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Abstract: Commercial lithium ion cells are now optimised for either high energy density or high 

power density. There is a trade off in cell design between the power and energy requirements. A 

tear down protocol has been developed, to investigate the internal components and cell engineering 

of nine cylindrical cells, with different power–energy ratios. The cells designed for high power 

applications used smaller particles of the active material in both the anodes and the cathodes. The 

cathodes for high power cells had higher porosities, but a similar trend was not observed for the 

anodes. In terms of cell design, the coat weights and areal capacities were lower for high power 

cells. The tag arrangements were the same in eight out of nine cells, with tags at each end of the 

anode, and one tag on the cathode. The thicknesses of the current collectors and separators were 

based on the best (thinnest) materials available when the cells were designed, rather than materials 

optimised for power or energy. To obtain high power, the resistance of each component is reduced 

as low as possible, and the lithium ion diffusion path lengths are minimised. This information 

illustrates the significant evolution of materials and components in lithium ion cells in recent years, 

and gives insight into designing higher power cells in the future. 

Keywords: commercial lithium ion cells; power density; tear down; power vs. energy; electrode 

design; materials design 

 

1. Introduction 

In the years since lithium ion batteries (LIB) were introduced, there have been many 

developments in cell design and cell chemistry. For example, the volumetric energy density has 

doubled, through a combination of improved active materials and better cell engineering. With the 

increasingly widespread use of LIB for new applications, the cells have been optimised for energy 

(portable electronic devices, mobile phones and battery electric vehicles), or power (power tools, 

hybrid electric vehicles). For both the cell design and the active materials, there is a trade-off between 

power and energy. Different manufacturers use different approaches to optimise their cells for high 

energy density or high power density. This is typically know-how to the manufacturers. The majority 

of academic investigation in the area of high power lithium ion cells relate to active material design, 

rather than the equally important aspects of cell design and cell engineering. The relative 

performance of lithium ion batteries and ultra-capacitors have been compared previously [1–3]. In 

this work, most of the cells investigated were cylindrical 18650 cells, because they are available with 

different power–energy ratios, from the same manufacturer. This enabled different design 

approaches and strategies to be compared. 

When designing a lithium ion cell, there are a series of design decisions, as summarised in Table 

1. The electrode compositions, coat weights, porosities, the current collectors, the separator, the 
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electrolyte and the connection tags are all optimised, to obtain the required cell safety and 

performance properties. The active materials dictate the choice of binder and type of conductive 

carbon. Subsequent decisions are around the electrode loading, thickness and porosity. In earlier 

studies, the influence of electrode coat weight on rate performance and cell resistance have been 

modelled [4] and measured [5]. Experimentally, better rate performance was obtained with thinner 

electrodes. 

Table 1. Design parameters used to optimise lithium ion cells. 

Component Energy Density Power Density 

Electrodes 

High coat weights Low coat weights 

Low coating porosity High coating porosity 

Medium + large particle sizes Small + medium particle sizes 

Low conductive carbon content High conductive carbon content 

Minimum possible binder content  

Current collectors 
Thinner Thicker 

Coated to improve adhesion Coated to reduce resistance 

Separator Thin Thin 

Electrolyte High conductivity High conductivity 

Connection tags 
Thin/narrow tags Thick/wide tags 

Single tag on each electrode Multiple tags 

Typically, the requirements for maximum energy density are opposite from those for high 

power density, a classic engineering trade off. However, the separator thickness is generally specified 

based on safety or manufacturability. Assuming that the cell is using a liquid electrolyte, there are 

some choices available in terms of the lithium salt and concentration, the organic carbonate solvent 

mixture, and the additives. The electrolyte composition will depend on the target operating 

temperature range of the cells, and the additives will be selected to improve the performance of 

specific active materials. 

As indicated above, this paper describes the disassembly or teardown of commercial lithium ion 

cells, and the characterisation of their components. This includes physical properties of the electrodes, 

particularly the areal capacities and porosities, and other cell design parameters. 

2. Results 

The cells selected for this study are listed in Table 2. Most of the cells were procured via online 

retailers servicing the e-cigarette or vaping community. The A123 cells were purchased from a 

Chinese on line retailer. The rated capacity and maximum continuous discharge power values were 

taken from the data sheets, along with the design date. It should be noted that the original design 

dates were several years before the cells were actually purchased. This shows that it can take months 

or years of development work to proceed from an initial design specification to a cell available in the 

market place. The power–energy ratios are shown as W:W hr, although they were calculated from a 

current (A) and a capacity (A hr). 

Table 2. Lithium ion cells included in this study. 

Manufacturer Model Size 
Rated Capacity 

/A hr 

Disch. Current 

/A 

Power:Energy 

/W:W hr 

Design 

Date 

A123 M1A 18650 1.1 30 27.3 2009 [6] 

LG HB2 18650 1.5 30 20.0 2011 [7] 

LG HB4 18650 1.5 30 20.0 2011 [8] 

LG HG2 18650 3.0 20 6.7 2014 [9] 

Samsung 25R 18650 2.5 20 8.0 2013 [10] 

Samsung 30Q 18650 3.0 15 5.0 2014 [11] 
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Samsung 48G 21700 4.8 10 2.1 2015 [12] 

Sony VTC5A 18650 2.5 30 12.0 2015 [13] 

Sony VTC6 18650 3.0 20 6.7 2015 [14] 

The cells were received with an initial state of charge (SoC) of 20–40%. It is safer to disassemble 

a fully discharged cell, and therefore a discharge–charge–discharge cycle was performed. The voltage 

profiles are shown in Figure 1. Eight of the cells had voltage profiles typical of layered cathode 

materials such as NMC (LiNixMnyCo1−x−yO2) and NCA (LiNixCoyAl1−x−yO2). The exception was the 

A123 M1A cell, which is known to have an LFP (lithium iron phosphate, LiFePO4) cathode. All the 

cells exceeded their rated capacity slightly, except the A123 M1A cell. Based on information supplied 

with the cells, the M1A cells were three years old on receipt, so that calendar ageing may have 

occurred. Storage at 40% SoC at an unknown temperature for three years is likely to cause some loss 

of capacity. The discharge capacities and energies recorded during this cycle are collected in Table 3. 

 

Figure 1. Cell voltages during initial capacity check. 

Table 3. Properties measured during capacity check. 

Manufacturer Model Size Discharge Capacity/A hr Discharge Energy/W hr 

A123 M1A 18650 1.011  3.28 

LG HB2 18650 1.526  5.65 

LG HB4 18650 1.535  5.71 

LG HG2 18650 3.021 11.01 

Samsung 25R 18650 2.569  9.46 

Samsung 30Q 18650 3.089 11.23 

Samsung 48G 21700 4.838 17.76 

Sony VTC5A 18650 2.560  9.36 

Sony VTC6 18650 3.163 11.52 

The measured discharge energy values were combined with the cell weights and volumes, to 

calculate two energy density values, as shown in Table 4. The table also includes volumetric and 

gravimetric power density values. The power density can be measured or calculated in various ways. 

In this case, the power was defined as the average discharge voltage multiplied by the maximum 

continuous discharge current. In practice, the cell voltage during a high rate discharge will be lower 

than the average discharge voltage. However, the maximum pulse discharge current is higher than 

the maximum continuous current, because there is no risk of the cell over-heating. Table 4 also 

contains the total area of the cathodes, obtained by direct measurements of the actual electrodes. 

These were combined with the cell capacities to give values for the areal capacities. When designing 

cells, and balancing the anode and cathode capacities, this is one of the initial values that are specified. 
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In Figure 2, the power–energy ratios of the cells are plotted against the areal capacities. As expected, 

there was an inverse relationship between these two parameters i.e., high power cells use low areal 

capacities and low coat weights. 

Table 4. Measured and calculated properties of cells. 

Manufacturer Model 
Weight 

/g 

Volume 

/cm3 

Cathode 

/cm2 

Energy Density Power Density 

/W hr kg−1 /W hr L−1 /kW kg−1 /kW L−1 

A123 M1A 39.8 17.0 794 83 193 2.5 5.7 

LG HB2 43.1 16.8 848 131 336 2.6 6.6 

LG HB4 43.1 16.7 778 132 342 2.6 6.7 

LG HG2 44.8 17.0 929 246 647 1.6 4.3 

Samsung 25R 43.8 17.0 1036 216 556 1.7 4.3 

Samsung 30Q 45.8 17.1 1032 245 657 1.2 3.2 

Samsung 48G 67.4 24.8 989 263 717 0.5 1.4 

Sony VTC5A 47.9 16.9 1024 196 552 2.3 6.5 

Sony VTC6 46.9 17.3 952 246 665 1.6 4.2 

 

Figure 2. Correlation between power–energy ratios and areal capacities. 

The thicknesses of five different components are plotted in Figure 3. The Samsung 48G cell had 

the thickest anode, giving the highest energy density and the lowest power density. The greatest 

surprise was the thickness of the A123 M1A cathode, since the cell had the highest power–energy 

ratio. This is likely to be due to the lower crystalline density of LFP (3.6 g cm−3 compared to 4.8 g cm−3 

for NCA). For the current collectors and separator, the trend appeared to be largely historical. The 

available thicknesses of separators and battery grade copper and aluminium foil have reduced 

significantly in the last decade, due to improved manufacturing methods. Naturally, cell designers 

have taken advantage of these thinner materials, to increase energy density. The main exception was 

the two Sony cells, which both date back to 2015. The high power VTC5A cell had thicker copper and 

aluminium than the high energy VTC6 cell. Thicker current collectors will reduce the cell resistance, 

and improve heat transfer out of the cell, at the expense of energy density. 

A similar difference was observed in the electrode tags; the cathode tag on the VTC5A was wider 

and thicker than the VTC6 tag. The two tag design options found in the cells are illustrated in Figure 

4. Eight of the cells had full width tags welded to a patch in the coating, with tags at each end of the 

anode, and one cathode tag, offset from the centre. The one exception was the A123 M1A cell, which 

had two short tags welded to bare patches of metal. In practice, this could be achieved by selective 

scraping of the coating, or pre-positioning a patch to prevent the coating from adhering. A similar 

tag arrangement was observed in a commercial 26650 cell with an LFP cathode [15]. From a 

manufacturing perspective, it is simpler to coat continuously, rather than with a periodic full width 

patch (“skip” coating). This also avoids having to calendar thin sections of electrode, with just the 
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exposed metal. Typically, the anode is larger than the cathode, to prevent over-charge at the cathode, 

and avoid forming lithium dendrites in regions of the anode with a high localised current density. It 

is interesting to note that in the A123 cell, there were regions of active cathode opposite bare copper 

foil on the anode. This may reflect the differences in over-charge behaviour between LFP and layered 

cathodes. 

  
(a) Electrode coatings. (b) Metal foils and separator. 

Figure 3. Measured thicknesses for cell components. 

 

Figure 4. Tag arrangements in cylindrical cells (A) Eight cells (B) 123 18650 M1A. 

The reason that the cathode was offset in the other eight cells shows the importance of thermal 

management in cell design. From an electrical perspective, a symmetrical cathode tag gives the 

minimum resistance. However, because of the spiral winding pattern, a symmetrical cathode tag is 

relatively close to the can wall. Using an offset tag places the tag roughly half way across the winding, 

maximising the heat flow out through the tag. There was an expectation that high power cells would 

use more tags then high energy cells, to reduce the cell resistance and improve heat transfer. Clearly, 

the twin anode tag is a net benefit, even in cells optimised for high energy. Many cylindrical super-

capacitors use edge connections rather than discrete tags [16], but this approach is not considered 

necessary in the high power cells. 

The actual electrode formulations are not known, and difficult to measure. They can be analysed 

through a systematic chemical extraction procedure, but in initial tests, the measurement errors were 

too high to give accurate compositions. However, by making educated assumptions based on known 

electrode compositions and patent applications, it is possible to calculate the capacities of the active 

materials, and the electrode porosities. Figure 5 shows the values obtained, assuming an anode 

formulation of active–binder–carbon = 95:4:1 (wt %), and a cathode formulation of 96:2:2 (wt %). The 

one exception was the M1A cathode, which used a 79:11:10 formulation, based on A123 patents 

published at the time the cell was being designed [17]. Several of the anode values were higher than 

the theoretical capacity of graphite i.e., 372 mA hr g−1. This suggests that the electrodes contained a 

higher capacity component like silicon. The cathodes showed the historical trend to higher capacities, 

generally by using a higher nickel content. 
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Figure 5. Estimated capacities for anode and cathode active materials. 

The average porosity in an electrode can be calculated from the coat weight, the coating 

thickness and the average density of the coating components [18]. This density is relatively insensitive 

to the electrode formulation. Porosity values for the anodes and cathodes are plotted in Figure 6. The 

anode porosity values were pretty similar, apart from the VTC6 cell. This was surprising, since the 

VTC6 is an energy rather than power cell. The cathode porosities showed much more variation. The 

three cells with the highest power–energy ratios (M1A, HB2 and HB4) had higher porosities than the 

other six cells. 

  

Figure 6. Calculated porosity values for anode and cathode coatings. 

The cathode porosities were also reflected in the electrolyte weights, shown in Figure 7. These 

were calculated from the difference between the initial cell weights, and the weights of the other 

components, after washing and drying. Historically, a value of around 3 g of electrolyte per A hr was 

considered reasonable. The electrolyte should fill all the pores in the electrodes and separator, but 

still leave some void space within the cell for the collection of SEI gases. With thinner separators, and 

lower porosity cathodes, it has clearly been possible to reduce the value to less than 2 g (A hr)−1 in 

many of the cells. However, the thick and relatively porous LFP cathode in the A123 cell still requires 

a higher quantity of electrolyte. 

To obtain further information, it is necessary to use spectroscopic techniques like scanning 

electron microscopy (SEM), coupled with energy dispersive x-ray spectroscopy (EDS). 

Representative images for the nine anodes and cathodes are shown in the Figures 8 and 9, 

respectively. Amongst the anodes, eight out of nine seemed quite similar, the exception being the 

A123 M1A cell. In this cell, the carbon particles appeared to be flakes or shards, rather than the more 

rounded particles seen in the other cells. Apart from the HB2 and HB4 cells, there was a mixture of 

smaller and larger particles, to maximise the tap density and optimise use of the available volume. 

The cathodes also appeared similar, with a mixture of smaller and larger particles. The latter are 

secondary particles, agglomerates of much smaller primary particles. This approach minimises the 

diffusion path lengths, while maximising the tap density of the material. The cathodes appeared to 
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be heavily calendared, and some secondary particles were beginning to break apart into primary 

particles. 

 

Figure 7. Estimated quantity of electrolyte used in cells. 

EDS maps of the anodes and cathodes are presented in the Supplementary Materials. The 

conclusions from the EDS measurements are collected in Table 5. Six of the nine anodes contained 

silicon, splitting on historical lines i.e., designed before or after 2012. The silicon was found in 

localised particles, typical of a “sprinkling” strategy. In the EDS maps, the silicon was usually 

associated with oxygen. Silicon monoxide (SiOx) is a commonly used silicon material [19], but actually 

contains regions of silicon and SiO2 [20]. During the formation cycle, the SiO2 is are converted 

irreversibly to lithium oxide and lithium silicates [20], while the silicon itself is reversibly intercalated 

and de-intercalated. The lithium oxide will react with any trace HF in the electrolyte, but the silicates 

will probably remain in position. Therefore, the presence of silicon and oxygen together suggests that 

the original material was SiOx. If the oxygen was part of a different (thicker) SEI layer on the silicon, 

then fluorine would also be expected on these particles. 

There was more variation between the cathode materials. At this stage, the compositions are 

indicative, rather than absolute. The HG2 cell contained a nickel rich NMC. The measurements 

suggested 811 rather than 622, though this would be an early introduction for a cell designed in 2014. 

The NCA in the Sony VTC5A cell looked to be the “standard” formulation LiNi0.80Co0.15Al0.05O2. 

However, the NCA in two of the Samsung cells appeared to be a nickel rich version i.e., 

LiNi0.80+δCo0.15Al0.05−δO2 with δ ~ 0.04 [21]. 
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Figure 8. SEM images of anode coatings. 

Table 5. Active materials identified by energy dispersive x-ray spectroscopy (EDS). 

Manufacturer Model Anode Cathode 

A123 M1A Graphite LiFePO4 

LG HB2 Graphite NMC-532 

LG HB4 Graphite NMC-111 

LG HG2 Graphite + Si NMC-811 

Samsung 25R Graphite + Si NCA & NMC-622 

Samsung 30Q Graphite + Si NCA 

Samsung 48G Graphite + Si NCA 

Sony VTC5A Graphite + Si NCA 

Sony VTC6 Graphite + Si NCA 

The NCA in the Sony VTC6 cell appeared to have a surface coating of aluminium oxide. This 

made it difficult to estimate the actual particle composition, but the Ni:Co ratio appeared to be higher 

than in the VTC5A cell. Surface coating of cathode particles has been proposed as a method to 

increase the charging voltage limit, and hence the capacity of the material [22]. The real surprise was 

the Samsung 25R cathode. Visually, all the particles looked the same, but some contained no 

manganese. The use of a mixed NCA/NMC cathode has been proposed [23], to experience some of 

the benefits of both materials. 
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Figure 9. SEM images of cathode coatings. 

From the SEM images, it was possible to estimate the particle size of the active materials. For the 

cathodes, this was the size of the secondary particles, rather than the primary particles. Figure 10 

plots typical values of the particle size against the power–energy ratio. The results showed the 

expected trend of smaller particle sizes for higher power. 

 

Figure 10. Correlation between active material particle sizes and power–energy ratios. 

3. Discussion 

Nine commercial lithium ion cells have been disassembled, and the differences between high 

energy density and high power density cells investigated. Some design features were in line with 

expectations, but others were not: 

• Electrodes. Higher power density is achieved by using lower coat weights, lower areal 

capacities, smaller active particles and higher cathode porosities. All the electrodes appeared to 

be heavily calendared. 

• Tag Configuration. It was expected that high power cells would use more tags, but eight out of 

nine cells used the same three tag configuration. The exception was the high power A123 M1A 

cell, which had just two symmetrically located tags. 

• Separators. Thinner separators benefit both energy density and power density. Manufacturers 

have been reducing the thickness of their separators, while still maintaining safety. The 

separators selected seem to be the best available at the time the cell was designed. 

• Current Collectors. The thicknesses did not follow any design trend, but were also related to the 

availability of components at the point of design. However, the high power Sony VTC5A cell 

had thicker current collectors and tags than the high energy Sony VTC6 cell, despite being 

designed in the same year. 

In summary, this work gives an insight into the limitations of cell and electrode design for high 

power lithium ion cells. High power density requires the minimisation of every component of the 

overall cell resistance, based on lower electrode coat weights, thinner separators with lower tortuosity 

and thicker tags and current collectors. The electrode resistances and lithium ion diffusion path 
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lengths can be reduced by using smaller particle sizes for the active materials, and higher loadings of 

conductive additives. 

For all these cells, the maximum charge rate in the cell specification sheet was much lower than 

the maximum rate of discharge. Further work to understand the true electrochemical limitations of 

these electrodes is underway, to give more insight into limitations for high power beyond cell design, 

which was the focus of this study. 

4. Materials and Methods  

Upon receipt, the cells were subjected to a simple charge–discharge cycle, to leave them in a 

fully discharged state. The discharge capacities and cell weights were used to confirm that the cells 

were genuine, as there are some counterfeit cells in the e-cigarette market. The cycles were at ±C/10, 

with the cell capacities and voltage limits taken from the manufacturers’ datasheets. The average 

discharge voltage was calculated by dividing the discharge energy (W hr) by the discharge capacity 

(A hr). This voltage was then multiplied by the maximum continuous discharge current rating, to 

give the cell power. 

After dimensional measurements, the cells were transferred to an argon filled glove box, for 

disassembly. The top cap was cut open using the groove below the sealing gasket, and the positive 

tag was then cut. After allowing the volatile components of the electrolyte to evaporate overnight, 

the can base was cut, enabling the coil to be pushed out of the can. The 18650 cells were cut using a 

special lathe from MTI. The 21700 cell used a pipe cutter, and then can peeling with pliers. If the coil 

could not be pushed out of the can, then the can peeling approach was also used. The cell coils were 

unwound, and the extent of electrode delamination (if any) was observed. The electrodes and 

separator were weighed and measured, and then immersed in anhydrous dimethyl carbonate (DMC) 

overnight. This removed the residual electrolyte components, before a second weighing. Pieces of 

electrode and separator were posted out of the glove box as required, for thickness measurements 

and examination by SEM. 

Supplementary Materials: The following are available online at www.mdpi.com/2313-0105/5/4/64/s1, 

containing Figures S1–S11 and Tables S1–S3. 
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