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Nederlandstalige Samenvatting

In deze dissertatie presenteren we ons onderzoek naar toepassingen van Design Structure
Matrices (DSMs) en gerelateerde technieken in de context van software ontwikkeling. We
spitsen ons toe op twee invalshoeken.

Enerzijds onderzoeken we of de combinatie van DSMs en het Net Option Value (NOV)
model kan gebruikt worden als een kwantitatieve methodologie voor het onderzoeken van
modulariteit in software ontwerpen. Om deze methodologie te evalueren introduceren we
een software programma om ze te ondersteunen en passen we ze toe om een vergelijkend
onderzoek te doen op aspect-georiënteerde en object-georiënteerde implementaties van de-
sign patronen. Op basis van deze experimenten formuleren we kritieken met betrekking tot
de toepasbaarheid van het NOV model als een modulariteitsmetriek voor software.

Anderzijds onderzoeken we of DSM diagrammen kunnen dienen als een basis voor een
nieuw soort software applicatie ter ondersteuning van software ontwikkelaars. We for-
muleren vereisten en een concrete aanpak voor een DSM-gebaseerde source-code browser
voor object-georiënteerde software ontwikkeling. Om deze aanpak te valideren presenteren
we een prototype van een dergelijke applicatie en demonstreren we hoe deze kan gebruikt
worden in realistische situaties.
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Abstract

In this dissertation we present our research into applications of Design Structure Matrices
(DSMs) and related techniques in the context of software development. We pursue two
research angles.

On the one hand, we investigate whether the combination of DSMs and the Net Option
Value (NOV) model can be used as a quantitative methodology to assess modularity in
software design. In order to evaluate this methodology we introduce a tool to facilitate its
use and we apply it to conduct a comparative assessment on aspect-oriented and object-
oriented design pattern implementations. Based on these experiments we formulate critiques
with regard to the applicability of the NOV model as a modularity metric for software.

On the other hand, we investigate whether DSM diagrams can serve as a basis for a novel
kind of support tool for software developers. We formulate requirements and a concrete
approach for a DSM-based source-code browser for object-oriented software development.
In order to validate this approach we present a prototype implementation of such a tool and
we demonstrate how it can be used in real-world situations.
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Chapter 1

Introduction

1.1 Context

In aiming for reduced complexity, higher quality, better reusability and lower development and
maintenance costs, software development has evolved through a number of paradigms. Since
the days of machine-level assembly languages, the procedural, functional and object-oriented
paradigms – among others – have been introduced. Each of these paradigms brought new
abstraction mechanisms, programming language features and design techniques.

The power of an abstraction mechanism is that it provides a means of modularisation, which
allows software to be constructed from separate, cooperating modules. Modularity is per-
haps the most important property developers strive for during the design and implementation
of computer programs. The reason is that – in line with grand principles such as informa-
tion hiding [55], the separation of concerns [18], encapsulation, isolation, etc. – modularity
reduces overall complexity and increases reusability, evolability and maintainability.

Although the evolution of programming languages and design techniques has increased our
ability to design software with higher modularity, there is still ample room for improve-
ments. For instance, the vast size and complexity of many software development projects
can quickly cause developers to lose track of the situation. Moreover, there are facets of
computer programs that cannot be modularised using existing paradigms. Consequently, re-
search into new paradigms continues to flourish. Recently the aspect-orientation paradigm,
which claims improved modularisation properties over older paradigms by providing modu-
larisation mechanisms for crosscutting concerns [36], has seen a great deal of attention.

While it is widely accepted that it is beneficial to design software systems in a modular
fashion, it is not trivial to quantify the degree of modularity and other perceived qualities of
software designs. By extension, claims with regard to the modularisation properties of new
software development paradigms are difficult to validate. Therefore it generally takes a sub-
stantial amount of time for the advantages of new paradigms to become widely recognised.
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However software developers need more than advanced languages and design techniques.
They also rely heavily on a diverse set of support tools to make their lives easier. Exam-
ples include intelligent integrated development environments (IDEs), source-code browsers,
documentation systems, versioning and collaboration systems, case tools, refactoring tools,
testing frameworks, etc. Various kinds of diagrams, models and visualizations also play an
important supporting role in every phase of the software development cycle and allow to
bridge and integrate those phases.

The importance of support tools should not be underestimated and we believe that software
development as a discipline can benefit just as much from innovations in this context as it
can from research into new paradigms.

1.2 DSMs for Software Development

In this dissertation we investigate how Design Structure Matrices (DSMs) and related tech-
niques can be applied to support software development in a broad sense. DSM diagrams
were conceived [67, 68] to help manage the complexity of technical systems. They provide
an abstract visualisation of the constituent parts of a system and the dependencies among
those parts.

We believe that DSMs offer interesting opportunities for innovations in software develop-
ment. We see possible applications on two fronts. On the one hand, we believe that DSMs
offer an innovative way to evaluate modularity in software design. On the other hand, we
believe that DSM diagrams can serve as a basis for a novel kind of support tool for software
development. On both fronts, it is the focus on the modular structure of systems and the
explicit depiction of – the distribution and nature of – dependencies, which make DSMs
interesting in the context of software development.

1.2.1 Evaluating Modularity with DSMs and NOV

The structural elements of software need to cooperate to perform the functionality users
expect. Such cooperation unavoidably introduces dependencies among those elements.
Striving for modularity in software design means that structural elements are arranged in
units called modules, where the goal is to maximise the dependency – or coupling – of
elements within a module and to minimise the dependency to elements in other modules.
Clearly there are degrees of dependency, thus there are degrees of modularity. Different
designs for a software system can achieve different degrees of modularity. So if modularity
is to be maximised, not all designs are equally good.

We believe that DSMs can offer the necessary insight to study and reason about the phenom-
ena of modularity and dependency in software design. Moreover, the combination of DSMs
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with a related technique called Net Option Value (NOV) [5], could constitute a powerful
metric to quantitatively evaluate the degree of modularity achieved by software designs.

1.2.2 DSM-based Support Tools

The issue of modularity and dependency should not be forgotten once the design for a
software system has been decided upon. Software developers should always be aware of
the prevailing dependencies in implementations and they should try improve modularity by
minimising dependencies throughout the lifecycle of the product.

We believe that DSM-based support tools for software development offer new opportunities
because DSMs communicate information on prevailing dependencies in a clear and concise
way. Furthermore, we expect that DSM visualisations can facilitate the identification of
opportunities for dependency minimisations.

1.3 Approach

In our work we approach the application of DSMs in software development from the two
angles introduced above.

The first part of our research covers an evaluation of the combination of DSMs and NOV
as a methodology for quantitative assessment and comparison of modularity in software
designs. Inspired by the work of Lopes & Bajracharya [44, 45], we take the opportunity
to link this exploration to the popular Aspect-Oriented Software Development (AOSD)
research field. To evaluate the combination of DSMs and NOV, we apply this methodology
to assess the claimed modularity advantages of the aspect-orientation paradigm over the
object-orientation paradigm. We use aspect-oriented and object-oriented implementations
[24] of the GoF design patterns [22] as the subject for this case study.

The second part of our research explores the use of DSM diagrams as a basis for support
tools for Object-Oriented Software Development (OOSD). Starting out from observations
concerning the discipline of OOSD, we develop a rationale for a DSM-based, IDE-integrated
source code browser with metaprogramming facilities, to effectively support developers in
common tasks related to dependency management. We provide a prototype implementation
of such a tool to perform experiments and to validate our claims in real-world scenarios.

1.4 Outline of the Dissertation

This document is structured in accordance with the dual approach we follow in our work.
Each research angle is covered by two chapters, which are preceded by an essential intro-
ductory chapter on DSMs.
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Chapter 2 presents an in-depth introduction into DSMs, their origins and applications and
related techniques such as NOV.

The next two chapters cover our research into to application of DSMs and NOV as a
methodology for quantitative assessment of modularity in software designs. In Chapter 3 we
introduce a novel software tool which is intended to facilitate experimentation with DSMs
and the NOV model. In Chapter 4 we present an evaluation of the merits of the NOV
model as a modularity metric for software, based on experiments on aspect-oriented and
object-oriented design pattern implementations.

The following two chapters are about our research into the application of DSM diagrams
as a basis for support tools for OOSD. In Chapter 5 we investigate the possibilities and
requirements for such innovative tools and we introduce a prototype implementation. In
Chapter 6 we present case studies which demonstrate how the prototype, or future similar
tools, can assist software developers in common tasks.

We conclude this dissertation in Chapter 7, which provides a summary of our work and
contributions, followed by an overview of future research directions and our final concluding
remarks.

1.5 Notable Contributions

In this dissertation we present the following original contributions:

• A comprehensive introduction to DSMs and related techniques such as NOV, which
prepares readers for passive and active use of DSM diagrams for both academic and
professional purposes;

• A novel software tool which facilitates the application of the DSM+NOV methodology
for design assessments, as well as exploration of the methodology itself. The tool
introduces an innovative technique to assess system designs by focussing on two
hierarchical levels;

• An evaluation of the DSM+NOV methodology as a technique for qualitative assess-
ment of software. This work introduces novel ideas for analysis of software using the
NOV model, but also leads to important questions regarding the applicability of the
model as a modularity metric for software design;

• A rationale for a novel DSM-based support tool for OOSD and a prototype imple-
mentation of such a tool. This work introduces a unique approach which combines
tree-based DSM visualisations and metaprogramming-based analysis facilities in an
extendable, IDE-integrated source-code browser.
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• Case studies which demonstrate how DSM-based source browsers can assist software
developers in real-world tasks, most importantly in finding and evaluating modulari-
sation opportunities by means of ad-hoc metaprograms.
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Chapter 2

Design Structure Matrices

In this chapter we present a thorough introduction to Design Structure Matrixes (DSMs),
which is essential in view of the following chapters. The main topics we cover are the origins
and basic characteristics of DSMs and an in-depth discussion of the theory of Baldwin &
Clark – which combines DSMs with a mathematical model, called Net Option Value (NOV),
to quantitatively assess the economic value of designs.

2.1 Introduction

Due to the technological advances that dominate our society and economy, the complexity
of the products, processes, organizations, and markets that surround us is ever-growing.
Complexity is a major obstacle to design and develop successful products and services, but
complex systems also facilitate better functionality and enable otherwise impossible innova-
tions. Consequently, good complexity management can be a vital competitive advantage to
any organization [91].

The Design Structure Matrix (DSM)1 is a complexity management technique that has proved
to be valuable for managing, designing, modelling, analysing and optimising technical sys-
tems, complex organisations, sizeable engineering projects, densely networked processes and
large market structures [91].

A DSM is a diagram that visualises a system or a project using a compact matrix repre-
sentation. The matrix confronts the constituent parts (parameters, subsystems, activities,
tasks, ...) and indicates the dependencies among those. Depending on the context, the
dependency patterns can represent different aspects of the system or project.

DSMs where first conceived by Donald Steward at General Electric in the late 1960s [67],

1 Design Structure Matrices are also known as Dependency Structure Matrices, Problem Solving Matrices

and Design Precedence Matrices.
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but it took until 1981 before his work was published [68]. In his work Steward proposed
a novel method, called the Design Structure System, to manage the complexity of large
systems or engineering projects using DSMs.

Despite being conceived as a project management tool, a DSM is an analysis and design
instrument that lends itself to a multitude of other applications across a wide range of do-
mains and disciplines. The last decennium has seen modest, but growing, interest for DSMs
from computer science, and software development in particular.

Although DSMs are well over 25 years old, they continue to attract the attention of aca-
demics and engineering professionals alike. The DSM community maintains a portal website
[91] which lists all publications and centralises all knowledge on the subject. The community
meets at the annual International DSM Conference [89], that has been sponsored by large
corporations such as Boeing and the BMW Group.

In this chapter, we first explain the basic concepts of DSMs in section 2.2. Next, section 2.3
provides a detailed introduction to the work of Baldwin & Clark [5], who present a theory,
supported by a DSM-based model, about the economic aspects of modularly in the design
of complex systems. Finally, in section 2.4 we give background information on different roles
and types of DSMs in applications in different fields. We conclude in section 2.5.

2.2 Basic Concepts

2.2.1 A Matrix of Parameters

A DSM of a particular system or project is a square adjacency matrix of (design) parameters,
each of which represents a part of that system or project, and thus a source of variation
in the overall system design or project planning. A system consisting of n such parameters
results in a n × n Design Structure Matrix:

D = (di ,j)n×n =








∗ d1,2 . . . d1,n
d2,1 ∗ . . . d2,n
...

...
. . .

...
dn,1 dn,2 . . . ∗








2.2.2 Dependencies

The elements of the matrix represent the dependencies between the parameters. For exam-
ple, a dependency from the x-th parameter to the y -th parameter (x-th parameter depends
on the y -th) is represented by the value of the matrix element on the x-th row and the
y -th column (dx,y ). DSMs do not account for dependencies between a parameter and itself,
therefore the elements on the diagonal (di ,j with i = j) are usually masked with an “*”.
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Based on the dependencies among a pair of parameters the pair is said to be either parallel
(no dependency between the parameters), sequential (one parameter depends on the other;
there is a hierarchical relationship) or coupled (the parameters are mutually dependent; no
hierarchical relationship), as shown in table 2.1.

Parallel Sequential Coupled

In words
A and B are
independent

B depends on
A

A depends on
B

A and B are
interdependent

Graph Rep-
resentation

DSM Rep-
resentation

A B

A *

B *

A B

A *

B X *

A B

A * X

B *

A B

A * X

B X *

Table 2.1: Configurations of parameters in DSMs (based on [81] & [90])

As a concrete example, figure 2.1a shows a DSM for a familiar system: a house. We see
that some parameters, namely the staircases, the walls, the floors above ground level and
the electrical wiring, depend on other parameters, while others, namely the foundations and
the hook-up to the electric grid, are self-reliant. In a sense, the foundations constitute the
most important parameter in the system, as they have the most dependant parameters.

1

1 2 3 4 5 6

FoundationsFoundations 1 *

Staircases 2 1 * 1

Walls 3 1 1 * 1

Floors (above ground) 4 1 1 *

Electricity grid hookͲup 5 *

Electric wiring 6 1 1 *

(a)

1

1 2 3 4 5 6

FoundationsFoundations 1 *

Staircases 2 1 * 1

Walls 3 1 2 * 2

Floors (above ground) 4 1 4 *

Electricity grid hookͲup 5 *

Electric wiring 6 1 2 *

(b)

Figure 2.1: A (binary) DSM (a) and an NDSM diagram (b) for the same“house“-system

The DSM in figure 2.1a and the ones in table 2.1 are binary DSMs, in which the matrix
is populated with “1”s (or “X” marks) and “0”s (or empty cells). Because the dependency
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values are binary (di ,j ∈ {0, 1}), only the existence or absence of a dependency is taken
into account, so a parameter is either dependant on or independent of another one. In
other words, such DSMs do not account for degrees of dependency. By using numerical
dependency values (di ,j ∈ N+, or even di ,j ∈ R+) instead, Numerical DSMs (NDSMs),
can convey more information on the relationships between parameters than binary DSMs
[81, 90]. Depending on the way they are used, numerical dependencies are called level
numbers, importance ratings, dependency weights or dependency strengths. Figure 2.1b
shows an example of an NDSM for our“house”-system, where, for instance, the dependency
value of the floors above ground level to the walls is taken as 4, because each floor has four
supporting walls.

2.3 Baldwin & Clark: DSMs & Modularity

In 2000, Carliss Baldwin and Kim Clark published a book titled Design Rules, Volume 1:
The Power of Modularity [5], in which they develop a theory about the modularity in the
design of complex systems. This novel theory approaches system design from an economic
perspective.

The basic principle is that designing a system is a value-seeking process. When a system
is designed in a modular fashion, implementations of individual modules can be designed
in isolation – for instance by different (teams of) designers. Baldwin & Clark see this
as a source of economic opportunities. Their theory introduces the innovative idea that
modularity (see 2.3.1) in the design of a system creates or adds value in the form of real
options (see 2.3.6.1). These options are considered sources of variation which enable one
to improve the design, by experimenting with new implementations of individual modules.
The possibility to substitute modules with alternative versions is described as a space of
design options, each of which corresponds to a certain economic value that is modelled
quantitatively.

The model relies on three components:

(a) the use of Design Structure Matrices as a visual representation of designs (see 2.3.2);

(b) a general theory of modularity in design (see 2.3.4), which introduces the concept of
design rules (see 2.3.3) and six modular operators (see 2.3.5) as fundamental sources
of design variation and evolution;

(c) Net Option Value (NOV) as a mathematical model to quantify the value of a modular
design (see 2.3.6).

In their book [5], and in related publications [6, 7], Baldwin & Clark have demonstrated
their theory by analyzing the influence of modularity on the evolution of computer hardware
designs and the structure of the industry that creates them.
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2.3.1 What is Modularity?

Baldwin & Clark define (in Chapter 3 of [5]) the concept of modularity using three subsidiary
ideas. The first is the idea of interdependence within and independence across modules :

A module is a unit whose structural elements are powerfully connected among
themselves and relatively weakly connected to elements in other units. Clearly
there are degrees of connection, thus there are gradations of modularity.

In other words, modules are units in a larger system that are structurally independent of
one another, but work together to perform the functions of system. The system as a whole
must therefore provide a framework – an architecture – that allows for both independence
of structure and integration of function.

The second and the third idea capture the connection of modularity with three other, closely
related, concepts: abstraction, information hiding and interface:

A complex system can be managed by dividing it up into smaller pieces (mod-
ules) and looking at each one separately. When the complexity of one of the
elements crosses a certain threshold, that complexity can be isolated by defining
a separate abstraction that has a simple interface. The abstraction hides the
complexity of the element; the interface indicates how the element interacts
with the larger system.

When the complexity of one of the elements crosses a certain threshold, that
complexity can be isolated by defining a separate “abstraction”with simple in-
terface. The abstraction“hides” the complexity of the element. ...

These general ideas align well with the notions of modularity, separation of concerns [18],
abstraction, information hiding and interface that are common in software development.
In fact, the principle of information hiding was first put forward in that context by David
Parnas [55, 56], but it is general enough to be applied to any complex system.

2.3.2 Representing Modularity in Designs using DSMs

1 2 3 4 5 6 7

Module 1
A 1 * 1

B 2 1 * 1 1

Module 2 C 3 * 1

Module 3 D 4 1 *

Module 4

E 5 1 * 1

F 6 1 1 1 *

G 7 1 1 *

Figure 2.2: A DSM with highlighted modules

Because they focus on the interdepen-
dencies among the parts of a system,
DSM are well suited to study the mod-
ularity in designs.

To highlight modules, formed by sets of
design parameters (which correspond
to their structural elements, see 2.3.1),
their internal dependencies are usually
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surrounded by a thicker border, creating a series of boxes along the diagonal of the matrix.
In the example shown in figure 2.2 an optional column to label the modules was added
(sometimes such a column replaces the one with the parameter names). We see four mod-
ules in this DSM: Module 1 which contains parameters A and B, Modules 2 and 3 that
consist of single parameters, respectively C and D, and Module 4 that groups parameters
E, F and G.

We should note that Baldwin & Clark only use binary DSMs (no NDSMs) in their work.

2.3.3 Design Rules

In theory, modules should be structurally independent, but functionally integrated (see
2.3.1). Their structural independence allows them to be designed in isolation of one an-
other, but the requirement of functional integration demands that the design of cooperating
modules adheres to certain conventions (i.e. complies to a specified interface). Such con-
ventions are the instrument by which information hiding is achieved, we called them design
rules and they play a central role in the theory of Baldwin & Clark.

To illustrate the concept of design rules we should first introduce the notion of proto-modular
and modular designs.

1 2 3

A 1 *

B 2 x * x

C 3 x *

(a)

1 2 3 4

I 1 *

A 2 x *

B 3 x * x

C 4 x *

(b)

Figure 2.3: DSMs for a proto-modular design (a) and a modular design (b)

When the parameters of a monolithic (non-modular) design are simply grouped into com-
posites (called proto-modules) without a specific rearrangement of their dependencies, the
resulting design is said to be proto-modular. Figure 2.3a shows an example (adapted from
[72]) of a DSM for a proto-modular design. In theory, B-C, the group of parameters B
and C, is not a true module because there is a structural dependency from parameter B to
parameter A. To obtain a truly modular design, dependencies across proto-modules must be
broken, through the use of a modular operator called splitting, one of six modular operators
defined by Baldwin & Clark (see 2.3.5).

With splitting we introduce a new, separate, design parameter, called I (for interface), that
will eliminate the direct dependency between A and B-C, permitting independent design
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choices for both modules. The DSM of the resulting modular design is shown in figure 2.3b2.
We see that B no longer depends on A and instead both A and B take on a hierarchical
dependency on the new parameter I. The latter dependency means that any value given to
the B parameter (corresponding to a implementation for B) is constrained to access A only
through the interface of A, represented by the value given to I. The former dependency
signifies that the value for A can change freely without affecting B, as long as it complies
to the interface of A, as specified by the value of I.

A chronological interpretation3 of the ordering of the parameters in the DSM shown by fig-
ure 2.3b would demand that task I has been completed before tasks A, B and C are started.
In other words, the designers first have to specify an interface for A, as a implementation
of I, before modules A and B-C can be implemented. If the implementation of I is ever
changed, the implementation of A and B will have to change as well, in order to comply to
the new interface.

A design parameter, such as I, that decouples otherwise dependent proto-modules, is called
a design rule. When a design rule is given a value, an assertion is made that that value is
intended not to change. Therefore, design rules impose constraints that other parameters
must respect and which they can assume to be stable. In the theory of Baldwin & Clark,
modularisation4 through the imposition of design rules is the key to constrain and structure
the design space and search process [72].

The terminology of Baldwin & Clark makes a distinction between visible and hidden mod-
ules. Visible modules are modules that other modules depend on (they are “seen”by other
modules). Design rules, such as I, fall in this category. Modules are called hidden when no
other modules depend on them and they only depend on design rules.

Software engineers will likely notice that this theoretical approach to specifying interfaces,
grasped by the concept of design rules, is consistent with common practices in (object-
oriented) software design.

2.3.4 Modularity in Design

Now we have introduced design rules, we can define modularity in design as follows [7]:

A complex engineering system is modular-in-design if (and only if) the process
of designing it can be split up and distributed across separate modules, that are
coordinated by design rules, not by ongoing consultations amongst the designers.

2 The green box around the I column in figure 2.3b indicates that I is a design rule for this design.
3 In 2.4.2 we will see that such an interpretation makes the diagram a time-based DSM.
4 Modularisation can be defined as the evolution of a monolithical or proto-modular design to a modular

design. In that sense, a modularisation specifies one way of doing that.
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2.3.5 Modular Operators

The splitting operator we used in 2.3.3 is one of six modular operators that Baldwin &
Clark introduce to model design evolution of complex systems. The others are: substitution,
augmentation, exclusion, inversion and porting. The operators act as fundamental sources
of variation in modular designs.

As we have seen, the splitting operator splits (proto-)modules and serves to modularise
proto-modular designs. The other operators modify designs which are already modular. By
applying the substitution operator the implementation of a module can be substituted for
a new, adapted or improved one. In case of hidden modules substitution can take place
without affecting other modules. The augmentation operator adds a module that was not
part of the system before and its complement, the exclusion operator, removes a module
from the system. The inversion operator standardises or collects common design elements
across modules by organising the modules as a new hierarchical level. Finally, the porting
operator transports a module of use in another system by creating“shell”around it [7, 72].

2.3.6 Net Option Value of a Modular Design

Even with design rules, a true modular design cannot always be achieved and designers often
have a wide range of modularisations to choose from. Because not all modularisations are
equally good (as there are gradations of modularity; see 2.3.1), it is useful to quantitatively
evaluate designs. Therefore, Baldwin & Clark support their theory with a novel statistical
model that reasons about the value added to a base system by modularity. This model,
called Net Option Value (NOV), is based on the theory of real options and estimates the
economic value of a modularly designed system by considering – in addition to other input
parameters – the dependencies among the modules in the design, as documented by a DSM.

2.3.6.1 Real Options

In finance, an option is an investment which provides the holder with the right to make
another investment in the future (by exercising the option), without an obligation to make
that investment. Therefore, an option can have a positive payoff but never needs to have
a negative one. Consequently, an option always has a positive present value, much like a
lottery ticket [72].

Linking the economic theory of real options with the concept of modularity, Baldwin &
Clark observed that modularity in design both multiplies and decentralizes real options that
increase the value of a design. In a non-modular system, a design can only be replaced as a
whole and the authority to accept changes is centralized. The designer only has one option:
the choice to either accept or reject the whole design. On the other hand, in a modularised
system, any or all modules can be redesigned and replaced independently. Here, replacement
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decisions are decentralised: the designers responsible for modules can make substitution
decisions without coordination. In this sense, modularity provides a portfolio of options
which, according to modern finance, always adds value [72].

2.3.6.2 NOV Formulae

We now provide a thorough explanation of the formulae of the NOV model. Table 2.2 shows
a helpful overview and brief explanations of the symbols that appear in the equations below.

Symbol Name/Explanation

NOV (Total) Net Option Value of the system

S0 Base value of the unmodularised system, usually normalised to 0

novi Net Option Value of the i -th module

m Number of modules in the system

σi Technical potential of the i -th module

ni Complexity of the i -th module

ki The number of search/substitute experiments simulated for the i -th module

Ci(ni) The cost of one simulated search/substitute experiment on i -th module

(a function of ni), often taken as Ci(ni) = cini

ci Redesign cost of the i -th module

Zi Visibility cost to replace the i -th module

Q(k) Expected value of the best of k independent draws from a standard normal

distribution, for all positive values in the distribution (see Appendix A)

N(x) Standard normal cumulative distribution function (see Appendix A)

n(x) Standard normal probability density function (see Appendix A)

Table 2.2: NOV formulae legend

The NOV model estimates the economic value of a modular design by looking at the added
value generated by each module through the redesign option it represents. This is expressed
by equation 2.1, which defines NOV , the (total) value of a design for a system.

NOV = S0 + nov 1 + nov 2 + ...+ novm (2.1)

This formula should be interpreted as follows: splitting a design into m modules – each of
which consists of a number (> 1) of design parameters – increases its base value, S0, by
the sum of the net option values (novi) of the resulting options. So for any i -th module,
novi represents the value that the module contributes to NOV . These value contributions
correspond to the opportunity each module i creates to invest in ki experiments to create
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candidate replacements, each at a cost related to the complexity of the module, and, if any
of the results are better than the existing choice, to substitute in the best of them, at a
cost related to the visibility of the module to other modules [72].

Baldwin & Clark formalise the options value of each modular operator; for instance, how
much is it worth to be able to substitute a module, augment it, exclude it, etc. So in fact,
they define six formulas for novi , one for each modular operator. Additionally, they define a
simpler, generic expression for novi , that values the option to redesign a module, no matter
which modular operator is used. This expression is shown by equation 2.2.

nov i = max{ maxki{σi
√
niQ(ki)

︸ ︷︷ ︸

Benef it

− Ci(ni)ki − Zi
︸ ︷︷ ︸

Investment

}; 0 } (2.2)

An overview of the formulae for all six operators is beyond the scope of this introduction to
NOV, therefore we limit ourselves to this generic formula. However, for the sake of clarity,
we explain it as if it only applies to the substitution operator5. In that sense, the formula
describes the statistical simulation of search/substitute experiments. In the following para-
graphs we present a breakdown of the formula, interpreted for the substitution operator.

Equation 2.2 takes novi , the net option value of the i -th module, as the maximum (positive)
return value out of ki design experiments on the i -th module. In other words, it is the ex-
pected payoff of exercising the search and substitute option for the i -th module optimally 6.
The maximisation is achieved by the maxki function. This function iteratively increments
the number of (simulated) experiments ki (e.g.: from 0 to 10) to find the so-called break-
even point. This is the value for ki that maximises the expected gain from the i -th module.
The function then returns this maximal gain. Because usually only positive return values
are taken into account [45], the first max function normalises negative novi values to 0.

The part of the formula within the braces of the maxki function corresponds to the expected
return value from the i -th module for a particular value of ki , accounting for both benefit
and investment (option exercise costs).

The term σi
√
niQ(ki) represents the expected benefit to be gained by accepting the best

candidate – a replacement for the existing module – generated by ki independent experi-
ments. The NOV model assumes this added value is a random variable normally distributed
about the value of the existing i -th module choice (normalised to 0), with a variance σ2i ni
that reflects the technical potential σi and the complexity ni of the i -th module. The stan-
dard deviation on the expected value is thus

√

σ2i ni = σi
√
ni . The term Q(ki), formulised

by equation 2.3, is the expected value of the best of ki independent draws from a standard

5 This is inspired by other authors who applied the NOV model in the context of software development

[72, 73]; see Chapter 4 (section 4.3).
6 By balancing the profits of design improvements with the costs of experimenting and redesigning (see

economic principle of diminishing returns).
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normal distribution, for all positive values in the distribution. Tabulated values of Q(ki)
for 0 6 ki 6 100 can be found in Appendix A, along with additional information on this
statistical distribution.

Q(k) = k

∞∫

0

x [N(x)]k−1 n(x) dx (2.3)

Zi =
∑

j sees i

cjnj (2.4)

The investment consists of an experimentation cost and a visibility cost. The first element
represents the cost incurred in doing the ki experiments on the i -th module and is expressed
by Ci(ni)ki . The cost of a single experiment on that module is expressed as a function Ci
of ni , the complexity of the module. This function is often, for instance in [45], taken as
Ci(ni) = cini , where ci is the redesign cost of the i -th module. The second investment
element for the i -th module is its visibility cost, is given by Zi , which is computed by
equation 2.4. This represents the cost to replace the i -th module, given the other modules
in the system that directly depend on (or “see”) it and the complexity nj and redesign
cost cj of each of those. The Zi parameter is the place where the NOV model takes the
dependencies among the modules, as documented in a DSM, into account.

2.3.6.3 NOV Calculation Example

To clarify how the NOV formulae work, we return to the “house”-system example from
section 2.2. The NOV of a design for a system can be calculated straightforwardly using
a spreadsheet7. The one shown in figure 2.4 computes the NOV for the design of the
house, as visualised by the (binary) DSM in figure 2.1a, where each individual parameter is
interpreted as a module.

ї
nov

experiments

) ї 0 0 0 1

Return value out of ki (0 ч ki ч 6) 

i ʍi Zi ci n
ki ї 0 1 2 3 4 5 6

maxi
Q(k )Q(ki   0 000. 00 00000 .3989 03989 .68106810 0 8881.8881 1 0458 1 1697 1 2701

ik1.0458 1.1697 .2701

Foundations 1 2.5 0.575 1 0.225 Ͳ0.575 Ͳ0.3269 Ͳ0.2174 Ͳ0.1968 Ͳ0.2349 Ͳ0.3129 Ͳ0.4189 Ͳ0.19678693 0.000000

Staircases 2 2.5 0.1333 1 0.175 Ͳ0.1333 0.10889 0.22891 0.27051 0.26034 0.21497 0.14494 0.270513286 0.270513

Walls 3 2.5 0.4 1 0.1333 Ͳ0.4 Ͳ0.1692 Ͳ0.045 0.01076 0.02131 0.00112 Ͳ0.0406 0.021306476 0.021306

Floors (above ground) 4 2.5 0.175 1 0.2667 Ͳ0.175 0.07337 0.17088 0.17159 0.1084 0.00175 Ͳ0.1353 0.17159316 0.171593

Electricity grid hookͲup 5 2.5 0.2667 1 0.0667 Ͳ0.2667 Ͳ0.0758 0.03961 0.10663 0.1417 0.15504 0.15316 0.155041243 0.155041

Electric wiring 6 2.5 0 1 0.1333 0 0.23085 0.35503 0.41076 0.42131 0.40112 0.35941 0.421306476 0.421306

NOV ї 1.03976

ki

Figure 2.4: NOV calculation for the DSM in figure 2.1a

The first column of the spreadsheet shows the names of the modules. The next five columns
list the values, per i -th module, of the input parameters of the NOV calculation. In this
example, the technical potential, σi , is assumed to be 2.5 for every module; the visibility

7 Because setting up NOV spreadsheets manually is a tedious job, we created a tool to automate the

process. We discuss this tool in Chapter 3.
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cost, Zi , is computed according to equation 2.4, by consulting the DSM in figure 2.1a to
know which modules depend on (or “see”) the module; the cost of an experiment on a
module, Ci(ni), is taken as cini ; the redesign cost, ci , is set at 1 for every module and the
complexities of the modules, ni , are given values that sum to 1 and supposedly reflect the
relative complexity of the parts of our imaginary house.

The middle part of the spreadsheet covers the search/substitute experiments. For every
i -th module the expected return value (benefit minus investment) out of ki experiments is
computed for 0 6 ki 6 6. The benefits (given by σi

√
niQ(ki)) increase with ki . How-

ever, the experimentation cost (given by ciniki) also increases with ki and eventually the
search/substitute experiments will meet diminishing returns. Consequently, after reaching
the break-even point, the value for ki that maximises the return value, higher values of ki
will decrease the return value. The spreadsheet highlights the return value at the break-even
point of every module in green. The second-to-last column of the spreadsheet implements
the maxki function; it selects the return value at the break-even point for each module. The
last column copies those values but normalises negatives to 0, giving novi . Finally, all novi
values are summed giving NOV , the total net option value for the design of the house.

0.2

0.4

0.6

Return value out of ki experiments for each module

Foundations

‐0.8

‐0.6

‐0.4

‐0.2

0

0 1 2 3 4 5 6

Number of Experiments (ki)

Staircases

Walls

Floors (above ground)

Electricity grid hook‐up

Electric wiring

Figure 2.5: Graphed return values for ki design experiments on each module from figure 2.4

As an illustration, figure 2.5 graphs the return value for every module from figure 2.4 in
function of the number of search/substitute experiments. The peak in the curve for a
specific module indicates the break-even point for that module.
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The graph and the spreadsheet clearly show that the sixth module, which represents the
electric wiring, reaches the highest return value (on its break-even point at k6 = 4) of all
the modules. Hence, the module adds the most to NOV . The high return values of this
module are caused by its lack of dependent modules (nothing depends on the electric wiring,
hence the visibility cost Z6 is 0) and its low relative complexity (given by n6).

It also stands out that the first module, which represents the foundations, has the lowest
return values. Because the investments outweigh the benefits (of finding better designs for
the foundations), for any number of experiments (so for every value of k1), the return values
for the module are negative across the board. This is even the case at its break-even point
(at k1 = 3), which causes nov1 it to be normalized to 0. Consequently, this module adds
nothing to NOV . The low return values are due to the large number of dependents (three
other modules depend on the foundations, resulting in a high visibility cost, given by Z1)
and the high relative complexity (given by n1).

2.3.6.4 Strength and Weakness

The strength of NOV is that its mathematical expressions tie together modular dependencies,
uncertainty and economic theory in a cohesive model [45].

However, the NOV model is not a black box. Its application in a particular field requires
making assumptions, appropriate for the given context, about the input parameters used in
the NOV calculation. Attributing different values to these parameters will obviously change
the outcome of the NOV calculation, even when the design of the system, represented by
a DSM, remains the same. As an illustration, figure 2.6 shows a new spreadsheet that
again computes the net option value for the DSM in figure 2.1a, but uses different values,
compared to the spreadsheet in figure 2.4, for the redesign cost of the fifth and the sixth
module. The result is a 55% increase of NOV .

ї
nov

experiments

) ї 0 0 0 1

Return value out of ki (0 ч ki ч 6) 

i ʍi Zi ci n
ki ї 0 1 2 3 4 5 6

maxi
Q(k )Q(ki   0 000. 00 00000 .3989 03989 .68106810 0 8881.8881 1 0458 1 1697 1 2701

ik1.0458 1.1697 .2701

Foundations 1 2.5 0.575 1 0.225 Ͳ0.575 Ͳ0.3269 Ͳ0.2174 Ͳ0.1968 Ͳ0.2349 Ͳ0.3129 Ͳ0.4189 Ͳ0.19678693 0.000000

Staircases 2 2.5 0.1333 1 0.175 Ͳ0.1333 0.10889 0.22891 0.27051 0.26034 0.21497 0.14494 0.270513286 0.270513

Walls 3 2.5 0.3667 1 0.1333 Ͳ0.3667 Ͳ0.1358 Ͳ0.0116 0.0441 0.05464 0.03446 Ͳ0.0073 0.054639809 0.054640

Floors (above ground) 4 2.5 0.175 1 0.2667 Ͳ0.175 0.07337 0.17088 0.17159 0.1084 0.00175 Ͳ0.1353 0.17159316 0.171593

Electricity grid hookͲup 5 2.5 0.2333 0.25 0.0667 Ͳ0.2333 0.00752 0.17294 0.28996 0.37503 0.43837 0.4865 0.486495024 0.486495

Electric wiring 6 2.5 0 0.75 0.1333 0 0.26418 0.4217 0.51076 0.55464 0.56779 0.55941 0.567789566 0.567790

NOV ї 1.55103

ki

Figure 2.6: NOV calculation for the DSM in figure 2.1a, using adjusted values for c5 and c6

A weakness of the NOV model is that the meaning of its parameters in a given context can
be unclear, which makes assumptions for their values hard to justify. For example, how does
one measure the“technical potential”of a staircase? Clearly, the meaning of the parameters
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in a given context needs to be determined before the model can confidently applied. The
same is true for NOV , the outcome of the computation. For instance, it is unlikely that an
architect knows what a net option value of 1.03976 signifies for the house he is designing.

This turns out to be an important issue when applying DSMs and NOV in the context of
software development, as we discuss in Chapter 4.

Another remark we should make is that the NOV model might not be suitable to be combined
with NDSMs. Anyhow, we can assume that it was not designed for that purpose, since
Baldwin & Clark only use it with regular, binary, DSMs throughout their publications (as
noted in 2.3.2).

2.4 Overview of Applications

This section provides a broad outline of some of the applications of DSMs that have been
developed in engineering at large and in other fields. This is not intended as a thorough
survey, but rather as a brief introduction to ongoing research into applications of DSMs.

2.4.1 Roles of DSMs

According to [91], a DSM is both a project management tool and system analysis tool.
In the role of a project management tool a DSM is primarily used to diagram information
flows in complex projects. As a system analysis tool DSMs are used to analyse processes
and architectures of products or organisations. However, there is no clear boundary between
both roles, as specific applications of DSMs can combine them.

2.4.1.1 Project Management Tool

The Design Structure Matrix has its origins in project management [67, 68] and is still used
in that context by large corporations such as General Motors, Boeing, Airbus and Intel.
Project management applications of DSMs continue to receive interest from the research
community as well [19, 81].

In these applications, DSMs represent the constituent stages, tasks or activities of an engi-
neering project, along with the corresponding dependencies. The dependencies define the
input which is required to start a certain activity and the generated output that needs to
feed into other activities. Both input and output represent pieces of information. Hence,
the pattern of dependencies in the DSM explicitly describes the exchange of information
that is vital to the project. Such DSM-based project representations result, usually after
being analysed and restructured with special algorithms (see 2.4.2), in an improved and
more realistic execution schedule for the corresponding activities [91].
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Traditional project management tools, such as PERT charts, Gantt charts and Critical Path
methods (CPM)8, were created to model and manage sequential and parallel processes con-
sisting of discrete tasks that make up large construction projects. They capture work flow,
often using pre and post conditions (e.g.: “Which tasks must be completed before task X
can start?”), but do not to track the flow of information (e.g.: “Which pieces of information
are needed before task X can succeed?”).

According to the adepts of DSMs [19, 81], these tools are not suitable for managing large
innovative projects because they fail to address the inherent complexity of such projects. For
example, the design and development of complex “high-tech” products commonly requires
a collaboration between a large number of participants from diverse backgrounds, resulting
in complex relationships among both people and tasks. These relationships involve interde-
pendencies (e.g.: task sequencing, feedback, cyclic dependencies, iterations, ...) which are
hard to represent with tools lacking support for tracking information flow.

Compared to conventional project management tools, DSMs focus on representing infor-
mation flows rather than work flows. Therefore, the DSM method, which is essentially an
information exchange model, enables managers and product development planners to deal
with the complex relationships in large engineering projects [19, 81].

2.4.1.2 System Analysis Tool

DSMs can also be applied as a tool to analyse complex systems. Analysed system ar-
chitectures can be for both tangible (e.g.: material products) and intangible things (e.g.:
projects or organisations). The compact and clear representation DSMs provide facilitates
the capturing and understanding of interactions, interdependencies and interfaces between
the elements of the system, such as subsystems or modules. Moreover, the diagrams can
highlight key processes and enable engineers to discover previously unknown patterns in
architectures. The diagrams can also show where staff members fit in the larger project or
organisation they are part of [90].

2.4.2 Types of DSMs

Tyson Browning [14, 15, 90] distinguishes four different types of DSM applications, based
on the kind of data that is represented. He also introduced two main categories if DSMs:
static and time-based. Figure 2.7 shows a taxonomy of the categories and types of DSMs
according to Browning.

In static DSMs the parameters represent the elements of a system that exist simultaneously,
such as components of a product architecture or groups of people in an organisation. In
time-based DSMs the parameters represent activities or processes, and their ordering in the

8 Refer to [51] for an in-depth introduction to these and other conventional project management tools.
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matrix indicates a flow through time, or in other words, the chronological order in which
they are to be carried out.

Design Structure 

Matrices (DSMs)

Static

Component-

based DSM
Team-based DSM

Time-Based

Activity-based 

DSM

Parameter-based 

DSM

Figure 2.7: A taxonomy of DSM types according to Browning, adapted from [14, 15]

DSMs are often processed with metrics or algorithms that analyse and/or restructure the
representation of a project or a system. In [15], Browning discusses each of the four types
of DSMs and their accompanying analysis methods using industrial examples.

Component-based or Architecture DSMs are useful for modelling system architectures, in-
volving relationships and interactions among components or subsystems, and for facilitat-
ing appropriate decomposition strategies. Component-based DSMs can be combined with
clustering algorithms, which localise dependencies by defining subsets of parameters with
minimal external dependencies [57]. Such subsets are called clusters or chunks, but largely
correspond to the definition of modules (see 2.3.1).

Team-based, People-based or Organisation DSMs are used to design integrated organisa-
tion structures based on (groups of) people and their interactions. These DSMs can also
be combined with clustering algorithms [47].

Activity-based, Task-based or Schedule DSMs are suited to model the information flow and
other dependencies among processes and their constituent activities. (Re)Sequencing meth-
ods can be used to optimise the chronological order of the activities in activity-based DSMs
[13, 82, 19]. A example of such an algorithm is partitioning, which transforms the matrix
into a nearly lower triangular form in order to minimise feedbacks (activities that depend on
activities in the future).
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Finally, Parameter-based or Low-Level Schedule DSMs are aimed at modelling and integrat-
ing low-level design decisions and processes based on physical design parameter relationships.
A noteworthy example can be found in the work of Black et al. who applied parameter-based
DSMs to an automobile brake system design [9].

2.5 Conclusions

In this chapter we provided an extensive introduction to Design Structure Matrices (DSMs),
the central subject of this dissertation.

The presentation of the theory of Baldwin & Clark, about the economic aspects of modu-
larity in the design of complex systems, covered the best part of the chapter. We gave an
overview of the principle elements of the theory: Baldwin & Clark’s theoretical approach to
modularity, the use of DSMs to visualize modular designs, the concept of design rules and
most importantly, the Net Option Value (NOV) model. We explained and demonstrated
how this mathematical model can be applied to a DSM representation of a design for a
system, to quantitatively assess the economic value of that design.

We also paid attention to the many existing applications of DSMs, primarily in the field of
engineering.

In the remainder of this dissertation we present our research into applications of DSMs and
related techniques such as NOV. Chapter 3 introduces a tool we developed to facilitate
experimentation with DSMs and the NOV model. In the following chapters we focus on
applications of DSMs in the context of software development. Chapter 4 presents an as-
sessment of the novel aspect-oriented software development (AOSD) paradigm, which was
carried out using the tool from Chapter 3. Chapter 5 deals with our research into DSM-based
support tools for object-oriented software development (OOSD) and introduces a prototype
of such a tool. Finally, in Chapter 6 presents a number of real-world usage scenarios for
that prototype.
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Chapter 3

DSM+NOV Tool

In this chapter we introduce DSM+NOV Tool, a simple yet powerful application we de-
veloped to support experiments with DSMs and the NOV model. As far as we know, this
is the first software of its kind. The main functionality of this tool is the automated gen-
eration of convenient spreadsheets that contain a DSM and handle all NOV calculations.
We primarily created this application to generate the DSM+NOV spreadsheets we used
to conduct a qualitative assessment of aspect-oriented and object-oriented design pattern
implementations, which we discuss in the next chapter.

3.1 Introduction

In Chapter 2 we introduced the combination of Design Structure Matrices (DSMs) with the
Net Option Value (NOV) model, as proposed by Baldwin & Clark [5]. This combination,
which we will refer to as the DSM+NOV methodology, is promising for quantitative assess-
ments of designs in diverse contexts. But the computations involved in the NOV model are
too complex to be performed manually. However, as far as we know, there is no special-
purpose software in existence today that handles NOV calculations1, which clearly hampers
experimentation with the DSM+NOV methodology.

This was problematic because we wanted to use the methodology to conduct a large-scale
qualitative assessment of Aspect-Oriented and Object-Oriented Design Pattern implemen-
tations, which we discuss in Chapter 4. Therefore, we developed an application of our own,
named DSM+NOV Tool, which we present here.

We first set out some requirements in section 3.2. Next, section 3.3 presents our approach,
the automated generation of DSM+NOV spreadsheets. Then, section 3.4 gives an overview
of the features and specific details of the application. Section 3.5 concludes the chapter.

1 In Chapter 5 (section 5.5) we discuss the few DSM-related software tools we know of. However, none

of these support NOV computation.
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3.2 Requirements

The purpose of the application is twofold. On the one hand it should facilitate exploration
of and experiments with the DSM+NOV methodology itself. On the other hand, in view
of the work we present in Chapter 4, it should facilitate actual assessments of designs.
Additionally, it should be a general-purpose tool, allowing the methodology to be applied in
various fields.

3.3 Approach

Spreadsheets are an obvious way to automate NOV calculations. In Chapter 2 we showed
an example spreadsheet (see figure 2.4) that implements the NOV formulae. We also no-
tice that other authors [45, 46] follow this approach. If the DSM itself is added to such
a spreadsheet the formulas for NOV calculation can be hooked up to it. That way, it is
easy to experiment with different dependency patterns and adjusted values for NOV input
parameters because the results are immediately visible.

However, even when templates are used, setting up such spreadsheets manually is a tedious
job. Every time one needs to analyse a new system – with a different number of modules –
or every time the number of simulated experiments must to be extended, all formulas need
to be adjusted. This is both boring and prone to error.

To resolve this problem, we created an application, named DSM+NOV Tool [66], that gen-
erates ready to use customised DSM+NOV spreadsheets. The application was implemented
as an add-in for Microsoft Excel [96] written in Visual Basic for Applications [104].

3.4 DSM+NOV Tool

DSM+NOV Tool generates spreadsheets, such as the one in figure 3.1 on the next page, that
contain all necessary formulas and have a decent, ready-to-print layout. The spreadsheets
consist of three parts: a listing that names the modules of the studied system, a DSM that
documents the dependencies among those modules and a part that computes the NOV for
the system.

The NOV2 part lists or computes the values of the input parameters of the model, determines
the outcomes of the simulated experiments (i.e.: the return value for each module for
different numbers of experiments) and computes the final result. The return value at the
break-even point for every module is highlighted in green. The NOV calculations are hooked

2 Refer to Chapter 2 (2.3.6) for a full explanation of the Net Option Value model, its formulae and an

extensive example.
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up to the DSM, in which the dependencies need to be filled out manually, through the values
of the Z parameter, the visibility cost. Further details on the computation of this parameter
and on other choices with regard to NOV calculation are provided in 3.4.1.

max nov

NOV Results

DSM+NOV Tool Demo

Modules DSM NOV Analysis

NOV Parameters Simulation of 4 Experiments

3 4
ʍ Z p c n

k ї 0 1 2 3 4

1 2 Q(k) ї 0.0000 0.3989 0.6810 0.8881 1.0458

Module 1 (not in NOV) 1 * 1 1 1

Module 2 2 1 * 2.5 0.5 2 1 0.33333333 Ͳ0.5 Ͳ0.2575 Ͳ0.1837 Ͳ0.2181 Ͳ0.3239 Ͳ0.18367432 0.000000

Module 3 3 1 * 2.5 0 3 1 0.5 0 0.20524 0.20391 0.07004 Ͳ0.1513 0.205236979 0.205237

Module 4 4 1 * 2.5 0 1 1 0.16666667 0 0.2405 0.36175 0.40646 0.40065 0.406461483 0.406461

N ї 6 є ї 1 NOV ї 0.611698

Figure 3.1: Example of a generated spreadsheet

The tool generates new spreadsheets according to a configuration the user specifies by means
of the dialog window shown in figure 3.2.

Figure 3.2: Dialog window to configure new DSM+NOV sheet

The DSM+NOV Tool add-in is intended for Excel 2003 and 2007 on Windows and Excel
2004 on Mac OS X3 and fully integrates with the interface of the host application, as shown
by the screenshots in figure 3.3 on the next page.

In addition to generating normal DSM+NOV spreadsheets our tool also contains function-
ality that allows systems to be documented on two hierarchical levels in parallel. We discuss
this innovative feature in 3.4.2.

3 Support for Excel on Mac OS X is untested; the add-in might also work in OpenOffice Calc (which

supposedly has limited support for Excel add-ins).
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(a)

(b)

Figure 3.3: Integration with interface of Excel 2003 (a) and 2007 (b) on Windows
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3.4.1 Net Option Value Calculation

Here we list the most important choices for our implementation of the NOV model.

One of the options in the configuration dialog (see figure 3.2) allows users to exclude a
number of modules from the NOV calculation. As shown in the example spreadsheet (see
figure 3.1) NOV-exclusion is indicated in the name of such modules. The intention is to
allow users to employ a DSM which includes dependencies from parts of the studied system
to external entities which are not an integral part of the system, without affecting the NOV
results. The inspiration for this feature comes from Sullivan et al. [72]4, who introduced
Environment and Design Structure Matrices (EDSMs), a DSM variant extended with the
notion of environment parameters (EPs).

The configuration dialog lets users specify the number of simulated experiments. However,
because it can be hard to estimate beforehand the number of experiments that is needed to
reach a break-even point for every module, our tool can also insert additional experiment
columns into earlier generated spreadsheets. Users can choose to add experiments one by
one or they can use the automatic break-even points finding feature, which adds experiments
until the return value of all modules is decreasing (i.e.: until each module has reached its
break-even point).

Currently our tool uses the generic formula to compute the net option value for each mod-
ule. Future versions of the tool could offer the user a choice between the specific formulae
for each of the six modular operators defined by Baldwin & Clark5.

To compute the return value of ki simulated experiments on each i -th module the value of
Q(ki) needs to be known. However, computing that value involves integrations (see Ap-
pendix A), which Microsoft Excel cannot handle. Therefore our application uses a numerical
integration algorithm. The code was taken from XNumbers [107], an open source library
that extends Excel with support for numerical methods.

Zi =
∑

j sees i

cjnj =

i−1∑

j=1

dj,icjnj +

m∑

j=i+1

dj,icjnj (3.1)

The visibility cost parameter, Z, links NOV calculation to the dependencies in the DSM.
For the i -th module, it is computed according to equation 3.1. Where m is the number
of modules in the system, cj and nj are respectively the redesign cost and the complexity
of a j-th module and dj,i is the value on the j-th row and the i -th column in the DSM,
corresponding to a dependency from the j-th module to the i -th module. Dependencies
from excluded modules are discarded, as cj and nj equal to 0 for those modules.

4 We discuss the work of Sullivan et al. in Chapter 4 (section 4.3).
5 Refer to Chapter 2 (2.3.5) for an explanation on substitution and the other five modular operators.
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Users can freely adjust the values of the remaining NOV input parameters for each module.
But DSM+NOV Tool provides default settings which follow conventions and assumptions
proposed by Baldwin & Clark or by authors that have applied the NOV model in the context
of software development6:

• The technical potential of each i -th module, σi , defaults to 2.5;

• The redesign cost of each i -th module, ci , is either fixed at 1 or taken as a user
specified factor (which defaults to 1) that is scaled with respect to ni , the complexity
of that module;

• The complexity of each i -th module, ni , is taken as the number of design parameters
contained in the module, pi , divided by N, the total number of design parameters in
the system (ignoring those in NOV-excluded modules);

• The number of design parameters in each i -th module, pi , defaults to 1.

3.4.2 Module- and Parameter-level DSMs

The generation of parameter-level DSMs is the most innovative feature of DSM+NOV Tool.
The goal is to allow dependencies occurring on a lower hierarchical level of the studied system
to be documented and taken into consideration by the NOV calculation. To explain this
feature we first need to recapitulate the difference between design parameters and modules.

Design Parameters and Modules

In Chapter 2 we explained that a DSM confronts design parameters to document the de-
pendencies among them. Design parameters correspond to discrete structural elements in
the design of the studied system. A module groups a set of design parameters, which are
(expected to be) strongly dependant on each other but relatively weakly dependant on de-
sign parameters outside the module. Figure 3.4 reproduces the example we have used to
show how DSM diagrams can be extended to visualise modules.

1 2 3 4 5 6 7

Module 1
A 1 * 1

B 2 1 * 1 1

Module 2 C 3 * 1

Module 3 D 4 1 *

Module 4

E 5 1 * 1

F 6 1 1 1 *

G 7 1 1 *

Figure 3.4: A DSM with modules consisting of design parameters

6 Refer to Chapter 4 (section 4.3).
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Conceptually both modules and (design) parameters represent parts of the studied system,
but on different levels or layers of hierarchy, detail, abstraction or granularity. For example,
when studying an object-oriented software system, modules could represent classes, while
parameters could represent methods.

Module-level DSMs

The NOV model evaluates the design of a system based on properties of the modules in that
system and the dependencies among those. In other words, NOV only looks at dependencies
on the module level. Therefore, the DSMs in our generated spreadsheets differ from regular
ones because they confront modules instead of design parameters and thus only document
dependencies among modules.

In a sense, our module-level DSMs offer a “zoomed out” view on the system, compared to
regular parameter-level DSMs, because they summarise dependencies among parameters as
dependencies among modules. As an illustration, figure 3.5 shows two module-level versions
for the system that is represented by the parameter-level DSM in figure 3.4.

1 2 3 4

Module 1 1 * 3

Module 2 2 * 1

Module 3 3 1 *

Module 4 4 2 1 1 *

(a)

1 2 3 4

Module 1 1 * 1

Module 2 2 * 1

Module 3 3 1 *

Module 4 4 1 1 1 *

(b)

Figure 3.5: Module-level versions of the parameter-level DSM in figure 3.4, created by

summing (a) or by maximising (b) parameter-level dependencies

The difference between both module-level DSMs lies in the way parameter-level dependen-
cies are summarised. In figure 3.5a the dependency from a module to another module is
taken as the sum of all dependencies from parameters of the first module to those of the
second module. In figure 3.5b the dependency from a module to another module is taken as
the highest dependency from a parameter of the first module to one of the second module.
The different summarising method causes two differing dependency values (as highlighted
in the DSMs).

We should note that the DSM in figure 3.5a is an NDSM because summing the parameter-
level dependencies results in two numerical dependency values (> 1). The DSM in fig-
ure 3.5b is still a regular one because maximising the (binary) parameter-level dependencies
results only in binary dependency values.
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Combining Module- and Parameter-level DSMs
When using our application, we must fill out the DSM with dependencies on the level of
modules, so if the studied system has a meaningful lower hierarchical level, we must either
ignore it or manually summarise relevant dependencies occurring on that level. In either
case, we lose a degree of detail because the parameter-level dependencies are not explicitly
documented.

To resolve this problem, DSM+NOV Tool includes a feature that enables users to simulta-
neously document dependencies occurring on two hierarchical levels. This novel approach
calculates the NOV of a system based on the combination of a module-level DSM and a
parameter-level DSM.

The procedure is as follows. Starting off with a regular generated DSM+NOV spreadsheet
the user must specify the number of design parameters contained in each i -th module, by
adjusting the value of pi . Next, the user can let the tool generate a parameter-level DSM
– as a second spreadsheet – with the right number of parameters per module. In there, the
parameter-level dependencies can be filled out, as illustrated by figure 3.6b.

To take the parameter-level dependencies into account for NOV calculation, the tools links
both DSMs by inserting summarizing formulas into the dependency cells of the original,

NOV Results

nov

Module level

Modules DSM NOV Analysis

NOV Parameters Simulation of 8 Experiments

4
ʍ Z p c n

k ї 0 4 5 6 8
max

1 2 3 Q(k) ї 0.0000 1.0458 1.1697 1.2701 1.4242

Module 1 1 * 1 2.5 0.45 1 0.5 0.1 Ͳ0.45 0.1767 0.2247 0.2541 0.2759 0.27589156 0.275892

Module 2 2 1 * 2 1 2.5 0.7 3 0.5 0.3 Ͳ0.7 0.132 0.1517 0.1391 0.0501 0.15168435 0.151684

Module 3 3 1 3 * 2 2.5 0.5 4 0.5 0.4 Ͳ0.5 0.3535 0.3495 0.3082 0.1518 0.35348465 0.353485

Module 4 4 1 1 2 * 2.5 0.6 2 0.5 0.2 Ͳ0.6 0.1692 0.2078 0.22 0.1923 0.21998437 0.219984

N   ї 10 є ї 1 NOV ї 1.001045

(a)

1 1 * 1

Parameter level

Modules Parameters DSM

1 2 3 4 5 6 7 8 9 10

Module 1Module  Parameter 1 1Parameter 1.1 1 * 1

Module 2

Parameter 2.1 2

*

1

Parameter 2.2 3 1

Parameter 2.3 4 1 1

Module 3

Parameter 3.1 5 1

*
Parameter 3.2 6 1

Parameter 3.3 7 1 1

Parameter 3.4 8 1 1

Module 4
Parameter 4.1 9 1 1

*
Parameter 4.2 10 1 1

(b)

Figure 3.6: NOV calculation for a module-level DSM (a) which summarises dependencies in

a parameter-level DSM (b) by summing
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module-level, DSM – as shown by figure 3.6a. In the example in figure 3.6 the DSMs are
linked through summing, but our tool supports summarising by maximising as well. Because
the NOV model was not designed for NDSMs, as noted in Chapter 2, summarising by max-
imising is can be useful because it avoids numeric dependency values in the module-level
DSM when the parameter-level DSM is binary.

Strict Module-level Dependencies
Some kinds of dependencies occur strictly on the level of modules, meaning they cannot
be attributed to a pair of parameters. For instance, returning to our example from object-
oriented software, it is obvious that inheritance is a relation (and thus a dependency) between
classes, not between a pair of their methods. Therefore, we included a way to combine, in-
stead of replace, module-level dependencies with summarised parameter-level dependencies.

To account for strict module-level dependencies, we must fill them out in the DSM of
spreadsheet we start out with (the temporary module-level DSM), before the parameter-
level DSM is generated. Then, upon the generation of the parameter-level DSM, the dialog
window shown by figure 3.7 offers three combine/replace options, in addition to the choice
between summarising by summing or by maximising.

Figure 3.7: Dialog window with options for the generation of a parameter-level DSM

The first option keeps module-level dependency values which are higher than their corre-
sponding summarised parameter-level dependency value, and replaces them otherwise; the
second option sums module-level dependency values with their corresponding summarised
parameter-level dependency value; and the third option replaces all module-level dependency
values with their corresponding summarised parameter-level dependency value.

Equation 3.2 and equation 3.3 show how the second option works, respectively in case of
summarising by summing and summarising by maximising.

mi ,j =Mi ,j +
∑

∀x ∈ i , ∀y ∈ j

px,y (3.2)
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mi ,j =Mi ,j + max

∀x ∈ i , ∀y ∈ j

px,y (3.3)

In the equations:

• mi ,j , Mi ,j and pi ,j are respectively dependency values in the final module-level DSM,
the temporary module-level DSM and the parameter-level DSM;

• i and j are modules, with i 6= j ;

• x and y are design parameters, respectively contained in module i and module j .

3.5 Conclusions

DSM+NOV Tool significantly reduces the time one needs spend to prepare a DSM+NOV
spreadsheet and thus clearly satisfies the requirements set out in section 3.2.

We believe the tool is a valid technical contribution to the field because it facilitates the
application of the DSM+NOV methodology to concrete design assessments as well as ex-
ploration of and experimentation with the methodology itself. This is illustrated by the
work we present in Chapter 4, which deals with comparative assessments, carried out using
DSM+NOV Tool, of object-oriented and aspect-oriented software designs. The tool has
also been shared with other researchers7.

As far as we know, the idea to base NOV calculation on a combination of two DSMs, which
document dependencies on different hierarchical levels, is a novel concept in the field. In
Chapter 4 we demonstrate how we used this innovative feature to document implementation
dependencies in software on two granularity levels.

7 Namely Cristina Lopes and Sushil Bajracharya, whose work we discuss in Chapter 4 (section 4.3).
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Chapter 4

Assessing Aspect-Orientation using
DSMs and NOV

In this chapter we present an evaluation of DSMs and the NOV model as a methodology
for quantitative assessment of modularity in software designs. To experiment with this
methodology, we apply it to aspect-oriented and object-oriented implementations of the
GoF design patterns, in order to assess the claimed modularisation advantages of the novel
aspect-orientation paradigm. Based on those experiments we formulate critiques on the
applicability of the NOV model as a modularity metric for software design.

4.1 Introduction

In Chapter 2 we introduced Design Structure Matrices (DSMs) and the Net Option Value
(NOV) model [5]. We believe that the combination of both techniques is a promising
methodology for quantitative assessments of designs in diverse contexts. In this chapter,
we present our research into the application of this DSM+NOV methodology as a tool
for quantitative assessment and comparison of software designs. Specifically, we aim to
evaluate whether or not the NOV model can serve as a metric to quantify modularity in
software designs. By extension, we want to investigate whether NOV can help to validate
or invalidate the claims of software development paradigms with regard to modularisation
properties.

Inspired by the work of others [44, 45, 73], we took the opportunity to link this research
to the Aspect-Oriented Software Development (AOSD) field. The novel aspect-orientation
paradigm claims to provide improved modularisation properties over the object-orientation
paradigm. This makes aspect-orientation an interesting subject for our evaluation of NOV
as a modularity metric.

In summary, we want to evaluate the merits of NOV as a modularity metric, by employing
the DSM+NOV methodology to carry out a quantitative assessment of the modularisation
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properties of the aspect-orientation paradigm, in comparison with the object-orientation
paradigm. As a concrete case study, we choose to compare aspect-oriented and object-
oriented implementations of the GoF design patterns [22], respectively written in AspectJ
and Java [24].

We present experiments on AspectJ and Java versions of three design patterns. The exper-
iments were carried out using the DSM+NOV spreadsheet generation tool we introduced in
Chapter 3. Based on the results of these experiments we formulate conclusions and critiques
on the applicability of NOV as a modularity metric for software.

In this chapter, we first provide an elaborate introduction to the aspect-orientation paradigm
in section 4.2. Next, in section 4.3 we discuss the work of others who have applied DSMs
and NOV in the context of software development. Further, in section 4.4 we provide a brief
introduction to design patterns. Then, section 4.5 deals with the experiments we conducted
and formulates observations based on the results. We conclude this chapter in section 4.6.

4.2 Aspect-Oriented Software Development

In its quest for higher software quality and lower development and maintenance costs, soft-
ware development is constantly evolving. In its history of over 60 years, the discipline has
seen many different paradigms with accompanying programming languages and design tech-
niques. Since the days of machine-level assembly languages, the procedural, functional and
object-oriented programming paradigms have been introduced (among others). Each new
paradigm provides new abstraction mechanisms and language features over older paradigms,
allowing improved design and implementation structures, which ideally lower overall com-
plexity and increase reusability.

One of the latest developments in the evolution of programming is the rise of Aspect-
Oriented Programming (AOP), a novel paradigm which was introduced by Gregor Kiczales
in the second half of the 1990s [32, 36, 37]. Aspect-orientation (AO) builds further upon
the concepts of object-orientation (OO) – and older paradigms – but focuses on providing
mechanisms to enable the modularisation of so-called crosscutting-concerns (see 4.2.1 and
4.2.2) by means of aspectual decomposition (see 4.2.3).

Aspect-Oriented Software Development (AOSD) is the broader paradigm devoted to apply-
ing the concepts of aspect-orientation to the whole software development lifecycle.

In the remainder of this section we will introduce the most important concepts of aspect-
orientation. Further introductory reading on AOSD can be found in [12], upon which this
section is based. An elaborate account on the history of AOSD is provided in [43].
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4.2.1 Modularisation1 and Separation of Concerns

The power of an abstraction mechanism is that it provides a means of modularisation, which
allows software to be structured in separate, cooperating, modules. Modularisation helps
software engineers achieve what is called the separation of concerns (SoC).

This principle, originally introduced by Dijkstra [18], is one of the driving ideas of the
evolution of software development paradigms. In the context of software development, a
concern is defined as an interest which pertains to the system’s development, its operation
or any other matters that are critical or otherwise important to one of the stakeholders [75].
A concern of a software application can be related to both functional (e.g.: as captured by
use cases) and non-functional (e.g.: reliability, scalability, ...) requirements.

The principle of separation of concerns demands that every concern is treated in isolation
throughout the development lifecycle. This means that each concern should be modelled,
designed and implemented as a separate unit or module. Thereby the complexity of individual
modules is reduced and it is ensured that each module represents a well-defined subpart of
the system, corresponding to a single concern. This results in improved evolvability and
reusability of the application and its parts. Such properties help to keep software projects
manageable, which can ultimately lead to lower development and maintenance costs.

In object-orientation modularisation is achieved by decomposing software applications into
individual units called objects. Ideally any single concern is represented by a particular
group of such objects. There are, however, concerns which cannot be modularised using
the techniques the OO paradigm provides. Enabling the modularisation of such crosscutting
concerns is the main goal of the AO paradigm.

4.2.2 Crosscutting Concerns

Common examples of crosscutting concerns include synchronisation policies, error and excep-
tion handling, enforcement of real-time constraints, security requirements, logging, tracing
and fault tolerance mechanisms. Without a paradigm that explicitly handles such cross-
cutting concerns, their implementation causes scattering and tangling with respect to the
implementation of other concerns.

Scattering is defined as the occurrence of the representation of one concern in multiple
modules [75]. Tangling, on the other hand, is defined as the occurrence of representations
of multiple concerns mixed together in a single module [75]. Both issues tend to appear
together; they describe different facets of the same problem.

To illustrate scattering and tangling, we will show how they manifest themselves in the

1 Refer to Chapter 2 (2.3.1) for general definitions of modularity, modules and modularisation.
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implementation of logging, which has become the obligatory example crosscutting concern
in texts on AOSD. The running example we will use, here and throughout this section, is set
in a hypothetical2 client-server banking application. Figure 4.1 shows a part of this system,
implemented in an object-oriented programming language.

banking.middleware.requests.*

...

RequestHandler RequestParser

banking.backend.jobs.*

...

JobProcessJobQueue

Concern legend

Logging concern

Jobs concern

Requests concern

banking.reporting.logging.*

Logger

...

Figure 4.1: Crosscutting logging concern causes scattering and tangling

We can look at this system from two perspectives. From a structural perspective, the figure
shows the arrangement of objects in three different groups3. These groups are modules that
are assumed to be responsible for a specific functionality. One group, part of the reporting
infrastructure of the system, holds objects that deal with logging. A second group, located
in the middleware layer of the system, is responsible for handling requests from clients. The
last group, situated in the backend of the system, manages batch processing jobs.

In parallel with the structural perspective, the system can be observed from the perspective
of concerns. The figure shows, by means of colour coding, the actual code level locations,
within each object, of the implementation of three concerns: logging, requests and jobs.

2 An often cited real world case – which backs hypothetical examples such as ours – of the crosscutting

nature of logging can be found in the Apache Tomcat web server [33].
3 The groups of objects in our example are named in the style of Java packages. Packages are a mechanism

for grouping of related classes.
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It is clear that the implementation of the requests concern and the jobs concern is limited to
the respective groups of objects. However, the implementation of the logging concern is not
limited to objects in the logging group, on the contrary, there are bits of logging code in the
objects that deal with the requests and jobs concerns as well. In terms of the definitions, the
logging concern crosscuts the banking application as its representation is scattered (“spread
out”) over multiple modules and tangled (“mixed”) with the representation of other concerns
within individual modules.

We can conclude that object-oriented modularisation achieves the separation of the requests
and jobs concerns, but fails to do so for the logging concern. Because the banking software is
required to log diverse operations occurring in different parts of the system, including those
that deal with requests and jobs, any object-oriented implementation will always, regardless
of the chosen decomposition into objects, introduce logging code – which includes at least
a method call to a logging object – at the location of every operation that must be logged.
Hence, the implementation of logging will be distributed across multiple modules, causing
scattering and tangling and making it a crosscutting concern.

Crosscutting concerns like logging are common in most software systems and developers
might see them as being harmless. However, crosscutting concerns can be detrimental
because they break the principle of separation of concerns: single modules can contain the
implementation of multiple concerns (tangling) and crosscutting concerns lack a separate,
explicit, representation (scattering). These issues hinder reuse and evolvability of both
crosscutting and non-crosscutting concerns, which can be particularly harmful, especially in
large-scale projects. The aspect-orientation paradigm provides a remedy for this problem by
introducing new modularisation mechanisms that enable developers to explicitly represent
crosscutting concerns as separate entities.

Although we have discussed scattering and tangling in an object-oriented application, it
is important to note that the problem of crosscutting concerns is not limited to object-
orientation, it can be observed in other paradigms as well. The truth is there are always
restrictions on the ability to modularly represent particular concerns. These restrictions are
intrinsic to the decomposition technique dictated by the paradigm [74].

4.2.3 Aspectual Decomposition & Aspects

Pre-AO paradigms have always relied on functional (de)composition. In [37], Gregor Kicza-
les pointed out that the resulting modules (e.g.: subroutines, procedures, functions, ADTs,
components, objects) can be seen as generalised procedures. In order to modularise crosscut-
ting concerns aspect-orientation introduces a fundamentally new modularisation technique,
which is based on aspectual (de)composition. The resulting modules, representing cross-
cutting concerns, are called aspects and are no longer generalized procedures.
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The difference lies in the invocation mechanism. The behaviour of (generalised) procedures
is always explicitly invoked by other procedures. In contrast, aspects have an implicit invo-
cation mechanism. This means their behaviour is implicitly invoked at specific points in the
implementation of other modules. Strictly speaking, the programmers of other modules do
not need to be aware of the crosscutting concern and its implementation as an aspect4.

To achieve implicit invocation, aspects needs to specify themselves where or when their be-
haviour needs to be invoked. An aspect does this by autonomously observing the execution
of the (base) program: when specific patterns of actions occur it can execute additional
behaviour on its own. Following the common terminology [75], the actions of the base
program are called join points, the patterns that describe sets of such join points are known
as pointcut( designator)s and the additional behaviour is referred to as advice (code).

In most AOP languages aspect implementations consist of two conceptually different parts:
the functionality code, consisting of advices, which define the behaviour that is executed
upon the invocation of the aspect, and the applicability code, consisting of pointcuts, which
determine where or when these invocations must occur. The join point model of the lan-
guage defines the possible kinds of join points (e.g.: method or constructor calls, field
references, etc.) and how they can be described by (“matched”) pointcuts.

We will illustrate the difference between explicit and implicit invocation and the basic AO
concepts using our running example. We assume the RequestHandler object includes three
operations that need to be logged: operation X, Y and Z. Figure 4.2, on the next page,
shows an object-oriented (a) and an aspect-oriented (b) implementation.

In the object-oriented implementation, each of the operations is followed by code that ex-
plicitly invokes (e.g.: by means of a method call) the behaviour of the Logger object and
thus implements part of the logging concern within the RequestHandler object (causing
scattering and tangling). In an aspect-oriented implementation no logging code is present
in RequestHandler (avoiding scattering and tangling). Instead the new Logging aspect im-
plements the logging behaviour, using advice code, and defines where it should be applied,
by means of pointcuts that intercept operations X, Y and Z in RequestHandler and implicitly
invoke the logging behaviour at those join points.

In conclusion, we should note that programs written in aspect-oriented languages require a
special kind of compilers (or interpreters), called weavers. At compile-time, such weavers
insert the advice code at join points, as specified by pointcuts.

4 This principle is called obliviousness [20].
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banking.middleware.

requests.*

...

Operation X

Log operation X

Operation Y

Log operation Y

Operation Z

Log operation Z

RequestHandler

banking.reporting.logging.*

Logger

...

(a)

banking.middleware.

requests.*

...
Operation X

Operation Y

Operation Z

RequestHandler

banking.reporting.logging.*

...

At Operation X in 

banking.middleware.requests.

RequestHandler do...

At Operation Y in 

banking.middleware.requests.

RequestHandler do...

At Operation Z in 

banking.middleware.requests.

RequestHandler do...

Logging

 

an Aspect

(b)

Figure 4.2: Explicit invocation in an OO implementation (a) and implicit invocation in an

AO implementation (b) of the logging concern

4.2.4 AspectJ

AspectJ, an aspect-oriented superset of Java [94, 23], is definitely the most prominent and
mature AOP language today. It was created at Xerox PARC, by a team of researchers led
by Gregor Kiczales [34, 35]. The language is popular in the research community but receives
major interest from mainstream software development as well [16, 50]. Further development
is now organised as an open-source project led by the Eclipse Foundation [88]. The same
organisation also develops the AspectJ Development Tools (AJDT) [85], which extend the
Eclipse development environment with full-blown support for AspectJ.

In AspectJ, aspects can be expressed in much the same way as class definitions in Java, they
can include methods, advices and pointcut definitions. Join points in AspectJ are points in
the execution of a base program written in Java(/AspectJ), such as calls to or executions
of methods or constructors, exception throwing, field access, etc.

As a brief demonstration of the basic features, we will show how the logging concern from our
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running example can be implemented using AspectJ. But first, let us look at a Java imple-
mentation of the object-oriented solution from figure 4.2a: we see that the RequestHandler
class, shown in box 4.1, implements part of the logging concern by ending the methods Op-
erationX, OperationY and OperationZ with explicit invocations (on lines 9, 15 and 21)
of the logging behaviour, implemented in the Logger class (not shown).

✞ ☎
1 package banking.middleware.requests;
2 import banking.reporting.logging .*;
3

4 public class RequestHandler
5 {
6 public void OperationX ()
7 {
8 //...do stuff
9 Logger.logLine("Operation X was carried out!");

10 }
11

12 public void OperationY ()
13 {
14 //...do stuff
15 Logger.logLine("Operation Y was carried out!");
16 }
17

18 public void OperationZ ()
19 {
20 //...do stuff
21 Logger.logLine("Operation Z was carried out!");
22 }
23 }
✝ ✆

Box 4.1: RequestHandler class

In an AspectJ/Java implementation of the aspect-oriented solution from figure 4.2b, we
would strip the logging code from the RequestHandler class (removing lines 9, 15 and 21
from box 4.1) and combine it with an aspect like the one shown in box 4.2.

✞ ☎
1 package banking.reporting.logging;
2

3 public aspect Logging
4 {
5 private void logLine(String line) { /* ... */ }
6

7 pointcut operationX () : execution(void banking.middleware.requests.
RequestHandler.OperationX ());

8

9 after () : operationX ()
10 {
11 logLine("Operation X was carried out");
12 }
13

14 after () : execution(void banking.middleware.requests.RequestHandler.
OperationY ())

15 {
16 logLine("Operation Y was carried out");
17 }
18

19 after () : execution(void banking.middleware.requests.RequestHandler.
OperationZ ())

20 {
21 logLine("Operation Z was carried out");
22 }
23 }
✝ ✆

Box 4.2: Logging aspect
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The Logging aspect in box 4.2 implements the logging concern as a single module. It con-
tains 3 advices that do the logging, each is triggered by a different pointcut that intercepts
the execution of one of the operations that need to be logged.

AspectJ pointcuts match specific join points using a regular expression, here we see three
execution pointcuts that match the execution of a method or a constructor. The pointcuts
can be named or anonymous. Named pointcuts (like the one on line 7) can be referred to
from one or more advices (as on line 9). Anonymous pointcuts can only be used by a single
advice as they are defined directly in the header of the advice (as on lines 14 and 19).

The advices in this example are after advices, meaning they run advice code after the join
point. In our case this means that operations X, Y and Z will be logged after their execution
has finished. Other advice kinds supported by AspectJ include before and around. The
former runs advice code before the join point and the latter runs it instead of the join point,
in which case the original join point can be executed with the proceed keyword.

More information on the AspectJ language can be found in [16, 38, 50, 83, 84, 86].

4.2.5 The Fragile Pointcut Problem

The implicit invocation mechanism introduced by the aspect-orientation paradigm effec-
tively facilitates the modularisation of crosscutting concerns. However, that does not mean
that dependencies are eliminated. In fact, because pointcuts impose assumptions on the
base code, implicit invocation through pointcut definitions merely reverses the direction of
existing dependencies. This is the root cause of the fragile pointcut problem5.

To illustrate this, we return to our logging example, as implemented in Java and AspectJ in
boxes 4.1 and 4.2. We see that three explicit invocations of Logger.logLine in the Re-

questHandler class, are replaced by pointcuts in the Logging aspect, which are triggered
by the execution of the OperationX, -Y and -Z methods of RequestHandler. As a conse-
quence, the explicit dependencies from these methods to Logger.logLine are replaced by
implicit dependencies in the opposite direction, from the pointcuts of the Logging aspect
to the methods. These pointcuts impose a number of assumptions of the base code which
make them fragile with respect to changes in the base code. For instance, our pointcuts
explicitly reference the methods by their full signature. When the base code evolves and the
method signatures change, the pointcuts will no longer match and the logging behaviour
will not be invoked, which effectively breaks the functionality of the program.

Exposing detrimental dependencies caused by fragile pointcuts in aspect-oriented software
designs is one of the things we hope to achieve by applying the DSM+NOV methodology.

5 Tackling the fragile pointcut problem is one of the current hot topics in the AOSD research field

[39, 69, 27, 29].
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4.3 Related Work

Baldwin & Clark have a background in economy and in their publications [5, 6, 7] they take
a broad view on engineering in general. Nevertheless their work has generated interest in the
field of computer science, most likely due to their explicit focus on the theoretical concept
of modularity, which has been a hot topic in computer science for nearly forty years.

In this section we give an overview of publications on the application of the DSM+NOV
methodology of Baldwin & Clark, in the context of computer science and software devel-
opment in particular. Specifically, we discuss the work of a team of researchers headed by
Kevin Sullivan6 and of Cristina Lopes and Sushil Bajracharya.

Sullivan et al.
The first application of the DSM+NOV methodology in the context of software was pre-
sented by Sullivan et al. [72] in 2001. The paper presents an analysis, using DSMs, NOV
and design rules7, of the Key Words in Context program, which was originally introduced
by Parnas to show the importance of modularity in software [56].

The authors noted that DSMs, as used by Baldwin and Clark and in earlier work, do not
allow to model the environment in which a design is embedded. To resolve this problem
they introduced Environment and Design Structure Matrices (EDSMs), which extend the
DSM concept with the notion of environment parameters (EPs). EPs represent entities
exogenous to the system, meaning that the designer does not control them, as opposed to
conventional design parameters (DPs), which are endogenous to the system.

Furthermore, Sullivan et al. reported that making justifiable estimates for the input param-
eters of the NOV model in the context software design remained an open challenge.

In 2005, Sullivan et al. applied the DSM+NOV methodology in the context of AOSD [73].
In that publication they proposed a new kind of information hiding interface for aspect-
orientation, which abstracts crosscutting behaviour by establishing design rules which ex-
plicitly define the interface between aspects and base code entities.

Lopes & Bajracharya
In 2005, Lopes & Bajracharya published a short report [4] containing a list of open issues
concerning the application of the NOV model in the context of software.

6 Sullivan also published on applying real option theory – see Chapter 2 (2.3.6) – to software design

[70, 71].
7 Refer to Chapter 2 (2.3.3) for an explanation of the concept of design rules.
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Some of the listed issues are:

• How can the numeric value from NOV be associated with meaningful attributes in
software development?

• Is there a valid mapping between conventional software metrics and the parameters
of NOV?

• How can differences between various forms of modular dependencies be incorporated
in the model? For example, in object-oriented software, should inheritance have the
same dependency weight as a method call?

The report concluded that a deeper understanding of the parameters in NOV, especially the
link between economic and software-related properties, was needed before such questions
could be answered. During our own research, as we discuss in the remainder of this chapter,
we have run into many of the same questions.

Later in 2005, Lopes & Bajracharya demonstrated the use of the DSM+NOV methodology
to analyse and compare OO and AO implementations of a single, real-world application [44].
Starting from an OO version they produced an AO version of the design in a step-by-step
fashion. The analysis of the different evolutions of the design showed that the AO designs
yielded higher NOV scores than the OO versions. This led the authors to conclude that,
under the theory of modularity of Baldwin & Clark, certain AO modularisations can add
value to a design.

In 2006, Lopes & Bajracharya published an updated version [45] of their 2005 paper [44].
This time they used another assumption for the technical potential parameter of the NOV
model. Furthermore, to illustrate that AO modularisations are not by definition better
than OO modularisations, they included an additional AO version of their running example,
which was intentionally badly designed. In that case the increased usage of aspects had a
detrimental effect on the NOV of the design.

This last publication is the most complete account of an effort to evaluate and compare
OO and AO designs using the DSM+NOV methodology. Hence, it was the main source of
inspiration for the work we present in this chapter.

4.4 Design Patterns

Design patterns are general, repeatable solutions to a commonly occurring problems in (soft-
ware) design. A design pattern is not a finished design but rather a description or template
stipulating how to solve a particular problem, applicable in many different situations.
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The concept of design patterns was first introduced in the field of architecture and urban
planning in the late 1970s [1]. In 1987, Kent Beck and Ward Cunningham began experi-
menting with the idea of applying design patterns to software [8].

The publication of Design Patterns – Elements of Reusable Object-Oriented Software [22]
by the Gang-of-Four (GoF ) in 1994, caused the popularity of design patterns in software
development to surge. This standard work provides a comprehensive catalogue of flexible
object-oriented solutions to common software design problems. Each of the GoF patterns
has a name that is easy to remember, a detailed, yet sufficiently abstract, problem descrip-
tion, and a solution expressed in terms of generalised classes and/or interfaces.

4.4.1 Aspect-Oriented Design Patterns

In 2002, Jan Hannemann & Gregor Kiczales published an article on design pattern imple-
mentations in Java and AspectJ [24, 25]. They implemented all 23 GoF patterns in both
languages. In the AspectJ versions they redesigned the patterns to maximally exploit the
AO features of the language. These design pattern implementations are the subject of the
experiments we present in this chapter.

To evaluate their work Hannemann & Kiczales qualitatively compared the pattern imple-
mentations using 4 criteria: locality, reusability, composability and (un)pluggability. The
authors concluded that in terms of these criteria AspectJ yielded a better implementation
than Java for 17 of the 23 design patterns.

4.5 Experiments

In these experiments we use the DSM+NOV methodology to compare aspect-oriented and
object-oriented implementations of GoF design patterns [22]. These experiments are a
case study to try out the methodology and to evaluate the merits of the NOV model as a
modularity metric for software design.

The design pattern implementations of Hannemann & Kiczales [24] are an excellent subject
for qualitative comparison of designs, because the AspectJ and Java versions are identical
in functionality but differ significantly in design.

The GoF have categorised their design patterns in three groups: Behavioural, Creational and
Structural design patterns. For the sake of representativeness we conducted DSM+NOV
experiments on the Java and AspectJ implementations of one pattern from each category,
respectively the Observer, Builder and Composite design patterns.

Before we present the actual experiments, we provide a brief outline of the approach we
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followed. Then, we discuss three experiments on the Observer pattern and we formulate
some provisional conclusions. Next, we present two experiments on both the Builder and
the Composite pattern. Finally, we conclude this section with a summary of our findings
and an evaluation of the applicability of the NOV model.

4.5.1 Approach

To explore to possibilities of the DSM+NOV methodology we devised an experimentation
approach consisting of three phases. Each consecutive phase, which we call a measurement
view, is intended to enhance the level of detail that is being measured, in search of subtle
differences between the Java and the AspectJ versions. Below, we explain the different
measurement views in connection with the Observer pattern experiments.

The experiments were carried out using spreadsheets generated by DSM+NOV Tool (see
Chapter 3). The dependency values in the DSMs were filled out manually after close
inspection of the source code. To define the NOV input parameters values we followed
conventions and assumptions proposed by Baldwin & Clark [5] or by authors who have
applied the NOV model in the context of software development (see section 4.3).

In the experiments, unless otherwise state, the NOV parameters are defined as follows:

• Following [46], the visibility cost of each i -th module, Zi , is calculated by spreadsheet
formulas based on dependency values in the DSM, refer to Chapter 3 (3.4.1);

• Following [45], the technical potential of each i -th module, σi , is taken as 2.5;

• The assumption for the number of design parameters in each i -th module, pi , varies
in the different measurement views (see below);

• Following [5], the complexity of each i -th module, ni , is proportional to the number
of design parameters it contains (calculated as: ni =

pi
N

, with N =
∑

j

pj);

• Following [46], the redesign cost of each i -th module, ci , is taken as the relative
complexity of the module (calculated as ci =

ni
maxj (nj )

).

In all experiments the modules are source code entities on the class-level, corresponding to
classes, interfaces and, in the case of AspectJ, aspects.

To allow every module to reach its maximal return value in the NOV computation we used
the “automatic break-even points finding” feature of DSM+NOV Tool, which iteratively
increases the number of simulated experiments until every module has reached its break-
even point. In the spreadsheets displayed below the return values which correspond to
break-even points are marked in green. Furthermore, we should note that some experiment
columns in the spreadsheets are hidden to save space.
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4.5.2 Observer Pattern

We conducted three experiments on the Java and AspectJ implementations of the Observer
design pattern. Each experiment corresponds to a measurement view.

Naive Class-level View

Our first measurement view is the naive class-level view. Here, the number of design
parameters of every i -th module (pi) is taken as 1. We account for all dependencies in the
source code (inheritance relations, interface implementations, type references, method calls,
etc.). Furthermore, we use regular, binary DSMs, so whenever a class-level entity exhibits
one or more dependencies towards another entity, the corresponding dependency value in
the DSM8 is taken as 1 and otherwise it stays 0.

Figure 4.3 shows the DSM+NOV spreadsheets for the naive class-level views on the Java (a)
and AspectJ (b) version of the Observer pattern. Using this measurement view the AspectJ
version of the Observer pattern scores almost 60% better than the Java version.

NOV Results

max nov

Observer Pattern (Java implementation) Ͳ Naive Class level granularity

Modules DSM NOV Analysis

NOV Parameters Simulation of 10 Experiments

5 6
ʍ Z p c n

k ї 0 3 4 5 10

1 2 3 4 Q(k) ї 0.00000 0.88810 1.04580 1.16970 1.53890

<API> java.** (not in NOV) 1 * 1

<Interface> ChangeObserver 2 * 1 2.5 0.6 1 1 0.2 Ͳ0.6 Ͳ0.2071 Ͳ0.2308 Ͳ0.2922 Ͳ0.8795 Ͳ0.207074015 0.000000

<Interface> ChangeSubject 3 1 * 2.5 0.6 1 1 0.2 Ͳ0.6 Ͳ0.2071 Ͳ0.2308 Ͳ0.2922 Ͳ0.8795 Ͳ0.207074015 0.000000

<Class> Screen 4 1 1 1 * 2.5 0.2 1 1 0.2 Ͳ0.2 0.19293 0.16924 0.10776 Ͳ0.4795 0.192925985 0.192926

<Class> Point 5 1 1 1 * 2.5 0.2 1 1 0.2 Ͳ0.2 0.19293 0.16924 0.10776 Ͳ0.4795 0.192925985 0.192926

<Class> Main 6 1 1 1 * 2.5 0 1 1 0.2 0 0.39293 0.36924 0.30776 Ͳ0.2795 0.392925985 0.392926

N ї 5 ї 1є  NOV ї 0.778778

(a)

4 5
max nov

NOV Results

1 2 3 4 5 6 7 8 ї

Observer Pattern (AspectJ implementation) Ͳ Naive Class level granularity

Modules DSM NOV Analysis

NOV Parameters Simulation of 10 Experiments

6 7 8
ʍ Z p c n

k ї 0 3 4 10

1 2 3 Q(k) їQ( ) 0.00000 0.88810 1.04580 1.53890

<API> java.** (not in NOV) 1 * 1

<Class> Screen 2 * 2.5 0.5714 1 1 0.1429 Ͳ0.5714 Ͳ0.1608 Ͳ0.1547 Ͳ0.5459 Ͳ0.154669028 0.000000

<Class> Point 3 1 * 2.5 0.4286 1 1 0.1429 Ͳ0.4286 Ͳ0.018 Ͳ0.0118 Ͳ0.403 Ͳ0.011811885 0.000000

<Class> Main 4 1 1 1 * 1 1 1 2.5 0 1 1 0.1429 0 0.4106 0.41676 0.02555 0.416759543 0.416760

<Aspect> ObserverProtocol 5 1 * 2.5 0.4286 1 1 0.1429 Ͳ0.4286 Ͳ0.018 Ͳ0.0118 Ͳ0.403 Ͳ0.011811885 0.000000

<Aspect> ColorObserver 6 1 1 1 1 * 2.5 0.1429 1 1 0.1429 Ͳ0.1429 0.26775 0.2739 Ͳ0.1173 0.2739024 0.273902

<Aspect> CoordinateObserver 7 1 1 1 * 2.5 0.1429 1 1 0.1429 Ͳ0.1429 0.26775 0.2739 Ͳ0.1173 0.2739024 0.273902

<Aspect> ScreenObserver 8 1 1 * 2.5 0.1429 1 1 0.1429 Ͳ0.1429 0.26775 0.2739 Ͳ0.1173 0.2739024 0.273902

N ї 7 ї 1є  NOV ї 1.238467

+59.03%

(b)

Figure 4.3: Naive class-level view on the Observer pattern in Java (a) and AspectJ (b)

There are a number of reasons why we consider this view to be naive. First of all, all modules
are considered to be equally sized atomic entities (consisting of a single design parameter,

8 We should note that 0s are suppressed in the DSMs in the shown spreadsheets.
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i.e. ∀i : pi = 1). Consequently, all modules are equal in terms of their complexity (n) and
their redesign cost (c), because the values of those parameters are based on p (see above).
And secondly, because we use binary DSMs, all dependencies are treated equally as well.
This ignores the fact that dependencies come in different forms (e.g.: method call vs. join
point reference in a pointcut) and in different numbers (e.g.: 1 vs. 20 method calls).

Class-level View with Counted Parameters
In this second measurement view, we introduce the notion of counted design parameters as
an attempt to correct the first shortcoming of the naive view. Now, the value of pi accounts
for the size of each i -th module. This changes the value of its complexity, ni , and redesign
cost, ci , because the former is proportional to pi and the latter is taken as the relative
complexity of the module.

Like modules, design parameters represent parts of the studied system, but they are situ-
ated at a lower level of hierarchy, detail, abstraction or granularity9. We choose to take the
design parameters of a module as the methods, constructors, pointcuts, advices and inter-
type declarations contained within the class, interface or aspect the module represents. The
design patterns thus represent parameter-level or method-level source code entities, where
the modules represent module-level or class-level source code entities. As the name of the
measurement view implies, the p values are determined by counting the number of these
parameter-level entities for each module (e.g.: the number of methods and constructors in
a class).

While we believe that it is an improvement over the equally sized atomic modules of the pre-
vious measurement view, this approach is still naive in the sense that all types of parameter-
level source code constructs, are treated equally (each adding 1 to p).

NOV Results

6
max nov

Observer Pattern (Java implementation) Ͳ Class level granularity with counted parameters (p)

Modules DSM NOV Analysis

NOV Parameters Simulation of 46 Experiments

5 6
ʍ Z p c n

k ї 0 11 45 4

1 2 3 4 Q(k) ї 0.00000 1.58650 2.20770 2.21640

<API> java.** (not in NOV) 1 * 1

<Interface> ChangeObserver 2 * 1 2.5 0.6904762 1 0.1 0.047619048 Ͳ0.6905 0.12265 0.29964 0.29962 0.299637186 0.299637

<Interface> ChangeSubject 3 1 * 2.5 0.652381 3 0.3 0.142857143 Ͳ0.6524 0.37529 Ͳ0.4949 Ͳ0.5295 0.375292067 0.375292

<Class> Screen 4 1 1 1 * 2.5 0.0047619 6 0.6 0.285714286 Ͳ0.0048 0.22957 Ͳ4.7689 Ͳ4.9287 0.229573611 0.229574

<Class> Point 5 1 1 1 * 2.5 0.0047619 10 1 0.476190476 Ͳ0.0048 Ͳ2.5059 Ͳ17.625 Ͳ18.086 Ͳ2.505884618 0.000000

<Class> Main 6 1 1 1 * 2.5 0 1 0.1 0.047619048 0 0.81313 0.99011 0.9901 0.990113376 0.990113

N ї 21 ї 1є  NOV ї 1.894616

Figure 4.4: Class-level view with counted parameters for the Observer pattern in Java

The result for the Java version of the Observer pattern is shown in figure 4.4. The new
measurement approach results in increased NOV scores for both versions. However, the
NOV of the AspectJ version increased more and is now almost 125% higher compared to
the Java version.

9 Refer to Chapter 3 (3.4.2).
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Class/Method-level View
In the previous measurement views we used binary values to account for dependencies
among modules. We thereby ignored the fact that the dependencies in the design pattern
implementations come in different forms and in different numbers. Furthermore, we ignored
the subtleties of dependencies among parameter-level source code constructs (e.g.: from
a pointcut definition in an aspect to a method in a class) by summarising them to binary
dependency values per ordered pair of class-level modules.

In this class/method-level view, we attempt to increase the level of measured detail. To
achieve this finer granularity, we introduce two changes. As a first change, we want to
express dependencies among modules as numerical, instead of binary, values – by using a
numerical DSM (NDSM) – to account for different numbers of dependencies. As a second
change, we want to explicitly document parameter-level dependencies in a separate DSM
diagram, which zooms in on the contents of modules. We first look at the second change.

We call the separate DSM the parameter-level or method-level DSM and we use it to
confront individual methods, pointcuts, advices, etc. As an example, figure 4.5 shows the
method-level DSM for the Java version of the Observer pattern.

e

Observer Pattern (Java implementation) Ͳ Class/Method level granularity Ͳ Parameters

Modules Parameters DSM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

<API> java.** (not in NOV) * 1 *

<Interface> ChangeObserver <Method> refresh 2 *

<Interface> ChangeSubject

<Method> addObserver 3

<Method> removeObserver 4 *

<Method> notifyObservers 5

e
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<Constructor> Screen 6

1

*

<Method> display 7

<Method> addObserver 8 1

<Method> removeObserver 9 1

<Method> notifyObservers 10 1

<Method> refresh 11 1

<
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>

 P
o
in
t

<Constructor> Point 12

*

<Method> getX 13

<Method> getY 14

<Method> setX 15

<Method> setY 16

<Method> getColor 17

<Method> setColor 18

<Method> addObserver 19 1

<Method> removeObserver 20 1

<Method> notifyObservers 21 1 1

<Class> Main <Static Method> main 22 1 1 1 1 1 1 *

Figure 4.5: Method/Parameter-level DSM for the Observer pattern implemented in Java

To create such DSMs in a spreadsheet, we added a specialised feature of DSM+NOV Tool10

which generates a parameter-level DSM with the right number of parameters per module,
based on the p values specified in an existing, module-level DSM+NOV spreadsheet.

10 Refer to Chapter 3 (3.4.2).
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As far as the DSM are concerned, this clearly allows us to study dependencies in more detail.
However, because the NOV model is only designed to work at the module-level we cannot
calculate NOV scores based on parameter-level DSMs. Therefore we let DSM+NOV Tool
link the parameter-level DSM to the original module-level DSM by summarising through
summing. This means that the dependency between an ordered pair of modules, as doc-
umented in the module-level DSM, is now being calculated by summing the dependencies
between the parameters of those modules, increased with any module-level dependencies
that were already filled out in the module-level DSM11.

This way the NOV calculation stays at the module-level, while still taking into account
information from the parameter-level DSM. The result for the Java version of the Observer
pattern is shown in figure 4.6.

NOV Results

45
max nov

Observer Pattern (Java implementation) Ͳ Class/Method level granularity Ͳ Modules

Modules DSM NOV Analysis

NOV Parameters Simulation of 45 Experiments

5 6
ʍ Z p c n

k ї 0 2 4 11

1 2 3 4 Q(k) ї 0.00000 0.68100 1.04580 1.58650 2.20770

<API> java.** (not in NOV) 1 * 1

<Interface> ChangeObserver 2 * 1 2.5 0.861905 1 0.1 0.047619048 Ͳ0.8619 Ͳ0.4999 Ͳ0.3104 Ͳ0.0488 0.12821 0.12820861 0.128209

<Interface> ChangeSubject 3 1 * 2.5 1.947619 3 0.3 0.142857143 Ͳ1.9476 Ͳ1.3898 Ͳ1.1309 Ͳ0.9199 Ͳ1.7901 Ͳ0.919946 0.000000

<Class> Screen 4 1 2 3 * 2.5 0.009524 6 0.6 0.285714286 Ͳ0.0095 0.55764 0.70227 0.22481 Ͳ4.7736 0.70227094 0.702271

<Class> Point 5 1 1 3 * 2.5 0.019048 10 1 0.476190476 Ͳ0.019 0.20341 Ͳ0.1196 Ͳ2.5202 Ͳ17.639 0.20340804 0.203408

<Class> Main 6 1 2 4 * 2.5 0 1 0.1 0.047619048 0 0.36199 0.55148 0.81313 0.99011 0.99011338 0.990113

N ї 21 ї 1є  NOV ї 2.024001

Figure 4.6: Class/Method-level measurement view for the Java version of the Observer

pattern: Class/Module-level DSM (+NOV calculation) linked to the method/parameter-level

DSM in figure 4.5 through summarising by summing

The beauty of this solution is that it also implements the first change we wanted to introduce.
By linking both DSMs by summing parameter-level dependencies, the module-level DSM
now becomes an NDSM which literally counts the number of dependencies (e.g.: 20 calls
from methods of class A to methods of class B result in a dependency of 20 from A to B).
However, we should note this measurement view still does not differentiate between forms
of dependencies (e.g.: a method calls still have the same“weight”, namely 1, as inheritance
relations).

We expected that the Class/Method-level view would have a substantial effect on NOV
outcomes. For instance, we thought this would view would penalise the fragile enumeration
pointcuts in the AspectJ implementation of the pattern. But the results for the Observer
pattern contradict this: the AspectJ version still scores 95% better than the Java version,
as shown by figure 4.7 on the next page. Compared to the previous measurement view the
NOV of the AspectJ version decreases by 7%, while the score of the Java version increases
by 7%.

11 To account for strict module-level/class-level dependencies such as inheritance, see Chapter 3 (3.4.2).
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4
max nov

NOV Results

1 2 3 4 5 6 7 8 ї 0 0 1 1 2

Observer Pattern (AspectJ implementation) Ͳ Class/Method level granularity Ͳ Modules

Modules DSM NOV Analysis

NOV Parameters Simulation of 43 Experiments

6 7 8
ʍ Z p c n

k ї 0 3 7 18

1 2 3 5 Q(k) їQ(k)  0 00000.00000 0 88810 1 35340 1 82000 2 18970.88810 .35340 .82000 .18970

<API> java.** (not in NOV) 1 * 1

<Class> Screen 2 * 2.5 0.27083 2 0.25 0.0667 Ͳ0.2708 0.25243 0.48612 0.60397 0.42595 0.603971615 0.603972

<Class> Point 3 1 * 2.5 0.2125 7 0.875 0.2333 Ͳ0.2125 0.24748 Ͳ0.0073 Ͳ1.6896 Ͳ6.3474 0.247482641 0.247483

<Class> Main 4 1 1 3 * 1 1 1 2.5 0 1 0.125 0.0333 0 0.39286 0.58857 0.75571 0.82029 0.82029007 0.820290

<Aspect> ObserverProtocol 5 1 * 2.5 1.4 8 1 0.2667 Ͳ1.4 Ͳ1.0535 Ͳ1.5194 Ͳ3.8504 Ͳ10.04 Ͳ1.05346783 0.000000

<Aspect> ColorObserver 6 1 1 1 7 * 2.5 0.00417 4 0.5 0.1333 Ͳ0.0042 0.60655 0.76465 0.45726 Ͳ0.8719 0.764646182 0.764646

<Aspect> CoordinateObserver 7 1 2 7 * 2.5 0.00417 4 0.5 0.1333 Ͳ0.0042 0.60655 0.76465 0.45726 Ͳ0.8719 0.764646182 0.764646

<Aspect> ScreenObserver 8 2 7 * 2.5 0.00417 4 0.5 0.1333 Ͳ0.0042 0.60655 0.76465 0.45726 Ͳ0.8719 0.764646182 0.764646

N ї ї 130 є  NOV ї 3.965683

+95.93%

Figure 4.7: Class/Method-level measurement view for the AspectJ version of the Observer

pattern: Class/Module-level DSM (+NOV calculation)

Summary

Figure 4.8 summarises our findings for the Observer pattern, it lists the three experiments
– based on the three measurement views – we discussed above and a fourth experiment we
discuss below.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Class/Method-Level

(no normalisation)

Class/Method-Level

Class-Level p-counted

Naive Class-Level

NOV

Observer Design Pattern — NOV Analysis Summary

Java

AspectJ

Figure 4.8: NOV measurement results for the Observer pattern

4.5.3 Provisional Conclusions

Considering the results of the last two experiments on the Observer pattern implementations,
it is clear that significantly higher dependency values only have a minor decreasing effect
on NOV scores. Before we discuss experiments on other design patterns this observation
requires further investigation.

Even when dependency values for a module are doubled or even tripled NOV scores are only
slightly affected and sometimes not affected at all. Our first suspicion was that this could
be due to the fact that our implementation of the NOV model normalises the negative novi
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values to 0. So although high dependencies will increase the visibility cost (Z) of some
of the modules, this effect is essentially neutralised as soon as the return values are pulled
below 0.

While this is true, rerunning the third experiment on the Observer pattern without the nor-
malisation step, showed that it is not the (only) reason. Even though the AspectJ version
(figure 4.7) has significantly higher dependency values than the Java version (figure 4.6),
skipping the normalisation step had a much larger relative decreasing effect on the NOV
score for the latter, as shown by figure 4.8 on the previous page.

We suspect that this problem is related to the fact that we combine NOV with NDSMs. To
the best of our knowledge, that has not been done before – not by Baldwin & Clark nor by
others – which leads us to assume that the NOV model was not designed for that purpose12.

Because of the unhappy marriage between NDSMs and NOV, we have refrained from intro-
ducing a fourth measurement view which makes a distinction between forms of dependencies
(a shortcoming mentioned before). Furthermore, in the experiments on other design pat-
terns, which we discuss below, we restrict ourselves to the class-level view with counted
parameters. Instead we experiment with alternative assumptions for NOV input parameters.

4.5.4 Builder Pattern

We conducted two experiments on the Java and AspectJ implementations of the Builder
design pattern. In each experiment we used the class-level measurement view with counted
parameters. In the second experiment we used an alternative assumption for the redesign
cost parameter (c): following [5], the value of the parameter was fixed at 1 for every module.
Until now this parameter was taken as the relative complexity of the module (following [46]).

0 0.5 1 1.5 2 2.5 3

Class-Level p-counted; c=1

Class-Level p-counted

NOV

Builder Design Pattern — NOV Analysis Summary

Java

AspectJ

Figure 4.9: NOV measurement results for the Builder pattern

12 As noted earlier in Chapter 2 (2.3.6) and Chapter 3 (3.4.2).
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Figure 4.9, on the previous page, summarises the results for both experiments. Again,
the AspectJ implementation scores much higher than the Java equivalent. The effect of
the alternative assumption for the redesign cost is a decrease in NOV for both versions.
Although the AspectJ score is relatively more affected, it remains 65% above the score of
the Java version.

4.5.5 Composite Pattern

Our final two DSM+NOV experiments were carried out on the Java and AspectJ imple-
mentations of the Composite design pattern. In both experiments we used the class-level
measurement view with counted parameters. In the second experiment we introduce a novel
assumption for the complexity parameter (n).

Until now, the complexity of a module was proportional to the number of design parameters
the module contains (following [5]). Because we consider the number of methods, construc-
tors, pointcuts, advices, etc. to be a rather inaccurate estimate of the actual size of classes,
interfaces or aspects, let alone of their complexity, we try out an alternative approach. We
propose to take the complexity of a module as the proportional amount of lines of code
(LoC) contributed by the source code entity the module represents, relative to the total
number of lines of the studied software system. Formally the complexity of the i -th module
is computed as ni =

LoC i
∑

j

LoCj
.

NOV Results
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Composite Pattern (AspectJ implementation) Ͳ Class level granularity with counted parameters (p)

Modules DSM NOV Analysis

NOV Pa Simulation of rameters 54 Experiments

4 5 6
ʍ Z p c n

k ї 0 2 3 13 22

1 2 3 Q(k) ї 0.0000 0.6810 0.8881 1.6680 1.9097 2.2789

<API> java.** (not in NOV) 1 * 1

<Aspect> CompositeProtocol 2 1 * 2.5 0.2832 11 1 0.4231 Ͳ0.2832 Ͳ0.0219 Ͳ0.1082 Ͳ3.0709 Ͳ6.4855 Ͳ19.424 Ͳ0.02193 0.000000

<Class> Directory 3 * 2.5 0.2867 2 0.1818 0.0769 Ͳ0.2867 0.15753 0.28715 0.68802 0.72973 0.53818 0.72973 0.729728

<Class> File 4 * 2.5 0.2867 3 0.2727 0.1154 Ͳ0.2867 0.22869 0.3731 0.72068 0.6427 Ͳ0.0507 0.72068 0.720675

<Aspect> FileSystemComposition 5 1 1 1 1 * 2.5 0.0035 9 0.8182 0.3462 Ͳ0.0035 0.43179 0.4532 Ͳ1.2319 Ͳ3.4254 Ͳ11.945 0.4532 0.453203

<Class> Main 6 1 1 1 1 * 2.5 0 1 0.0909 0.0385 0 0.32691 0.42496 0.77235 0.85938 0.92852 0.92852 0.928518

N ї 26 є ї 1 NOV ї 2.832124

(a)

NOV Results
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novmax

Composite Pattern (AspectJ implementation) Ͳ Class level granularity with counted parameters (p)

Modules DSM NOV Analysis

NOV Parameters Simulation of 18 Experiments

4 5 6
ʍ Z c LoC n

k ї 0 2 3 5 12

1 2 3 Q(k) ї 0.0000 0.6810 0.8881 1.1697 1.6293 1.8200

<API> java.** (not in NOV) 1 *

<Aspect> CompositeProtocol 2 1 * 2.5 0.2376 1 188 0.3281 Ͳ0.2376 0.0814 0.04989 Ͳ0.2031 Ͳ1.8417 Ͳ3.5371 0.0814 0.081402

<Class> Directory 3 * 2.5 0.3736 0.234 44 0.0768 Ͳ0.3736 0.0623 0.18781 0.34692 0.53948 0.56381 0.56381 0.563814

<Class> File 4 * 2.5 0.3736 0.3191 60 0.1047 Ͳ0.3736 0.11055 0.24468 0.40562 0.54345 0.49728 0.54345 0.543452

<Aspect> FileSystemComposition 5 1 1 1 1 * 2.5 0.1359 0.8511 160 0.2792 Ͳ0.1359 0.28849 0.32445 0.22112 Ͳ0.8353 Ͳ2.0091 0.32445 0.324451

<Class> Main 6 1 1 1 1 * 2.5 0 0.6436 121 0.2112 0 0.51057 0.61259 0.66423 0.24079 Ͳ0.3555 0.66423 0.664230

єї573 є ї 1 NOV ї 2.177349

(b)

Figure 4.10: Class-level view with counted parameters for the Composite pattern in

AspectJ; using the conventional (a) and a LoC-based (b) assumption for module complexity
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Figure 4.10, on the previous page, shows DSM+NOV spreadsheets for the AspectJ version
of the Composite design pattern, using the conventional (a) and the new (b) assumption
for the complexity parameter.

0 0.5 1 1.5 2 2.5 3

Class-Level p-counted;

LoC-based complexity

Class-Level p-counted

NOV

Composite Design Pattern — NOV Analysis Summary

Java

AspectJ

Figure 4.11: NOV measurement results for the Composite pattern

Figure 4.11 summarises the results for the Composite pattern experiments. The AspectJ
version of the pattern scores higher in both experiments. The effect of the LoC-based
complexity is remarkable. The new assumption results in a decrease in NOV for both
versions, but the relative (and absolute) difference is much larger for the Java version in
comparison with AspectJ version.

4.5.6 Conclusions

4.5.6.1 Summary

We observed that experimenting with different measurement approaches – or views as we
call them – and alternative NOV parameter assumptions, had an influence on the measured
NOV scores but never significantly affected the dominance of the AspectJ versions over the
Java versions of the studied design patterns.

However, we should stress that, due to a number of issues regarding the applicability of the
NOV model as a software metric (see below), the results of our experiments cannot be used
to draw conclusions on the claimed modularity advantages of the aspect-oriented design
pattern implementations, over the object-oriented implementations.

4.5.6.2 Evaluating the Applicability of the NOV Model

Based on the experiments and findings discussed above we now present our conclusions with
regard to the applicability of NOV model as a modularity metric for software design.
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As already noted in Chapter 2, the NOV model is not a black box. Its application for a
particular purpose requires a multitude of assumptions, appropriate for the given context,
about the input parameters of the model. This requires a thorough understanding of the
meaning of those parameters.

To explore the possibilities of the DSM+NOV methodology, we experimented with alterna-
tive measurement approaches and assumptions for the input parameters of the NOV model.
However, we were unable to find an optimal approach.

Our experiment with the LoC-based assumption for the complexity parameter is an illus-
trative example. Even though all other parameters were kept constant, the results show a
striking discrepancy between the effect on the NOV score of the AspectJ version and the
effect on the result for the Java version of the Composite pattern. While we thought that
LoC-based module complexity makes sense in the context of software, we have most likely
misunderstood the true meaning of the parameter.

We consider the idea to assess modularity using a module-level and a parameter-level DSM
to be a powerful concept. Moreover, we hoped this approach would reveal more about the
interactions between design pattern participants, for instance with regard to fragile point-
cuts. However the results were disappointing. Due to the problematic combination of NDSM
and the NOV model, significantly higher (numerical) dependency values only had a negli-
gible decreasing effect on the NOV scores. We do not rule out the possibility that further
adjustments to the input parameters of the NOV model could render it more suitable to
be combined with numerical dependency values. However, our insight into the meaning of
these parameters in the context of software is insufficient to fine-tune the model ourselves.

We must conclude that the current level of understanding of the input parameters and the
outcome of the NOV model is limited and does not warrant the application of the model as
a modularity metric for real-world software designs.

We are not alone in these observations. Other authors have expressed similar concerns, as
noted in our discussion of related work in section 4.3. In fact, all previous publications on
the application of the NOV model to software design, mention at least some reservations
about the applicability of the model. For example, in [72] Sullivan et al. said:

“[Quantitative models] need not be perfect. However, they must capture the
most important terms and their assumptions and operation must be known and
understood so that analysts understand and can evaluate their predictions.”

In our opinion, these requirements are not met by the current state of the NOV model in
software. Furthermore, our findings re-establish the question as to whether the model is at
all applicable in this context.
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Possibly, developing a new quantitative model based on DSMs, specifically designed to assess
modularity in software, would be a better approach for future research than further attempts
to grasp and adapt the NOV model. However, that is outside the scope of this dissertation.

4.6 Conclusions

In this chapter we have presented an evaluation the DSM+NOV methodology for quantita-
tive assessment of modularity in software designs.

To experiment with the methodology, we applied it to aspect-oriented and object-oriented
implementations of the GoF design patterns, in order to assess the claimed modularisation
advantages of the former implementations. However, we first provided an extensive intro-
duction to the novel aspect-orientation paradigm.

In our experiments we presented three measurement views and we conducted an initial ex-
ploration of the value space of the input parameters of NOV model. The class/method-level
measurement view and the LoC-based assumption for the complexity parameter, which we
introduced here, constitute novel ideas in the field.

Based on our observations, we have concluded that we lack a solid rationale to support
application of the NOV model in the context of software development. Hence, the results
of our assessment cannot be used to draw conclusions with regard to the modularisation
properties of the aspect-oriented and object-oriented design pattern implementations.

Despite the issues of the NOV model, our experiments suggest that DSM diagrams alone are
indeed a powerful way to document and visualise dependencies in software implementations.
This is confirmed by our research, which we present in the following two chapters, into to
the application of DSM visualisations in support tools for software development.
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Chapter 5

DSM-based Code Browsers

This chapter covers our research into DSM-based support tools for object-oriented software
development (OOSD). We argue that DSMs are well-suited to be applied to OOSD and
offer a novel approach to dependency management. We propose a rationale for an extend-
able DSM-based source-code browser with analysis capabilities based on metaprogramming.
Subsequently, we present a prototype of such a tool. In the next chapter we demonstrate
how this prototype can assist developers in common tasks.

5.1 Introduction

In Chapter 2 we introduced the Design Structure Matrix (DSM) as a type of diagram that
focuses on the modular structure of systems and the dependencies among their constituent
parameters, parts or modules. In our opinion these characteristics make DSM diagrams a
useful instrument to support object-oriented software development (OOSD). Specifically, we
believe that DSMs are suitable to visualise the hierarchical structure of software components
and to help developers with managing the different kinds of dependencies among those1.
The work we present in this chapter attempts to validate this assumption by extending
source-code browsers with DSM capabilities.

Source-code browsers are tools that integrate with development environments to extend
them with facilities that enable easy navigation through the implementation of a piece
of software, usually by means of an abstract representation that is coupled to the actual
constructs in the source code. By keeping the representation, which is commonly based on
some kind of diagrams, in sync with the implementation at all times, both are said to co-
evolve [17, 76]. In case of DSM-based code browsers, co-evolution means there is a causal
link between changes in the source code and resulting shifts in the dependency patterns
visualised by a DSM diagram.

1 As explained in Chapter 4 (4.5.6.2), we think that the Net Option Value (NOV) model currently cannot

be confidently applied to study software designs, therefore we focus exclusively on DSMs in this chapter.
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Although code browsers are metaprograms2 in their own right, exposing metaprogramming
facilities to the user can make them significantly more powerful. Such facilities enable
developers to obtain diverse kinds of knowledge about a software implementation by writing
small, ad-hoc analysis programs that reason about the source code using a framework of
abstractions provided by the tool. In a DSM-based tool such metaprograms could use the
abstractions – representing modules and dependencies in the source code – that make up
the DSM, as a new reflective application programming interface (API) to reason about the
source code.

In short, the research we discuss here combines design structure matrixes, source-code
browsers and metaprogramming. To investigate the opportunities this combination holds for
OOSD, we have formulated a rationale and created a prototype of an extendable DSM-based
source-code browser with analysis capabilities based on metaprogramming. This prototype,
or future similar tools, can both passively and actively support developers in acquiring
important information, for instance with regard to decisions concerning local architectural
restructurings. This is demonstrated by the case studies we present in Chapter 6.

In section 5.2 of this chapter, we discuss some observations about the discipline of OOSD
that make the case for DSM-based support tools. Next, section 5.3 presents a rationale
for such a tool consisting of a set of requirements and the approach we propose in the
form of a DSM-based source-code browser. After that, section 5.4 presents DSMBrowser,
our prototype implementation. Finally, we discuss some related work in section 5.5 and we
conclude this chapter in section 5.6.

5.2 Motivation

In this section we deal with the motivations for our research into DSM-based support tools for
OOSD. First, we discuss modularisation and dependencies in object-oriented (OO) software
and we present of an argument for a hierarchical interpretation of those phenomena. Next,
we present arguments that stress the importance of dependency management in OOSD.

5.2.1 Modularity and Dependencies in Object-Oriented Software

In object-orientation, today’s de-facto software development paradigm, software is con-
structed from cooperating entities called objects. Objects are data structures with behaviour
– they contain data fields and units of behaviour called methods. In most object-oriented
languages objects are instances of classes, which act as static blueprints. Objects must co-
operate to perform the functions of the software. Therefore, an object can hold references
to other objects in its data fields and its methods can access fields of other objects or invoke

2 Metaprograms are commonly defined as programs that reason about or manipulate other programs (or

themselves) as their data.
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external methods by sending messages to other objects. Objects can also engage in other
relationships with one another. For instance, objects can be related through inheritance.

These relationships bring about different kinds of dependencies among objects and their
methods. Both objects (or their classes) and methods can be seen as modules – in the
sense of the definitions we discussed in Chapter 2 (2.3.1) – on different hierarchical levels.

Object-orientation provides technical mechanisms that create a grouping hierarchy – in par-
allel with an inheritance hierarchy – of modular abstractions. Methods represent portions of
code as abstract units of behaviour and are at the bottom of this hierarchy. One level up we
find objects which group methods, together with data structures, into abstract modules of
data and behaviour. Objects, for their part, can be arranged in packages, bundles, names-
paces, etc. Such groups of objects do not always correspond to functional abstractions,
but nevertheless these techniques provide an additional level – or multiple levels, as these
groupings can usually be nested – in the hierarchy.

Ideally, the modularisation that is achieved using such technical mechanisms, groups con-
ceptually related and separates conceptually unrelated things. In other words, the technical
modularisation should align with a conceptual modularisation – one that makes sense with
regard to the requirements for the system in question. However, such correspondence is not
always trivial to achieve.

Modularisations in software are never one-dimensional, but span multiple hierarchical lev-
els. Hence, dependencies among modules can cross the boundaries of surrounding modules
on higher levels. For example, a method might invoke a method of the same object (no
boundary crossed), of another object in the same package (1 boundary crossed) or of an
object in another package (2 boundaries crossed). Furthermore, dependencies can intersect
with hierarchical levels when a module depends on a module situated on a different level.
For instance, in a statically typed language a method might reference a class by its name as
the type of a variable. Moreover, dependencies on a particular level cannot be ignored on
higher levels in the hierarchy. For example, inheritance between objects in different packages
introduces a dependency among those objects but also between the involved packages.

In summary, both modularity and dependency in object-oriented software should be treated
as hierarchical phenomena.

5.2.2 Dependency Management

While object-oriented modularisation has its limitations3, it simplifies the design of modular
architectures compared to older paradigms. Such architectures facilitate the cooperation of

3 In Chapter 4 we discuss Aspect-Oriented Software Development (AOSD), a new paradigm that is in-

tended to resolve important limitations of object-oriented modularisation.
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large groups of developers and can thus increase the scalability of software development.
However, a modular architecture does not mean that dependencies among software com-
ponents can be ignored. In fact, there are several arguments that stress the importance of
true dependency management for OOSD.

Coordination efforts

The implementation of a large software system is rarely the work of one person or a small
team, but usually requires the cooperation of large groups of people with diverse specialisa-
tions and responsibilities.

Whenever multiple developers cooperate, implementation-level dependencies translate to
dependencies among individuals and groups of people. For example, when implementation
components that depend on each other are the responsibility of different people, certain
coordination efforts are essential to guarantee their proper functioning. Such coordination
takes many forms, ranging from verbal agreements among individual programmers to more
advanced methods. The cost related to coordination efforts in large-scale projects can be
significant [40].

Existing and Third-party Code

The source code that makes up large software implementations is unlikely to be entirely
written from scratch. Existing or third-party written code is used in virtually all software
development projects, even for new applications that do not extend or improve on an earlier
version. This code takes very diverse forms – libraries, frameworks, middleware components,
etc. and recycled code in general – and originates from several sources both in- and outside
a company – it may be written in-house by the same team or by another team, development
may be out-sourced to employees of a consultancy firm (on-site or elsewhere, possibly even
abroad) or it can be bought as a product from another company.

Existing and third-party written code further complicate dependencies in software imple-
mentations and thus affect the corresponding dependencies among people as well.

The use of existing code extends dependencies among people over time. For instance, when
old, “legacy” code is used, crucial knowledge might have been lost because the responsible
developers may have left the company. This hinders the maintenance and evolution of the
software system. In some cases, reengineering or even entirely replacing legacy components,
is the only solution. However, such steps cannot be taken overnight, especially in mission
critical applications. They require a meticulous planning and a design which takes all de-
pendencies, from components that are to stay to the legacy components, into account.

The use of third-party written code extends the range of involved parties – from individual
developers and teams to departments and even whole companies – and therefore it both
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increases the number and widens the scope of dependencies among people. This can be a
source of problems, for instance when the involved parties do not share the same interests.
This is especially the case when dependencies involve products from different companies –
each protecting its own investments and market shares. A consequence is that companies
usually do not have the same amount of control over code that is supplied by other firms
than over what is developed in-house. For example, it may be unavoidable that a new version
of a third-party framework introduces changes that are incompatible with some applications
that depend on it. In that sense, third-party code can be a moving target.

The Importance of Dependency Management
In summary, it is of vital importance that developers know well what their code relies on
and how and why it does so. This emphasises the importance of dependency management
for (object-oriented) software development. Sound dependency management supports co-
ordination and communication among involved parties. It requires that efforts are made
to know and to keep track of dependencies, throughout the lifecycle of a software product.
Moreover, it means that opportunities for improved modularisation – resulting in dependency
minimisations – are detected, evaluated and pursued at various development stages.

5.3 Rationale

In this section we present a rationale for a novel support tool for OOSD based on DSMs.
We first list a number of requirements which follow from the motivations discussed above.
Next, we propose an approach in the form of an extendable DSM-based source-code browser
with analysis capabilities based on metaprogramming.

5.3.1 Requirements

The central goal is to devise a tool that supports dependency management and integrates
well with the day-to-day practice of object-oriented software development. We infer five
requirements for such a tool from the motivations we discussed earlier:

Requirement 1 It is of key importance to offer a visual overview of the dependencies
among different modules in a software implementation. The visualisation should enable
users to study modularisations, for instance to verify whether technical modularisations
map to conceptual ones and whether design choices are upheld. The tool should distinguish
different dependency kinds on different hierarchical levels. In other words, it should explicitly
deal with the hierarchical nature of both modularity and dependencies in OO software.

Requirement 2 Furthermore, the tool should be flexible enough to enable developers to
focus on the regions and hierarchical levels of their choice, instead of burying them with too
much information in an overloaded visualisation.
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Requirement 3 The provided visualisation should not be static, on the contrary it should
at least support interactive navigation, both laterally and hierarchically. Additionally, visu-
alisation elements on every level should be linked to the underlying source code constructs,
allowing users to move back and forth between the visualisation and the source code.

Requirement 4 The tool should help developers to find and evaluate modularisation
opportunities in the form of local architectural restructurings. We do not seek an instrument
that autonomously introduces such restructurings, nor a general-purpose expert system.
Rather, the tool should offer a set of customisable, manually-triggered analysis features
that provide information and indicative suggestions – with regard to the minimisation of
dependencies through object-oriented modularisations – that support, rather than replace,
human decisions.

Requirement 5 Finally, the tool should be extendable so that users can customise it for
specific applications and for deployment in specific environments.

5.3.2 Approach

The solution we propose to satisfy the requirements listed above is an extendable DSM-
based source-code browser with analysis capabilities based on metaprogramming. We now
discuss the prominent aspects of this approach.

5.3.2.1 DSM-based Visualisation

We believe that DSMs, through their focus on modular structures and dependencies, offer
a suitable basis for the visualisation described by requirements 1 and 2.

While some modules in object-orientation, such as objects or methods, are apparent as
explicit units of code, this is not always true for others, such as packages or namespaces.
Most dependencies in object-orientation are explicitly defined, but often by individual lines
of code (e.g.: a method call or the specification of inheritance relations in a class header),
which makes them hard to track down. However, a DSM-based visualisation can display all
modules in the same, explicit, way and can offer a convenient overview of all dependencies,
no matter where or how they are defined.

We suggest to differentiate types of dependencies by labelling them with different“weights”.
Additionally, the DSMs should accurately represent the number of dependencies between
modules. Therefore we propose to use NDSMs4, instead of regular, binary, DSMs. In the
remainder of this chapter we will use the term“DSM”to refer to NDSMs.

4 NDSMS are DSMs with numerical, instead of binary, dependency values, see Chapter 2 (2.2). Unlike in

Chapter 4 (4.5.3), their use can not pose a problem here as they are not combined with NOV analysis.

61



To comply with requirement 1 the visualisation should explicitly deal with the hierarchical
nature of modularity and dependencies in object-orientation. However, a single, standard
DSM diagram is too limited for that. Therefore we look at two extended DSM-based visu-
alisation concepts. First, we consider the possibility of using a linked series of DSMs, where
each DSM represents a single hierarchical level. While this would be a major improvement
over a standard DSM diagram, it still does not fully satisfy requirement 1. Because of that,
we propose a second visualisation approach which combines multiple hierarchical levels into
a single tree-based DSM diagram. The second approach fully complies to requirement 1
and we have implemented it in our prototype.

Linked Series of DSMs
The concept of a linked series of DSMs builds further upon a concept we introduced in
Chapter 3 (3.4.2) in connection with our spreadsheet generation tool. There, the idea was
to use a couple of two DSMs, a “module-level” one and a “parameter-level” one, to simul-
taneously document dependencies on two hierarchical levels. Both diagrams could then be
linked by letting the module-level DSM summarise the dependency values of the parameter-
level DSM, either by summing or maximising them, per ordered pair of modules.

Here, we propose to extend this couple of DSMs to an unlimited series of DSMs, each
representing a different hierarchical level of the studied system5. The DSMs in the series
should be linked by summarising lower level dependencies through summing6.

Equation 5.1 formally defines how the DSMs in such a hierarchical series are to be linked.
We number the DSMs in the series so that the one that corresponds to the lowest hierar-
chical level is labelled with the number 1, and those representing higher levels are labelled
with increasing numbers. Then, a dependency value from DSMH accounts for all direct
dependencies – those occurring strictly on the H-th level – between an ordered pair of
modules situated on the H-th hierarchical level, and unless H = 1, also for all lower-level
dependencies – which are summarised from DSM(H−1) by summing – between submodules
of the ordered pair.

dHi,j =







DHi,j +
∑

∀p ∈ i , ∀q ∈ j

d
(H−1)
p,q for H > 1

DHi,j for H = 1

(5.1)

In the equation:

• dXa,b is a dependency value (from DSMX), which represents the dependencies from a
module a to another module b, both situated on the X-th level in the hierarchy;

5 We hereby slightly alter the meaning, as defined in Chapter 3 (3.4.2), of modules containing (design)

parameters, because modules now contain other modules as their parameters (or submodules).
6 Summarising by maximising makes no sense here because we do not want to ignore any lower level

dependencies on higher hierarchical levels.
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• DXa,b is a value that represents the direct dependencies, occurring strictly on the X-th
hierarchical level, from a module a to another module b, both situated on the X-th
level in the hierarchy.

For example, in the context of object-orientation a series of three DSMs could cover the
levels of methods (DSM1), classes (DSM2) and packages (DSM3). In that case, D1m1,m2
would represent direct, method-level dependencies from a method m1 to a method m2 (e.g.:
method calls), while D2c1,c2 would represent direct, class-level dependencies from a class c1
to a class c2 (e.g.: inheritance).

On the next page, figure 5.1 shows such a method-class-package DSM series for a hypo-
thetical piece of object-oriented software. We only included direct dependencies on the
method-level (i.e.: ∀p1, p2 : D3p1,p2 = 0 and ∀c1, c2 : D2c1,c2 = 0), to emphasise how higher-
level DSMs summarise the dependencies on lower levels (i.e.: DSM2 sums method-level
dependencies per ordered pair of classes and DSM3 does so per ordered pair of packages).

Also on the next page, figure 5.2 displays an UML class diagram [103] which clarifies the
architecture of the software system represented by the DSM series in figure 5.1.

For simplicity the UML diagram in figure 5.2 only displays dependencies originating from
PackageC. We now use those dependencies to illustrate the summarising process in the DSM
series shown in figure 5.1. We assume that all method-level dependencies are caused by
method calls, which are given an individual weight of 1. Looking at DSM1, we see that the
dependencies originating from PackageC are caused by 7 method calls to 5 different methods
(one is called 3 times from the same method). Next, in DSM2 we see that the 7 method
calls target methods in 4 classes (respectively 3, 1, 2 and 1 times). Finally, in DSM3 we
see that the method calls from PackageC target methods in classes of both PackageA and
PackageB (respectively 4 and 3 times).
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Tree-based DSM diagram
A series of linked DSMs is a powerful way to display the hierarchical structure of object-
oriented software. However, there are some issues we should deal with. For one thing, we
expect that it might be difficult to integrate this concept in a convenient user interface. But
perhaps more importantly, requirement 1 is not fully met because a series of DSMs, each of
which represents a specific hierarchical level, fails to represent dependencies that intersect
hierarchical levels. For instance, if MethodAY1 were to reference ClassCX by its name (e.g.:
as the type of a variable), none of the DSMs in figure 5.1 would be able to express that
dependency because methods and classes are never confronted in the same DSM.

To deal with both issues, we propose to integrate individual DSMs from a linked series into
a single, tree-based DSM. In such a diagram, the module names column is be replaced by
a tree-based view of the hierarchy of the system. Figure 5.3 illustrates what the result of
applying this approach to the system from figures 5.1 and 5.2 could look like.

Package/Class/Methodどtree DSM

1 2 3 4 5 6 7 8 9 10 11

[-] PackageA 1 *

 |�[+] ClassAX 2 * 1

 |�[-] ClassAY 3 *

    |� MethodAY1 4 1 * 1 1

    |� MethodAY2 5 1 *

    |� MethodAY3 6 1 * 1

[+] PackageB 7 1 2 1 2 * 1

[-] PackageC 8 *

 |�[-] ClassCX 9 *

    |� MethodCX1 10 1 2 *

    |� MethodCX2 11 3 1 *

Figure 5.3: Integration of multiple hierarchical levels in a tree-based DSM diagram

The tree-based DSM in figure 5.3 visualises all three hierarchical levels of the system, but
it abstracts away the details of some, user-selected, modules (i.e.: ClassAX and PackageB)
by showing them in a “collapsed” state – meaning that any lower-level modules they may
contain are hidden. The other modules are shown in an “expanded” state – meaning that
any lower-level modules they may contain are shown elsewhere in the DSM. The collapsed
or expanded state of a module is respectively indicated by a + sign or a – sign in front of
its name.
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This approach does support representing dependencies which intersect hierarchical levels –
as demonstrated by the highlighted dependency from MethodAY1 to ClassCX in the diagram
in figure 5.3 – and thus fully complies with requirement 1.

Furthermore, a tree-based DSM diagram is ideal to be integrated in an interactive graphical
user interface (GUI). The idea is to dynamically repaint the displayed DSM diagram when
a user collapses of expands a module in an on-screen hierarchy tree.

Collapsing and expanding modules is respectively equivalent to zooming in and out on the
visualisation and allows us to meet requirements 2 and 3. It facilitates hierarchical navigation
through the system – for instance, by recursively expanding modules we can“drill down”to
the source of a particular dependency. Lateral navigation can be achieved by selectively
collapsing and/or expanding modules – for example, by collapsing those modules we do
not and expanding those do care about, we can focus on what is important at a particular
moment and avoid overloaded visualisations.

We should note that the choice to visualise software structures using tree-based DSMs
was partially inspired by Lattix LDM, one of the applications we discuss as related work in
section 5.5.

In summary, the tree-based DSM diagram resolves the issues of the linked series of DSMs
and is therefore the preferred visualisation approach. Consequently, this is what we have
implemented in the prototype we discuss in section 5.4.

To conclude, we present a formal definition, by means of equations 5.2, 5.3 and 5.4, of the
dependency values in a tree-based DSM.

ti ,j = Di ,j + hi ,j (5.2)

hi ,j =







∑

∀p ∈ i

sp,j +
∑

∀q ∈ j

si ,q +
∑

∀p ∈ i , ∀q ∈ j

sp,q when i and j are in collapsed state

∑

∀p ∈ i

sp,j when only i is in collapsed state

∑

∀q ∈ j

si ,q when only j is in collapsed state

0 when i nor j is in collapsed state
(5.3)
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sx,y = Dx,y +







∑

∀a ∈ x

sa,y +
∑

∀b ∈ y

sx,b +
∑

∀a ∈ x, ∀b ∈ y

sa,b when x 6= ∅ and y 6= ∅
∑

∀a ∈ x

sa,y when x 6= ∅ and y = ∅
∑

∀b ∈ y

sx,b when x = ∅ and y 6= ∅

0 when x = ∅ and y = ∅
(5.4)

In the equations:

• ti ,j is a dependency value between a module i and another module j as it is displayed
in a tree-based DSM; where i and j can be situated on different hierarchical levels of
the represented system;

• hi ,j represents the portion of ti ,j that accounts for dependencies to and/or from mod-
ules which are hidden because of the collapsedness of i , j or both:

– if both i and j are collapsed hi ,j is taken as the recursive sum of the dependencies
from all submodules of i to j , those from i to all submodules of j and those from
all submodules of i to all submodules of j ,

– if only i is collapsed hi ,j is taken as the recursive sum of the dependencies from
all submodules of i to j ,

– if only j is collapsed hi ,j is taken as the recursive sum of the dependencies from
i to all submodules of j ,

– if i nor j is collapsed then all their submodules are visible elsewhere in the DSM,
so hi ,j = 0;

• The value Dx,y represents all direct dependencies from a module x to a module y (and
not from/to their submodules); where x and y can be situated on different hierarchical
levels;

• sx,y recursively sums all dependencies from a module x , and its submodules, to another
module y , and its submodules; where x and y can be situated on different hierarchical
levels.

Furthermore:

• A module m, situated at a H-th hierarchical level, is empty (m = ∅) when it contains
no submodules; possibly because it is situated on the lowest hierarchical level (H = 1);

• Modules are considered collapsed when they are not expanded and vice versa;

• Empty modules are considered to be expanded.
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5.3.2.2 Source Code Browser

A source-code browser is a tool that presents the source code of a software system in a way
that facilitates navigation (browsing), exploration and analysis of the implementation of the
system. Usually the browser processes the code to generate some abstract representation
based on a type of diagrams.

We believe that this is the ideal format to meet the requirements we specified earlier. We
thus propose to create a source-code browser that uses the tree-based DSM diagram we
discussed above, as a view on the code. Hence, the application should provide an on-screen
DSM-based visualisation of the implementation of the studied system, where the elements
of the DSM – modules and dependencies – are abstract representations of underlying source
code constructs.

The browser should be integrated into a development environment to support users in their
day-to-day activities. Unlike stand-alone diagram generation tools, IDE-integrated code
browsers are “online” all the time. This means that the provided representation can stay
synchronised with the source code “reality”, through automatic regeneration upon changes
in the source code. These on-the-fly updates allow the visualisation to co-evolve [17, 76]
with the actual implementation of the studied software.

We believe that co-evolving DSM diagrams could be an excellent tool to support dependency
management in OOSD, because they create a direct, causal link between changes in the
source code and resulting shifts in the explicitly visualised dependency patterns.

Requirement 3 demands that the source code processing should not result in a static, purely
graphical, visualisation of the system. Instead, the visualisation should enable interactive
navigation through the implementation of the system and users should be able to easily
move back and forth between the visualisation and the source code. To make it dynamical,
we propose to back the on-screen DSM view with a model7 in which the individual elements
that constitute the DSM remain semantically linked to the specific source code constructs
they represent. This tight coupling could then support a number of interesting, interactive
features in the user interface. For instance, context menus could be used to offer specific
functionality for a user-selected element in the DSM (e.g.: expand or collapse a module,
show underlying source code, track all dependencies from or to a module, inspect the target
of a dependency, etc.).

5.3.2.3 Metaprogramming-based Analysis

Requirement 4 stipulates that the tool should offer a set of analysis features that can help
developers to find and evaluate modularisation opportunities in the implementation of the

7 As in the Model-View-Controlled design pattern [58, 59, 60].
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studied software system. These opportunities represent changes in the implementation, that
potentially lower the degree of dependency between some of its components and thus im-
prove its modularity properties. Specifically, users may want to know if and where local
architectural restructurings can be introduced, by means of common object-oriented strate-
gies, to achieve such modularity improvements.

The kind of modularisation opportunities and the conditions that govern their applicability
vary greatly with the context. Hence, the analysis features should be highly customisable.
Therefore, we propose to equip the source-code browser with metaprogramming facilities.
Using these facilities, the users themselves can write ad-hoc metaprograms to inspect (parts
of) specific systems in search of specific information, with regard to modularisation oppor-
tunities or other purposes.

To this end, the tool should expose a framework of abstractions as an API which metapro-
grams can employ to reflect on the source code from a higher level of abstraction. We
believe that the model which backs the DSM visualisation (see above) could be reused for
this purpose. Primarily because it describes an abstract representation in terms of mod-
ules and dependencies, which is ideal to let metaprograms reason about the modularity and
dependency properties of the system, in search of modularisation opportunities. Secondly,
because metaprograms can use the elements of the DSM model as a middleman to access
underlying implementation constructs (i.e.: for investigations that can only be carried out
on the actual source code).

Although users should have the freedom to write metaprograms for all sorts of purposes, the
main objective is to enable them to write programs that automate the process of gathering
knowledge with regard to modularisation opportunities. The kind of information that is
collected may vary depending on the context and the level of sophistication of the program:
ranging from plain statistical data amassed by simple metaprograms, to concrete, directed
modularisation suggestions supplied by more advanced metaprograms.

While the task of writing metaprograms for specific purposes be only be left to the users,
the tool should provide some generic examples and a collection of essential building blocks.
Futhermore, the user interface should provide hooks to run metaprograms against specific
parts, selected from the on-screen DSM visualisation, of the studied system.

We should note that these metaprogramming-based analysis features motivate why we chose
the format of an IDE-integrated code browser in the first place – instead of a standalone
(“offline”) tool. The reason is that the format enables us to provide metaprograms with an
abstract representation that remains connected to the underlying implementation constructs,
which greatly simplifies reasoning about the system. Furthermore, we expect that a hierar-
chical representation in terms of modules and dependencies, as provided by the tree-based
DSM model, is ideal to let metaprograms search for modularisation opportunities.
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5.3.2.4 Summary

We expect that tree-based DSM-based visualisation, source-code browsers and metapro-
gramming facilities form a powerful combination for support tools for OOSD.

We believe that an implementation of the approach we present, could effectively assist devel-
opers in common tasks related to dependency management. These tasks range from passive
information gathering (e.g.: tracking which types of dependencies occur how frequently in
which locations), to active interventions (e.g.: improving modularity by minimisation, cen-
tralisation or even elimination of dependencies). A tool that implements our approach should
be able to support developers in these tasks, both passively (e.g.: by providing users with
a practical way to navigate through the system to manually track dependencies or search
for modularisation opportunities) and actively (e.g.: through metaprograms that automate
information gathering or even supply modularisation suggestions).

While to primary goal is to support dependency management, we think such a tool could
also help developers to explore and familiarise themselves with large amounts of unknown
source code. For instance when they have to maintain, reengineer or replace legacy code.

To validate these assumptions we have developed a prototype tool, which we discuss in the
next section, and a number of usage scenarios, which are covered by Chapter 6.

5.4 DSMBrowser

In this section we present DSMBrowser8, a prototype of an extendable DSM-based source-
code browser with analysis capabilities based on metaprogramming. To meet the specified
requirements this implementation closely follows the approach we described above.

In what follows we introduce the context, the most prominent features and the important
architectural details of DSMBrowser.

5.4.1 Context

We implemented DSMBrowser in the Smalltalk programming language and it is intended to
support OOSD in Smalltalk environments. The choice for Smalltalk as the implementation
language was inspired by its extensive support for metaprogramming and reflection through
its meta-object protocol (MOP).

DSMBrowser was developed using Cincom VisualWorks [105], an IDE for Smalltalk, and it

8 DSMBrowser is available at the Cincom Public Store Repository

(http://www.cincomsmalltalk.com/CincomSmalltalkWiki/PostgreSQL+Access+Page).
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integrates with that same environment to support the development of other software. More
specifically, DSMBrowser is an extension of StarBrowser, a code classification and browsing
tool for VisualWorks, developed by Roel Wuyts [77, 80].

In line with requirement 5, the DSMBrowser system was conceived as an open-ended frame-
work, which can be extended and customised in a number of ways, which we mention
below.

5.4.2 User Interface

DSMBrowser has a graphical user interface which is closely integrated into StarBrowser and
VisualWorks. Figure 5.4 shows a screenshot.

Figure 5.4: DSMBrowser integrated into the StarBrowser interface

The tree view widget on the left-hand side of the window is part of the StarBrowser interface
and lists different kinds of classifications and their contents. To use DSMBrowser a user
must add a special DSMView classification to the classifications list, by clicking a button
on the toolbar. The DSMView can then be populated by dragging and dropping entities of
Smalltalk code from Refactoring Browser [61, 11] windows9 or from other classifications in
the StarBrowser.

9 The current Visual Works System Browser is an implementation of the Refactoring Browser of Roberts

et al. [61, 11].
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By using the classification model [80], DSMBrowser gives developers the ability to select
arbitrary entities of Smalltalk code as the modules to confront in a DSM. This helps them
to focus on the implementation parts of their choice. It is even possible to group modules
across multiple hierarchies. For instance, one can easily study the dependencies between a
single class and a whole package by simply adding the class (without its own surrounding
package) and the package to a DSMView classification.

Once the DSMView has been populated a tree-based DSM visualisation will show up in
the right-hand side of the window. This visualisation offers all the interactivity features
we described earlier. Modules can be dynamically collapsed and/or expanded to support
hierarchical and lateral navigation. Furthermore, context menus – like the one on the
screenshot in figure 5.4 – offer specific functionality with regard to individual modules or
dependencies. Examples include opening a Refactoring Browser to look at source code,
opening a Trippy inspector [106] to inspect an object or running a metaprogram against a
set of dependencies.

5.4.3 DSM Model

Before DSMBrowser can visualise the system formed by the selected source code entities,
it must process the code to build an in-memory representation of the modular structure of
the system and all occurring dependencies. This DSM model will then back the on-screen
visualisation and can be employed by metaprograms as an API to reason about the system.

Figure 5.5, on the next page, shows a simplified UML class diagram [103] of the architecture
of the DSM model. To reflect the hierarchical structure of studied code entities, the design
uses the Composite pattern [22]. In a nutshell the architecture is set up as follows:

• all components in the hierarchy are represented by instances of the Module class;

• the diagram as a whole is an instance of the DSM class, a subclass of Module;

• all Module instances are composites that can contain other Module instances as their
parameters (or submodules);

• every Module instance holds a reference to its parent Module and to its subject:

– the subject is the source code entity that the Module instance represents,

– the subject of a DSM object is a DSMView classification;

• a Dependency instance represents an implementation-level dependency, from the sub-
ject of its from- (or source) Module instance, to the subject of its to- (or target)
Module instance:

– it contains references to those Module instances, as well as a weight value (which
defaults to 1),
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– the Dependency class represents generic dependencies, subclasses can be defined
to represent different types of dependencies (possibly with adjusted weights);

• A DSM instance contains a reference to a DependencyDictionary which indexes De-
pendency objects by their source and their target Module.

subject[1]

parameters[*] : Module

parent[1] : Module

Module

parent

1

parameters*

-dependencyDictionary[1]

DSM

from[1] : Module

to[1] : Module

weight[1] : Integer

Dependency*

from

1

*

to

1

dependenciesBySource[*] : Dependency

dependenciesByTarget[*] : Dependency

DependencyDictionary

1 1

1
*

1
*

Figure 5.5: UML class diagram [103] for the DSM model architecture (simplified)

DSMBrowser extends the service architecture of StarBrowser, which implements the Visitor
design pattern [22]. To build a DSM model for selected entities of code, DSMBrowser uses
two important services.

First, a service that determines the children of the subject of a module (e.g.: the methods
of a class), is used to construct a tree representation. This tree is a parallel representation
of the hierarchical structure of the code entities. Building the tree is a recursive process: for
every module the children of its subject are determined and these children then become the
subjects of the submodules of the module. The process starts with the subject of the DSM,
which is a DSMView classification whose children are the root code entities (the ones the
user dragged and dropped into the classification). The process stops when the bottom of
the hierarchy is reached.

Once the tree is completed, DSMBrowser uses a service which determines the dependencies
originating from each module in the tree. The dependencies are stored in the Dependency-
Dictionary of the DSM. Because the target of some dependencies might not be present in
the classification (e.g.: a class might inherit from a class that is contained in a package that
was not added to the DSMView), users can choose to add a “virtual”module that acts as
a placeholder for external dependency targets10.

10 This feature was inspired by the work of Sullivan et al. [72], which is discussed in Chapter 4 (section 4.3).
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The DSM Module design is conceptually independent of the Smalltalk language because all
language specific behaviour is implemented in the services. Therefore, the design could be
straightforwardly reimplemented in another DSM-browser to target another object-oriented
programming language. Furthermore, future versions of DSMBrowser could be extended
with support for other languages by using intermediary libraries.

5.4.4 Smalltalk Language Support

In DSMBrowser, pretty much any entity of Smalltalk source code can act as a module
in the DSM diagram. We support bundles, packages, classes, namespaces and methods.
Moreover, we differentiate meta classes from regular classes, class extensions from class
definitions and namespace extensions from namespaces definitions.

DSMBrowser can express various kinds of relationships among source code entities as de-
pendencies. Currently we support message sends, class name references, inheritance rela-
tionships, class extensions and namespace relationships. New kinds of dependencies can
be added by defining new subclasses of Dependency and extending the dependency service.
A possible candidate is a dependency for overriding relationships (i.e.: from an overriding
method to the overridden method), which would be trivial to add.

The dependency service tracks the targets of dependencies using different techniques de-
pending on the type of dependency. Target tracking is exact for all types expect message
sends. Because Smalltalk is a dynamically typed language it is not easy to determine the
type of the object a message is being sent to. Currently, we use a fairy näıve heuristic
that creates dependencies to all classes that implement a method with the same name as
the message that is being sent. Obviously the performance of this heuristic is rather poor,
especially when common Smalltalk methods (e.g.: new, initialize, release, etc.) are
concerned. However, experiments have shown that this does not at all render the tool
useless. This problem is entirely due to the Smalltalk typing system and would not occur
in a similar code browser for a statically typed language. Moreover, future versions of the
DSMBrowser could use more sophisticated heuristics, for instance based on the techniques
used in RoelTyper [78], a tool that infers the types of instance variables in Smalltalk using
advanced heuristics.

5.4.5 Analysis Features

The choice for Smalltalk, as the implementation language of DSMBrowser, made it easy to
equip the tool with the metaprogramming-based analysis features we specified earlier (see
5.3.2.3). Smalltalk’s metaprogramming support and the open VisualWorks environment en-
able users to implement analysing metaprograms in plain Smalltalk. However, DSMBrowser
does provide a number of facilities that considerably simplify that task.
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As mentioned earlier, the DSM model was designed to act both as a backend for the DSM
visualisation and as an API to be targeted by user-written metaprograms, primarily with
regard to finding modularisation opportunities. Therefore, much of the model’s classes im-
plement functionality that is specifically intended to support such programs. For instance,
the DependencyDictionary class provides a whole range of querying methods that can be
used mine for specific dependencies or the modules they connect.

Additionally, DSMBrowser contains an extendable dependency filtering infrastructure that
can be used to filter and sort dependencies. Besides generic filtering classes a collection of
ready-to-use filters is available, including filters that throw out dependencies that:

• are not of a specific type (e.g.: only keep inheritance dependencies);

• are internal to a specific module – practical to hide dependencies among the classes
and methods of a package when we only care about dependencies to other packages;

• result from the sending of common Smalltalk messages – useful given the accuracy of
the current message target tracking heuristic.

Furthermore, DSMBrowser includes a small dependency analysis framework that provides
essential building blocks for analysing metaprograms. The framework defines generic de-
pendency visitors [22] and generic classes that implement the elementary behaviour for two
basic types of metaprograms. The first class, DependencyAnalyser, can be subclassed to
create metaprograms that strictly collect (statistical) information. The second one, Depen-
dencyAdvisor, acts as a superclass for metaprograms that actually evaluate the feasibility
of certain modularisation opportunities and produce indicative suggestions or even specific
advice, with regard to modularity-enhancing architectural restructurings. The GUI logic dy-
namically adds entries for subclasses of both metaprogram classes to the context menu of
the DSM visualisation. That way, new user-defined analysis programs become immediately
available within the DSMBrowser interface to run against sets of dependencies.

To demonstrate the analysis capabilities of DSMBrowser, we have developed a few metapro-
grams that assist users with finding and evaluating modularisation opportunities and serve
as examples for user-written programs. While they are intended as a proof of concept these
metaprograms are usable in real-world situations, as we show in Chapter 6.

5.5 Related Work

Although the application of DSMs in support of software development is a fairly recent
phenomenon, other parties have conducted related research and created similar tools. We
discuss three such tools, Lattix LDM and NDepend, which are the most mature examples,
and an experimental program called DeMatrix.
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5.5.1 Lattix LDM

Lattix, Inc. was the first company to release a commercial support tool for software devel-
opment which applies DSMs as abstract representations of software implementations. The
product is called Lattix LDM [95, 26] and is primarily promoted as a tool for analysing
and managing large-scale software development projects. Lattix LDM and its underlying
methodology have been demonstrated in talks at conferences [63, 64] and in a number of
articles [41, 62, 65]. We have experimented with a trial version of Lattix LDM11.

Lattix LDM reverse engineers Java, C/C++ and .NET code to DSM diagrams and comes
as a stand-alone application (for Windows or Linux) and as a plug-in for the Eclipse devel-
opment environment [92]. Figure 5.6 shows a screenshot of the Eclipse plug-in displaying a
DSM visualisation of the Apache Ant [87] source code. We created this DSM by reproducing
the procedure explained in [41].

Figure 5.6: Lattix LDM [95] Eclipse plug-in showing a DSM for Apache Ant [87]

The user interface of Lattix LDM uses a tree-based DSM visualisation, which aggregates
classes per package level and allows packages to be collapsed and expanded. While this was

11 Version 2.7.5; while version 3.1 was recently released, licensing constraints do not allow us to use it.
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a source of inspiration for DSMBrowser, Lattix does not offer the same level of detail, as it
does not document dependencies below the level of classes.

Lattix computes package-level dependencies by summing class-level dependencies. Class-
level dependency values (which are referred to as dependency strengths) are numerical and
can be configured to be knowledge-based on usage-based. The available documentation
lacks a formal explanation of both configurations, but as far as we can tell the knowledge-
based configuration only takes into account which classes “know” one another, while the
usage-based configuration expresses the degree to which classes use each other’s functional-
ity. Knowledge-based dependency strengths seem to be limited to a scale from 0 to 2. The
usage-based configuration results in a much wider range of dependency strengths and clearly
provides a more detailed approximation of implementation level dependencies. However, due
to the lack of method-level dependencies, even Lattix LDM’s usage-based configuration fails
to provide the same level of detail DSMBrowser offers.

Other notable features of Lattix LDM include a number of dependency filtering settings
and the definition of design rules12 to capture and enforce architectural intent. Software
architects can create design rules with Lattix LDM to express the nature of dependencies
between subsystems or classes. Dependencies that violate such design rules are then high-
lighted in the visualisation.

The classification model [80] used in DSMBrowser allows the user to confront any mix of
arbitrary source code entities in a DSM. In comparison, Lattix LDM does not offer the same
level of flexibility.

While it provides various statistics and metrics13 to analyse software systems, Lattix lacks
support for analysis through metaprogramming and does not provide suggestions with regard
to modularisation opportunities.

5.5.2 NDepend

NDepend [99], a product of Smacchia.com s.a.r.l., is another commercial software devel-
opment tool that applies DSM diagrams14. It is a dependency management tool that is
intended to facilitate controlling the complexity, quality and evolution of source code. NDe-
pend exclusively targets the .NET software development platform [98] and integrates with
the Microsoft Visual Studio IDE [97].

The tool analyses source code and compiled .NET assemblies to generate a reports and

12 Refer to Chapter 2 (2.3.3) for an explanation of the concept of design rules.
13 These metrics do not include Net Option Value calculation.
14 This information is solely based on texts on the NDepend website [99], as we have not experimented

with NDepend ourselves.
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interactive graphical visualisations, based on tree-based DSMs and other diagrams. It also
includes over 60 predefined metrics to analyse different aspects of software implementations.
Moreover, it provides metaprogramming facilities by means of an SQL-like query language
called Code Query Language (CQL), which allows users to write queries against the code
structure of .NET applications and which can be used to write custom metrics. This query-
based approach differs considerably from the metaprogramming API of DSMBrowser. Which
approach is superior in practice cannot be decided at present.

5.5.3 DeMatrix

DeMatrix [2] is a tool created by Sushil Bajracharya et al. at the University of California,
Irvine. It was developed in connection with a larger research project that aims to create
an infrastructure, named Sourcerer [3, 101], for large-scale analysis of open source code
repositories. DeMatrix is a front-end for Sourcerer that visualises software using DSMs.

Figure 5.7: DeMatrix applet [2] displaying a DSM for the source code of JAPAN [93]
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Currently DeMatrix is only available as a Java applet embedded on a demonstration web-
page [2]. The applet displays DSM visualisations of Java source code of various open source
projects hosted at SourceForge [100]. The screenshot in figure 5.7, on the previous page,
shows the DeMatrix applet visualising the code of the JAPAN [93] project.

DeMatrix provides a basic, fairly static visualisation based on (binary) DSMs and no analy-
sis features. The design parameters, which are confronted in the DSM, correspond to Java
classes. Modules, corresponding to packages, are indicated using yellow bordered boxes on
the diagonal. The DSM is not tree-based so packages cannot be collapsed or expanded.
The module level can be shifted to correspond to a higher or a lower package level, which
respectively results in larger or smaller module boxes but does not otherwise alter the visu-
alisation.

5.6 Conclusions

The main contributions of the work we presented here are the rationale for a novel DSM-
based support tool for OOSD and DSMBrowser, a prototype implementation of such a tool.

As part of the rationale we presented five essential requirements for a dependency manage-
ment tool for OOSD, following from observations about the discipline. Considering those
requirements we concluded that the ideal solution would be to combine tree-based DSM vi-
sualisations and metaprogramming-based analysis facilities in an extendable, IDE-integrated
source-code browser. While there are other DSM-based support tools for software develop-
ment, this combination of features forms an innovative and powerful approach.

DSMBrowser is an experimental implementation of this approach, applied to the Smalltalk
language. It seamlessly integrates with StarBrowser and the VisualWork environment and
has excellent support for the modularity and dependency characteristics of Smalltalk and
object-oriented programming languages in general. The tool provides practical facilities that
enable users to write simple, ad-hoc metaprograms to analyse software systems and to find
and evaluate modularisation opportunities which improve software design.

Despite its experimental status, the case studies we discuss in Chapter 6 demonstrate that
its unique combination of features makes DSMBrowser highly useful in real-world situations.

DSMBrowser can also serve as a test bed for future research with regard to applications of
DSMs in support of software development. In Chapter 7 (section 7.3) we formulate some
directions for this future work.
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Chapter 6

DSMBrowser Case Studies

This chapter discusses a number of case studies that demonstrate how software developers
can use DSMBrowser, the DSM-based source code browser we presented in the previous
chapter, in real-world situations and how they can benefit from that. The case studies focus
on the exploration of unknown source code and on common dependency management tasks.
The most prominent contribution we present here is formed by metaprograms that automate
the task of finding and evaluating modularisation opportunities.

6.1 Introduction

In Chapter 5 we introduced a rationale for a novel support tool for Object-Oriented Soft-
ware Developments (OOSD) in the form of an extendable DSM-based source code browser
with analysis capabilities based on metaprogramming. We also presented a prototype im-
plementation of such a tool – named DSMBrowser – and we made a number of claims and
assumptions with regard to the utility of this or future similar tools.

To demonstrate the prototype and validate our claims and assumptions, this chapter presents
a number of case studies. Each case study is situated in a realistic context related to OOSD
and presents a usage scenario which shows how and why software developers can benefit
from using DSMBrowser in that context. Everything is illustrated with concrete examples
and the usage scenarios offer tutorial-style explanations of how we propose to approach
those.

We start out with an exploration case study in section 6.2. While supporting the exploration
of unknown source code is not the primary goal of DSMBrowser, the scenario we discuss
here helps to explain how the basic visualisation and navigation features can be used. Next,
in section 6.3 we consider case studies regarding dependency management. The first case
study deals with gathering of dependency information and the next ones deal with searching
and evaluation of modularisation opportunities through metaprogramming. We conclude
this chapter in section 6.4.
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We should note that all DSM diagrams shown by figures in this chapter are screenshots
of the DSM visualisation provided by DSMBrowser, to which we added coloured frames to
highlight the important elements.

6.2 Source Code Exploration

Context
While the primary goal of DSMBrowser is to support dependency management, it can
also help software developers to explore and familiarise themselves with large amounts of
unknown source code.

There are many situations where developers have to explore unknown systems. For instance,
when a new employee is hired to join an ongoing development project, he or she will have to
become familiar with the system that is being built as quickly as possible. Furthermore, it
is not uncommon that software developers are instructed to maintain, reengineer or replace
legacy code that lacks documentation or which was written by people who already left the
company.

To demonstrate how DSMBrowser can support code exploration and as a tutorial to the
basic functionality of the tool, we explain how others could use it to familiarise themselves
with the source code of DSMBrowser itself.

Usage Scenario

The tree-based DSM diagram in figure 6.1 shows an overview of all the packages in the
DSMBrowser bundle1. The diagram was generated by creating a new DSMView classifica-
tion in StarBrowser, to which the DSMBrowser bundle was added. This visualisation is an
excellent starting point for exploration of the system.

 

Figure 6.1: Exploring the implementation of DSMBrowser – Package overview

1 Below we will explain why one of the packages is shown in expanded state.
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Because it is not convenient to study all parts of the system simultaneously, the first step is
to select which parts (packages) will be investigated first. The inter-package dependencies
shown in the columns and rows of the DSM are helpful to make this choice.

By looking at the columns, we see which packages are targeted the most by dependencies
originating from other packages. Clearly some packages are more“popular”than others. At
a glance, there are five popular packages: Namespace, Model, GUI, StarBrowser2 Ex-

tensions and Dependency Analysis. Assuming that the packages are named according
to their contents or functionality we can suspect that the Namespace package only contains
namespace definitions. By simply expanding the package – as we did on the figure – we
can establish that this is indeed the case. We can now conclude that the high number of
dependencies to this package is simply caused by the fact that every class in the system is
defined within the DSMBrowser namespace2. Clearly the Namepace package is uninteresting
from a functional point of view and does not require further investigation. Therefore, in the
remainder of our scenario we only consider the other four popular packages.

By looking at the rows we see that the dependency interest is mutual, as the popular pack-
ages are also the ones which have the most dependencies to others. We can thus conclude
that some packages are heavily dependent on one another, while others are relatively in-
dependent. Although the relative independence of a package does not guarantee that it
is functionally unimportant, it does signify that we can study it in isolation from others.
Consequently, it is probably wise to explore the set of four tightly connected packages first
and to leave the independent ones for later.

Thanks to the classification model of DSM/StarBrowser, studying an arbitrary subset of
a system is easy. We create a new DSMView and populate it with the four packages by
dragging and dropping. Now we have limited the scope of our investigation, we can use the
navigation features of DSMBrowser to quickly learn more about the system. By collapsing
and expanding different modules, different cross-sections of the system can be visualised.
For example, we could end up with the visualisation shown by figure 6.2 on the next page.

Having drilled down the level of classes and methods we can now start to investigate the
system in more detail. Object-orientation demands that objects have intrinsic responsibil-
ities but cooperate to implement the functionality of the system. With such principles in
mind, we can expect that classes, or methods, with high incoming dependency values are
relatively more important for the functioning of the system than others. Moreover, classes
or methods which lack all incoming dependencies are likely to contain only“dead”code.

2 Right-clicking on the Namespace package and selecting the“Inspect all dependencies to here”option from

the context menu would reveal that the package is indeed only targeted by namespace dependencies.
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Figure 6.2: Exploring the implementation of DSMBrowser – Package subset

High outgoing dependency values are an indication of the entities that tie the system to-
gether, especially when dependencies cross the borders of surrounding entities. For instance,
a class with many dependencies to classes in other packages is likely to be an important
junction in the system.

Cleary, dependency values in the visualisation provide useful insights. While studying source
code remains important to gain a full understanding of the system, the dependency values
can act as a guide to explore the source code in a pragmatic way.

Guided by dependency values we can now browse through the system to find code entities
that require further investigation. For instance, we may notice that the menu method has
relatively more outgoing dependencies than the other methods of the DependencyCell

class. For example it has 8 inter-package dependencies to the Model package. We might
want to look at the source code of the menu method to find out what is going on. On
the other hand, we can also inspect the dependencies themselves. To investigate selected
code entities or sets of dependencies we can use the inspection features of DSMBrowser
which are offered in context menus, as show in figure 6.2. These features allow us to move
back and forth between the DSM visualisation and Refactoring Browser [61, 11] windows
– to look at source code – or Trippy inspector [106] windows – to inspect dependencies or
modules.

By continuing to explore the system in this fashion we can quickly learn to find our way
around its principal components and gain understanding of its inner workings.
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6.3 Dependency Management

Software developers, especially project leaders and software designers, deal with a wide va-
riety of responsibilities related to dependency management. These responsibilities range
from non-intervening coordination tasks to interventions in design or implementation. In
this section we demonstrate how DSMBrowser can assist developers in such tasks.

In order to support coordination and communication among involved parties, dependency
management requires that efforts are made to know and to keep track of implementation-
level dependencies, throughout the lifecycle of a software product. In the case study in 6.3.1
we show how DSMBrowser can support these efforts. As an example we look at tracking
dependencies to a third-party framework.

Dependency management also requires that opportunities for improved modularisation are
detected, evaluated and pursued at various development stages. Pursuing such opportuni-
ties, through interventions in design or implementation, results in dependency minimisations
or eliminations. In the case studies in 6.3.2, we show how the metaprogramming features of
DSMBrowser can help developers to find and evaluate modularisation opportunities in the
form of local architectural restructurings.

6.3.1 Tracking Framework Dependencies

Context
In section 5.2 of Chapter 5 we stated that dependency management is all the more important
when parties with different (commercial) interests – such as other companies – are involved.
As an illustration, we pointed out that depending on a third-party framework can be like
tracking a moving target. In this scenario, we return to that example to demonstrate how
DSMBrowser can help developers to keep track of framework dependencies.

Many companies use a framework supplied by a large industry player – for instance, Mi-
crosoft’s .NET framework [98] or Sun’s J2EE platform [102] – to build their own software
products. These client companies, especially the smaller ones, are unlikely to have a big
influence on future development of the framework. As a result, it may be unavoidable that
new versions of the framework introduce changes that are incompatible with the applica-
tions that depend on it. Of course, the client companies can choose to stick with an older
version of the framework, but that way they cannot benefit from improvements and bug-
fixes provided by new versions. Consequently, sooner or later at least part of the dependant
applications will be migrated to a new version.

Usually the framework supplier provides migration support to its clients – at the very least,
breaking changes in new framework versions will be documented – but in the end, it will
be up to the programmers of the client companies to solve incompatibility problems on the
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implementation level. This requires insight into the locations and nature of dependencies
to the framework.

Even when a client company does have a say, or is otherwise granted participation in the
development of the framework, incompatibilities can only be avoided through intense com-
munication and coordination, based on precise knowledge about implementation-level de-
pendencies (e.g.: which types of dependencies occur how frequently in which locations and
why).

We now illustrate how DSMBrowser can assist the users of a third-party frameworks to ac-
quire such knowledge by explicitly tracking implementation-level dependencies to the frame-
work. As an example, we investigated how the IntensiVE tool suite [30, 49, 48] depends on
the HotDraw framework [10].

Usage Scenario

Figure 6.3 shows the DSM diagram we generated. We used two dependency filters in the
process, one to filter out common message sends and another one to hide all internal de-
pendencies among the packages of the Intensional Tools bundle. The former basically
performs a kind of noise reduction on our measurements by throwing out unreliable depen-
dencies3. The latter helps to focus on what is important here, namely the dependencies to
the HotDraw framework package.

 

Figure 6.3: Tracking dependencies from IntensiVE (Intensional Tools) to the HotDraw

framework

Clearly, the dependencies to classes of the HotDraw framework package are concentrated
in the Intensional Visualisation package, which is not surprising since HotDraw is a

3 Common message sends (e.g.: new, initialize, release, add:, etc.) cause a lot of false positives

due to the dynamical typing system of Smalltalk and the naivety of the of the dependency target finding

heuristic in the current version of DSMBrowser.
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framework for drawing 2D graphics. However, the discovery of the few dependencies that
originate from other packages – which do not deal with graphical visualisation – could be
of greater importance, as the IntensiVE developers might not expect them there.

By expanding modules we can easily drill down to find out which classes, or even methods,
are involved on both sides of the dependencies. On the one hand, tracking the sources of
the dependencies tells us exactly which parts of IntensiVE depend on HotDraw functionality
and how they do so. On the other hand, tracking the targets informs us about which specific
parts of the framework are used by IntensiVE.

This kind information is of great value to both parties for numerous reasons, for instance:

• it is helpful when IntensiVE needs to be changed to work with a new version of
HotDraw, as all the HotDraw-dependant locations are known;

• it makes documentation about changes in a new HotDraw version – supplied by the
creators of the framework – a lot more useful, because the documentation can be
compared with a list of all parts of HotDraw IntensiVE depends on, to quickly find
out if and where there are breaking changes;

• it provides a suitable basis for communication, cooperation and coordination between
both parties (e.g.: the IntensiVE developers can accurately inform the HotDraw cre-
ators about which parts of the framework they would like to remain unchanged);

• it helps to define which parts of HotDraw (or other frameworks) should be included
when IntensiVE is finalised and packaged as a product to be supplied to customers.
At the same time, it also indicates which dependencies need to be eliminated if the
framework cannot be included in the distribution (e.g.: due to licensing constraints).

6.3.2 Finding and Evaluating Modularisation Opportunities

In what follows we demonstrate how DSMBrowser can assist developers to improve the
modularity of existing software systems or during the implementation phase of systems that
in development. By exploiting the metaprogramming facilities of DSMBrowser, we have
developed metaprograms that automate the manual exploration, pattern detection, analysis
and evaluation process to find feasible opportunities for improved modularisation. The task
of implementing opportunities that have been found worthwhile remains up the users.

Modularisation Opportunities

These opportunities are implementation-level changes that could potentially improve mod-
ularity through minimisation or even elimination of dependencies. Specifically, we focus on
local architectural restructurings by means of common object-oriented strategies. We study
two general types of local restructurings.
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First, we consider how the introduction of local indirections within modules can lower ex-
ternal dependencies. These restructurings reroute, canalize or centralise dependencies to
external modules via a newly created local indirection entity. That way, multiple external
dependencies are replaced by a single one, originating from the indirection. The local indi-
rection acts as an interface through which the external module can be accessed. As a result,
changes in the external module are less likely to require changes in all dependent entities but
only require changes in the indirection entity. To find feasible indirection opportunities we
have implemented two fully functional metaprograms, one which deals with message send
dependencies and another one for inheritance dependencies. We will demonstrate both in
small case studies.

Secondly, we consider how dependencies to external modules can be entirely eliminated by
locally duplicating code that implements required behaviour. These restructurings can ef-
fectively separate or decouple modules. While we have not implemented them ourselves,
we present an approach to create metaprograms to find opportunities for the elimination
of message send and inheritance dependencies through code duplication, starting from the
indirection metaprograms.

Metaprograms

The metaprograms we wrote analyse user-selected sets of dependencies and infer indicative
suggestions or even specific advice, with regard modularity enhancing restructurings they
consider to be feasible. We wrote these metaprograms in plain Smalltalk, using the analysis
and metaprogramming facilities of DSMBrowser (the DSM Model API, dependency filters
and the generic metaprogram classes) which we discuss in Chapter 5 (5.4.5).

Our metaprograms serve as a proof of concept, rather than universally applicable solutions.
They use overly-general or naive assumptions and crisp threshold parameters to evaluate the
feasibility of modularisation opportunities. While the current metaprograms can produce
meaningful modularisation suggestions in real-world situations – as we will demonstrate
– users will have to fine-tune the parameters and implement additional, domain specific
decision rules, to apply them in specific, mission-critical environments.

Assumptions
In our metaprograms we make the assumption that the user wants to minimise dependencies
which cross the boundaries of packages. In other words, the level of packages is considered
to be the“separation point”: the place where subsystems meet (e.g.: own code versus third-
party code) and where strong dependencies are unwanted. It would however be trivial to
change the metaprograms to lift the separation point to the bundle level or to drop it to
the class level.

To illustrate the architectural restructurings we propose, we use UML [103] class diagrams
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with simplified “before” and “after” situations involving a package A and a package B. In
these diagrams:

• The studied dependencies originate from package A and target package B;

• Package A considered to contain code which the user has full control over;

• Dependencies to package B are considered unwanted, for instance because it is con-
trolled by a third party;

• In the “before” situation the packages contain 1 or 3 classes each. The number of
classes per package should be interpreted as follows:

– when a package X contains 1 class that should be read as “... few classes in
package X ...”,

– when a package Y contains 3 classes that should be read as“... many classes in
package Y ...”,

where the definitions of few and many are governed by user-configurable threshold
parameters of the metaprograms.

6.3.2.1 Minimising Dependencies with Indirections

6.3.2.1.1 Message Send Dependencies

Restructurings

In this case study we present a metaprogram that suggests local architectural restructurings
to minimise message send dependencies. All message send dependencies are caused by
method calls which request the execution of behaviour or perform data access. We cannot
simply eliminate these dependencies without affecting the functionality of the software.
However, message sends that cross module boundaries can be reduced by introducing local
indirections.

Given the assumptions discussed above, our aim is to lower the number of inter-package
message sends by introducing indirections in the package of origin. Such indirections can
be introduced on the level of classes and on the level of methods.

On the level of classes, we can use simple design patterns [22] to introduce local indirection
classes to reroute message sends. We distinguish four situations with regard to message
sends from a package A to a package B, based on the number of involved classes:

• Many-to-Few: The message sends originate from many classes in package A and
target few classes in package B.
In this case the dependency from package A to package B can be lowered by applying
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the Proxy design pattern [22]. The idea is to introduce a local proxy-class in package
A, for each of the few classes which are targeted in package B. Each proxy-class should
contain wrapper methods for all methods of the class of package B it represents and
which are called from package A. That way all calls to package B can be rerouted
via local proxies. As a result there will only be a single inter-package message send
dependency for every targeted method. This is illustrated by the UML diagram in
figure 6.4a;

• Many-to-Many: The message sends originate from many classes in package A and
target many classes in package B.
In this case the dependency from package A to package B can be lowered by applying
the Facade design pattern [22]. The idea is to introduce a single facade-class in
package A, which contains wrapper methods for all methods of the many classes in
package B, which are called from package A. That way all calls to package B can
be rerouted via the local facade. As a result there will only be a single inter-package
message send dependency for every targeted method. This is illustrated by the UML
diagram in figure 6.4b;

• Few-to-Few: The message sends originate from few classes in package A and target
few classes in package B.
In this case the introduction of indirections on the class-level is not useful;

• Few-to-Many: The message sends originate from few classes in package A and
target many classes in package B.
In this case the introduction of indirections on the class-level is not useful.

In the cases where there is no useful class-level indirection possible, method-level indirections
can be considered to minimise message sends from a package A to a package B. Method-
level indirections are simple, individual wrapper methods which are introduced into existing
classes of package A, as illustrated by the UML diagram in figure 6.4c. This way the
number of inter-package message send dependencies can be lowered whenever there are
more messages being send than methods being targeted. The location where the wrapper
method should go is best decided by considering the sources of the calls to the wrapped
method. We propose to select the class which accounts for the most of those calls as the
ideal place to insert the wrapper method.

Context

As an example we look at the message send dependencies from the IntensiVE tool suite
[30, 49, 48] to SOUL [79, 76]. The implementation of IntensiVE depends heavily on SOUL
and there is no way that local architectural restructurings can completely change that.
However, the introduction of indirections can significantly lower the dependencies. Moreover,
such indirections provide a local interfaces for SOUL components and thereby limit the effect
of changes in SOUL for dependent components in IntensiVE.
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Figure 6.4: Lowering inter-package message send dependency by introducing indirections,

by means of a proxy class (a), a facade class (b) and an individual wrapper method in an

existing class (c)
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Usage Scenario
First we created a new DSMView classification in StarBrowser and we populated it with all
the packages of IntensiVE and those of SOUL. By filtering non-message send dependencies
and dependencies caused by common messages we got an overview of the inter-package
message send dependencies from IntensiVE to SOUL. Their number varied greatly for dif-
ferent pairs of packages. To limit the scope of our investigation we decided to create a
second DSMView to look only at 2 packages of IntensiVE and 3 packages of SOUL which
form the pairs with the strongest dependency. The result is shown by figure 6.5.

Figure 6.5: Running the MessageIndirectionAdvice metaprogram on a set of dependencies;

Box 6.3 shows the resulting method-level advice for this set

To find out if and where indirections could be introduced to lower inter-package message
send dependencies, we applied the MessageIndirectionAdvice metaprogram.

MessageIndirectionAdvice is a subclass of DependencyAdvisor, the generic superclass for
metaprograms which produce suggestions, with regard to modularisation opportunities, for
user-supplied sets of dependencies (see 5.4.5). These metaprograms produce results in the
form of verbose textual reports.

Specifically, MessageIndirectionAdvice searches places where class-level and method-level
indirections – as we discussed above – make sense to minimise inter-package message send
dependencies. First, it uses filters to restrict the set of dependencies to message send depen-
dencies, and only those that are not caused by common messages. Next, the dependencies
are stored in a DependencyDictionary object. Then, it searches and evaluates indirection
locations, using simple procedural logic and querying methods of the DependencyDictionary
and other DSM Model classes (see 5.4.3 and 5.4.5). The process is governed by user-
configurable parameters – for instance the few and many thresholds. The metaprogram
can produce both class-level and method-level advice.
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DSMBrowser dynamically adds entries for new metaprograms – subclassed from the generic
metaprogram classes – to the context menu that is shown when a user right-clicks on a
dependency value in the DSM visualisation, as shown by figure 6.5. That way it is easy to
run metaprograms on specific dependency sets, directly from the GUI.

We applied MessageIndirectionAdvice to sets of dependencies from packages of IntensiVE
to packages of Soul. We now show some of the reports we generated. In box 6.1 we see a
class-level advice which suggests to introduce proxy classes to lower the dependency from
Intensional Relations Model to SoulEvalPrintLoop.

✞ ☎
Message sends from package Intensional Relations Model

to package SoulEvalPrintLoop: 30

Analysing for Class level advice ...
The message sends originate from 7 classes and target 4 classes.

Advice: The degree of dependency from package Intensional Relations Model
to package SoulEvalPrintLoop can be lowered by introducing
4 PROXY classes in package Intensional Relations Model which
represent classes EmptyEvaluator, Results, Evaluator, Binding
of package SoulEvalPrintLoop.

✝ ✆

Box 6.1: Message sends indirection advice (class-level) for dependencies from Intensional

Relations Model to SoulEvalPrintLoop

Box 6.2 shows another class-level report, this one suggests to use a facade class to lower
the dependency from Intensional Relations Model to SoulGrammarTerms package.

✞ ☎
Message sends from package Intensional Relations Model

to package SoulGrammarTerms: 190

Analysing for Class level advice ...
The message sends originate from 8 classes and target 10 classes.

Advice: The degree of dependency from package Intensional Relations Model
to package SoulGrammarTerms can be lowered by introducing a
FACADE class in package Intensional Relations Model which
offers a local interface to the functionality provided by the 10
classes from package SoulGrammarTerms to the 8 classes
from package Intensional Relations Model which use it.

✝ ✆

Box 6.2: Message sends indirection advice (class-level) for dependencies from Intensional

Relations Model to SoulGrammarTerms

Finally, box 6.3 on the next page, shows a method-level advice report which suggests lo-
cations for wrapper methods to lower the dependency from Intensional Unit Tests to
SoulRepositories.
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✞ ☎
Message sends from package Intensional Unit Tests

to package SoulRepositories: 108

Analysing for Method level advice ...
The message sends originate from 44 methods

and target 3 methods in total.
3 methods are targeted more than once.
There are more message sends (108) than targeted methods (3)!

Advice: The degree of dependency from package Intensional Unit Tests to
package SoulRepositories can be lowered by introducing
individual WRAPPER methods.
The following list suggests a potentially suitable location
(a class in package Intensional Unit Tests) for a wrapper method for
each targeted method (with its class shown in parentheses):
- indirection for assert: (LogicRepository), which is targeted

by 98 message sends , could be placed in class
IntensionalRootTest.

- indirection for name (LogicRepository), which is targeted by 6
message sends , could be placed in class IntensionalRootTest.

- indirection for removeLayer: (LogicRepository), which is targeted
by 4 message sends , could be placed in class IntensionalRootTest.

✝ ✆

Box 6.3: Message sends indirection advice (method-level) for dependencies from
Intensional Unit Tests to SoulRepositories

6.3.2.1.2 Inheritance Dependencies

Restructurings
In this case study we present a metaprogram that suggests local architectural restructurings
to minimise inheritance dependencies. An inheritance dependency represents the relation
from a subclass to its superclass. We cannot simply eliminate these dependencies without
affecting the functionality of the software. However, inheritance relations that cross module
boundaries can be reduced by introducing local indirections.

Given the assumptions discussed above, our aim is to lower the number of inter-package
inheritance relations, by introducing indirections in the package of origin.

Whenever multiple classes in a package A inherit from single superclasses in a package B, the
inter-package inheritance dependencies can be reduced by introducing a local intermediary
superclasses in package A. An intermediary superclass inherits from the original superclass
and acts as a local superclass for the subclasses of the original superclass in package A. This
is illustrated by the UML diagram in figure 6.6 on the next page.
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Figure 6.6: Lowering inter-package inheritance dependency by introducing an intermediary

superclass

Context

As an example we look at the inheritance dependencies from the Fuzzy Intensional Views
software [52] to the IntensiVE tool suite [30, 49, 48].

Usage Scenario
First, we created a new DSMView classification in StarBrowser and populated it with the
packages of Fuzzy Intensional Views and IntensiVE. To get an overview of the inter-package
inheritance dependencies we used a filter to remove all other dependencies from the DSM.
The inheritance relations mainly originated from one package of Fuzzy Intensional Views
and targeted classes in three packages of IntensiVE. Next we created a second DSMView
to focus on just those packages, figure 6.7 shows the result.

 

Figure 6.7: Inheritance dependencies from classes of the Fuzzy Predicate Views

package to three packages of the IntensiVE tool suite
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The DSM shows that there are 9 inheritance relations from the Fuzzy Predicate Views

package to the three packages of the IntensiVE tool suite.

To find out if and where indirections could be introduced to lower inter-package inheritance
dependencies, we applied the InheritanceIndirectionAdvice metaprogram.

InheritanceIndirectionAdvice is also a subclass of DependencyAdvisor dependencies (see
5.4.5), and is thus largely analogous to MessageIndirectionAdvice. It searches places where
it makes sense to introduce an intermediary superclass – as we discussed above – to minimise
inter-package inheritance dependencies.

We applied this metaprogram to the dependencies from the Fuzzy Predicate Views pack-
age to each of the three packages of the IntensiVE tool suite. Box 6.4 shows the results.

✞ ☎
Inheritance relations from package Fuzzy Predicate Views

to package Intensional Relations Model: 7
Advice:
The degree of dependency from package Fuzzy Predicate Views to
package Intensional Relations Model can be lowered by introducing
a new subclass of class AbstractQuantifier of package
Intensional Relations Model in package Fuzzy Predicate Views to
act as a local , INTERMEDIARY SUPERCLASS for classes FuzzyAllQuantifier,
FuzzyAlmostAllQuantifier, FuzzyMostQuantifier, FuzzyFewQuantifier,
FuzzyExistsQuantifier which are currently directly subclassed from
class AbstractQuantifier of package Intensional Relations Model.

Inheritance relations from package Fuzzy Predicate Views
to package IV Evaluators: 1

No advice for these packages.

Inheritance relations from package Fuzzy Predicate Views
to package Saving Mechanism: 1

No advice for these packages.
✝ ✆

Box 6.4: Inheritance Indirection Advice Report

The report shows that the 7 inheritance dependencies from the Fuzzy Predicate Views

package to the Intensional Relations Model package, all target the same superclass
(AbstractQuantifier). Hence, an intermediary superclass could bring the inheritance
dependencies between those packages down from 7 to 1. The Fuzzy Predicate Views

package only has single inheritance dependencies to the other two packages of IntensiVE,
so obviously those dependencies cannot be lowered any further by means of indirections.

6.3.2.2 Eliminating Dependencies with Code Duplication

Duplication of code is generally considered as bad practice because it the hampers mainte-
nance and evolution of software systems. Indeed, each new software development paradigm
that has been introduced has provided new abstraction mechanisms that allow us to achieve
increased modularity and reduced code duplication in software implementations.
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However, there are situations where code duplication is a drastic, yet viable, option to deal
with dependency related issues. For instance, when a software module depends on a small
part of a large, external module which is otherwise obsolete, outdated or too big to include
in distributions, it might be better to locally duplicate the code of that small part. That
way the dependency to the external module can be entirely eliminated.

The current version of DSMBrowser does not include metaprograms to find and evaluate
places where dependencies can be eliminated through code duplication. However, the pro-
vided APIs should suffice to create such programs. Furthermore, the programs that deal
with indirections, which we discussed above, could serve as a starting point. The major
difference would be that checking for possible code duplication opportunities requires the
inspection of second, and higher, degree dependencies, further away from the source of the
dependency that is being considered for elimination. This is necessary to determine whether
or not the targeted entity is sufficiently independent from its surroundings to be copied in
isolation or with a limited number of supporting entities.

Code duplication can be used to eliminate both message send and inheritance dependencies.

6.3.2.2.1 Message Send Dependencies

Message send dependencies from package A to package B can be eliminated by locally du-
plicating the behaviour of the called methods of classes of package B. Duplicated methods
can be inserted into existing classes of package A, or new classes can be created to accom-
modate them.

Not all methods can be duplicated in isolation of rest of the class they are part of. Therefore,
it may be necessary to duplicate the whole class, possibly with unneeded methods and data
structures stripped out. But the class itself could also be closely dependent of other classes
of package B, which would need to be duplicated as well, and so on. Clearly, it is not trivial
to decide which duplication efforts are worthwhile.

The duplication of a class to eliminate message send dependencies is illustrated by the UML
diagram in figure 6.8, on the next page.

6.3.2.2.2 Inheritance Dependencies

Inheritance dependencies from package A to package B can be eliminated by duplicating
the targeted superclasses in package B as local classes in package A. Again, it is not trivial
to decide which classes can be duplicated without requiring too many additional classes to
be copied as well. The duplication of a superclass to eliminate inheritance dependencies is
illustrated by the UML diagram in figure 6.9, on the next page.
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Figure 6.8: Lowering inter-package message send dependency by introducing code
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Figure 6.9: Lowering inter-package inheritance dependency by introducing code duplication

6.4 Conclusions

The case studies we presented in this chapter demonstrate, by means of real-world exam-
ples, how the diverse features of DSMBrowser, or future similar tools, can effectively assist
software developers in common tasks.

Our exploration case study showed how the tool can help developers to explore and fa-
miliarise themselves with large amounts of unknown source code. The tree-based DSM
visualisation proved to be an excellent guide to explore systems in a pragmatic way.
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We also demonstrated at large how DSMBrowser facilitates tasks with regard to dependency
management. First, we explained how the tool can be used to generate helpful overviews
of dependencies to external systems, such as third-party frameworks. These overviews can
serve as a basis for communication and coordination among involved parties. Next, we
showed how the metaprogramming facilities of DSMBrowser can be used to automate the
process of finding and evaluating different kinds of modularisation opportunities, in the form
of local architectural restructurings.

These results validate the claims we made in the previous chapter. Most notably they em-
phasise that the concept of an IDE-integrated source-code browser which provides tree-based
DSM visualisations and metaprogramming-based analysis facilities, is indeed a valuable con-
tribution to the OOSD field.

In Chapter 7 (section 7.3) we formulate ideas for future enhancements to DSMBrowser and
for more sophisticated metaprograms.

98



Chapter 7

Conclusions

7.1 Summary

In this dissertation we investigated how Design Structure Matrices (DSMs) and related
techniques can be applied in the context of software development. The premise of our
work is that DSM diagrams, through their focus on the modular structure of systems and
the explicit depiction of – the distribution and nature of – dependencies, offer interesting
opportunities for innovations on two distinct fronts.

First we have provided an elaborate introduction to DSMs, their origins and application and
related techniques such as NOV. Next, we presented the two angels of research we have
pursued.

The first part of our research covered an exploration of the combination of DSMs and the Net
Option Value (NOV) model as a methodology for quantitative assessment of modularity in
software. First we introduced DSM+NOV Tool, a novel software tool intended to facilitate
experimentation with this methodology. Next, we presented an evaluation of the NOV
model as a modularity metric for software design, based on experiments on aspect-oriented
and object-oriented design pattern implementations. We concluded that the current level of
understanding of the NOV model regrettably does not warrant its application it this context.

The second part of our work constituted an investigation of the merits of DSM diagrams
as a basis for a novel kind of support tools for software development. We analysed the
possibilities and requirements for a DSM-based support tool for Object-Oriented Software
Development (OOSD) and summarised our findings in an extensive rationale, illustrated
by a prototype implementation called DSMBrowser. Next, we presented a number of real-
world case studies which demonstrate how our prototype, or future similar tools, can assist
software developers in common tasks related to source code exploration and dependency
management.
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7.2 Contributions

The work we presented in this dissertation offers the following contributions:

• In Chapter 2 we provided a comprehensive introduction to DSMs and related tech-
niques such as NOV. This text offers readers an essential crash course which prepares
them for passive and active use of DSM diagrams for both research and professional
purposes;

• In Chapter 3 we introduced a novel software tool which facilitates the application of
the DSM+NOV methodology for design assessments, as well as exploration of the
methodology itself. The tool introduces an innovative technique to assess systems
using NOV and a combination of two DSMs which focus on different hierarchical
levels of the studied system;

• In Chapter 4 we investigated the DSM+NOV methodology as a technique for qualita-
tive assessment of software. We introduced a novel approach for NOV measurement
and a new assumption for the complexity parameter of the NOV model, both specif-
ically aimed at analysis of software implementations. We concluded this evaluation
with a series of observations that led us to strongly question the applicability of the
NOV model as a modularity metric for software design;

• In Chapter 5 presented a rationale for a novel DSM-based support tool for OOSD and
a prototype implementation of such a tool. As part of the rationale we formulated
essential requirements for a dependency management tool for OOSD and we proposed
an approach which combines tree-based DSM visualisations and metaprogramming-
based analysis facilities in an extendable, IDE-integrated source-code browser. In our
prototype we successfully applied this approach to support software development in
the Smalltalk language.

• Chapter 6 we discussed case studies which show how DSM-based source browsers
can assist software developers in the exploration of unknown source code and in
dependency management tasks. As a demonstration of the metaprogramming facilities
of our prototype we presented metaprograms that automate the task of finding and
evaluating modularisation opportunities based on local architectural restructurings.

7.3 Future Work

In this section we give an overview of future research directions we consider interesting for
each of the two angels we followed in our work.
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7.3.1 Evaluating Modularity with DSMs

Further research into the NOV model may enhance our understanding of its parameters
and outcome and could then ultimately enable us to successfully use it in combination
with numerical DSMs (NDSMs) and as software metric. However, due to difficulties we
experienced in our experiments with the model, we have significant doubts concerning the
chance of success for this research direction.

Therefore, we think it would be better to focus on developing a new quantitative model to
assess modularity in design based on DSMs. Such a new model could retain some of the
principles of NOV but it should be specifically designed to serve as a modularity metric for
software design.

7.3.2 DSM-based Support Tools

We have a multitude of ideas with regard to new features for our DSMBrowser tool and/or
future research into DSM-based support tools in general.

We think that it could be interesting to introduce a time aspect in DSM-based support
tools. This would enable us to use DSMs to visualise the evolution of a software system,
rather than working with static representations frozen in time. We could investigate these
possibilities by extending our tool with a versioning concept. In connection with this idea it
might be interesting to look at the Moose reengineering environment for Smalltalk [54].

Currently our metaprograms are limited to finding and evaluating modularisation opportu-
nities based on relatively small local architectural restructurings. An obvious improvement
we could focus on would be to devise more sophisticated metaprograms capable of finding
and evaluating modularisation opportunities on a larger scale. For instance, we could try
to detect situations where the introduction of design patterns [22] that encompass much
larger parts of the system could effectively improve the modularity of the design as a whole.
In fact, we could extend our source-code browser to become a full-blown refactoring tool
which detects opportunities for refactorings based on “bad smells” [21, 31] and integrates
with the refactoring framework of the Refactoring Browser [61, 11].

Until now our DSMBrowser metaprograms only find and evaluate modularisation opportu-
nities, leaving the task of pursuing opportunities that have been found worthwhile to the
developers themselves. In the future we could try to automate this third phase as well,
by further exploiting the metaprogramming features of Smalltalk to let our metaprograms
make actual changes to the implementation of the studied system. This would allow users
to instantly see the effects of these changes in the DSM visualisation, without first having
to resort to manual source code editing. Furthermore, if this idea is realised in combination
with the time aspect idea, users would be able to compare “before” and “after” situations.
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If we integrate DSMBrowser with the Refactoring Browser framework we could let our
metaprograms trigger the automatic refactorings offered by that framework.

For now our metaprograms are written in a procedural and imperative style and in plain
Smalltalk. In the future we could consider to extend DSMBrowser with support for declar-
ative metaprogramming using a domain specific language. For instance, it might be inter-
esting to investigate whether DSMBrowser can be linked to the SOUL framework [79, 76].
If we combine a declarative approach to metaprogramming with support for refactorings we
could use the work of Muñoz Bravo [53] as a source of inspiration.

Last but not least, we would like to investigate if DSMBrowser can be used as a basis for a
DSM-based aspect mining tool [28].

7.4 Conclusion

In this dissertation we to took the first steps towards the application of Design Structure
Matrices (DSMs) in diverse aspects of software development.

On the one hand, our initial expectations with regard to the Net Option Value (NOV) model
proved to be too optimistic. This is shown by the evaluation we presented, which clearly
highlights the obstacles that hamper the application of the NOV model in the context of
software development. Nevertheless, the tool be developed to support our experiments
can be used for further research into NOV or for applications of DMS+NOV methodology
outside software development.

On the other hand, the use of DSMs diagrams in support tools proved to be a real success,
as demonstrated by the case studies we presented. Therefore, we are convinced that our
rationale for DSM-based source code browsers and our prototype implementation are major
contributions to the field.
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Appendix A

The Q(k) distribution

The calculation of Net Option Value (NOV) simulates parallel experimentation on each

Normal distribution
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constituent module of a design (see 2.3.6.2 in Chap-
ter 2). The role of the Q(k) distribution is to quantify
the value of the best of k outcomes (resulting from k
experiments) for each module.

Q(k) is defined as the expected value of the high-
est realisation (best/maximum draw) of k independent
draws from a standard normal distribution, as long as
the realisation is greater than zero (so only for all pos-
itive values in the distribution)1.

The formal definition of the distribution is given by
equation A.4, where N(x), given by equation A.5, is
the cumulative distribution function and n(x), given by equation A.6, the probability density
function of the standard normal distribution. These functions are respectively the evalua-
tion of equation A.1 and equation A.2 for the standard normal distribution (mean µ = 0;
standard deviation σ = 1). The Gauss error function, er f (x), is defined by equation A.3.
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1 The distribution of the best of k realisations is common in statistics: it is the distribution of the

“maximum order statistic of a sample of size k”. However, in this case the expectation differs from the

standard one, as it is taken only over the range of values above zero (see [5, 7], which cite [42] as a

reference on order statistics in general).
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Table A.1 tabulates the values of Q(k) for 0 ≤ k ≤ 100. On the next page, figure A.1
shows these values as a graph.

k Q(k)

0 0.000000

1 0.398942

2 0.681037

3 0.888147

4 1.045756

5 1.169705

6 1.270073

7 1.353426

8 1.424153

9 1.485261

10 1.538865

11 1.586488

12 1.629251

13 1.668001

14 1.703387

15 1.735916

16 1.765993

17 1.793943

18 1.820032

19 1.844482

20 1.867475

k Q(k)

21 1.889168

22 1.909692

23 1.929162

24 1.947674

25 1.965315

26 1.982158

27 1.998269

28 2.013707

29 2.028522

30 2.042761

31 2.056464

32 2.069669

33 2.082408

34 2.094713

35 2.106609

36 2.118123

37 2.129277

38 2.140091

39 2.150586

40 2.160777

k Q(k)

41 2.170682

42 2.180316

43 2.189691

44 2.198822

45 2.207720

46 2.216395

47 2.224859

48 2.233121

49 2.241190

50 2.249074

51 2.256781

52 2.264319

53 2.271694

54 2.278914

55 2.285983

56 2.292909

57 2.299696

58 2.306351

59 2.312876

60 2.319278

k Q(k)

61 2.325561

62 2.331728

63 2.337785

64 2.343733

65 2.349578

66 2.355323

67 2.360970

68 2.366524

69 2.371986

70 2.377359

71 2.382647

72 2.387852

73 2.392976

74 2.398022

75 2.402992

76 2.407889

77 2.412713

78 2.417467

79 2.422154

80 2.426774

k Q(k)

81 2.431331

82 2.435824

83 2.440257

84 2.444630

85 2.448945

86 2.453204

87 2.457407

88 2.461557

89 2.465654

90 2.469700

91 2.473697

92 2.477644

93 2.481544

94 2.485397

95 2.489204

96 2.492967

97 2.496687

98 2.500364

99 2.503999

100 2.507594

Table A.1: Values of Q(k) for 0 ≤ k ≤ 100, rounded to the nearest 10−6
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