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Abstract 

The design structure matrix (DSM), also called the dependency structure matrix, has become a 
widely used modeling framework across many areas of research and practice. The DSM brings 
advantages of simplicity and conciseness in representation, and, supported by appropriate analysis, 
can also highlight important patterns in system architectures (design structures), such as modules and 
cycles. A literature review in 2001 cited about 100 DSM papers; there have been over 1000 since. 
Thus, it is useful to survey the latest DSM extensions and innovations to help consolidate progress 
and identify promising opportunities for further research. This paper surveys the DSM literature, 
primarily from archival journals, and organizes the developments pertaining to building, displaying, 
analyzing, and applying product, process, and organization DSMs. It then addresses DSM 
applications in other domains, as well as recent developments with domain mapping matrices 
(DMMs) and multidomain matrices (MDMs). Overall, DSM methods are becoming more 
mainstream, especially in the areas of engineering design, engineering management, 
management/organization science, and systems engineering. Despite significant research 
contributions, however, DSM awareness seems to be spreading more slowly in the realm of project 
management. 
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1 Introduction 
Many researchers and practitioners have used the design 

structure matrix (DSM—also called the dependency structure 
matrix) to represent and analyze models of complex systems. The 
DSM brings advantages of simplicity and conciseness in 
representation, and, supported by appropriate analysis, can also 
highlight important patterns in system architectures (i.e., design 
structures), such as modules and cycles. More recently, DSM 
usage has led to the development of domain mapping matrices 
(DMMs) and multidomain matrices (MDMs) that have broadened 
the capabilities and applications of matrix-based models of 
complex systems and provided further insights. Such capabilities 
have become recognized as increasingly beneficial and important 
in this age of ever-more complex projects, products, processes, 
organizations, and other systems. 

Steward’s work on systems of equations in the early 1960s 
[1, 2] led to the first papers on DSM [e.g., 3] as internal reports 
for General Electric, but it was not until 1981 that his book [4] 
and paper [5] were published (the latter in these Transactions). 
Aside from some citations by Warfield [e.g., 6], few references to 
Steward’s DSM works can be found until the late 1980s, when 
researchers at MIT and NASA began to apply and extend the 
method [e.g., 7-9]. The 1990s saw several developments, 
including the broadening of DSM applications beyond Steward’s 
temporal models to include static models of organizations [10] 
and products [11]. The new millennium brought an explosion of 
DSM research and applications across multiple industries and 
contexts. Browning’s [12] 2001 review of the DSM literature 
(also in these Transactions) cited about 100 DSM papers; there 
have been over 1000 since. These developments are of great 
interest to researchers1 and practitioners, so it is valuable to 
provide an organized account of the evolving landscape to 
consolidate progress and provide a foundation for further 
advancement. Primarily targeting practitioners, Eppinger and 
Browning’s recent book [13] provided an introduction to DSM 
methods along with 44 industrial application examples. Primarily 
targeting researchers, this paper surveys recent DSM extensions 
and innovations in the scholarly literature and illuminates areas 
with a plethora of publications as well as areas offering excellent 
research opportunities. 

A DSM (Figure 1) is a square matrix where the diagonal cells 
typically represent system elements (such as components in a 
product, people in an organization, or activities in a process) and 
the off-diagonal cells represent relationships (such as 
dependencies, interfaces, interactions, etc.) among the elements. 
DSMs containing a single kind of off-diagonal mark are called 
binary DSMs, and DSMs with off-diagonal cells containing a 
number are called numerical DSMs. Other types of DSMs may 
contain a variety of symbols, markings, and color coding, as the 
format lends itself to customizations. The literature contains two 
conventions for matrix orientation. In the first, an element’s inputs 
appear in its matrix row and its outputs appear in its column. This 
                                                      
1 [5] and [12] are the second- and third-most cited papers, 
respectively, out of over 1,900 papers in the 60+ year history of 
IEEE-TEM, according to the Web of Science®, September 14, 
2015). 
2 For convenience, we refer to all articles, books, chapters, reports, 
and theses as “papers.” 

is called the “inputs in rows” (IR) convention [13]. The second 
convention, with “inputs in columns” (IC) and outputs in rows, is 
merely the transpose of the matrix and conveys the same 
information. (Both conventions persist because each has 
advantages in particular contexts, and because of the diverse roots 
of the matrix-based models now called DSMs.)  The regions 
above and below the diagonal in the matrix thus distinguish the 
directionality of any relationships, making the basic DSM 
equivalent to a directed graph. However, in some circumstances 
and to many users, the DSM representation has advantages over a 
graph (or node-link diagram or flowchart): the DSM is relatively 
more compact, scalable, and readable with increasing size while 
easily highlighting important architectural characteristics such as 
modules and cycles (e.g., process iterations or rework loops) [12, 
14]. The goal of the DSM is to expose the structure of a system’s 
architecture or design. Aside from this minimal introduction, this 
paper will presume that its readers already possess a basic 
familiarity with DSM. (See [13] for a thorough introduction.) 

For this survey, we assembled and studied a vast collection 
of papers2 from journals, books, and conference proceedings. 
Because Browning’s review [12] covered developments through 
2000 (although appearing in 2001), we focused mainly on post-
2000 works. We began in late 2011 by conducting a citation 
search on a set of prominent DSM papers [4, 5, 12, 15, 16], which 
identified over 3,000 citations (many redundant). We 
supplemented these results with a general search of the academic 
literature (including journals in engineering management, 
operations management, project management, engineering 
design, management science, organization science, and systems 
engineering) from 1998-2012 for the keywords “design structure 
matrix” and “dependency structure matrix.” This produced more 
than 100 additional references. Next, we explored the reference 
lists of these works in search of further items. Finally, we added 
many recent papers from 2012-2015. Altogether, we were able to 
identify over 1,300 papers3, of which we could acquire and read 
over 1,000 complete items. Next, we read each paper to determine 
if it actually applied DSM (versus merely mentioning it) and, if 
so, attempted to classify it by Browning’s [12] taxonomy—i.e., 
whether the paper used a static or a temporal DSM to model a 
product architecture, an organization architecture, a process 
architecture, or more than one of these. We encountered some 
papers that did not fit this taxonomy, which prompted us to 
expand it to include project tools and goals architectures. 

Space constraints in this paper forced a down-select from the 
full list of papers in the survey.4 We focused primarily on the 
scholarly papers in archival, peer-reviewed journals, although we 
do include some selected conference papers, book chapters, and 
theses. One prominent area that receives admittedly limited 
coverage is the set of papers from the annual DSM conferences 
(www.dsm-conference.org). Although these (and many other 
conference) papers are obviously relevant, we mostly omit them 
because of space limitations and because many of the best of them 

3 These papers included over 100 non-English papers, of which 
about two-thirds are in Chinese and the rest in German, French, 
Korean, Spanish, Japanese, Portuguese, Dutch, and Italian—in 
order of decreasing frequency. 
4 We are adding our full list of DSM references to the database 
at www.dsmweb.org. Anyone with awareness of additional 
references can submit them to this list. 

http://www.dsm-conference.org/
http://www.dsmweb.org/
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have matured into journal papers (which are included).5 We also 
omit some papers where pioneering authors superseded their 
earlier works with more advanced or similar ones. Space 
constraints also do not permit a detailed exploration and 

comparison of each of the vast number of papers in the DSM 
literature. Rather, this paper’s goal is to survey the landscape, 
summarize the main thrusts of research to date, and illuminate 
propitious opportunities for further research. 

 

   
Figure 1:  Example of a binary DSM (IC convention), with optional row and column labels, and its equivalent node-

link diagram (directed graph) 

 
The paper begins by surveying advances in and opportunities 

for traditional DSM applications—models of products, 
organizations, and processes. Innovations and extensions in each 
of these three areas are presented in terms of building, displaying, 
analyzing, and using the models. Many applications are also 
distinguished by industry. Successive sections address newer 
DSM application areas, DMMs, and MDMs, respectively—again 
accompanying the survey with several opportunities for further 
research. 

 
2 Advances in and Opportunities for Traditional 

DSM Applications 
Browning’s [12] review laid out three types of DSM 

applications—models of products, organizations, and processes. 
(Browning’s fourth type, a parameter-based DSM, is essentially a 
high-fidelity process DSM.)  These three domains have received 
the bulk of scholarly and industrial attention to DSM. This section 
surveys key advances and discusses promising opportunities for 
further progress in each of these three areas. Although Steward 
originally developed the DSM for processes, this section will 
begin with static DSMs (product and organization) before 
proceeding to temporal (process) DSMs. Each of these three 
applications will be presented with a brief history followed by a 
discussion of the literature organized around the building, display, 
and analysis of the DSM, further uses, and cited examples of 
application instances in particular industries. Note that many of 
the developments pertaining to building and displaying each of 
these DSM types can often be leveraged across all types of 
applications. 

 
2.1 Product Architecture DSMs 

Square-matrix models of product structures, which we call 
product architecture DSM models (or product DSMs for short), 
grew from several sources. The use of square matrices to model 
system architectures can be traced back to the works of Simon 
[17] and Alexander [18] in the early 1960s. Steward created the 

                                                      
5 Surveying the papers from the 17 annual DSM conferences 
presents an excellent opportunity for future research. 

process DSM model (§2.3) in the 1960s, yet it was not until the 
early 1990s that Eppinger and colleagues at MIT applied the DSM 
to modeling product architecture [11]. Meanwhile, practicing 
systems engineers have used the “N-square” chart to model and 
manage component interfaces since the 1970s (at the latest), when 
it was formally codified by Lano [19]. Since the 1990s, product 
DSMs and N-square charts have continued to converge somewhat 
in the systems engineering literature. 

For the purposes of this survey, a product is an engineered 
system, such as an automobile, an aircraft, an electronic system, a 
software application, a machine, a mechatronic unit, a building or 
built environment, a piece of capital equipment, etc. A product 
system has a design structure, or architecture, “the arrangement of 
components interacting to perform specified functions. The 
architecture of a product is embodied in its components, their 
relationships to each other and to the product’s environment, and 
the principles guiding its design and evolution” [13]. A product 
consists of components related in various ways, such as spatially 
or based on a flow of material, energy, or information. Product 
architecture models could include at least three mappings [13]:  
(1) a hierarchical decomposition of the product into modules and 
components, often represented with a product breakdown 
structure (PBS), (2) an assignment of the product’s functions to 
its components and modules, often represented with a rectangular 
mapping matrix, and (3) the relationships among components and 
modules, often captured with a product DSM. DSMs have also 
been used to model function-to-function relationships in the 
product domain [e.g., 20]. See [13] for further discussion of the 
motivations for and benefits of product DSM models. Because of 
their usefulness in product design and development, product 
DSMs have gained particular traction in the engineering design 
and systems engineering communities, although they have also 
begun to receive attention in operations management and software 
development contexts. Recent product DSM models have brought 
many innovative applications (Table 1a&b). The remainder of this 
subsection surveys several of these while noting opportunities for 
further research and development. 
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Table 1a:  Product architecture DSM innovations and 
extensions—with selected references 

Building Product DSMs Selected References 
Increasing model consistency and inter-rater 
reliability 

[21-25, 83] 

Distinguishing types and strengths of 
interfaces/relationships 

[11, 22, 41, 51, 57, 303-
305] 

Constructing software architecture DSMs 
automatically from source code 

[26, 27, 306, 307] 

Constructing a product DSM automatically 
from other models 

[28-31, 113, 308, 309] 

Building function-to-function, concept-to-
concept, and other types of product DSMs 

[20, 32-37, 39, 40, 257, 
310, 311] 

Displaying Product DSMs Selected References 
Showing nested module/subsystem structures 
with hierarchical DSMs 

[13, 21, 26, 109, 312-
314] 

Showing varied types and strengths of 
interfaces/relationships 

[11, 41, 250, 315] 

Showing change probability and impact as mini-
graphs in the DSM 

[42, 52, 53] 

Using DSM appendages to show external 
relationships 

[12, 22, 43, 309, 316] 

Showing multiple product variants with a three-
dimensional DSM 

[44] 

Analyzing Product DSMs Selected References 
Determining product modules [58, 317] 
Determining modules via clustering analysis [46, 47, 50, 56, 311, 318-

327] 
Clustering via evolutionary algorithms [41, 45, 328-337] 
Clustering with the criterion of intellectual 
property protection when outsourcing 

[48, 49] 

Clustering with the criterion of component 
volatility and option value 

[43, 338] 

Sequencing to determine architectural levels [51, 339] 
Analyzing change propagation [42, 52-54, 277, 289, 

340-344] 
Calculating modularity metrics [21, 29, 55, 62, 315, 345-

347] 
Calculating other metrics (e.g., row and column 
sums to ascertain interface intensity and 
priority, fan-in and fan-out, degree of 
connectivity, visibility, etc.) 

[27, 221, 282, 312, 348] 

Expanding or dithering the matrix to differing 
levels of detail 

[349] 

Calculating the  difference between two DSMs 
as a “delta DSM” (∆DSM) 

[35, 350, 351] 

 
2.1.1 Building Product DSMs 

Product DSMs are challenging to build because of the large 
amount of included knowledge, and because of varied 
interpretations of a product’s decomposition and structural 
relationships. Different modelers build different models by 
choosing different: levels of decomposition (abstraction), 
component definitions at each level, and relationship types and 
definitions among the components [21-25]. Because different 
models yield different metrics (e.g., amounts of modularity) and 
analysis results (e.g., module definitions), increasing the “inter-
rater reliability” of DSMs is an important area for further research. 
Accordingly, Tilstra et al. [22] proposed a standardized approach 
for building product DSMs to increase consistency across 
modelers. Needs for consistency and reduced effort in model-
building have driven the development of approaches for 
automatic extraction of DSMs from existing databases. Sangal et 
al. [26] and MacCormack et al. [27] demonstrated the efficacy of 
this approach for software products by building large, rich, 
consistent DSMs from source code repositories. Product DSMs 
have also been extracted from unified modeling language (UML) 

models [28-30] and a function-behavior-state model [31]. With 
further development, it should become possible to extract DSMs 
automatically from CAD models or other standardized 
frameworks such as building information models (BIMs). On a 
related point, most product DSMs built to date have modeled 
physical components and their relationships (e.g., spatial, material 
flow, energy flow, and data flow). However, functions are also an 
important aspect of the product architecture, and function-to-
function DSMs have been used by several researchers [e.g., 20, 
32-37]. (Function-to-component mappings will be discussed in 
§4.) Functional dependencies could also be added to component-
based product DSM models [38]. Static DSMs have also been 
used to show relationships among design concepts [e.g., 39] and 
design constraints [40]. While many possibilities exist to develop 
additional flavors and varieties of static DSMs, opportunities 
remain to develop standardized approaches for building product 
(and especially function) DSMs. 

 
2.1.2 Displaying Product DSMs 

Recent work has brought several innovations in the display 
of DSMs in general and product DSMs in particular. Colors and 
shading provide powerful ways of indicating the hierarchy of 
nested modules, and display tools can expand and contract areas 
of a DSM to drill down to deeper levels or roll up to higher levels 
[e.g., 26]. (These capabilities are important to other types of DSM 
models as well; e.g., see §2.3.2.)  Many product DSMs capture 
more than one type of relationship among components, and 
showing more than one of these at once in a single matrix presents 
a challenge of crowding. One can portray relationship type in sub-
cells [e.g., 11, 41]—although this quickly crowds the matrix—or 
in separate matrix layers or planes [e.g., 22]. To reveal visual 
insights, symbols [e.g., 10] work better than numbers alone, 
especially for large DSMs. Clarkson et al. [42] provided an 
innovative way to combine the probability and impact of a change 
propagating across an interface by placing a mini-graph in each 
off-diagonal cell, where the width of the graph represents 
probability, the height of the graph represents the impact, and the 
shaded area of the graph represents the risk (the product of 
probability and impact). Relationships with external entities can 
be modeled by adding a row and column to the DSM [22, 43] or 
by using separate regions above and to the right of an IC-
convention DSM [12]. Alizon et al. [44] overlaid DSM layers, 
each representing a product variant, to compose a three-dimen-
sional DSM depicting a product family. Further opportunities 
abound to develop DSM display approaches that make helpful use 
of hierarchy, layers, numbers, colors, and symbols and provide 
the capabilities to expand and contract regions and link to 
additional sources of information about the components and their 
relationships. 

 
2.1.3 Analyzing Product DSMs 

Although some additional analyses have been developed, 
most product DSM analyses to date have focused on clustering 
components to determine modular architectures. Advances in 
clustering include the use of sophisticated genetic algorithms 
[e.g., 41, 45], analysis of the eigenstructure of the matrix [46], 
approaches from graph theory [47], and the use of criteria besides 
simply the number of interfaces inside or outside a cluster, such 
as the likelihood of component change [43], the probability of 
unintended intellectual property transfer when outsourcing [48, 
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49], or module commonality across a product family [50]. 
Although improved approaches to clustering and other DSM 
optimization problems are useful, the primary challenges here lie 
in (a) the determination of appropriate objective functions for 
multi-criteria optimization and (b) the interpretation of results. 
Besides clustering, since an earlier DSM review [12] suggested 
the possibility of applying sequencing analysis (usually applied to 
temporal DSMs) to static DSMs, this has been done for both 
software (see §3) and hardware [51]—in part to separate the 
product architecture into hierarchical levels (with higher levels 
depending on lower levels but not vice-versa) to facilitate product 
design and development. Aside from clustering and sequencing, 
product DSMs have also been analyzed in terms of the probability 
and impact of a component change propagating across an 
interface, which has enabled  determination of the riskiest paths 
of change propagation and the designation of components as 
change multipliers or absorbers [42, 52-54]. This analysis can 
help designers adjust components and interfaces to manage 
product modularity and evolution. Still other analyses have used 
DSMs as the basis for calculating various metrics, especially 
pertaining to modularity [e.g., 21, 46, 55]. An acute challenge here 
is to devise a scale-free metric, one that gives the same result for 
a given product regardless of level of decomposition (matrix size). 

 
2.1.4 Otherwise Benefiting from Product DSMs 

Researchers have developed a number of innovative ways to 
use product DSM models. Several of these applications are 
summarized in Table 1b. Sharman and Yassine [56] used the 
DSM to identify architecture characteristics, patterns, or 
signatures such as buses, asymmetry, imperfection, pinning, and 
holding away. Fixson [57] explained the importance of interface 
reversibility and standardization. Baldwin and Clark [e.g., 58] 
emphasized the strategic and economic implications of product 
architectures and designs. Here the product DSM literature has 
many connections with the broader literature on modularity. 
Facilitated by a product DSM, modularity has informed design 
evolution [e.g., 55, 59-61], outsourcing decisions [49, 62], and 
market or portfolio segmentation [e.g., 63]. Moreover, the product 
DSM has supported design for variety while maximizing 
component commonality across product families or platforms 
[e.g., 64, 65-67] and design for adaptability, often via modularity 
and its connection with real options [e.g., 43, 68, 69]. The insights 
from these applications are quite sophisticated, but their wider use 
in practice will require new and improved software tools to 
support DSM model building, analysis, and interpretation. The 
use of multiple DSMs for product variants could benefit from the 
development of a “logic DSM” that represents relationships such 
as “if using component A then also use component B but not 
component C.” Baldwin and Clark [58] also elucidated the 
importance to good architecting of design rules—what designers 
working in decoupled modules follow to assure later ease of 
integration. Some have used DSMs to help determine the need for 
and location of additional design rules, as well as to locate and 
flag rule violations [e.g., 26, 28, 70, 71]. However, while Baldwin 
and Clark introduced design rules using a hardware example, most 
subsequent work has applied the concept to software. Further  

Table 1b:  Product architecture DSM innovations, extensions, 
and application areas—with selected references 

Otherwise Benefiting from Product 
DSMs 

Selected References 

Determining architecture patterns or signatures 
and their implications 

[56, 57] 

Assessing the strategic and economic 
implications of product architecture 

[57, 58, 60, 339, 352-
356] 

Using modularity to inform design evolution [55, 59-61, 357-359] 
Using modularity to inform outsourcing and 
partnering decisions 

[49, 62, 360] 

Segmenting portfolios [63] 
Designing for variety, component 
commonality/reuse, and product 
platforms/families 

[38, 39, 44, 64-68, 305, 
361-368] 

Designing for 
adaptability/flexibility/changeability (often via 
modularity, real options) 

[22, 43, 68, 69, 304, 338, 
369-375] 

Determination and use of design rules in 
product design 

[26, 28, 58, 70, 71, 376, 
377] 

Using design rules and options for mass 
customization 

[378-380] 

Standardizing and managing interfaces [57, 70, 376, 381] 
Designing for manufacturing and assembly 
(DFMA) 

[382] 

Designing for sustainability and the 
environment 

[316] 

Synthesizing with other design methods and 
tools such as Quality Function Deployment 
(QFD), Axiomatic Design, and the Theory of 
Inventive Problem Solving (TRIZ) 

[67, 257, 356, 361, 383-
387] 

Decomposing and optimizing design problems [72, 73] 
Supporting multidisciplinary design 
optimization (MDO) 

[74-76, 388] 

Exploring the conceptual design space [308, 383] 
Managing product knowledge [78] 
Analyzing product usability [389] 
Supporting reverse engineering [22, 40, 390] 
Integrating systems and infusing new 
technologies 

[350, 387, 391] 

Analyzing system integration and testing [392] 
Allocating resources to product modules [393] 
Industry Instances Selected References 
Aerospace [13, 41, 42, 52, 53, 75, 

76, 98, 308, 315, 340, 
342-344, 375, 383, 394, 
395] 

Automotive [11, 31, 35, 38, 67, 260, 
311, 318, 341, 351, 362, 
378-380] 

Computer (hardware) [51, 58, 339, 395] 
Construction [74, 304, 312] 
Electronics [21, 66, 350, 357, 364-

367, 375, 395, 396] 
Energy [68, 250, 392, 397] 
Information technology [398] 
Manufacturing systems [62, 335, 345, 373, 375, 

399] 
Mechanical products/equipment [36, 37, 50, 72, 305, 316, 

321, 325, 335, 368, 400] 
Sensor systems (large-scale) [289] 
Service system design [324] 
Ship design [362, 401, 402] 
Software [14, 27, 28, 30, 59, 70, 

71, 102, 306, 313, 376, 
403, 404] 

 
research could demonstrate the power of, and explore approaches 
to formalizing, design rules for hardware products. Additional 
studies of architecture evolution from a longitudinal perspective 
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would also be helpful. These could employ a set of static DSM 
models collected periodically or at set points of architecture 
change. The ease with which certain architecture patterns (e.g., 
modularity) correspond with hypothesized developments (e.g., 
the exercising of real options) could thereby be explored 
empirically. 

Table 1b also notes several other recent applications of 
product DSMs. Space will not permit detailing these, yet it is 
worth mentioning the expanding use of DSMs in design 
optimization [e.g., 72, 73], particularly multidisciplinary design 
optimization (MDO) [74-76]. Although MDO applications at 
NASA marked some of the earliest applications of process DSMs 
[e.g., 9, 77], the more recent design optimization models noted 
here have used product DSMs. MDO work has necessarily dealt 
with the approach to and level of decomposition of a product 
design problem, an area where further work could beneficially 
align with the work on repeatable approaches to building product 
DSMs (§2.1.1). Akin to the DSM work on change propagation, 
the MDO-related work has explored the use of DSMs as 
sensitivity matrices at the parameter level, thereby supporting 
design trade studies. 

Furthermore, product DSMs show potential as part of an 
overall solution to knowledge management challenges [e.g., 78]. 
By providing a structure for organizing product knowledge in 
terms of both the product breakdown structure and the component 
relationships, the product DSM can provide a concise, interactive 
overview of a complex product with links to further information 
(design specifications, design rules and guidelines, lessons 
learned, etc.) about particular components and interfaces. Further 
work in this area is needed, and this work should draw from the 
related research on building and representing product DSMs 
(§2.1.1 and §2.1.2), as well as research discussed later about 
comparable opportunities with process DSMs (§2.3.1 and §2.3.2). 
Finally, Table 1b notes some of the growing breadth and depth of 
industry instances; it includes only ones reported in the 
literature—surely a mere fraction of actual applications. (Note 
that further models of software architectures are addressed later in 
§3.) 

 
2.2 Organization Architecture DSMs 

For the purposes of this survey, an organization is a network 
of people (or groups thereof) with a common purpose. As a kind 
of system, an organization has an architecture—its structure, 
“embodied in its people, their relationships to each other and to 
the organization’s environment, and the principles guiding its 
design and evolution” [13]. Generally, an organization consists of 
“organizational units” such as teams, departments, agents, or 
individuals that connect to each other in various ways. 
Organization architecture models could include at least three 
mappings [13]:  (1) a hierarchical decomposition of the 
organization into units; (2) work assignments and top-down 
reporting relationships (lines of authority) among the units; and 
(3) lateral relationships among the units. The first two of these are 
often represented with an organization breakdown structure 
(OBS) or “org chart,” whereas the third has been the main focus 
of organization architecture DSM models (“org DSM” for short). 

Although Lano had previously used the “N-square” chart to 
model organizational interfaces [19], and others had used square 
matrices to model organizational communication flows [e.g., 79], 
McCord and Eppinger [10] developed the first explicit org DSM 

model. Meanwhile, others such as Coates et al. [80] used matrix 
models with names like “agent matrix.” Browning’s [12] review 
distinguished product and org DSMs as separate applications of 
static DSMs. Eppinger and Browning [13] further described the 
motivations for and benefits of org DSM models. Recently, org 
DSMs have enabled many innovative applications (Table 2), 
gaining attention especially in management/organizational 
science contexts. The remainder of this subsection surveys several 
of these areas while noting opportunities for further research and 
development. 

Table 2:  Organization architecture DSM innovations, 
extensions, and application areas—with selected references 

Building Organization DSMs Selected References 
Documenting relationships among organizational 
units 

[80] 

Using a survey instrument to gather data on 
organizational unit relationships 

[81-83] 

Deriving an org DSM from a process DSM [84, 85] 
Extracting relationships automatically via 
communication data mining 

[86] 

Capturing dependencies among skill sets [87] 
Modeling organizational work and coordination 
time 

[88] 

Displaying Organization DSMs Selected References 
Use of symbols instead of numbers [13] 
Showing hierarchy and membership in 
organizational structures 

[13] 

Analyzing Organization DSMs Selected References 
Clustering to determine organizational structures [89-91, 326] 
Identifying communication gaps and overlaps [82] 
Longitudinal analysis of multiple static DSM 
“snapshots” 

[13, 82] 

Optimizing work allocation across global product 
development organizations  

[88] 

Sequencing of organizational units to identify 
cooperation groups 

[93] 

Applying social network analysis techniques and 
metrics 

[94, 95, 405-407] 

Decomposing a social network into an optimal 
number of structurally equivalent classes 

[408] 

Otherwise Benefiting from Organization 
DSMs 

Selected References 

Comparing org and product architectures [30, 97-104, 409] 
Determining optimal team assignments [90] 
Designing organizations for integration (DFI), 
applying appropriate integrative mechanisms (IMs) 

[13, 82, 410, 411] 

Reorganizing projects at each phase due to changing 
needs for communication 

[30, 82, 104, 412] 

Managing inter-organizational and supplier 
integration 

[412, 413] 

Determining clusters of related skill sets [87] 
Identifying misfits or misalignments among 
organizational units 

[105] 

Determining the organizational impacts of product 
change propagation 

[414] 

Identifying indirect relationships among 
stakeholders 

[81] 

Examining implications of organizational 
interactions on organization design 

[411, 415-417] 

Industry Instances Selected References 
Aerospace [13, 82, 87, 94, 98, 104, 

105, 405, 409, 412, 418] 
Automotive [91, 278, 406, 414] 
Electronics [88] 
Energy [13, 81] 
Innovation systems [13] 
Software [30, 102] 
Transportation system organizations [89] 
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2.2.1 Building Organization DSMs 
In one way, building an org DSM can be less difficult than 

building a product DSM, because the lowest granular unit for 
decomposition (i.e., an individual person) is more commonly 
understood, and there is usually less ambiguity about the initial 
definitions of higher-level units such as departments or teams 
(because these are usually taken as given from readily available 
sources). Thus, while no empirical results yet exist, “inter-
modeler reliability” (cf. “inter-rater reliability”) might be higher 
for org DSMs than for product DSMs. Most org DSM models 
have focused on information flow relationships and have been 
built through surveys or interviews of the organizational units or 
their representatives [e.g., 81]. However, such an approach can 
reveal a large discrepancy between the provider and receiver 
perspectives of the respondents [82, 83]. In such cases, Browning 
[82] suggested simply taking the maximum of the two responses, 
since communication networks in project organizations seem to 
be much richer (and their DSM representations much denser) than 
initially supposed by either the provider or receiver perspectives 
(although empirical confirmation of this conjecture is needed). 
Some researchers [84, 85] have used a process DSM to derive an 
org DSM. Dabbish et al. [86] extracted relationships by mining 
communication data but also found that using different sources 
and types of relationship data could yield very different DSMs. 
Further research should examine the relative efficacies and 
accuracies of alternative methods for building org DSM models. 
Also, although the focus of most org DSMs has been the 
frequency of information flow among organizational units, others 
have used it to model the dependencies among organizational skill 
sets [87] and the amount of work and coordination time spent by 
the units [88]. Future research could elaborate on the varieties and 
possibilities of org DSMs to model other types of relationships 
among organizational units. 

 
2.2.2 Displaying Organization DSMs 

In comparison to product DSMs, relatively little has been 
done specifically regarding the display of important 
organizational patterns in a DSM. Eppinger and Browning [13] 
exhibited some recent innovations in this area from various 
sources, including the creative use of symbols and colors to 
indicate the strength of relationships and the use of boxes, colors, 
and multiple matrix entries to indicate the membership of units in 
hierarchical structures. Fortunately, because both are static 
DSMs, many of the visualization techniques pertinent to product 
DSMs (see §2.1.2) can be leveraged for org DSMs (and vice-
versa). 

 
2.2.3 Analyzing Organization DSMs 

As with product DSMs, the bulk of org DSM analysis has 
focused on clustering, primarily of organizational units, as a 
means of assigning them to higher-level groupings [e.g., 89-91]. 
The clustering methods used are similar to those discussed 
previously for product DSMs (§2.1.3), including the equivalent 
use of a “bus threshold” to isolate units with high interactivity 
with the overall organization. (Such units may then be designated 
as “system engineering,” “integration,” or “management” units 
and removed from further consideration in the clustering analysis 
[13].) However, opportunities remain to develop clustering 
algorithms tailored to organizational applications and based on 
empirical justifications, where the objective function contains 

factors and values pertinent to the particular situation. Although 
analysis tools such as Ucinet [92] provide the capability to 
generate a specified number of clusters, it would be helpful to 
incorporate greater clustering functionality into DSM tools. Some 
simpler analyses of org DSMs have used row and column sums 
(essentially in-degree and out-degree) to gauge a unit’s relative 
communication burdens and suggested examining the DSM to 
identify communication gaps and overlaps among units [82]. 
Furthermore, because an organization is a dynamic system, and a 
static DSM only captures a snapshot of a system at a point in time, 
multiple DSMs can be stacked for longitudinal studies of 
organizational change. Browning [82] used two DSMs to show 
the situation in a product development organization before and 
after an 18 month interval, during which the communication 
frequencies among particular units changed significantly. 
Tripathy and Eppinger [88] developed a quantitative model of 
work and coordination times for each organizational unit and used 
these to optimize the allocation of work across units. Rondeau et 
al. [93] essentially sequenced an org DSM to identify cooperation 
groups and explore their implications. Finally, several scholars 
[e.g., 94, 95] have applied social network analysis techniques to 
org DSMs: further synthesis and analyses of these models 
promises to be a very fruitful area of DSM research. 

 
2.2.4 Otherwise Benefiting from Organization DSMs 

Org DSMs have also propelled research in other areas. One 
of these areas concerns the relationship between product and 
organization architectures, particularly with respect to Conway’s 
[96] assertion that an organization will inevitably design products 
whose structure copies that of the organization’s communications. 
In addressing this “mirroring hypothesis,” Colfer and Baldwin 
[97] presented “actionable transparency,” which has the effect in 
the org DSM of routing technical communication through a “bus 
element” (such as a shared database) that provides a surrogate for 
direct communication. Hence, it is an example of how an 
integrative mechanism (IM) could be represented as an alteration 
in an org DSM. Several scholars [e.g., 30, 98-104] have explored 
the alignment (or lack thereof) between the product and 
organization architectures in engineering projects and proposed 
connections to various aspects of project performance. These 
studies provide excellent examples of where the DSM has 
supported top-notch research in the organization science and 
engineering management domains. Future studies could consider 
the alignment of the organization architecture with other project 
architectures such as the process, tools, and goals. Table 2 
provides several other examples of where an org DSM has 
supported various strands of organizational research. Each of 
these areas could be extended, and researchers who work with 
graph-based network models could unlock potential benefits and 
insights through the use of an org DSM representation. Again, a 
particular area for further research concerns the longitudinal study 
of organizations [e.g., 30, 82, 104]—perhaps through the use of a 
set of org DSMs, where each provides a snapshot of the 
organization architecture at a different point in time. Such studies 
could add to our knowledge of organizational dynamics, 
adaptation, and evolution. 

Finally, Table 2 notes several industrial instances of org 
DSMs at entities such as NASA [105], General Motors, 
McDonnell Douglas, Pratt & Whitney, Timken, and BP [13]. 
Aerospace instances figure most prominently in the literature. 
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2.3 Process Architecture DSMs 
The DSM moniker was first coined by Steward for his 

square-matrix-based models of processes [3-5], which emerged 
from his earlier use of such matrices for solving systems of 
equations [1, 2]. Since then, process architecture DSM models 
(“process DSMs” for short) have received the most attention of 
all DSM application areas from scholars and practitioners. 
Prominent, early efforts include work at NASA [9, 77], MIT [8, 
16, 106], and The Boeing Company [107]. 

A process is “a system of activities and their interactions 
comprising a project or business function,” and a process 
architecture is a process’s structure, as determined by its 
constituent activities and their interactions, and the principles 
guiding its design and evolution [13]. Process architecture models 
include at least three mappings:  (1) the hierarchical 
decomposition of the process into activities; (2) the input-output 
relationships among the activities; and (3) other types of activity 
relationships. The process DSM models the second of these, 
although it can also show the first. The third usually requires 
object-oriented modeling techniques. Hence, a rich process model 
may fully exist only in a database, of which a process DSM could 
provide a partial view; flowcharts and Gantt charts are examples 
of additional, partial views [108]. A DSM view is especially 
advantageous when seeking to highlight cycles (iterations or 
rework loops), which are both prominent and problematic in 
project processes. See [13] for further discussion of the 
motivations for and benefits of process DSM models. Process 
DSMs have gained traction mainly in engineering design and 
construction management. Recent models have brought many 
innovative applications (Table 3a&b). The remainder of this 
subsection will discuss several of these along with opportunities 
for further research and development. 

 
2.3.1 Building Process DSMs 

Process modelers have taken a variety of approaches to 
building DSMs, including leveraging existing documentation and 
models in other formats (e.g., flowcharts), interviews, and 
surveys. Interviews and surveys can be more or less effective 
depending on the questions asked and the understanding and 
expertise of the respondents. Although existing models and 
documents offer convenience, they tend to produce relatively 
sparse DSMs that account for only a minimal number of activity 
dependencies [109]. Because a DSM does not increase in size 
with the number of dependencies (only with the number of 
elements), it provides an advantageous platform for capturing and 
displaying richer models of the extensive information flows 
among activities. A powerful way to build such models is to build 
two DSMs, one row-by-row and the other column-by-column—
by separately collecting the input and output perspectives of an 
expert on each activity—and then overlay these [83, 110]. The 
data collection may not even use a DSM but rather a set of 
supplier-input-process-output-customer (SIPOC) diagrams, the 
content of which is then transferred to a DSM format. This 
approach tends to (1) uncover many differences in understandings 
among the activity experts and (2) yield a much richer model of 
the information and work product flow (often 3-5 inputs and 
outputs per activity instead of the 1-2 typical of many flowcharts). 
Researchers have explored several ways to increase process DSM 
model-building accuracy and efficiency, such as determining 
activity dependencies from: product models [111-113], document  

Table 3a:  Process architecture DSM innovations and 
extensions—with selected references 

Building Process DSMs Selected References 
Using SIPOC diagrams and deliverable 
negotiations to formalize interfaces 

[109, 110] 

Facilitating data collection in workshops [25, 83, 419] 
Constructing a process DSM automatically 
from other models 

[108, 113, 129, 210] 

Deducing a process DSM via e-mail analysis [116] 
Mapping document flow [114, 115] 
Counting defects and rework loops [117] 
Distributing and automating data collection via 
web-based tools 

[118, 119, 420] 

Using QFD to determine activities or 
dependencies 

[111, 112, 120] 

Integrating smaller DSMs [109, 121, 421, 422] 
Modeling conceptual design activities [122, 423] 
Accounting for uncertainty or ambiguity in 
activity dependencies 

[123-125, 420, 424-426] 

Accounting for multiple activity modes [126, 127] 
Eliciting rework probabilities [128] 
Displaying Process DSMs Selected References 
Providing multiple views of a process model, 
including DSM 

[108, 129, 427, 428] 

Representing contingent relationships [12, 126, 127] 
Varying colors, symbols, shading, numbers, etc. [12, 13, 220, 429] 
Using DSM appendages to show external 
relationships 

[12, 13, 109, 430] 

Working with very large and/or hierarchical 
matrices 

[14, 109, 431] 

Focusing the DSM on deliverable or 
information objects 

[130] 

Analyzing Process DSMs Selected References 
Sequencing activities in processes (basic) [5, 16, 131, 271, 432-

440] 
Decomposing coupled blocks [133-144, 433, 441-452] 
Overlapping activities [145-147, 150, 453-455] 
Scheduling project workflows [80, 124, 151-157, 195-

197, 203, 322, 454, 456-
467] 

Estimating iterative process duration and/or 
cost 

[15, 153, 158-160, 162, 
188, 194, 205, 430, 453, 
468-480] 

Estimating effects of iterative process on 
process duration and cost, as well as on the 
technical performance of a developing product 

[127, 161, 481-483] 

Estimating iterative process variability, 
robustness, and/or risk 

[15, 128, 147, 479, 484] 

Optimizing process duration or cost (often with 
an evolutionary algorithm) 

[133, 147, 149, 163-167, 
190, 191, 433, 485-497] 

Optimizing multiple objectives (e.g., process 
duration and cost) 

[168, 169] 

Analyzing process convergence [159, 170-173, 429, 471, 
474, 498-501] 

Applying network analysis techniques (e.g., 
social networks) 

[174, 175, 424, 502] 

Clustering activities or design 
parameters/decisions 

[12, 137, 138, 142, 150, 
176-182, 460, 468, 503, 
504] 

Sequencing and/or prioritizing design 
parameters/decisions 

[112, 155, 183-186, 505, 
506] 

Analyzing processes while accounting for 
resource allocations 

[162, 187-191, 271, 477, 
479, 495, 507-509] 

Exploring effects of project work policy and 
activity crashing and overlapping 

[148] 

 
flow data [114, 115], e-mails [116], or observed rework loops 
[117]. Web-based tools have provided another means of 
distributing and automating the process of data collection [118, 
119]. Others have used quality function deployment (QFD) as a 
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basis for modeling activities and dependencies [111, 112, 120]. 
To build a large DSM, still others have taken the approach of 
integrating several smaller DSMs [109, 121]. 

Whereas a particular challenge in modeling product design 
and other novel project processes is activity and dependency 
ambiguity, Austin et al. [122] nevertheless found that even 79-
90% of conceptual design activities could be specified and 
modeled. Others [123-125] provided ways to account for 
uncertainty or ambiguity in activity dependencies—e.g., with 
“fuzzy” dependency specifications. Clarkson and Hamilton [126] 
and Lévárdy and Browning [127] proposed the use of alternative 
activity modes to capture various ways an activity could be 
undertaken (e.g., a slower and cheaper mode versus a faster but 
more expensive mode, or an initial mode versus a rework mode). 
Yassine [128] detailed the elicitation of rework probabilities for 
DSM models that seek to include them. Indeed, many of the more 
sophisticated DSM models require a variety of additional inputs 
that must be acquired from experts while taking similar caution. 
Overall, building process DSMs often requires significant effort, 
although it is important to recognize that this effort is really spent 
on building a good process model: once that exists, rendering part 
of it as a DSM is essentially instantaneous. 

 
2.3.2 Displaying Process DSMs 

A DSM cannot display a rich process model in its entirety. 
Some attributes of activities (e.g., duration) or dependencies (e.g., 
requirements) are not typically shown in a DSM, and, even if they 
were, this would preclude showing other attributes such as activity 
costs or rework probabilities. The conciseness of the matrix 
format limits the number and kinds of attributes that may be 
usefully shown at once. Hence, Browning [108, 129] proposed a 
process architecture framework that combines DSM with many 
other views of a process model, thereby circumventing some of 
the classic tension between model simplicity and completeness. 
Otherwise regarding the display of process DSMs, many of the 
innovations discussed previously with respect to displaying 
product and org DSMs (§2.1.2 and §2.2.2) can also be applied. 
One situation that tends to appear more often in process models is 
the presence of conditional or contingent relationships among 
activities. A few papers [12, 126, 127] have developed special 
symbols (e.g., diamonds like the ones used in flowcharts, “”) to 
signify alternative flow paths. However, further research, 
applications, and display enhancements of DSMs with conditional 
flows are needed. Users of process DSM models seeking to isolate 
various process threads or tailor a process would benefit from 
tools with the capability to highlight such threads. Display tools 
could also better support model building by highlighting missing 
elements, such as disconnected flows of work products. 
Separately, much like project scheduling models have their 
activity-on-arc and activity-on-node representations, it would be 
interesting to explore the possibilities of DSMs with deliverable, 
work product, or information objects on the diagonal and 
activities in the off-diagonal cells [130]. 

 
2.3.3 Analyzing Process DSMs 

A great amount of research has focused on the analysis of 
process DSMs. Most analyses seek to identify an advantageous 
sequence of activities by reordering the matrix rows and columns. 
Many begin with some form of matrix block triangularization—
i.e., the minimization of feedbacks and the identification of 

coupled blocks of cyclical activities. Although the literature 
contains several algorithms [e.g., 131], Tarjan’s [132] depth-first 
search provides the most efficient way to identify coupled 
components [133]. Once coupled blocks have been found, further 
analyses have been proposed to sequence the activities within 
each block, including:  tearing [e.g., 5, 134], eigenvalue analysis 
[e.g., 135, 136], analytic hierarchy process [e.g., 137-141], 
clustering [e.g., 138, 142], implied organizational structures [e.g., 
137, 143], genetic algorithms [e.g., 133], iteration front-loading 
[144], and others. Most of these approaches entail collecting 
additional information about the dependencies among the coupled 
activities and utilizing these data in a more sophisticated 
optimization. One of the basic tradeoffs in such cases is that 
between increased overlapping, parallelism, and concurrency 
versus the concomitant increase in iteration and rework—i.e., 
which activities should be executed sequentially or in parallel. 
Here, the DSM touches the broader literature on activity 
overlapping, sometimes explicitly [e.g., 145-150]. Ultimately, 
activity sequencing boils down to decisions about when to start 
and stop each activity—i.e., project scheduling (with some 
expected number of activity iterations)—although many of the 
aforementioned analyses of coupled blocks do not go this far. 

Several other process DSM analyses derive actual project 
schedules or “run-time models” [e.g., 80, 151-157]—sometimes 
by side-stepping some of the thornier issues of coupled blocks 
with simplifying assumptions. These works mainly use the DSM 
as an intermediate step on the way to producing a workflow or 
Gantt chart view of a project plan. Several of these developments 
have focused on the building construction industry, where 
detailed schedules are the expected deliverable from any planning 
exercise. 

The effects of iteration and rework cycles on project duration 
and cost are difficult to forecast. Smith and Eppinger developed 
analytical models to estimate project duration assuming 
sequential activities [158], parallel activities [159], or a 
combination [160]. Processing more general cases requires 
simulation. The first DSM-based, discrete-event, Monte Carlo 
simulation model [15, 161] estimated project duration and cost, as 
well as the variation and risk in each. The model accounted for 
rework risk (probability and impact), learning curves, and, for a 
given work policy, the effects of alternative process architectures. 
It confirmed that processes can be sped up with appropriate 
increases in overlapping and iteration—i.e., that the process 
architecture with the fewest feedback marks in the DSM is not 
necessary optimal. Thus, the basic heuristic used to initially 
sequence many process DSMs, minimizing feedback marks, does 
not guarantee the best process. Many other DSM simulations 
followed, some including extensions such as resource constraints 
[e.g., 162], some accounting for technical performance 
characteristics in addition to duration and cost [127, 161], and 
some focusing on other objectives such as process robustness 
[128]. Still other efforts have used evolutionary algorithms such 
as simulated annealing or genetic algorithms, sometimes 
employing a simulation-based fitness function, to minimize 
project duration by manipulating the process architecture or other 
characteristics [e.g., 133, 163-167]. Meier [168] and Wang et al. 
[169] developed multi-objective genetic algorithms to explore 
time-cost optimization and tradeoffs. (Note that the evolutionary 
algorithms for sequencing process DSMs employ different fitness 
functions and techniques than those mentioned in §2.1.3 for 
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clustering product DSMs. These two streams of literature could 
benefit from further interaction and “crossover.”) 

Other analyses of process DSMs have applied further 
methods and objectives. Some have used the work transformation 
matrix model of fully parallel activities [159, 170-172] to explore 
process convergence (or lack thereof) and expose the 
phenomenon of design churn [173], wherein work on project 
activities fails to yield useful progress. Others [e.g., 174, 175] 
have calculated network analysis metrics such as density, 
centrality, and brokerage to identify activities, dependencies, or 
groupings thereof expected to be of special interest. Since an 
earlier DSM review [12] suggested the possibility of applying 
clustering analysis (usually applied to static DSMs) to process 
DSMs, several have done so, especially within coupled blocks 
[e.g., 137, 150, 176-178], to suggest sub-groupings of activities 
that would foster process modularity and facilitate their 
assignment to suppliers [179, 180], to identify sub-networks 
requiring particular combinations of knowledge or skills [181], or 
to facilitate the scheduling of collaborative tasks [182]. Still others 
[e.g., 112, 155, 183-186] have modeled engineering design 
projects at a relatively detailed level using parameter-based DSMs 
[12], where each node is a design parameter and the objective is 
to sequence their determination, like solving a system of 
equations. Some [e.g., 162, 187-191] have considered resource 
constraints in DSM-based process models and thereby produced 
insights about the comparative effects of iteration and resource 
challenges. Finally, in a rich model of process cost and duration 
that accounts for architecture, iteration, crashing, and 
overlapping—including a six-layer DSM that accounts for 
activity attributes such as minimal and maximal overlapping—
Meier et al. [148] demonstrated that work policy decisions play a 
large role in project outcomes. Aside from application area or 
objective, several have combined process DSM models with other 
methods such as: axiomatic design [e.g., 139, 192, 193], system 
dynamics [e.g., 123, 145, 188, 194, 195], Petri nets [e.g., 153, 196, 
197], IDEF0 [e.g., 198], Markov models [e.g., 158, 165], or QFD 
[111, 112, 120]. (Although in many cases these supplemental 
modeling techniques are brought to bear due to some perceived 
shortcoming in the DSM, it is important to reiterate that none of 
these modeling views alone is sufficient to capture a rich process 
model in its entirety [108].) 

 
2.3.4 Otherwise Benefiting from Process DSMs 

Table 3b summarizes some additional applications of process 
DSMs outside the mainstream focus on structuring and estimating 
a given project process. Several researchers [e.g., 142, 180, 199-
201] have used the process DSM (rather than the org DSM) to 
guide organization and/or supplier network design. Other uses 
include: predicting the effects of design or requirements changes 
[202-205],  evaluating process improvements [206-208], 
prioritizing activities [209], identifying disconnects in a process 
flow model [15, 210], situating testing activities at appropriate 
places in a process [193, 211], monitoring project progress [212], 
analyzing resource dependencies across projects in a portfolio 
[187], and managing resources and/or scheduling in a 
manufacturing system [e.g., 213, 214]. Lévárdy and Browning 
[127] used a DSM to model a process as a complex adaptive 
system, where the activities self-organize according to simple 
rules. Early on at NASA and Boeing [77, 215], and more recently 
in China [216, 217], aerospace and naval researchers have  

Table 3b:  Process architecture DSM innovations, extensions, 
and application areas—with selected references 

Otherwise Benefiting from Process 
DSMs 

Selected References 

Structuring project organizations and/or 
supplier networks 

[142, 180, 199-201, 270, 510] 

Managing product configurations/variants 
for sales and production 

[511] 

Predicting the effects of 
design/requirements/engineering changes 
on a project 

[202-205, 479] 

Evaluating process improvements [206-208] 
Quantifying project uncertainty [512] 
Investigating the implications of process 
characteristics on performance 

[513] 

Prioritizing activities [209, 483] 
Identifying process flow disconnects [15, 210] 
Modeling causes and flows of events [514] 
Exploring the implications of alternative 
sequences of conceptual design parameters 

[186] 

Situating verification, validation, and 
testing activities in a design process 

[193, 211] 

Monitoring project/design progress [212, 506] 
Analyzing resource dependencies across 
projects in a portfolio 

[187] 

Managing resources and/or scheduling in a 
manufacturing system 

[213, 214, 515-517] 

Managing dimensional tolerances and 
process capability in production 

[505] 

Modeling the product development process 
as a complex adaptive system (CAS) 

[127, 518] 

Facilitating multidisciplinary design 
optimization (MDO) 

[75, 77, 215-217, 388, 498, 
499, 519, 520] 

Facilitating collaborative design [426, 521] 
Incorporating into architecture frameworks [108, 129, 522-524] 
Policy and scenario analysis [218] 
Industry Instances Selected References 
Aerospace [13, 15, 75, 126, 215, 216, 

395, 432, 433, 479, 525, 526] 
Automotive [13, 120, 123, 441, 475, 477, 

527, 528] 
Construction [13, 115, 119, 138, 151, 156, 

157, 179, 184, 203, 204, 210, 
274, 423, 434, 448, 454, 456-
458, 465, 467, 529-534] 

Electronics [13, 143, 276, 395, 473, 480, 
535] 

Energy [453, 462, 536-538] 
Government agencies [522-524] 
Healthcare [539] 
Information systems and technologies [425] 
Manufacturing systems [127, 213, 443, 517, 540] 
Mechanical equipment and components [189, 420, 445, 449, 488, 

541] 
Military [542] 
Naval ship design and development [188, 492, 519] 
Network system control [269] 
Pharmaceutical [13] 
Real estate development [543] 
Software development [117, 198, 421, 502, 514, 

544, 545] 
 
harnessed the DSM to model information flows among design 
tools as a step towards integrating the tools into a “meta-tool” to 
accelerate MDO (cf. §2.1.4). Arcade et al. [218] sequenced a 
square matrix they called a “structural analysis matrix” to analyze 
approaches and scenarios for government policies. The process 
DSM has also been applied across many industries, especially the 
construction industry, as exhibited in Table 3b. Again, these 
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instances represent only ones reported in the literature—only “the 
tip of the iceberg” since most industry applications go 
unpublished. (Applications of process DSMs to software product 
architectures are addressed in §3.) 

Despite the wealth of applications and concerns addressed so 
far with the process DSM, many more opportunities exist. For 
example, almost all applications to date have focused on project 
processes, where the aim is to complete each activity once (albeit 
with potential rework and iterations) and finish the project. 
However, the process DSM might also find interesting 
applications in the realm of repetitive business and production 
processes such as assembly lines, where all of the activities are 
ongoing simultaneously, to explore flows, identify bottlenecks, 
and calculate metrics such as capacity, throughput time, and 
work-in-process inventory. The process DSM could also be more 
directly integrated with risk management, where planned risk 
responses could be added to a project’s process DSM, thereby 
adding cost and duration but reducing the probability and impact 
of feedbacks; DSM analysis could determine the net benefit of the 
result and the optimum amount of such risk mitigation. Finally, 
despite the appearance of several papers on iteration, rework, and 
the process DSM in project management journals, these topics 
have not yet gained wide traction in the project management 
community—e.g., they are not yet addressed in official project 
management standards [e.g., 219]. It therefore seems that further 
visibility of process DSM methods and applications is needed in 
project management. 

 
3 Beyond Product, Process, and Org DSMs 

Beyond the older product, process, and org DSMs, several 
other DSM applications have recently emerged. One of these new 
areas, analyzing software product architectures as processes, 
spans the domains of product and process DSMs. Software is a 
product, and its architecture has been modeled along similar lines 
as hardware products and analyzed for patterns such as modularity 
using clustering algorithms, as noted in §2.1. However, software 
runs in real time like a process. Therefore, it is also insightful to 
apply sequencing algorithms and explore the implications of 
architectural patterns such as cycles. Sangal et al. [26] took this 
approach and noted the importance of hierarchical levels (layers) 
and cycles in software architectures. Bergel et al. [220] extended 
the DSM representation to account for varied types of software 
component dependencies and to highlight nested cycles. Sosa et 
al. [221] found that cyclicality is at least as significant to software 
quality as is modularity. Both static and temporal DSM models 
present many opportunities to investigate software architectures. 

In addition to the product, process, and organization 
architectures, a project’s architecture includes the tools and goals 
architectures [222]. DSM applications have only recently begun 
to touch these areas, which offer very promising opportunities for 
future research. The domain of tools concerns the various non-
human resources, facilities, equipment, and software used to 
accomplish work. Of special concern in this domain is the 
network of software applications and databases used by people 
and teams (in the organization domain) to accomplish activities 
(in the process domain) and store information. These software 
tools must exchange information for a project to proceed 
efficiently, but many times the tools do not easily interface. Some 
MDO applications (q.v. §2.1.4 and §2.3.4) have touched on this 
area, because MDO requires integrating the tools used by each 

discipline. Beyond the individual project level, the tools 
architecture also relates to what the information systems literature 
terms the “enterprise architecture.” Lagerström et al. [223] 
examine the overall structure of a portfolio of 192 software 
applications. Although only one other DSM paper [224] has 
addressed tools, both static and temporal DSM models offer 
promising possibilities for visualizing, analyzing, and improving 
the tools architecture. 

The goals domain includes a project’s requirements, 
objectives, targets, and/or constraints. Such elements relate to 
each other in various ways, such as when improvement towards 
one requirement causes a tradeoff with detrimental effects on 
another. This network of goals has an architecture that can be 
modeled with a DSM [225]. Most applications to date have built 
and analyzed DSM models of requirements [e.g., 226], such as for 
analyses of change propagation [227, 228] or functional 
requirements clustering [229]. Lee et al. [230] mix goal and use 
case DSMs in a large matrix (really an MDM) to facilitate 
requirements traceability and change management. Future 
opportunities exist to explore requirements modularity and 
cyclicality using static and temporal DSMs, respectively. 

DSM models have also been employed in some other 
interesting ways. Eelman and Föller [231] used the DSM to drive 
scenario generation. Several researchers built DSM models of 
project risks to show the relationships among them and determine 
the second-order risks emerging from risk interactions [232-237]. 
Stamelos [238] modeled the relationships among software 
development malpractices. Kornish and Ulrich [239] clustered a 
static DSM to identify opportunities for innovation. Farsad and 
Malaek [240] clustered a DSM model of aircraft flights to 
facilitate air traffic control. Unlike the change propagation models 
discussed in §2.1.3, Shankar et al. [241] used a DSM to represent 
the relationships among the engineering and manufacturing 
changes themselves, thereby studying the sources and implica-
tions of changes. Wyatt et al. [242] use the DSM as the basis for 
an economical, graph encoding scheme. DSMs have even been 
harnessed in literature surveys: Hamraz et al. [243] employed a 
temporal DSM to model citations among publications and a static 
DSM to show citations across categories of literature. DSM 
models are becoming useful for explorations of socio-technical 
systems, such as in Vaishnav et al.’s [244] study of cyberspace 
components and international relations. DSMs also hold promise 
for applications to portfolio management [245], data science, and 
many other kinds of network modeling. 

 
4 Cross-domain Applications with Domain Mapping 

Matrices (DMMs) 
So far we have focused on DSMs within individual domains, 

but many applications, such as a need to show the organizational 
unit responsible for each activity in a process, transcend a single 
domain. A simple way to convey basic relationships of this type 
is to use a “1.5 domain DSM” [13]—a single-domain DSM 
augmented with colors (as in Figure 1), numbers, or symbols to 
signify relationships to another domain—such as a process DSM 
with each activity colored by its responsible organizational unit 
[e.g., 246]. For richer models across domains, a single DSM 
usually will not suffice. Whereas a DSM is always a square 
matrix, rectangular matrices have long been used to map 
relationships across domains. In 2004 Danilovic and Browning 
[222] dubbed such matrices domain mapping matrices (DMMs) 
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and proposed a “periodic table” of then existing and potential 
DMM models across five project domains: product, process, 
organization, tools, and goals. Table 4 summarizes the DMM 
applications in our survey, which cover most of this “periodic 
table.” While not delineated by industry in Table 4, these 
applications span aerospace, automotive, consumer products, 
control systems, electronics, energy, marine engines, mechanical 
components and equipment, printing, and software. 

The product domain contains at least two prominent sub-
domains, functions and components. Most of the product DSM 
applications discussed in §2.1 model components, although some 
model functions. Both sub-domains matter, as does their 
relationship. The appropriate allocation of functions to 
components is a salient aspect of effective design—e.g., 
precipitating the “design matrix” of Axiomatic Design [247]. 
Several researchers have used the DMM to model and explore 
function-to-component relationships [e.g., 32, 37, 248-250]. As 
with many DMMs, the function-component DMM can be used to 
generate both DSMs: multiplying this DMM by its transpose 
yields either the function-function or component-component 
DSM, depending on the order of operations. Bonjour et al. [33] 
used this approach to derive a component DSM, which they then 
compared to a component DSM built through traditional methods. 
Danilovic and Browning [222] proposed additional product sub-
domain DMMs, and further research is still needed to ground 
these in the engineering design literature and in relation to each 
other. 

Table 4:  DMM application areas, with selected references 

Domains Selected References 
(Product) Function-Component [13, 32-34, 37, 248-250, 546, 547] 
(Product/Goal) Function-(Process) 
Parameter 

[20, 34, 251-259, 548] 

Product-Goals [34, 260-262, 264, 402, 547, 549] 
Process-Goals [263, 550] 
Product-Organization [248, 266, 267] 
Process-Organization [191, 268-274, 550] 
Product-Process [34, 113, 165, 275, 276, 551-553] 
Product-Process-Organization [277-279] 
Process-Tools [224, 280] 
(Process) Activities-Deliverables [20] 
Organization sub-domains [13, 281] 

 
Interesting relationships exist among the product, process, 

and goal domains. Several have mapped product functions to 
design parameters [20, 251-253], in one case performing a 
clustering analysis on this DMM [254]. Required, desirable, and 
undesirable product functions bear much in common with the 
goals domain (discussed in §3): future research should explore 
this connection more explicitly. As such, others have mapped 
functional requirements (goals) to design parameters (using the 
nomenclature of the “design matrix” of Axiomatic Design), using 
this DMM to derive a parameter-based DSM [255, 256]. The 
DMM of customer needs to design parameters is essentially a 
QFD matrix [257]. Other related work includes mapping design 
parameters to “criteria” (essentially requirements) [258, 259]—a 
kind of process-goals DMM. Some have used more explicit 
mappings between the product (components) and goals 
(requirements) domains [e.g., 260-262] or between the process 
(activities) and goals (key product attributes) [263]. Kreimeyer et 
al. [264] mapped components to load cases, which might be 
considered as requirements scenarios. Again, further exploration 

and standardization within and across the product, process, and 
goal domains is needed to clarify terminology and models. This 
will enable such models to better support the pursuit of interesting 
research questions, such as ones pertaining to the constraints 
imposed by one domain on others, or the precedence or priority 
of domains. 

Relationships among the product, process, and organization 
domains gained earlier attention [12, 265], and §2.2.4 noted 
studies of alignment between product and organization 
architectures. Whereas those studies compared the DSMs from 
each domain, others [248, 266, 267] have used DMMs to explore 
the relationships between these domains—e.g., mapping 
departments, teams, or people to product components and/or 
functions. Process-organization inter-domain implications have 
received attention from several researchers [191, 268-272] who 
have mapped people, skills, or other resources to activities or 
parameters and used these models to allocate resources and 
determine organization structures, often via a clustering analysis. 
Such mappings can take the form of the conventional 
“responsible-accountable-consult-inform” (RACI) chart from 
project management [e.g., 273, 274]. Meanwhile, product-process 
relationships have prompted modelers to map functions or 
components to activities for purposes of risk management [e.g., 
275], derivation of a process DSM [e.g., 276], insight into the 
implications of component standardization and modularization on 
the design process [165], and design for manufacturing and 
assembly [34]. A few studies have considered the product, 
process, and organization domains at once to explore the 
propagation of engineering changes [277], the design of core 
competences [278], or simultaneous optimization across domains 
[279]. Many opportunities exist for further studies of the product, 
process, and organization domains and their interactive 
implications. One key area is the dynamics, co-evolution, and 
emergence of these domains with respect to each other. 

A few other inter-domain studies have used other DMMs. 
With the exception of [224], the interaction of the tools domain 
with other project domains has received little attention but 
deserves much more. As the tools domain includes non-human 
resources, resource allocation or utilization matrices fall into the 
category of process-tool DMMs [e.g., 280]. Mapping models have 
also been developed within the process domain between activities 
and deliverables [20] and within the organization domain between 
people and knowledge areas [281] and between people and team 
assignments [13]. 

 
5 Multidomain Matrices (MDMs) 

The importance of modeling both inter- and intra-domain 
relationships simultaneously led to the advent of multidomain 
matrices (MDMs). An MDM could take the form of Danilovic 
and Browning’s [222] “periodic table,” an integration of various 
DSMs and their intervening DMMs. Maurer [282, 283] codified 
the term MDM, which gained traction in the DSM community and 
literature [13]. Concurrently, Bartolomei [95] developed the 
“engineering systems matrix” model along similar lines. 
Recently, several applications have emerged that combine DSMs 
and DMMs in various ways. All such applications are grouped 
here into the category of MDMs, even if they are not explicitly 
aggregated into a single matrix. 

From the outset, MDM models have been used to help build 
and verify DSMs and DMMs. For example, Sosa [284] used a 
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product (component) DSM and a product-org (component-to-
person) DMM to derive an org DSM of potential interactions for 
comparison with an org DSM built through traditional means—
thus enabling a comparison of predicted and actual 
communications in software development. Senthilkumar and 
Varghese [115] used product and org DSMs to derive a process 
DSM in the construction industry. 

Other MDM applications have explored and supported 
change propagation, knowledge management, engineering 
design, and manufacturing systems. Because the implications of 
design or engineering changes reach across the product, process, 
and organizational domains, several have used MDM models to 
investigate change propagation in various industries [285-290]. 
Rich MDM models have provided a basis for capturing and 
storing system-level knowledge about products, design tasks, 
design organizations, etc. [291] and for identifying organizational 
core competencies [278]. In design projects, MDM models have 
helped to manage: design decisions [121], design communication 
[292, 293], product architecture risk [294], design to cost [295], 
product variant management [296], non-linear system dynamics 
[297], causes and effects of testing failures [298], and product-
organization alignment to increase development capabilities 
[299]. Westermeier et al. [300] used an MDM to model quality 
concerns in a lithium-ion battery manufacturing system. Kasperek 
et al. [301] used an MDM as a basis for system dynamics 
modeling. Eppinger and Browning [13] included several other 
interesting MDM applications, such as airport security [302]. 

MDM research is still in its infancy with many researchers 
trying a variety of applications. Much recent work in the DSM 
community has focused on MDM models, yet many opportunities 
exist to further codify and standardize MDM terminology and 
methods, categorize application areas, and develop analysis tech-
niques. Although clustering and sequencing have been used with 
DSMs, and clustering with DMMs, it remains unclear how best to 
analyze an MDM containing a mix of static and temporal DSMs. 
MDMs also hold great promise for the emerging fields of “big 
data,” data science, and analytics. For example, huge DSMs can 
capture relationships among large groups of people, and DMMs 
can map those people onto other domains, such as organizational 
memberships, product and service preferences, and purchasing 
habits. Analyzing all of this information in tandem reveals 
patterns, clusters, cycles, segments, associations, “hot spots,” and 
so on. Soon it would be appropriate to dedicate a literature review 
specifically to MDMs. 

 
6 Conclusion and Outlook 

The outlook for DSM, DMM, and MDM modeling is bright. 
Perhaps the fundamental challenges at this point are (1) the large 
amount of new data required to build a rich, structural model of 
some systems and (2) the absence of a versatile and user-friendly 
software toolset for DSM/DMM/MDM modeling, manipulation, 
and analysis. Several promising tools have emerged in the last 
decade, but further work is needed to broaden their applicability 
and capabilities. As for the data challenge, this is not a DSM 
problem but rather a general problem for any system model: 
gathering new data is a tedious and error-prone process. 
Fortunately, researchers are developing new capabilities to extract 
data from other sources to build system models rapidly. Further 
work is also needed to broaden the understanding, acceptance, and 
adoption of DSM into the mainstream methods of project 

management (despite some prior visibility in the construction 
industry). DSM has already achieved such goals in the areas of 
engineering design, systems engineering, and management/ 
organization science, although even broader awareness and 
understanding would be beneficial in those areas as well. DSM is 
starting to appear in some textbooks and industry standards. 
Relative to some other models in operations and technology 
management, DSM models have received more extensive 
verification and validation thanks to a broad range of applications 
across a variety of industries, products, projects, organizations, 
situations, and contexts. 

To provide an overview of where DSM papers have appeared 
in the literature, Table 5 counts DSM, DMM, and MDM papers 
in journals with a minimum of five such papers. Out of the 521 
journal papers identified and acquired for this study (and pre-
2001), DSM has had the strongest presence in engineering design 
(JED, JMD, RED), engineering management (CERA, IEEE-
TEM), and systems engineering (SE) journals. DSM has also 
established a firm foundation among Chinese researchers (e.g., 
CIMS). JMPM recently published a special issue with 15 short 
papers from the 2014 DSM conference. 

Table 5:  Number of identified DSM/DMM/MDM papers 
appearing in journals (with a minimum of five) 

Journal (Abbreviation) Papers 
Journal of Engineering Design (JED) 35 
Concurrent Engineering (CERA) 28 
Journal of Mechanical Design (JMD) 26 
IEEE Transactions on Engineering Management (IEEE-TEM) 24 
Systems Engineering (SE) 22 
Research in Engineering Design (RED) 21 
Journal of Modern Project Management (JMPM) 17 
Computer Integrated Manufacturing Systems (in Chinese) (CIMS) 16 
International Journal of Production Research (IJPR) 11 
International Journal of Advanced Manufacturing Technology 
(IJAMT) 

9 

Management Science (MS) 9 
International Journal of Project Management (IJPM) 8 
Computers & Industrial Engineering (CIE) 7 
International Journal of Product Development (IJPD) 7 
IEEE Transactions on Systems, Man, and Cybernetics (IEEE-
SMC) 

6 

Advanced Engineering Informatics (AEI) 5 
Automation in Construction (AC) 5 
Journal of Construction Engineering & Management (JCEM) 5 

 
This paper has provided a survey of the DSM, DMM, and 

MDM literature, highlighting developments, extensions, and 
innovations with respect to building, displaying, analyzing, and 
applying these models. Throughout the exposition, the paper has 
noted numerous opportunities for further research. In summariz-
ing many of these broadly, special emphasis should be put on the 
following applications and developments:  knowledge 
management (where DSM/DMM/MDM provide the organizing 
structure for a knowledge base), architectural patterns and their 
implications (e.g., for quality, performance, etc.), versatile “sand-
box” tools for systems architects, MDM analysis methods, 
multiobjective clustering, architectural metrics, and archiving rich 
data sets for multipurpose research applications (e.g., to test new 
optimization algorithms). In pursuing these opportunities, 
researchers should continue to draw upon the advances in closely-
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related areas such as graph theory, network analysis, complexity, 
and other types of architectural models. 
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