exceptions.

34

i

4.2.4.17 TC17. Exercise the Path-Key interfaces (5.1.2.11). Also perform tests for
proper propagation of Status-Error exceptions.

4.2.5 Usability Testa

For the node management package, there are four usability test, TC01 through TC104.
The usability test TCI01 measures the elapsed time it takes to create a node, open it, test if it
is open, close it, and delete it. The usability tests TC102 through TCI04 test the 41 node
management interfaces. TC102 will test interfaces 5.1.2.1 through 5.1.2.17. TC103 will test
interfaces 5.1.2.18 through 5.1.2.28, and 5.1.2.37 through 5.1.2.42. TC104 will test interfaces
5.1.2.30 through 5.1.2.36.

4.2.5.1 TC101. Determine the elapsed time required by each of the five basic

interfaces whose performance is critical to the SWG CAIS implementation. They are
Create-Node, Open, Close, Is-Open, and Delete-Node.

Loop through each of these operations several times so that an average execution time for
each individual interface can be computed. Use an input file so that the top-level node name,
the intents, and the number of passes through the timing loop may be varied. Read in the
data and create nodes one at a time. In a second part of the test, create an array of nodes,
leaving them open. For all tests, report interim timings every 20 passes through the loop as
well as at the end of the test.

4.2.5.2 TC102. Test the 17 interfaces (5.1.2.1 through 5.1.2.17). Perform tests on all
three kinds of nodes and using all alternate interfaces.

4.2.5.3 TC103. Test the 17 interfaces (5.1.2.18 through 5.1.2.28 and 5.1.2.37 through
5.1.2.42). Perform tests on all three kinds of nodes and using all alternate interfaces. Report
pass/fail status when possible, and when a pass/fail decision cannot be made (as is the case for
operations that return time stamps) explicitly report the information obtained from the test.

4.2.5.4 TC104. Test the iterator interfaces (5.1.2.30 through 5.1.2.36). Build
iterators over both primary and secondary relationships. Use nodes of all kinds (structural.

file, and process). Also use a variety of selection patterns. After building each iterator,
traverse it, printing out the names of all nodes in the iterator. These names should be
accompanied by enough information (e.g., node name, kind of relationships selected. and
pattern) so that the results can be verified.

4.3 Attribute Management Tests

The CAISATTRIBUTEMANAGEMENT package provides a set of interfaces that
support manipulation of attributes on either nodes or relationships. The package contains a
total of 17 unique interfaces-of which only eight are tested at the nominal level. The
interfaces that are not tested at the nominal level are those used to create and manipulate
attribute iterators. These interfaces are exercised in a more elaborate test, the Tree-Walker,
which is described in section 3.10.2.

35

4.3.1 Test Strategy

The nominal tests for attribute management examine a subset of the interfaces at both
the existence and exception level. All exceptions corresponding to the interfaces are tested with
the exception of the Status-Error and Security-Violation. Testing for the Status..Error
exception is considered to be a secondary concern because it will be raised only if the node to
be used for attribute manipulation is not opened. The Security-Violation exception is raised
only in the event of mandatory access violations (which are not implemented for the SWG
CAIS), so this exception is also ignored in the test designs.

The usability tests for the attribute management package perform scenario type tests
using one or more of the interfaces in a single test. The tests have several primary objectives:
to determine if the limits defined by the CAIS-PRAGMATICS are indeed achievable; if they
are not, to determine what the actual implementation limits are and if these limits are different
depending on initial conditions; and finally, to determine the robustness of the implementation

when a limit is reached. As a secondary objective, timing statistics are gathered for each CAIS
interface used in the execution of the test. The total test time, number of times each interface
is executed, and the average time per interface are reported. These times are currently wall
clock times and can be used to gauge relative execution times for the interfaces.

4.3.2 Specific Support Packages

Three support packages developed to supplement the performance of the individual tests
are listed as follows:

CREATEANJNSTANCE-Creates an instance of the CAIS node model based on
user-supplied test information.

DATA-NGMTPKG--Provides the common procedures and data structures to
support the attribute management nominil tests (TDxx).

* STDTESTRESULTS-PKG-Defines a set of messages to be recorded for each

exception in the CAIS for both unexpected as well as expected instances.

4.3.3 Organization of the Node Model

Each attribute management test uses a simplistic node model for attribute manipulation.
In the case of node attribute tests, the interfaces are exercised against a structural node that
emanates from the current-user node along a path 'test(struct-node). For path attribute tests,
another structural node is created from the test(structnode) node along the path
path. Figure 5 provides an illustration of the two node models and a mapping of tests to the
appropriate node model.

36

p

Figure 5
SWG CAIS Attribute Management Test Node Models

system System
Level Level
Node Node

User(a-name) Usera nwne)

Test(StructNode) Test(Struct.Nooe)

Test-Relation(5tructural)
This structure Is used on tests

TDOI, TDO3, TD05, TDO7

This structure Is used on tests

TI02. TD04, TD06. TDOO

37

4.3.4 Nominal Tests

4.3.4.1 TDO1. Exercise the Create-Node-Attribute interface (5.1.3.1). First, attempt
to create a node attribute that has been previously created in an earlier test case-this is to
verify that an "Attribute-.Error" exception will be appropriately raised. Then, test the
creation of a node for the first time. To exercise the CreateNodeAttribute, read and convert
an input character string to a list format, and use that input data as parameters of the
"CreateNodeAttribute" interface. The node is then either created for the first time, or
denied creation, depending on the input data.

4.3.4.2 TDo2. Exercise the Create.Path..Attribute interface (5.1.3.2) by verifying
that valid path attributes can be created, and verifying that the exception handling
accompanying the Create-Path-Attribute performs as expected.

Read attribute information entries from an input file into the Create.PathAttribute
interface to create a path attribute. After the attribute information is accepted, perform a
Get.Path-Attribute to verify that the attribute exists. Use the same input data to inject
invalid attribute fields into the Create.PathLttribute interface to verify that the correct
exceptions will be raised.

4.3.4.3 TD03. Exercise the Delete-.NodeAttribute interface (5.1.3.3) by attempting
to create and then delete an attribute named Delete-.anAttribute. Perform this test by
creating and deleting an attribute using the CreateNodeAttribute and
Delete-Node..At tribute interfaces. Then attempt a Get.Node-Attribute of the deleted
attribute. The test is successful in deleting the attribute if an Attribute-Error is raised by the
Get-Node..Attribute operation.

4.3.4.4 TDO4. Exercise the Delete-.Path-A.ttribute interface (5.1.3.4) by verifying
that all created path attributes can be deleted using the DeletePath.Attribute interface.
Achieve this by first establishing a structural node and a child node so that a user-defined path
may exist on which to create and delete attributes. Then test this interface by first creating
the path attribute using the CreatePathAttribute interface. Immediately delete the created
path attribute using the Delete-PathAttribute. The deletion is verified when the test
attempts to perform a Get-Path._Attribute of the path and an Attribute-Error exception is

raised.

4.3.4.5 TDO5. Exercise the Set-Node..Attribute interface (5.1.3.5) to verify that the
Set-Node-.Attribute interface performs properly under normal conditions, and that the
exceptions Syntax-Error, Predefined.Attribute.Error, Attribute-Error, and Intent-Violation
are raised appropriately. Achieve this by first creating a node attribute and then attempting to
set the value for the attribute under various input conditions.

4.3.4.8 TDO. Exercise the Set-PathAttribute interface (5.1.3.6) to verify that the
SetPathAttribute interface performs properly under normal conditions, and that the
following exceptions corresponding to the interface are appropriately raised:
Pathname..Syntax..Error, Relationship-..Error, Synta...Error, Predcfined..Relation-Error,

38

PredefinedAttribute-Error, and Attribute-Error. Achieve this by first creating a path
attribute and then attempting a Set..PathAttribute to set the value for the path attribute
under various input conditions.

4.3,4.7 TDO7. Exercise the GetNode..Attribute interface (5.1.3.7) to verify that the
Get..Node..Attribute performs properly under normal conditions, and that the following
exceptions corresponding to the interfaces are raised when appropriate: Syntax-Error,
Attribute-Error, and Intent-Violation. Achieve this by creating several node attributes using
the Create-NodeAttribute interface, then attempting to retrieve the various node attributes
using the Get-NodeAttribute.

4.3.4.8 TD08. Exercise the Get.PathAttribute interface (5.1.3.8) to verify that the
GetPathAttribute performs properly under normal conditions, and that the following
exceptions corresponding to the interfaces are raised when appropriate:
Pathname--SvntaxError, Syntax-Error, Attribute-Error, and Intent.-Violation. Achieve this
by creating several path attributes using the Create.Path.Attribute interface, then attempting
to retrieve the various path attributes using the GetPath-Attribute.

4.3.5 Usability Tests

4.3.5.1 TD101. Examine the limits imposed on the Create-Node-Attribute (5.1.3.1)
interface by determining the maximum number of node attributes that may be created at one
time. Achieve this by creating a node and then creating as many node attributes as possible.
Timing tests accompanying test case TD101 determine the amount of time to execute the
Create-.NodeAttribute interface.

4.3.5.2 TD102. Examine the limits imposed on the CreatePath-Attribute interface
(5.1.3.2) by determining the maximum number of attributes that can be created on a pa'h.
Achieve this by creating a path and then creating as many path attributes as possible. Timing
tests accompanying test case TD102 determine the amount of time to execute the
Create-Niode" and Create-Path.Attribute interfaces.

4.3.5.3 TD103. Examine the limits imposed on the Set..Node_-Attribute (5.1.3.5) and
Get-Node..Attribute (5.1.3.7) interfaces by creating a node attribute and sequencing through a
series of Set-.Node..Attribute interfaces to set the value of the attribute and
Get-Node-Attribute interfaces which retrieves that attribute value. In a~ddition to the
interface performance tests, test case TD103 provides timing tests to determine the amount of
time required to execute the Set.Node..Attribute and Get-.Node-Attribute interfaces.

4.3.5.4 TDID4. Examine the limits imposed on the CreatePathAttribute (5.1.3.2),
the CreateNode.Attribute (5.1.3.1), and the Create-Node" (5.1.5.1) interfaces to determine
the total number of attributes that can be created on several nodes at one time. Achieve this
by creating a node model instance of 20 structural nodes. Then walk the tree adding
attributes to each node and to each path of each node until no new attributes can be added. In
addition to the interface performance tests, test case TD104 provides timing tests to determine
the time required to execute the Create-Node, Create.NodeAttribute,
Create-Path-Attribute, and Open interfaces.

39

4.4 Structural Node Management Tests

The CAIS-STRUCTURAL.NODEAANAGEMENT package provides a set of
interfaces that support the creation, deletion, and manipulation of structural nodes.

4.4.1 Test Strategy

The nominal tests for structural node management consist of one test package with four
test procedures. Each one tests one format of the Create-Node interface.

The usability tests for structural node management determine if varying node model
structures result in different limits being achieved by an implementation. For this type of test,
three node model instances are used: a "breadth-first" structure, a "depth-first" structure,
and a "binary-tree" structure all built from the "current-user" node. Some tests are executed
against all three structures. Figure 6 illustrates the three structures.

4.4.2 Specific Support Packages

Three support packages developed to support the performance of the individual tests are
listed as follows:

0 CREATE-ANJINSTANCE--Creates an instance of the CAIS node model based on
user-supplied test information.

DATA--MGMTPKG--Provides the common procedures and data structures to
support the Structural Node Management tests.

0 STDTESTRESULTSPKG--Defines a set of messages to be recorded for each
exception in the CAIS for both unexpected as well as expected instances.

4.4.3 Organization of the Node Model

Each structural node management test uses a node model like the one described for the
attribute management tests (Section 4.3). All interfaces are exercised against a structural node
that emanates from the current-user node along a path 'test(struc.node). Here nodes and
relationships are created, deleted , or copied depending on the test objective.

4.4.4 Nominal Tests

The only nominal test is "TS01". Exercise the four format types of the Create.Node
(5.1.5.1) interface by attempting to create one structural node using each of the formats
provided for Create-Node. When a structural node is created from each of these formats, a
result is recorded to an output file.

40

Figure 6
SWG CAIS Node Model Structures

System system system

Node II Node Node

'currenL-user 'current-user 'current-user

(S-.2)

DeptIh2(s-2) DePth2(/S..) \Breadtn2

Breadth-First Depth-First Binary Tree

41

4.4.5 Usability Tests

4.4.5.1 TS101. Examine the limits imposed on the Create-.Node (5.1.5.1) interface by
attempting to create as many nodes as possible in a breadth-first manner up to the pragmatic
limit, emanating from the currenL-user node. In addition to the functional evaluation of the
tests, test case TS101 provides timing tests to determine the amount of time required to
execute the Open and Create.-Node interfaces.

4.4.5.2 TS102. Examine the limits imposed on the Create-Node (5.1.5.1) interface by
attempting to create as many nodes a possible in a depth-first manner, beginning at the
current-user node. Achieve this by creating a node and setting the current node to the newly
created node. Repeat until no more nodes can be created. In addition to the functional tests,
TS102 provides timing tests to determine the amount of time required to execute Create-Node
interface.

4.4.5.3 TS103. Exercise the limits imposed on the Create-..Node (5.1.5.1) interface by
attempting to create as many nodes as possible using a binary tree structure up to the
pragmatic limit beginning at the current-user node. In addition to the functional tests, TS103
provides timing tests to determine the amount of time required to execute Open and
Create-Node interfaces.

4.4.5.4 TS104. Exercise the Create-Node (5.1.5.1) interface by examining the actual
limits of creating structural nodes in a breadth-first manner from the currentuser node.
Achieve this by creating and closing a node, for as many nodes as possible up to the pragmatic
limit. In addition to these functional tests, TSI04 provides timing tests to determine the
amount of time required to execute Open, Create.-Node, and Close interfaces.

4.4.5.5 TS105. Exercise the Create.Nodc (5.1.5.1) interface by examining the actual
limits of creating structural nodes in a depth-first manner from the current-user node.
Achieve this by creating, closing, then r.-pening a node, for as many nodes as possible up to
the pragmatic limit. In addition to these functional tests, TS105 provides timing tests to
determine the amount of time required to execute the Open, Create-Node, and Close
interfaces.

4.4.5.6 TS106. Examine the limits imposed on the Create-Node (5.1.5.1) and the
Clnse (5.1.2.2) interfaces by creating, opening, and closing as many nodes as possible. In
addition to the functional tests, TS106 provides timing tests to determine the amount of time
required te execute the Open and Create--Node interfaces.

4.4.5.7 TS107. Exercise the Create-Node (5.1.5.1) and the Delete.jNode (5.1.2.23)
interfaces by creating and deleting nodes, then verifying that the node's primary relationship

has been deleted by using the CAiS.NODE....ANAGEMENT Boolean function Is._Obtainable.
Do this for as many nodes as possible in a breadth-first manner. In addition to the functional
tests, TS107 provides timing tests to determine the amount of time required to execute the
Open, Create.-Node, and Delete-Node interfaces.

42

4.4.5.8 TS108. Exercise the Create-Node (5.1.5.1), the
Create.Secondary..Relationship (5.1.2.25), and '0,he Delete.Node (5.1.2.23) interfaces in order to
determine whether deletion of one or more secondary relationships will permit more nodes to
be created. Achieve this by creating a node in a breadth-first manner from the 'current-user,
then adding a secondary relationship between that node, and then deleting the node. Repeat
this sequence until no more nodes can be created. In addition to the functional tests, TS108

provides timing tests to determine the amount of time required to execute the Open,
Create-Node, Delete-Node, and CreateSecondary.Relationship interfaces.

4.4.5.9 TS109. Examine the performances of the Create-Node (5.1.5.1), Open

(5.1.2.1), and Close (5.1.2.2) ii terfaces to determine the average time to open and close a node
handle. Achieve this by creating a node model of 20 nodes and closing the nodes as they are
created. Then walk through the established node structure, opening and closing each node
handle. In addition to the functional tests, TS109 provides timing tests to determine the
amount of time required to execute the Open, Create-Node, and Close interfaces.

4.4.5.10 TSlI0. Exercise the limits imposed on the Create-Node (5.1.5.1) and the
Copy-Node (5.1.2.20) interfaces by creating a node and then copying it until no new nodes
may be made. In addition to the functional tests, TS110 provides timing tests to determine the
amount of time required to execute the Open, Create-Node, and Copy..Node interfaces.

4.4.5.11 TS111. Exercise the Create-Node (5.1.5.1) and the
CreateSecondaryRelationship (5.1.2.25) interfaces by creating a node from the current-user
node and then creating secondary relationships on that path until no more can be created.
This verifies the number of secondary relationships that may be created. In addition to the
functional tests, TSl1l provides timing tests to determine the amount of time required to
execute the Open, Create-Node, and Create-SecondaryRelationship interfaces.

4.4.5.12 TS112. Examine the limits imposed on the Create-Node (5.1.5.1) and the
CreateSecondary Relationship (5.1.2.25) interfaces by creating 20 nodes related as parent and
child, then creating secondary relationships throughout the tree until either a predefined limit

is set, or no more relationships can be added. In addition to the functional tests, TS112
provides timing tests to determine the amount of time required to execute the Open.

Create..Node, and Create..Secondary-Relationship interfaces.

4.4.5.13 TS113. Examine the limits imposed on the Create-Node (51.5.1), the
Create..SecondaryRelationship (5,1,2,25), and the DeleteSecondaryRelationship (5.1.2.26)
interfaces by creating two nodes related as parent and child, then creating and deleting
secondary relationships on that path up to a predefined limit. In addition to the functional
tests, TS113 provides timing tests to determine the amount of time required to execute the

Open, Create-Node, Create-SecondaryRelationship, and DeleteSecondary-Relationship

interfaces.

4.4.5.14 TS114. Exercise the Set-CurrenL.Node (5.1.2.37) and GeL.Current_.Node
(5.1.2.38) interfaces by creating a small number of unrelated nodes, then calling the
SetCurrent..Node and GetCurrentNode interfaces for each. In addition to the functional

43

tests, TS114 provides timing tests to determine the amount of time required to execute the

Open, Close, SetCurrent.Node, Get.Current-Node, and Create..Node interfaces.

4.5 Process Management Tests

Process management standardizes the initiation, running, and termination of host

processes. The nominal tests are found in the TG series of tests, and the usability tests are
found in the TV series.

4.5.1 Test Strategy

Most of the TG tests use the login process current-user node as the process node which is
acted upon by the various process management interfaces.

All processes, when initiated through Spawn.Process, Invoke-Process, or Create-Job.

must designate a target file node, which contains the executable image that process is to
manage. Some of the earlier TV tests spawn processes that designate a particular file node.

TVLOOP periodically sends messages to the screen announcing its presence and stops only
when aborted with Abort.Process. To reduce the effort in configuring file nodes, later TV
tests contain within themselves the TVLOOP function, and the test designates itself as the

target These tests asijrme that the Get-Parameters interface and some List Management

interf. ,.,s work flawlessly.

The execution of a process management test is accomplished by first creating a file node
under the current user node, importing its executable contents from the host file system's
corresponding link file, creating target file node if necessary, importing its contents in like

riianner. 'md >tting the Default-Tool relationship of the user tiode to designate the file node
that contains the test. The SWG CAIS login procedure and DefaultTool relation are not

specified in any standard, but the result of logging in is that the executable contained in the file

node at the end of the Default-Tool relationship is executed

4.5.2 Specific Support Packages

Four packages and two additional functions support process management testing
Package TG-Names translates logical file names found in the tests into host specific file names
Package Report Package Print-Output formats output into standard formats. Package
Time.-Recorder provides timing utilities. Function CAISVersion determines the version of
the CAIS being tested. Function Date returns a string that contains the date. This date is
contained in the formal output files.

4.5.3 Organization of Node Model

Each process management test is contained in a file node directly under the current user
node with relationship formed from relation "test" and a key that is the same as the name of
the test or test target. For example, the test TIVO is contained in the file node TVLOOP is

normally contained in 'current-user'test(tvloop). All processes spawned by the tests have

141

names that, in part, reflect the name of the test, making it possible to simultaneously initiate
more than one test without pathname conflicts.

4.5.4 Nominal Tests

Each of the TG tests exercises a single overload of each interface in the package

CAISProcess_.Management.

4.5.4.1 TGO4. Exercise the Spawn..Process interface (5.2.2.1). Determine if the

simplest form of process spawning works. Spawn a null process. The spawned process source

code is in a separate file.

4.5.4.2 TG05. Test the AwaitProcessCompletion interface (5.2.2.2a). That

interface is tested both with and without a time limit. The raising of several exceptions is also

attempted, including Node-KindError. Status-Error, and Intent-Violation. A process is

spawned and Await.Process--Completion is then called.

4.5.4.3 TGO6. Test the overload of th2 AwaitProcessCompletion interface
(5.2.2.2b). That interface is tested both with and without a time limit. The raising of several

exceptions is also attempted, including Node._KindError, Status..Error, and Intent-Violation.

A process is spawned, and Await..ProcessCompletion is then called.

4.5.4.4 TG07. Exercise the Invoke-Process interface (5.2.2.3a). The target process is

to create and write to a file. Exceptions are not tested.

4.5.4.5 TGO8. Exercise the overload of the Invoke-Process interface (5.2.2.3b). The

target process is to create and write to a file. Exceptions are not tested.

4.5.4.6 TGO9. Exercise the Create-Job interface (5.2.2.4). The target process is to

create and write to a file. Exceptions are not tested.

4.5.4.7 TG11. Exercise the Delete-Job interface (5.2.2.5a). Create a legitmate job

and immediately delete that job :mnd check the status of the deleted job with Current-Status.

Attempt to raise Name-Error, PredefinedRelation..Error, Status.Error, Lock-Error, and

Intent-Violation.

4.5.4.8 TG12. Exercise the first overload of the Delete-Job interface (5.2.2.5b).
Create a legitmate job and immediately delete that job and check the status of the deleted job

with Current-Status. Attempt to raise Name-Error, PredefinedRelation-Error,

Status-Error, Lock-Error, and Intent-Violation.

4.5.4.9 TG13. Exercise the Append-Results interface (5.2.2.6). The interface
Get-Results is used to verify that the results list has been appended. The only specific

exception defined for this interface, Lock-Error, is general enough such that it is not tested.

45

4.5.4.10 TG14. Exercise the Write-Results interface (5.2.2.7) on the current job.
Attempt to raise a Lock-Error.

4.5.4.11 TG15. Exercise the Get-Results interface (5.2.2.8a) on the current job.
Results of the current job should be an empty list. Attempt to raise a Node-KindError, a
StatusKindError, and an Intent-Violation.

4.5.4.12 TG16. Exercise the first overload of the Get-Results interface (5.2.2.8b) on
the current job. Results of the current job should be an empty list. Attempt to raise a
Node-KindError, a Status.-Kind error, and an IntenL.Violation.

4.5.4.13 TG17. Exercise the second overload of the Get-Results interface (5.2.2.8c)
on the current job. Results of the current job should be an empty list. Attempt to raise a
NodeKindError, a Status-KindError, and an Intent-Violation.

4.5.4.14 TG18. Exercise the third overload of the GetResults interface (5.2.2.8d) on
the current job. Results of the current job should be an empty list. Attempt to raise a
NodeKindError, a Status-KindError, and an Intent-Violation.

4.5.4.15 TG19. Exercise the Current-.Status interface (5.2.2.9a) on the current job.
The current job should be Ready. Attempt to raise a Node Kind-.Error, a Status-Kind error,
and an Intent-Violation.

4.5.4.16 TG20. Exercise the first overload of the Current-Status interface (5.2.2.9b)
on the current job. The current job should be Ready. Attempt to raise a Node-Kind E.rror, a
StatusJKind._Error, and an Intent-Violation.

4.5.4.17 TG21. Exercise the Get-Parameters interface (5.2.2.10) on the current job.

The parameter list of the current job should bt empty. Attempt to raise a Lock.Error.

4.5.4.18 TG22. Exercise the Abort-Process interface (5.2.2.11a) on a spawned
process. Attempt to raise a NodeKind.Error, a Status-Kind.Error, and an Intent-Violation.

4.5.4.19 TG23. Exercise the first overload of the Abort-Process interface (5.2.2.11b)
on a spawned process. Attempt to raise a NodeKind-Error, a Status-Kind-Error, and an
In tent-Violation.

4.5.4.20 TG24. Exercise the second overload of the Abort.Process interface
(5.2 2.11c) on a spawned proces Attempt to raise a Node.KindError, a StatusiKind-Error.

and an Intent-Violation.

4.5.4.21 TG25. Exercise the third overload of the Abort.Process interface (5.2.2.11d)
on a spawned process. Attempt to raise a NodeKindError, a Status-Kind-Error, and an
Intent.Violation.

46

4.5.4.22 TG26. Exercise the Suspend-Process interface (5.2.2.12a) on a spawned
process. Attempt to raise a Node..KindError, a Status..KindError, and an Intent-Violation.

4.5.4.23 TG27. Exercise the first overload of the Suspend-Process interface
(5.2.2.12b) on a spawned process. Attempt to raise a NodeKindError, a Status.KindError,
and an Intent-Violation.

4.5.4.24 TG28. Exercise the Resume-Process interface (5.2.2.13a) on a spawned then
suspended process. Attempt to raise a Node.KindLError, a StatusKindError, and an
Intent-Violation.

4.5.4.25 TG29. Exercise the first overload of the Resume-Process interface
(.5.2.2.13b) on a spawned, then suspended process. Attempt to raise a NodejKindError, a

Status-KindError, and an Intent-Violation.

4.5.4.26 TG30. Exercise the Open..NodeHandleCount interface (5.2.2.14a) on the
current job. Attempt to raise a NodeKindError, a Status.KindError, and an
Intent-Violation.

4.5.4.27 TG31. Exercise the first overload of the Open.\NodeJHandleCount
interface (5.2.2.14b) on the current job. Attempt to raise a Node-KindError, a
StatusKindError, and an Intent-Violation.

4.5.4.28 TG32. Exercise the IoUnitCount interface (5.2.2.15a) on the current job.
Determine if the interface correctly counts the number of lines of input and output generated
by the Text_[O, Get-Line, and Put-Line interfaces. Attempt to raise a NodeKindError, a
Status.KindError, and an Intent-Violation.

4.5.4.29 TG33. Exercise the first overload of the lo-Unit-Count interface (5.2.2.15b)
on the current job. Determine if the interface correctly counts the number of lines of input
and output generated by the Text-1O, Get-Line, and Put-Line interfaces. Attempt to raise a
Node.-Kind-Error, a Status-KindError, and an Intent-Violation.

4.5.4.30 TG34. Exercise the Time-Started interface (5.2.2.16a) on the current job.
Attempt to raise a NodeKindError, a Status-KindError, and an Intent-Violation.

4.5.4.31 TG35. Exercise the first overload of the Time.-Started interface (5.2.2.16b)
on the current job. Attempt to raise a NodeKind-Error, a StatusKind-Error, and an
Intent-Violation.

4.5.4.32 TG36. Exercise the Time-Finished interface (5.2.2.17a).

4.5.4.33 TG37. Exercise the first overload of the Time-Finished interface (5.2.2.17b).

47

4.5.4.34 TG38. Exercise the Machine-Time interface (5.2.2.18a) on the current job.
This interface should return 0.0 to indicate that the current job has not finished. Attempt to
raise a Node-Kind.Error, a Status-Kind-Error, and an Intent-Violation.

4.5.4.35 TG39. Exercise the first overload of the Machine-Time interface (5.2.2.18b)

on the current job. This interface should return 0.0 to indicate that the current job has not
finished. Attempt to raise a Node-.Kind-Error, a Status..KindError, and an Intent-Violation.

4.5.4.36 TG40. Exercise the Process-Size interface (5.2.2.19a) on the current job.
This interface should return a nonzero value. Attempt to raise a Node-Kind-Error, a
Status_KindError, and an Intent-Violation.

4.5.4.37 TG41. Exercise the first overload of the Process..Size interface (5.2.2.19b) on
the current job. This interface should return a nonzero value. Attempt to raise a
NodelKind..Error, a Status.KindError, and an Intent.Violation.

4.5.5 Usability Tests

The following usability tests will be attempted. The list is extensive, but the critical
nature of the process management portion of the SWG CAIS merits full attention. No
attempt will be made at this time to instrument the tests for timing, although each test will be
connected to the test harness and have the standard output format. Each test is presented as
a goal with a possible implementation.

4.5.5.1 TVO1. Exercise the Spawn-Process interface (5.2.2.1). Find the limit of
sequentially spawned processes. Sequentially spawn new processes until no new processes can
be spawned, Determine which exception is raised after the last process is spawned and then
check the status of the previously spawned processes.

4.5.5.2 TV02. Fxercise the Spawn-Process interface (5.2.2.1). Find the limit of
recursively spawned processes. Recursively spawn new processes until no new processes can be
spawned. Determine which exception is raised after the last process is spawned and then check
the status of the previously spawned processes.

4.5.5.3 TV03. Exercise the Spawn-Process interface (5.2.2.1). Determine if

predefined attributes, inherited relationships, and the current status of spawned processes are
correct. Spawn 5 to 10 processes and check the above.

4.5.5.4 TV04. Exercise the Invoke-Process interface (5.2.2.3). Determine if one
process can invoke another process for some small number (5 to 10) proce&,us. Recursively
invoke processes 5 to 10 times and determine if all processes except the last process are blocked
and if the last process is executing.

4.5.5.5 TV08. Exercise the Create-Job interface (5.2.2.4). Find the limit of
sequeritially created jobs. Sequentin1ly create new jobs until no new jobs can be created.
Determine which exception is raised after the last job is created, and then chcck the status of
the previously created jobs.

48

4.5.5.6 TV09. Exercise the Create-Job interface (5.2.2.4). Find the limit of
recursively created jobs. Recursively create new jobs until no new jobs can be created.
Determine which exception is raised after the last job is created, and then check the status of
the previously created jobs.

4.5.5.7 TVI1. Exercise the Abort-Process interface (5.2.2.11). Make sure that a
large number of spawned processes can be aborted. Spawn 50 to 100 processes, and abort
each. Determine if the spawned processes are aborted.

4.5.5.8 TV12. Exercise the AborLtProcess interface (5.2.2.11). Make sure that a
large number of created jobs can be aborted. Create 50 to 100 jobs, and abort each.
Determine if the jobs are aborted.

4.5.5.9 TV13. Exercise the AborL.Process interface (5.2.2.11). Determine if aborting
a spawned process aborts all descendant processes. Recursively spawn some small number (10
to 20) of processes. Abort the most ancient process, and determine if all descendant processes
are aborted, as they should be.

4.5.5.10 TV14. Exercise the Abort-Process interface (5.2.2.11). Determine if
aborting a job does not abort any other job. Recursively create some small number (10 to 20)
of jobs. Abort the most ancient job, and determine if all subsequent jobs are executing.

4.5.5.11 TV15. Exercise the Invoke-Process interface (5.2.2.3). Determine if an
invoked process, when aborted, does not block execution of the calling process. Invoke a
process, abort it, and determine if the calling process is again executing.

4.5.5.12 TV16. Exercise the Abort-Process interface (5.2.2.11). Determine if a
process that contains a task that aborts its containing process aborts the containing process.
Create a process that contains a task that aborts its containing process. Determine if the
containing process has been aborted.

4.5.5.13 TV17. Exercise the Delete-Process interface (5.2.2.5). Determine if
Delete-Job deletes an entire tree of recursively spawned processes. Recursively spawn some
small number of processes and call Delete-Job on the root process node. Determine if all
descendant process nodes have been deleted and if the main calling process is now executing.

4.5.5.14 TV18. Exercise the Delete-.Process interface (5.2.2.5). Determine that
Delete-Job deletes only the job passed as a parameter and no others. Create several jobs,
delete them one at a time, ensuring that the remaining jobs have not been deleted.

4.5.5.15 TV19. Exercise the Await-ProcessCompletion interface (5.2.2.2).
Determine if Await--Process.-Completion indeed blocks the main process until the spawned
process is finished. From some main process, spawn a process, and then call
Await-ProcessCompletion. Determine if the main process is blocked while waiting for the
spawned process to complete. Determine if the actual time spent waiting for process
completion is at least equal to the time limit parameter of the function. Accomplish this with
and without the time limit.

49

I

4.5.5.16 TV20. Exercise the AwaitProcessCompletion interface (5.2.2.2).
Determine if AwaiLProcess-Completion blocks a main process until the created job completes.
From some main process, create a job, and then call Await..Process.-Completion. Determine if
the main process is blocked while waiting for the created process to complete. Ensure that the

actual time spent waiting for process completion is at least equal to the time limit parameter

of the function.

4.5.5.17 TV21. Exercise the Suspend..Process (5.2.2.12) and Resume-Process
(5.2.2.13) interfaces. Determine if processes can be directly suspended and resumed. Spawn
some large (50 to 100) number of processes. Suspend each, and determine that all are
suspended; resume each and determine if all are executing.

4.5.5.18 TV22. Exercise the Suspend..Process (5.2.2.12) and Resume-Process
(5.2.2.13) interfaces. Determine if processes can be indirectly suspended and resumed. Spawn

some small (10 to 20) number of processes, each of which spawns another process. Suspend the
grandchild processes, and determine if the child processes are still executing. Resume the
grandchild processes, then suspend the child processes. Determine if the child and grandchild
processes are suspended.

4.5.5.19 TV23. Exercise the Suspend-Process (5.2.2.12) and Resume-Process

(5.2.2.13) interfaces. Determine if trees of processes are suspended and rv,'-!med correctly.
Recursively spawn some small number (5 to 10) of processes, and suspend the most ancient
one. Determine if a)) descendant processes are suspended. Resume the most ancient one, and
determine if all descendant processes are resumed.

4.5.5.20 TV24. Exercise the Spawn-Process (5.2.2.1) and Get-Parameters (5.2.2.10)
interface.,s Demonstrate a pop-up alarm clock. Create a process and pass it a time in seconds
to delay, then send output to the screen.

4.5.5.21 TV32. Exercise the WriteResults (5.2.2.7) and Get-Results (5.2.2.8)
interfaces. Determine if results can be consistently written to and read back from a process.
This is to be attempted a large number (1000) of times.

4.5.5.22 TV33. Exercise the AppendResults (5.2.2.6) and GetResults (.5.2.2.8)
interfaces. Determine that the null string is the first result from a process. Determine what
exception is raised after appending results repeatedly

4.5.5.23 TV34. Exercise the Time-Started (5.2.2.16), Time-Finished (5.2.2.17), and
Machine-Time (5.2.2.18) interfaces. Determine that when several processes are spawned. their
Time-Started attributes reflect the order of process initiation. Also, determine that reasonable
results are returned for the Time-Finished attribute when the processes are completed.

4.5.5.24 TV35. Exercise the Get-Parameters interface (5.2.2.10) by spawning
processes, invoking processes, and creating jobs with and without parameters and then

S determining that the parameters that were passed arrived intact.

50

4.5.5.25 TV38. Exercise the Current-Status interface (5.2.2.9). Spawn processes,
invoke processes, and create jobs and determine their status just after initiation, suspension,
resumption, abortion, and termination. Recursively spawn several processes, abort the most
ancient, and determine that the Current-Status of all descendant processes is correct.

4.5.5.26 TV37. Exercise the Io..UnitCount interface (5.2.2.15). Invoke some process
that makes a known number of Get/Put operations. After termination, determine that the
value of the Io--Unit.Count attribute of the proces node is correct. Invoke some process that
makes a known number of Get/Put operations and that periodically suspends itself. During
periods of suspension determine that the value of the Io..Unit.Count attribute is correct.
Invoke some process that opens a known number of node handles and that periodically
suspends itself. During periods of suspension, determine that the value of the
Open-NodeHandleCount is currently correct.

4.5.5.27 TV38. Exercise the Process-Size interface (5.2.2.19). Determine that the
size of a spawned process and the size of an aborted process are nonzero, and that the size of
two spawned processes with the same target is the same size.

4.6 Direct IO/Sequential IO/Text 1O Tests

The CAIS-DIRECT-O and CAIS-.SEQUENTIAL-O packages provide facilities for
directly accessing and sequentially accessing data elements in SWG CAIS files. The
CAISTEXTJO package provides facilities for accessing textual data elements in SWG CAIS
files.

4.6.1 Test Strategy

The SWG CAIS input/output nominal tests are designed such that the same test strategy
is employed for each of the direct input/output and sequential input/output tests. text
input/output nominal tests are handled separately. The direct input/output test names begin
with TI followed by a two-digit number. The sequential input/output test names begin with
TJ followed by a two-digit number. All tests with the same two digits have identical test
executions. The text input/output nominal tests have a TK prefix.

Usability tests are intended to test efficiently many interfaces working jointly in a
realistic manner. However, because of the interdependencies in the interfaces, failure of an
early interface may leave later interfaces untested. The usability tests are limited to
CAIS-.TEXT-JO interfaces.

4.6.2 Specific Support Packages

There are two support packages required for the proper execution of the SWG CAIS 1/0
tests. The first is a generalized report writer that formats expected outputs and reports
anomalous results. The second support package involves the ability to measure the delta time
between events.

51

4.6.3 Organization of Node Model

The node model will be a dynamic list of file node handles that may be accessed by an
index.

4.6.4 Nominal Testa

The tests with prefix TI and TJ use identical logic and structure in their tests. They will
be discussed as one test with TI representing CAIS-DIRECT-1O tests and with TJ
representing CAISSEQUENTIALJO tests.

In all test cases, each interface is executed with the following instantiations to check for
proper execution: "Integers", "Strings", "Enumeration", "Fixed", "Float", "Boolean",
"Character", "Array", "Records". If all tests pass without errors, the test is sa, to pass.
Otherwise, the test fails.

4.6.4.1 TI01 and TJO1 Exercise the Create interfaces (5.3.4.2 and 5.3.5.3).
Additional tests are executed to determine that a file of mode In-.File can be created, that a file
of mode Out..File can be created, and that a file of mode Inout-File can be created.

4.6.4.2 T102 and TJ02. Additional tests are executed to determine that a true is

returned when Is-Open is applied to an open file of mode Out-File, that a true is returned
when Is__Open is applied to an open file of mode In..File, that a true is returned when Is-.Open
is applied to an open file of mode Append..File, and that a false is returned when Is--Open is
applied to a closed file of mode Out-File.

1.6.4.3 T103 and TJ03. Additional tests are executed to determine tl-tt mode
Out..File is returned when mode is applied on a file of mode Out-File, that mode In-File is
returned when mode is applied on a file of mode In-File, that mode Append-File is returned
when mode is applied on a file of mode Append_.File. and that exception Status-Exception i.
returned when Mode is applied to a file already closed.

4.6.4.4 T104 and TJo4. Exercise all instantiations of the Close interfaces (5.3.4.4
aid 5.3.5.4). Additional tests are executed to determine that an open file is closed when Close
is applied, and that no exception is raised when Close is applied to an already closed file.

4.6.4.5 TI05 and TJO5. Exercise the Open interfaces (5.3.4.3 and 5.3.5.3).

Additional tests are executed to determine that a file with mode In.File can be successfully
opened, that a file can be opened with mode Out-File, that a file can be opened with mod"
Append-.File, and that a Status.-Error exception is raised when opening an already opened file.

4.6.4.8 TIO6 and TJO6. Exercise the Write interfaces (5.3.4 and 5.3.5). Additional
tests are executed to determine that an element can be written to a file. Also tests the
Synchronize interface (5.3.4.6 and 5.3.5.6), to determine that the exception Mode-Error is
raised when a Write is applied to an open file of mode In.File, and that the exception
Status. Error is raiscd when Write is applied to a closed file.

.52

4.6.4.7 T107 and TJ07. Exercise the Reset interfaces (5.3.4.5 and 5.3.5.5).
Additional tests are executed to determine that a file can be reset to mode In-Mode, that a file
can be reset to mode Out-File, that a file can be reset to mode Append-File, and that the
exception Status-Error is raised when resetting a closed file.

4.6.4.8 T108 and TJO8. Exercise the End-ofFile interfaces (5.3.4 and 5.3.5). In
addition to the complete set of instantiations being performed, tests are conducted to
determine that End.ofFile returns true when applied to an open file at End..of-File as
expected, that false is returned when an End..ofFile test is made on a file containing
additional elements, that Mode-Error is raised when an End..ofFile test is made on a file of
mode OutJFile, and that Status.Error is raised when a closed file is tested for End.ofFile.

4.6.4.9 T109 and TJO9. Exercise the Read interfaces (5.3.4 and 5.3.5). In addition
to the usual instantiation tests, tests are run to determine that elements in a file can indeed be
read, that the exception End-Error is raised when if Read is applied to a file at the

'End..ofFile as expected, that the exception Mode-Error is raised when Read is applied to a
file not of mode In_-File as expected, and that a Status-Error is raised when Read is applied to
a closed file as expected.

4.6.4.10 TKO1. This package tests the proper execution of the Create, Open, Close,
Is-Open, Mode, and End.-of-File (5.3.6) for text files. The test strategy is to create a text file
node, attempt to apply Open to the text file, determine the proper operation of the Open with
IsOpen, apply Mode to the created file, determine that an open file can be closed, verifying
the proper execution of Close with l&.Open exception, and determine that a file can be re-
opened after a Close operation, and verify that an exception is raised when an End-of-File
check is made on a file of mode Out-File. Any exceptions raised during the execution of the
above tests will be reported. Execution will then proceed with the next test in sequence.

4.6.4.11 TK02. This package executes test cases for Get, Put, New-Line, Skip-Line,
and End-ofFile interfaces for text files. The test strategy employed is to create and open a
text file node for output, write predefined text to the output file and close it, reopen the file
and apply a Get to it, verifying for the same text that was previously written, apply Skip-Line
to the file and perform a Get-Line and compare to predefined results to verify proper
execution, verify that the file was properly constructed and accessed by performing a
Skip-Line and then another Get-Line and comparing to expected results, and execute
End-of.File and verify results. If any exceptions are raised during test execution, an error
message is reported with execution continuing at the next test in sequence.

4.6.4.12 TK03. This package executes test cases for the SetJnput and Set-Output
interfaces for text files. The test strategy is to create and open two text files with Inout intent,
apply Is-Open to verify proper execution of the Open, write predefined text into each file and
reset both files to input, apply Setnput to the first file and Set-Output to the second file,
apply Mode to determine the proper execution of Set-Jnput and Set-Output, and verify the
integrity of the file by performing Get-Line and comparing to the previously written
predefined text. Any unexpected exceptions raised cause an error to be reported with
execution continuing with the next test in sequence.

53

4.6.5 Usability Tests

Three usability tests will be executed to determine the performance characteristics of the
Put-Line, Get-Line, and Synchronize interfaces.

4.6.5.1 TK101. This package invokes the Put-Line interface for an open file node up
to the pragmatic limit. Output is made to the report file each 100 executions along with the
time required for the execution. The average time for each Put-Line is also calculated using
the interval timer results.

4.6.5.2 TK102. This package executes Get..Line interface for an open file node 1,000
times and computes the average time for each incidence. Output is made to the report file to
record interim results.

4.6.5.3 TK103. This package executes the Synchronize interface 100 times and
calculates the average time required for each execution. Interim results are recorded every 10

iterations.

4.7 Import-Export Tests

The IiMPORT_..EXPORT package interfaces are tested indirectly by all other tests.
Some tests will call the 1MPORTEXPORT interfaces, and other tests will rely on the
implementation-dependent SWG CAIS administrative services tools to import and export host
files directly. No explicit tests will be written for these interfaces.

4.8 PageTerminal O Tests

The CAISPAGETERMNALIO package provides the capability to communicate with
page terminal devices. Positions on a display are directly addressable and are arranged into
horizontal rows and vertical columns. Each position on the display is identifiable by the
combination of a positive row number and a positive column number. The test strategy
involves the development of just one usability test.

4.8.1 Nominal Tests

No nominal tests were developed for this interfLce.

4.8.2 Usability Tests

An open file node handle with In-Out intent is required for the successful execution of the
PageTerminaLlo test called "TP01". This test is a modification of a NOSC page terminal
test of the same name.

TPOI executes test cases for various instantiations of the CAISPAGE-.TERIMINAL.O
package. The interfaces used in thu test include the following: Open (5.3.9.2),
Erase.in.Display (5.3.9.30), Page-Size (5.3.9.12), Set_'\ctivePosition (5.3..q 10), Delete-Line

54

(5.3.9.28), Insert-Line (5.3.9.33), Erase-Line (5.3.9.31), Put (5.3.9.18), Get (5.3.9.19),
Select-Graphic..Rendition (5.3.9.35), and Close (5.3.9.3).

The test strategy is to open a file node handle for the page terminal device, obtain the
terminal characteristics, and exercise the terminal in a manner typically used for full screen
editors or for forms entry. The following sequence is executed to test the paged terminal
capabilities. Limited exception checking is performed during the test sequences.

* Label each line and place "#' in reverse video.

* Test the retrieval of Ada characters by requesting the input.

* Test the deleting of lines.

* Test for the insertion of lines.

* Move the cursor on the screen in random positions.

* Get a string of Ada characters.

* Get a single Ada character or a function key.

4.9 List Management Tests

These tests exercise the interfaces defined in the CAISLISTMANAGEMENT package
(5.4.1). CAISLIST.MANAGEMENT implements an abstract data type (i.e., list) that is
constructed of items that may be sublists, strings, integers, floats, or identifiers. Items within
lists may be either named or unnamed (i.e., positional). The operations provided in
CAIS-LIST..MANAGEMENT include insertion and deletion of items, identification of sub-
lists, replacement and extraction of items, conversions to and from text, and determination of
the kind of an item or list.

4.9.1 Test Strategy

The list management tests were able to take advantage of several previously written
tests. Tests originally developed by NOSC were used as the basis for all of the list
management nominal tests. These tests were modified to reflect changes in the CAIS and to
expand coverage. The modified NOSC tests were also used to develop the usability tests.

Both the nominal and the usability tests for list management follow the same basic
format. Similar interfaces (e.g., Extract.List and Extract-Value) are grouped together within
a single test; each test loops reading text input from an American standard code for
information exchange (ASCII) file and after reading a set of data, a subtest is performed in
which a list is created, the specified operation is performed, and actual results are compared
against expected results. Because lists are read from the textual input file, it is easy to specify
a variety of list forms so that the list management interfaces can be tested with respect to a

55

wide range of list structures and item values. It also allows new subtests to be run without
modifying or recompiling the Ada source code for that particular interface.

Usability tests differ from nominal tests in that they exercise interfaces using complex
lists, where a complex list is defined to be a list containing approximately 255 items and those
items are a mixture of various item..kinds. The usability tests also check for specific limits on
list sizes.

Because lists are abstract data types provided by CAIS and because these tests are
designed to perform black-box testing, each test necessarily relies on list management
interfaces other than the interfaces specifically being tested. The
CAIS.LISTMANAGEMENT interfaces used by other list management tests are
ConvertText.ToList, SetTo-EmptyList, Text_Form, Convert-.TextToToken, and
Insert. Proper implementation of these interfaces is essential to the proper testing of
CAISLISTNhM NAGEMENT using this test set.

4.9.2 Specific Support Packages

The list management tests make use of a generalized REPORT package. REPORT
provides standardized interfaces for creating test reports. Procedures are provided for
reporting test names, indicating pass/fail status for subtests. and reporting an overall test
result (that indicates passage only if all subtests pass).

The usability tests for list management make use of additional support procedures:

* CREATE-COMPLEX-1.JIST--Reads the text form of items from an input file and
inserts them one at a time into the complex list being cre;ated.

* PRINTCON PLEX._LIST--Formats a complex list into 80-character lines and
prints it to the test output file.

4.9.3 Organization of Node Model

There is no need to interact with the CAIS node management facilities in order to test
the list management interfaces. These tests do not create or depend upon the existence of any
nodes or particular instance of the node model.

4.9.4 Nominal Tests

4.9.4.1 TBO1. Exercise the Copy-List interface (5.4.1.2). Obtain input from file
TBO.IN. Simply loop, reading a text string from TBOI.IN on each pass. For each list copied,
display both the original and the copied list, and report the result of the comparison as the test

either passing or failing. After performing all subtests, issue a summary result indicating

"pass" only if all lists were copied correctly.

56

4.9.4.2 TB02. Exercise the three interfaces defined for the Delete interface (5.4.1.7).
Obtain input from file TBO2.IN. Test all forms of delete (by position, by identifier, or by
token). After calling Delete to remove an item from a list, compare the resulting list to an
expected result. Display the original list, resulting list, expected result, kind of delete, and the
deleted item's name or position, as well as an indication of paw/fail in the test results file.
After performing all subtests, report a summary result indicating "pass" only if all items were
deleted correctly.

4.9.4.3 TB03. Exercise the IsEqual interface (5.4.1.6). Obtain input from file
TBO3.IN. For each subtest compare the two input lists, and verify the result of this
comparison against an expected result of either true or false. Report the two input lists and
the expected result, as well as an indication of pas&,fail in the test results file. After
performing all subtests, report a summary result indicating "pass" only if all comparisons were
performed correctly.

4.9.4.4 TBO5. Exercise the Extract-List interface (5.4.1.12), the interface for
Get--tem.Name (5.4.1.19), and the three interfaces defined for Extract-Value (5.4.1.6).
Obtain input from file TBO5.IN. For eAch subtest, invoke the appropriate extraction interface,
and then compare the result to the expected result. Report the kind of extraction, the original
list, the specified name or position (or start position and count), the result, and the expected
result, as well as an indication of pass/fail in the test results file. After performing all subtests,
report a summary result indicating "pass" only if all comparisons were performed correctly.

4.9.4.5 TB07. Exercise all of the interfaces for CAISIdentifier-Jtem (5.4.1.22.2 - .8).
This package provides interfaces for the manipulation of tokens within lists: Extract, Insert,
Replace, and Position-byValue. It also supports comparison of tokens and converting text to
tokens. Test extraction, insertion, and replacement for all three forms of keys (i.e., by
position, by identifier, and by token). Obtain input from file TBO7.IN. For each subtest,
invoke the appropriate CAIS-ldentifier.Atem interface, and print both the test inputs and the
test results. The test result file must be read to verify the correctness of tests.

4.9.4.6 TBO8. Exercise the three interfaces defined for Kind.of.1tem (5.4.1.9). Test
all three forms of keys (by identifier, by position, and by token) allowed for specifying the list
item whose "kind" is being requested. Obtain input from file TB08.IN. For each subtest,
compare an expected "kind" to the one actually returned. Report the test inputs, as well as an
indication of pass 'fail in the test results file. After performing all subtests, report a summary
result indicating "pass" only if all comparisons were performed correctly.

4.9.4.7 TBO9. Exercise the three interfaces defined for Insert (5.4.1.21.3). Test all
three methods of inserting a sublist into a list (into an unnamed list, into a named list using an
identifier, and into a named list using a name token). Also check that exceptions are raised as
expected. Obtain input from file TB09.IN. Perform the insertion and either compare the
successful result to the expected result or, when an exception occurs, compare the exception to
an expected error. Report the test inputs, as well as an indication of pass/fail in the test
results file. After performing all subtests, report a summary result indicating "pass" only when
results occur as expected.

57

4.9.4.8 TB10. Exercise all of the interfaces for CAlSIntegerItem (5.4.1.23.1 through
5.4.1.23.5). This provides for manipulation of integers within lists: ExtractedValue, Insert,
Replace, and PositionbyValue. It also supports converting integer values to Text-Form.
Test extraction, insertion, and replacement for all three forms of keys (i.e., by position, by
identifier, and by token). Obtain input from file TB10.IN. For each subtest, invoke the
appropriate CAIS--NTEGERITEM interface, and print both the test inputs and the test
results, as well as a pass/fail indication.

4.9.4.9 TB11. Exercise the Number-.of-Items interface (5.4.1.13) and the four
interfaces defined for Text-.Length (5.4.1.21.3). Test all three methods (by position, by
identifier, and by token) of specifying a sublist whose length is requested. Also check that
exceptions are raised as expected. Obtain input from file TBll.IN. Perform the length
request and either compare the successful result to the expected result or, when an exception
occurs, compare the exception to an expected error. Report the test inputs, as well as an
indication of pass/fail in the test results file. After performing all subtests, report a summary
result indicating "pass" only when results occur as expected.

4.9.4.10 TB12. Exercise the Kind.of-List interface (5.4.1.6). Simply loop, reading
two inputs from TB12.IN on each pass: a list to be checked, and an expected result of
Unnamed, Named, or Empty. Perform the Kind._ofList operation on the input list, and
,',,mparc the res.ilt to the expected result. Report the list, actual result, and expected result,
as well as an indication of pass/fail in the test results file. After performing all subtests, report
a ummarv result indicating "pass" only if all comparisons were performed correctly.

4.9.4.11 TB13. Exercise the Position-byValue interface (5.4.1.21.4) and both
interfaces (by identifier or by token) for the Position.-byName operation (5.4.1.20). Also
cheek l1),a, exceptions are raised as expeotd. Obtain input from file TB3.IN. Perform thc
position request, and either compare the successful result to the expected result or, when an
excepti, i occurs, compare the exception to the expected error. Report the test inputs, as well
-L an indication of pass/fail in the test results file.

4.9.4.12 TB14. Exercise the three interfaces defined for Replace (5.4.1.6). Obtain
input from file TB14.1N. For each subtest, invoke the appropriate replacement interface, and
thi compare the result to the expected result. Report the kind of replacement, the original
list, the specified identifier, token, or position being replaced, the result, and the expected
result, as wPll as an indication of pass/fail in the test results file.

4.9.4.13 TB15. Exercise the Splice interface (5.4.1.10) and Concatenate-Lists
j:;', rface (5.4.1 I1). Also chock for proper propagation of exceptions. Obtain input from file
T1B5.1N. Perform the appropriate merge and either compare the successful result to the
expected result or, when an exception occurs, compare the exception to an expected error.
Report the inputs, as well as an indication of pass/fail in the test results file.

4.9.4.14 TB16. Exercise all of the interfaces for CAIS-Stringltem (5.4.1.25 .1 - .4).
These interfact- support manipulations of strings within lists: Fxtracted-Value, Insert,
Replace, and P..,ition-byValue. Test extraction, insertion, and replacement for all three
forms of keys (i.e., by position, by identifier, and by token). Simply loop, reading a test
iudirator and the appropriate number (,f inputs from TB16 IN nn each pass For each suhtest.

invoke the appropriate CAISSTRING-ITEM interface, and print both the test inputs and the
test results, as well as a pass/fail indication.

4.9.5 Usability Tests

4.9.5.1 TB25. Perform five different checks on the maximum sizes supported for
simple lists. Create a list and add items (empty lists) to it until no more can be added.
Determine that the list can be at least as long as CAIS..List.Length (255 items) and that
Capacity-Error is raised when r o more items can be inserted. Determine the condition of the
node model at this point. Repeat the first test, creating the largest acceptable list. Determine
whether other lists can grow to be as large as the first. Recursively create a list containing
other lists until no more lists can be inserted. (Let each list contain nothing other than the
next nested list.) Determine whether, at this point, the limit is on depth of nesting or on total
number of contained items. Create, using calls to Insert and SetToEmptyList, the largest
list of lists acceptable to the implementation. Compare its size with that from test 3 above.
Create the largest list acceptable to the implementation; call Copy-List and determine that
the second list is the same as the first.

4.9.5.2 TB26. Evaluate the use of Insert to create large, complex lists. Create a list
of items of every type except floating point values. Repeat with each list having the deepest
level of nesting accepted by the implementation. Create these complex lists by repeated calls
to Insert (using all overloaded forms and using items of all types). Proper operation must be
checked by printing and verifying the lists that are created.

4.9.5.3 TB27. Evaluate the Replace operation (5.4.1.21.2) on large, complex lists.
Check all three forms (by position, by identifier, and by token) of specifying the replacement.
Create a complex (e.g., many levels of nesting) list using items of all types. Call Replace (using
aHl overloaded forms and using items of all types) some number of times to alter the list.
Proper operation must be checked by printing and verifying the lists that are created.

4.9.5.4 TB28. Evaluate the Number-of-Items (5.4.1.13) and Text-Jength (5.4.1.18)
operations on large, complex lists. Call TextLength on an empty list; determine that a
positive value is returned. Create a complex named list and call Text-Length, using all
interfaces. Determine that the results for each call are correct. Create an unnamed list and
repeat the applicable tests. Also call Number_of.ltemg for these tests and determine that the
resuilts for each call are correct. Proper operation must be checked by printing and verifying
the lists that are created.

4.9.5.5 TB29. Evaluate the Extract (5.4.1.12), Get.Jtem.Name (5.4.1.19) and
Extract-Value (5.4.1.21.1) operations on large, complex lists. Create a complex list containing
items of all types and with several levels of nesting. Call Extract-List on the resulting list to
extract one of the original lists. Determine that the extracted list is the same as the original.
Call Extract{ed)_Value for items of each type, using each overloaded form; determine that the
proper value has been extracted in each case. Use the same complex lists to exercise the
Get-ltem...Name interface. Proper operation must be checked by printing and verifying the

lists that are created.

59

-iL .,m, m m mm. . . .

4.9.5.6 TB30. Evaluate the Delete operation (5.4.1.7) on large, complex lisu. All
three forms (by position, by identifier, and by token) are evaluated. Create some complex lists
(e.g., with deeply nested lists and containing items of all types). Delete items from the list,
determining at each stage that the list is properly formed. Proper operation must be checked
by printing and verifying the lists that are created.

4.9.5.7 TB31. Evaluate the Splice (5.4.1.10) and Concatenate-Lists (5.4.1.11)
operations on large, complex lists. Create two complex named lists (e.g., with several levels of
nesting). Concatenate and determine that the result list is properly formed. Repeat, with one
of the lists named and the other unnamed. Concatenate and determine that
List-Kind.ofError is raised. Repeat, concatenating an empty list to a named list, then to an
unnamed list. Determine in each case that the result list is the same as the original nonempty
list. Splice one named list into another; determine that the result list is properly formed.
Repeat with the two lists of different kinds; determine that List-.Kind-Error is raised. Proper
operation must be checked by printing and verifying the lists that are created.

4.9.5.8 TB32. Evaluate the Kind-of..List operation (5.4.1.21.2) on large, complex
lists. Create complex lists from input, and compare the actual kind of list to the expected
kind. Display the complex list, actual kind, expected kind, and a pass/fail indication for each
sub-test.

4.9.5.9 TB33. Evaluate the Position-by..Name (5.4.120) and Position-byValue
(5.4.1.21.2j operations on large complex lists. Create complex lists from input, and perform

requests for positions. Test both forms (by identifier and by token) of Position-byName.
Also test for possible exceptions. For each test, the complex list, expected result, and actual
result are printed, as well as a pass/fail indication.

4.9.5.10 TB34. Evaluate the Kind_.ofltem (5.4.1.21.2) operation on large, coulplc\
li.t'. Ttvst all three forni. of' Kind.-of_-tem (by position, by identifier, and by token). Report
the complex list, item indicator, expected item kind, and actual item kind, as well as a

pa.s,-3 fail indication for each subtest.

60

APPENDIX

SWG CAIS Test Suite Traceability Matrix

CAISNODEMANAGEMENT

Test Name Interface Tested

TC01 Open (5 1.2 1)

TC02 Close (5 1 2 2)

TC03 KindOfNode (5 1 2 6)

TC04 is-Open (5 1 2 4)

TC05 Open-Parent (5 1 2 19)

TC06 Delete-Node (5 1 2 23)

TC07 Create-Secondary.Relationship (5 1 2 25)

TC08 DeleteSecondaryRelationship (51.2.26)

TC09 SetLCurrent-Node (5 1 2 37)

TC10 GeLCurrenL.Node (5 1 2 38)

TC11 Change-lntent (5.1 2 3)

TC12 Intent (5 12 5)

TC13 OpenFileHandleCount (5 1 2 7)

TC14 Primary-Name (5 1 2 8)

TC15 PrimarvKev (5 1 2 9)

TC16 Primary-Relation (5 1 2 10)

TCI7 Path-Key (5 1 2 11)

TC101 CreateNode (5 1 5 1) Open (5 1 2 1), Close (5 1 2 2), Is.-Open (5 1 2 4), and Delete

(5 1 2.23)

TC102 17 interfaces from Open (5 1 2 1) through Is-Sane (5 1.2.17)

TCI03 Interfaces from Index (5 1 2 18) thrcugh Is.Jnheritable (5 1 2 28) and

Set-Current.Node (5 1 2 37) through Time-Attribute .Written (5 1 2 42)

TC104 Iterator interfaces Createjiterator (5 1 2 30) through Delete-lterator (5 1 2 36)

61

CAISATTRIBUTEMANAGEMENT

Test Name Interface Tested

TDO1 Create-node-attribute (5.1.3.1)

TDO2 CreatPatAttribute (5.1.32)

TDO3 Delete-NodeAttribute (5 13.3)

TDO4 Delete-PthAttribute (5 1.3.4)

TDO5 SeL.Node.Attribute 5.1.3,5)

TDO6 Set.Path.Attribute (5.1.36)

TD07 Get.Node--Attribute (5.1.3.7)

TDO8 GeLPath.Attribute (5.1.3 8)

TD11 Create..Nde.Attribute (5.1.3.1)

TD102 Create..Path-Attribute (5 1.3.2)

TD103 SeLNode-Attribute (5.1.35) and Get-Node-Attribute (5 1.3.7)

TD104 Create-Path.Attribute (5 132), Create-Node-Attribute (5.13.1), and Create-Node
(5 1.5 1)

CAISSTRUCTL RAL.aNODE__IANAGEMENT

'rest Name Interface Tested

TSIOI Create-Node (5 1.5 1)

TS102 Create-Node (5 1 5 1)

TS103 Create-Node (51 5 1)

TS10A CreateNode (. I , 1)

TS105 Create-Node (5 1 5 1)

TS106 Create-Node (5 1 5 1) and CIlo, (5 1 2 2)

TSI07 Create-Nvde (5 1 5 1) ,adv Delete-Node (5 1 2 23)

TS1O8 Create-Node (5 1.5.1), CreateSecondaryRelationship, (5 1 225), and Delete-Node

(5 1 2 23)

TS109 Create-Node (5 1 5 1). Open f5 1 2 1), and Close (5 1 22)

TSI1O Creae-Node (5 1 5 1) a::d Copy (51 2 20)

TS 111 Create-Node (5.1 5 1) and Create-Secondaryy-Relationship (5 12 25)

TS112 Create-Node (5 1 5 1) and Citate-Secondary Relationship (5.1.2 25)

TSI13 Create-Node (5 1 5 1), CreateSecondary..Relationship (512.25), and

Delete.SecondaryRelatonship (5 1 2 26)

T'1 14 St (-,"rrent.Node (5 1 2 17)

62

CAISPROCESSd LNNAGEMENT
Test Name Tnterface Tested

TGO4 Spawn..Process (5.2.2. 1)

TGO5 AwaitProces..Completion (5.2.2.2a)
TGO6 Await.ProcessCompletion (5 2,2,2b)

TGO7 Invoke-Process (5.2 2 3a)

TGO8 Invoke-Process (5.2.2.3b)

TGO9 Create-Job (5.2.2.4)

TG11 Delete-.Job (5.2.2.5a)
TG12 Delete-Job (5.2.2 5b)
TG13 Append-Results (5 2 2.6)

TGI4 Write..Results (5 2 27)

TG15 Get.Results (522.8a)

TG16 GetResults (5.2 2 8b)
TG17 GeL.Results (5 2.2 8c)

TG1S Get-Results (522 8d)
TG19 Current.Status (5.22 9a)

TG20 CurrentStatus (5 2 2 9b)

TG21 Get-Parameters (5 2 2 10)

TG22 Abort-Process (522 11a)

TG23 Abort.Process (52 2.1 lb)

TG24 Abort-Process (5 2 2 1 1c

TG25 Abort-Process (5 22 lid)

TG26 Suspend-Process (5 2 2 12a)

TG27 SuspendProcess (5 2 2 12b)

TG28 Resume-Process (5 2 2 13a)

TG29 ResumeProcess (5 2 2 13b)

TG30 Open..Node.-HandleCount (5 2 2 14a,
TG31 OpenNodeHandleCount (5.22 14b)

TG32 inUlnit.Count (5 2,2 15a)

TG33 loUnit.Count (5 2 2 15b)

TG34 Time-Started (5 2 2 16a)

TG35 Time-Started (5 2 2 16b)

TG36 Time-Finished (5 2 2 17a)

TG37 Time-Finished (5 2 2 17b)

TG38 Machine-Time (5 2 2 18a)

TG39 Machine-Time (5 2 2 18b)

TG40 Process-Size (5 2 2 19a)

TG41 Process-Size (5 2.2 19b)

TVO1 Spawn__Process (5 2 2 1)

TV02 Spawn-Process (52.2 1)

TV03 SpawnProcess (5 2 2 I)

TV04 Invoke-Process (5 2 2 3)

TV08 Create-Job (5 2 2 4)

TV09 Create-Job (5 2 2 4)

63

I Il mm mii~ i tii|mi

CAISPROCESS-MANAGEMENT
Test Name Interface Tested

TVli AborL.Process (5 2.2 11)

TV12 AborLProcess (5.22 1I)
TV13 Abort-process (5.2.2.11)

TVI4 AborL.Process (5.2.2 11)

TV15 Invoke-Process (5 2 23)

TV16 AbortProcess (5.2.2.11)

TV17 DeleteJob (5.2.2.5)
TV18 Delete-Job (5.2.2.5)

TV19 Await.Process-Completion (5.2.2.2)

TV20 Await.Process.Completion (5 2 2 2)

TV21 Suspend-Process (5 2 2 12) and Resume-Process (5.2.2.13)
TV22 Suspend.Process (5 2 2 12) and Resume-Process (5 2 2 13)
TV23 SuspendProcess (5 2 2 12) and Resume-Process (5.2 2 13)

TV24 Spawn-Process (5 2 2 1) and Get.Parameters (5 2.2 10)

TV32 Write.Results (5 2 2 7) and GetLResults (5 2 2 8)

TV33 Append-Results (5 2 2 6) and GeLResults (5 2,2 8)

TV34 Time-Started (5 2 2 16), Time-Finished (5 2 2 17), and Machine-Time (5 2 2 18)

TV35 Get-Param ters (5 2 2.10)

TV36 Current.Status (5 2 2 9)

TV37 loUniL.Count (5 2 2 15)

TV38 Process-Size (5 2 2 19)

CAIS.DIRECT1O / CAISSEQUENTIAI,_O

Test Name Interface Tested

TIOl TJOI. Create (5 34 2/5 35 2)

T102 TJ02. IsOpen (5 3 4/5 3 5)

TI03iTJ03. Mode (5 3 4/5 3 5)

TIOl "1".104. Close (534 4/535 4)

T105 1 .10.5. Open (5 3 4 3/5 3 5 3)
T106/TJO6. Write (5 34/5 3 5)

TI07.'TJO7. Reset (5345/5355)

TIOS/ TJ08. EnlOfLFile (5 3 4/5 3 5)

TIOO/TJO9. Read (534/535)

64

CAIS-TEXT-1O
Test Nam e Interface Tested

TK01 Create, Open, Close, Is-Open, Mode, and EndOf-File for text files (5 3.6)

TKO2 Get, Put, New-Line, Skip-Line, and EndOf-File for text files (5 36)
TKo3 Set-nput and Set-Output interfaces for text files (5.3.6)

TK101 Put-.Line (536)

TKI02 GetLine (53 6)

TKI03 Synchronize (5366)

CAIS-PAGE-TERMNAL-1O

Test Name interface Tested

TP01 Page-Termina interfaces (5 3 9)

CAISLISTMINNAGEMENT

Test Name Interface Tested

TBO1 Copy-List (5 4.1 2)

TB02 Delete (5 4 1 7)

TB03 Is-Equal (5.4.1 6)

TBO5 ExtractLList (5 4 1 12), Get.ItemName (5 4 1 19), Extract-Value (5 4 1 6)

TB07 CAIS-ldentifier-tem (5 4 1 22 2 - 8)

TBO8 Kind-Ofltem (5 4 1 9)

TBO9 Insert (5 4 1 21 3)

TB1O CAISIntegerJtem (5 4 1 23 1 - 5)

TBI I NumberOfltems (5 4 1 13) and Text-Length (5 4 1 21 3)

TB12 1K'ndOLList (5 -1 1 b)

TB13 Position.ByValue (5 4 1 21 4) and Position-ByName (5 4 1 20)

TB14 Replace (5 4 1 6)

TB15 Splice (5 4 1 10) and ConcatenateLists (5 4 1 11)

TB16 CAISString-tem (5 4 1 25 1 - 4)

TB25 Insert (5 4 1 3), CtypvLst (5 4 1 2) and SetToEmptv (5 4 1 1)

TB26

TB27 Replace (5 4 1 21 2)

TB28 NumberOfltems (5 4 1 13) and Text-Length (5 4 1 18)

TB29 Extract (5 4 1 12), Get-temName (5 4 1 19) and ExtractValue (5 4 1 21 1)

TB30 Delete (5 4 1 7)

TB31 Splice (5.4 1 10) and Concatenate-Lists (5 4 1.11)

TB32 KindOLList (5 4 1 21 2)

TB33 PositionByName (5 4 1 20) and PositionByValue (5 4 1 21 2)

TB34 KindOfJtem (.5 4 1 21 2)

65

REFERENCES

Andrews, Dorothy M., "Automation of Assertion Testing: Grid and Adaptive Techniques," in
Proceedings of the Eighteenth Hawaii International Conference on System Sciences, ed.
Sprague, R. H., Jr., vol. 2, pp. 692-9, Honolulu, HI: Western Periodicals Co., , 1985.

Arizona State University, Introduction to the CAIS Operational Definition Documentation,
October, 1986.

Beizer, Boris, Software Testing Techniques, Van Nostrand Reinhold Company, 1983.

Benzel, T. V., "Analysis of a Kernel Verification," in Proceedings of the 1984 Symposium on
Security and Privacy, pp. 125-131, IEEE Computer Society Press, 29 April-2 May, 1984.

Besson, M. and B. Queyras, "GET: A Test Environment Generator for Ada," in Ada
Components: Libraries and Tools, Proceedings of the Ada-Europe International Conference,
ed. Sven Tafvelin, pp. 237-250, Cambridge University Press, 26-28 May 1987.

Booch, Grady, Software Engineering Components in Ada, 1987.

Bowerman, Rebecca, Helen Gill, Charles Howell, Tana Reagan, and Thomas Smith,
"Distributing the Common APSE (Ada Programming Support Environment) Interface Set
(CAIS) ," MTR-86W00181, McLean, VA: The MITRE Corporation, January 1987.

Bowerman, Rebecca E., Study of the Common APSE Interface Set (C4IS), I October 1985.

Carney, David J., "On The CAIS Implementation," IDA Memorandum Report M-482,

Institute For Defense Analyses, June 1988.

Choquet, N., "Test Data Generation Using a Prolog with Constraints," in Workshop on
Software Testing, Banff, Canada, 1985.

Collofello, Dr. James S. and Anthony F. Ferrara, "An Automated Pascal Multiple Condition
Test Coverage Tool," in Proceedings COMPSAC 84., pp. 20-26, IFEE Computer Society
Press, 7-9 November 1984.

Department of Defense, "Ada Programming Language," ANSI/1L-STD-1815A, 22 January
1983.

Department of Defense, "Common Ada Programming Support Environment (APSE) Interface
Set (CAIS)," DOD-STD-1838, 9 October 1986.

Department of Defense, "Military Standard Common APSE Interface Set (CAIS)," Proposed

MIL-STD-CAIS, 31 January 1985.

67

nilli l I - -V

Glass, Robert L., Software Reliability Guidebook, Prentice Hall, 1979.

Henke, Friedrich W. Yon, David Luckham, Bernd Krieg-Brueckner, and Olaf Owe, "Semantic
Specification of Ada Packages," in Ada in Use: Proceedings of the Ada International

Conference, Paris 14-16 May 1985, ed. Gerald A. Fisher, Jr., vol. V, pp. 185-196, Cambridge
University Press, September, October 1985.

Ince, D. C., "The Automatic Generation of Test Data," The Computer Journal, vol. 30, no. 1,
pp. 63-69, February 1987.

Lindquist, Timothy E., Jeff Facemire, and Dennis Kafura, "A Specification Technique for the

Common APSE Interface Set," 84004-R, Computer Science Dept., VPI, April 1984.

Lindquist, Timothy E., Roy S. Freedman, Bernard Abrams, and Larry Yelowitz, "Applying

Semantic De.scription Techniques to the CAIS," in the Formal Specification and Verification
of Ada, ed. W. Terry Mayfield, pp. 1-1 through 1-30, 14-16 May 1986.

Luckham, David and Friedrich W. von Henke, "An Overview of Anna, A Specification
Language for Ada," Technical Report No. 81-265, Computer Systems Laboratory, Stanford
University, September 1984.

McCabe, Thomas J., Structured Testing, 1980.

McKinley. Kathryn L. and Carl F. Schaefer, "DIANA Reference Manual." IR-MD-078,

Intermetrics, Inc., 5 May 1985.

\!ver Glcenford J., The Art of Software Testing. John Wiley V Sons. 197.q.

Nyberg, Karl A., Audrey A. Hook, and Jack F. Kramer, "The Status of Verification
Technrlogy for th Ada Language," IDA Paper P-1859, Institute for Defense .-\dyses. July
1985.

Osterand, T. J., "The Use of Formal Specifications in Program Testing," in Third
hit-rnational Workshop on Software Specification and Design, pp. 253-25"5. IEEE Computer

Society Press, 26-27 August 1985.

Pesch, Herbert, Schnupp, Perter, Hans Schaller, and Anton Paul Spirk, "Test Case Generation

Using Prolog," in Proceedings of the 8th International Conference on Software Engineering,
)j-. -2258, 2S-30 August, 1985.

Sneed, Harry M., "Data Coverage Measurement in Program Testing," IEEE, pp. 34-.0. IEEE

Computer Society Press, 1986.

W. R., Adrion et al.,, "Validation, Verification, and Testing of Computer Software," A6G1

Computing Surveys, vol. 14, no 2, pp. 159-192, ACM, June 19S2.

68

U.S. Department of Commerce/National Bureau of Standards, "Guideline for Lifecycle

Validation, Verification, and Testing of Computer Software," FIPS-PUB-101, 6 June 1983.

"Using the ACVC Tests ," ACVC Version 1.9.

Walker, B. J., R. A. Kemmerer, and G. J. Popek, "Specification and Verification of the UCLA
UNIX Security Kernel," in Proceedings of the Seventh Symposium on Operating Systems

Principles, pp. 64-65, New York: ACM, 10-12 December 1979.

Wu, Liqun, Victor R. Basili. and Karl Reed, "A Structure Coverage Tool for Ada Software
Systems," in Proceedings of the Joint Ada Conference, pp. 294-301., 1987.

NATO, Ada Programming Support Environments (APSEs) Memorandum of Understanding

(MOU),, 10 October 1986.

NATO, "Specifications for the Special Working Group Common Ada Programming Support
Environment (APSE) Interface Set (CAIS) Implementations," US-Trondheim-002, 1S June
1987.

NATO, "NATO SWG APSE Requirements,", 25 August 1987.

NATO, Requirements for Ada Programming Support Environments, STONEIIAN, , August
1980.

NATO. Terms of Reference for the Evaluation Review Board for the Special Working Groulp
on Ada Programming Support Environments, , 11 December 1986.

NATO, Terms of Reference for the Tools and Integration Revieu Board for the Special
Working Group on Ada Programming Support Environments, , 11 December 1986.

69

GLOSSARY

Acronyms

ACVC Ada Compiler Validation Capability

AE Ada Integrated Environment. An Ada Programming Support
Environment project funded by the Air Force and contracted
to Intermetrics Inc.

AJPO Ada Joint Program Office. The office charged with the

success of the Ada programming language.

ALS Ada Language System. An Ada Programming Support

Environment project funded by the Army and contracted to
Softech, Inc.

APSE Ada Programming Support Environment. The complete set

of Ada development tools described by the "Stoneman"
document, including the Ada compiler, linker, editor,

debugger, etc.

CAIS Common APSE Interface Set. The proposed standard

(DOD-STD-1838) operating system interfaces for all Ada
projects.

CAIS-A Common Ada Programming Support Environment (APSE)
Interface Set Upgrade

CAISOD CAIS Operational Definition; a partial implementation of
NflL-STD-CAIS, January 1985.

CIVC CAIS Implementation Validation Capability.

CMS Conversational Monitoring System. A trademark of

International Business Machines, Inc.

DEC Digital Equipment Corporation

DIANA Descriptive Intermediate Attributed Notation for Ada

DOD Department of Defense.

71

DRB Demonstration Review Board. One of four boards established
by the NATO MOU. The main objective of the board is to
coordinate and review the demonstration of an APSE
capability through the use of two weapons systems scenarios,
as the basis for the holistic APSE evaluation.

ERB Evaluation Review Board. One of four boards established by

the NATO MOU. The main objective of the work is to
coordinate and review the specification and development of
methods and tools for the evaluation of APSE tools and the
demonstration of this technology, where possible, on the tools
and the SWG CAIS.

IBM International Business Machines

I/O Input/output

'RB Interface Review Board. One of four boards established by

the NATO MOU. The main objective of the board is to

coordinate and review the development of the requirements
and specification of an interface standard for APSEs, based
upon review of the evolutionary interface developments
(including CAIS and PCTE), to be recommended f'ur adoption
and use by NATO and nations.

IV&-V Independent Verification and Validation

KAPSE Kernel APSL. The level of an APSE that presents a machine

independent portability interface to an Ada program.

KIT KAPSE Interface Team.

.C6020 A 32-bit microprocessor produced by the Motorola

Corporation.

.L\ll Mn Machine Interface.

MOU Memorandum of Understanding.

NATO North Atlantic Treaty Organization.

OS Operating System

P'("T'E Portable Common Tool Environment

72

PCTE+ Portable Common Tool Environment upgrade

SWG Special Working Group

SWG CAIS Title given to the document which provided the specifications
specific CAIS implementation is being developed for the

NATO effort.

TIRB Tools and Integration Review Board. One of four boards
established by the NATO MOU. The main objective of the
work is to coordinate and review the specification,

development and integration of a group of software tools
representative of a usable APSE through their initial
implementation on two distinct computer architectures using

an agreed interface set.

UK United Kingdom

UNLX A widely-used operating system originally developed by Bell

Telephone Laboratories.

VAX Virtual Address eXtension. A trademark of Digital
Equipment Corporation, The name of a widely-used
computer system from Digital Equipment Corporation.

V\IS Virtual Memory System. A trademark of Digital Equipment

Corporation. An operating system for a VAX computer.

73

Terms

Ada package A program unit that allows for the specification of a group of
logically related entities. A package normally contains a
specification and a body.

Debugging The process of intentionally introducing errors into a program
as a means of determining effectiveness of program testing.

Black-box testing A testing approach that examines an implementation from an

external or "black-box" perspective. The test cases are
designed based on the functional specification and do not
make use of any structural or initernal knowledge.

Dynamic analysis A \lidation technique that evaluates a product through

actual execution of it.

Fva)uation The process used to quantify the fitness for purpose of an
item in terms of its functionality, usability, performance and
user docutnewat ion.

Lx eption Errr or other exceptional situation that arises during the
execution of a program.

n [I. i ui. .Tl-a e A ,-. ie I u ce i,., to c, ixe the -m .tics or m'-:n1M1

of an item.

F.rmal verification A process that employs formal mathematical proofs to shi~w

,'rrt ctness Uf a specification or implenientation with respect
t(, its predecessor specification.

I"61W ii,,al testing See hl:i, k-box testing

(_rt. jox testlf]S \ .1 SM ,,I !, tig thnt lnds te(hniilics ft 1 b t h t .'! ,k- ,-.
and white-box testing.

Interface A fun, , ;or procedur defined in a CAIS package
specificat i,,i It provides a tool writer with a standard
ni-cl.i.1 for 1-.f(irmi ug a , .e!i level servie w;', it
kno\\lvd' (, r a cc'. to the iuderlying sys,.in architecture

7.1

L.

Metric A quantifiable indication of the state of an entity.

Node Model Instance A particular realization of nodes, relationships and attributes

produced through execution of a set of CAIS interfaces. The
state of a node model instance is the current status of that
instance. Prior to test execution, an initial state of the node
model instance should be defined.

Stoneman The requirements document for an APSE; published by the

Department of Defense.

Subprogram A program unit that is executed by a subprogram call. The
call can be in either the form of a function or a procedure.

Test case generation The process of determining both the inputs to drive a test and
the expected test results.

Test data The set of inputs needed to execute a test.

Test driver A software component that is used to exercise another

software component under test.

Validation The process used to determine the degree of conformance of

an end product to its original specification.

Verification The process used to determine the crrrectness of each
transformation step in the development process.

White-box testing A class of testing that examines the internal structure of
software.

75

