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Abstract
Cyclooxygenase (COX), which plays a role in converting arachidonic acid to inflammatory mediators, could be inhibited by
non-steroidal anti-inflammatory drugs (NSAIDs). Although potent NSAIDs are available for the treatment of pain, fever, and
inflammation, some side effects, such as gastrointestinal ulcers, limit the use of these medications. In recent years, selective
COX-2 inhibitors with a lower incidence of adverse effects attained an important position in medicinal chemistry. In order to
introduce some new potent COX-2 inhibitors, a new series of 2-(4-(methylsulfonyl)phenyl)-N-phenylimidazo[1,2-a]pyridin-
3-amines was designed, synthesized, and evaluated. The docking studies performed by AutoDock Vina demonstrated that
docked molecules were positioned as well as a crystallographic ligand in the COX-2 active site, and SO2Me pharmacophore
was inserted into the secondary pocket of COX-2 and formed hydrogen bonds with the active site. The designed compounds
were synthesized through two-step reactions. In the first step, different 1-(4-(methylsulfonyl)phenyl)-2-(phenylamino)ethan-
1-one derivatives were obtained by the reaction of aniline derivatives and α-bromo-4-(methylsulfonyl)acetophenone. Then,
condensation of intermediates with different 2-aminopyridines gave final compounds. Enzyme inhibition assay and formalin
test were performed to evaluate the activity of these compounds. Among these compounds, 8-methyl-2-(4-(methylsulfonyl)
phenyl)-N-(p-tolyl)imidazo[1,2-a]pyridin-3-amine (5n) exhibited the highest potency (IC50= 0.07 µM) and selectivity
(selectivity index= 508.6) against COX-2 enzyme (selectivity index: COX-1 IC50/COX-2 IC50). The antinociceptive activity
assessment via the formalin test showed that nine derivatives (5a, 5d, 5h, 5i, 5k, 5q, 5r, 5s, and 5t) possessed significant
activity compared with the control group with a p value less than 0.05.
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Introduction

Arachidonic acid, the precursor of prostanoids, is metabo-
lized to prostaglandin H2 (PGH2) by cyclooxygenase
enzyme (COX) in a two-step process. The synthesized PGH2

is converted to prostaglandins and other prostanoids by
variable synthase enzymes. Prostanoids play a role in many
inflammatory processes. Therefore, COX is the key enzyme
of the arachidonic acid cascade, and COX inhibition is a
helpful way to reduce inflammation, pain, and fever caused
by prostaglandins. Cyclooxygenase exists in three isoforms,
COX-1, COX-2, and COX-3. COX-1 participates in phy-
siological functions, whereas COX-2 mediates pathological
processes [1]. Much less is known about COX-3, which is
expressed in the cerebral cortex and cardiac tissue and reg-
ulates fever and pain [2]. Non-steroidal anti-inflammatory
drugs (NSAIDs) demonstrate their anti-inflammatory effects
by inhibiting both COX-1 and COX-2 isoforms, which
causes them to miss out on advantages of COX-1 functions
such as stomach protection and renal hemodynamics. Hence,
non-selective inhibition of the COX enzyme leads to side
effects such as gastrointestinal ulcers, kidney injuries, etc.

Moreover, these two isoforms have some structural dif-
ferences as well. The replacement of Val523, Val434, and
Arg513 in COX-2 instead of Ile523, Ile434, and His513 in
COX-1, respectively, results in structural modification.
These three amino acid alterations lead to a larger space in
the COX-2 isozyme, called the secondary pocket. Thus,
compounds containing crucial pharmacophores, which
could occupy the secondary pocket and form interactions
with essential amino acids in COX-2, may selectively
inhibit COX-2 rather than COX-1 [3].

In contrast to NSAIDs, selective COX-2 inhibitors
diminish undesirable COX-2 inflammatory mediators

without interrupting COX-1 housekeeping functions.
Besides, COX-2 overexpression was reported in different
diseases such as many cancers (breast, colorectal, and
prostate cancer) and neurodegenerative diseases like
amyotrophic lateral sclerosis (ALS), Alzheimer’s, and Par-
kinson’s disease [4–8]. In addition, it has been proved that
COX-2 is one of the enzymes that contribute to the incre-
ment of pro-inflammatory metabolites, causing intensifying
tissue morbidity in COVID-19 [9]. These findings suggest
that COX-2 could be one of the therapeutic targets in these
pathophysiological disorders [10–12]. Accordingly, plenty
of studies proved that COX-2 inhibition plays a beneficial
role in the treatment of such diseases. Owing to a wide
variety of applications, the discovery of potent COX-2
inhibitors with a safe profile of adverse effects is noticeable.

There is a wide variety of COX-2 inhibitors. Generally,
these compounds contain two vicinal phenyl rings on a
central system which can be carbo/heterocyclic (tricyclics)
or acyclic [13, 14]. A pharmacophore group such as
methanesulfonyl, sulfonamide, or azido at the para-position
of one of the phenyl rings plays an important role in COX-2
selectivity [15]. These substituents could insert into the
secondary pocket that exists in the COX-2 isozyme. This
pocket includes three crucial amino acids: Arg513, His90,
and Val523. The pharmacophore group of COX-2 inhibitors
forms hydrogen bonding with essential amino acids after
inserting into the secondary pocket, which leads to selective
inhibition of COX-2.

Different types of central heterocyclic or carbocyclic ring
systems, such as 4-, 5- and 6-membered rings and fused
bicyclic, tricyclic, and spiro ring systems, are seen as a
central core of COX-2 inhibitors [16–23]. Acyclic COX-2
inhibitors (non-tricyclics) contain a two-membered (olefins)
or three-membered (chalcones) chain structure, which is the
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essential point for sub-classification of these compounds
[23–29]. In addition, in order to discover novel templates of
COX-2 inhibitors, many researchers introduced small pep-
tide analogs of COX-2 inhibitors [30, 31]. Furthermore,
conjugating COX-2 inhibitors with some moieties, such as
nitric oxide-releasing and ferrocene, is one strategy to afford
molecules with reduced side effects and more parallel bio-
logical effects [32, 33]. Some hybrid molecules named
COX/LOX inhibitors provide improved anti-inflammatory,
cardiovascular, and gastrointestinal safety profiles [34, 35].

According to the literature, a class of 1,1-diphenyl-2-(4-
methylsulfonylphenyl)-2-alkyl-1-ethenes was prepared and
evaluated among acyclic compounds. In this group, selectivity
and COX-2 inhibitory potency depend on 2-alkyl chain length;
the namely n-butyl substituent (Fig. 1A) exhibited high potency
and selectivity even better than celecoxib (IC50= 0.014 µM,
selectivity index (S.I.) > 7142) [36].

In the previous study, an imidazo[1,2-a]pyridine scaffold
was chosen for COX-2 inhibitory activity; a new series of 2-
(4-(methylsulfonyl)phenyl)imidazo[1,2-a]pyridine with
different substituents on C-3 of the central ring was reported
[37]. The results of in vitro studies indicated that COX-2
inhibitory activity was impressed by the nature and size of
mannich base on C-3 of imidazo[1,2-a]pyridine ring. The
compound with morpholine ring at C-3 showed the highest
potency and selectivity (Fig. 1B) (IC50= 0.07 μM, selec-
tivity index= 217.1). Imidazo[1,2-a]pyridine is one of the
most popular bicyclic heterocyclic pharmacophores due to
its broad spectrum of biological activities such as

anticancer, anticonvulsant, hypnotic, antimycobacterial,
antimicrobial, antiviral, analgesic, and antidiabetic are
known as a privileged scaffold in medicinal chemistry
[38–40]. Hence, to design more efficient and selective
COX-2 inhibitors rationally, we decided to modify the
previous 2-(4-(methylsulfonyl)phenyl)imidazo[1,2-a]pyr-
idine derivatives. Accordingly, the mannich base group at
C-3 of the central ring was substituted with the phenyla-
mino group to investigate the effects of an phenylamino
group and different substituents on this phenyl ring at this
position. Consequently, the present study described some
novel 2-(4-(methylsulfonyl)phenyl)-N-phenylimidazo[1,2-
a]pyridin-3-amine derivatives in order to evaluate in vitro
COX-1/COX-2 inhibition and in vivo analgesic activities.

Results and discussion

Chemistry

The target 2-(4-(methylsulfonyl)phenyl)-N-phenylimi-
dazo[1,2-a]pyridin-3-amine derivatives were synthesized
via the route outlined in Scheme 1.

Initially, α-bromo-4-(methylsulfonyl)acetophenone 1
was prepared according to the literature procedure [34]. The
α-bromo-4-(methylsulfonyl)acetophenone 1 and appropriate
4-substituted aniline 2 in the presence of NaHCO3 in
anhydrous MeOH were reacted to afford 1-(4-(methylsul-
fonyl)phenyl)-2-(phenylamino)ethan-1-ones (3a–e) [41].

Fig. 1 Chemical structures of
two reported COX-2 inhibitors
as lead compounds (A and B)
and the designed molecules
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Condensation of 3 with different 2-aminopyridines in i-
PrOH at 80 °C gave final 2-(4-(methylsulfonyl)phenyl)-N-
phenylimidazo[1,2-a]pyridin-3-amine derivatives (5a–t) in
good yields [42].

The structures of all derivatives were characterized by
IR, LC-Ms and NMR spectroscopy. The purity of com-
pounds was confirmed by TLC and HPLC. The IR spectra
indicated the SO2Me peak at wavenumbers about 1150 and
1300 cm−1. Also, the NH group appeared in about
3200–3450 cm−1 wavenumber. Besides the elimination of
the carbonyl peak of the intermediate, these two results
confirmed the synthesis of desired compounds. The (M+ 1)+

peaks in LC-Ms revealed the formation of hydrogen adduct
during the ionization in the mass spectroscopy and com-
prised the synthesis of compounds. The NMR data, with
proper chemical shifts and integrals, could characterize the
structures. For example, the deshield doublet of doublets in
the chemical shifts 7.9–8.3 ppm exhibited the hydrogens of
methylsulfonylphenyl ring. The singlet peak of the NH
group is mostly presented above 8.0 ppm. In the aliphatic
part of the spectra, the singlet peak with the chemical shift
around 3.2 ppm indicated the presence of SO2Me in the
structures. TLC and HPLC results showed that all com-
pounds were pure and stable.

Biological evaluation

In vitro cyclooxygenase (COX) inhibition assays

The inhibitory activities of novel 2-(4-(methylsulfonyl)
phenyl)-N-phenylimidazo[1,2-a]pyridin-3-amines against
COX-1 and COX-2 were evaluated by in vitro assay. As
shown in Table 1, all compounds were selective COX-2
inhibitors with selectivity indices of 42.3–508.6 and COX-2
IC50 values of 0.07–0.39 µM. Compound 8-methyl-2-(4-
(methylsulfonyl)phenyl)-N-(p-tolyl)imidazo[1,2-a]pyridin-

3-amine (5n) with COX-2 IC50 value of 0.07 µM and
selectivity index of 508.6 exhibited highest inhibitory
potency and selectivity.

Structurally the synthesized compounds 5a–t could be
categorized into five groups based on the type of substituent
at the para position of the phenylamino ring: hydrogen, 4-
fluoro, 4-chloro, 4-methyl, and 4-methoxy derivatives
(5a–d, 5e–h, 5i–l, 5m–p, and 5q–t) to evaluate steric,
electronic and hydrophobic effects on activities. In each
group, hydrogen was replaced with a methyl substituent at
different positions of the imidazopyridine ring to examine
hydrophobic and steric parameters around this ring.

As shown in Table 1, replacing fluorine at the para
position of phenylamino improved both potency and
selectivity compared to other groups. It may be explained
by the ability of fluorine to form hydrogen bonding with
amino acids of the active site. Among compounds having
4-F and 4-OMe (in F and OMe groups), derivatives having
methyl on imidazopyridine ring (5f, 5g, 5h, 5r, 5s, and 5t)
and derivatives without methyl on imidazopyridine ring (5e
and 5q) exhibited the highest and the lowest COX-2 IC50

and selectivity index respectively in each group. It seems
that methyl substituent on the imidazopyridine ring leads to
better interaction of F and OMe on the phenylamino ring
due to the more appropriate orientation of these molecules
into the active site of COX-2.

In this series, introducing a suitable substituent, espe-
cially on C-8 of imidazo[1,2-a]pyridine ring, enhances
selectivity on COX-2 isozyme (except in fluoro and chloro
group). This may be explained by steric hindrance during
the interaction of the molecule with COX-1.

These results indicated that the 2-phenyl-N-phenylimi-
dazo[1,2-a]pyridin-3-amine structure was a suitable scaf-
fold for COX-1/2 inhibition, and adding SO2Me
pharmacophore at the para position of C-2 phenyl ring
enhanced COX-2 potency and selectivity.

Scheme 1 Reagents and
conditions: (a) NaHCO3,
anhydrous MeOH, r.t., (b) ZnI2
(30 mol %), air, 4 Å MS, i-
PrOH, 80 °C
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In vivo evaluation of analgesic effects

The in vivo formalin test was performed to assess the
analgesic activity of synthesized compounds. The result was
compared with celecoxib as the reference drug. The results
have been summarized in Table 1. A significant reduction in
the AUC of pain score was shown in groups treated with 5a,
5r, 5s, and 5t (p < 0.001), 5k (p < 0.01), and 5d, 5h, 5i, and
5q (p < 0.05), compared with the control group. There was
at least one efficient compound in each category. In OMe
substituted compounds, all the compounds (5q, 5r, 5s, and
5t) were active enough to reduce the AUC of pain score
(p < 0.05). Surprisingly, even compound 5q, which

presented poor COX-2 inhibition compared to other potent
compounds, showed significant antinociceptive activity. It
seems some pharmacokinetic factors are affected differently
in vitro and in vivo activities of this molecule.

Molecular modeling studies

The binding affinity of each compound to the COX-2 active
site showed in Table 2. The results indicated that most of
the compounds have a high affinity to the active site, even
more than the standard compounds, celecoxib and SC-558.

The docking poses of two potent and selective com-
pounds depicted the SO2Me group interacting with essential

Table 1 The COX-1 and COX-2 enzyme inhibition assay and analgesic effects of test compounds

Group Compound R1 R2 IC50 in µMa Selectivity index
(S.I.)b

AUC of pain score
(mean and 95% confidence interval)

p value

COX-1 COX-2

Hydrogen 5a H H 18.1 0.07 258.6 27.93 (17.36–38.49)*** <0.001

5b H 8-Me 35.6 0.08 445 84.38 (29.06–139.7) >0.05

5c H 7-Me 55.1 ND ND 110.40 (93.48–127.3) >0.05

5d H 5-Me 24.6 0.07 351.4 78.41 (51.63–105.2)* <0.05

Fluoro 5e F H 23.8 0.1 238.0 97.23 (80.96–113.5) >0.05

5f F 8-Me 31.5 0.07 450.0 105.50 (84.51–126.4) >0.05

5g F 7-Me 33.6 0.08 420.0 93.70 (77.07–110.3) >0.05

5h F 5-Me 40.2 0.08 502.5 84.18 (65.63–102.7)* <0.05

Chloro 5i Cl H 34.3 0.07 490 87.44 (72.24–102.6)* <0.05

5j Cl 8-Me 29.4 0.14 210 98.90 (69.43–128.4) >0.05

5k Cl 7-Me ND 0.08 ND 71.03 (41.28–100.8)** <0.01

5l Cl 5-Me 27.1 0.08 338.7 102.40 (76.88–127.9) >0.05

Methyl 5m Me H 23.1 0.10 231.0 74.71 (64.95–84.47) >0.05

5n Me 8-Me 35.6 0.07 508.6 71.87 (60.52–83.22) >0.05

5o Me 7-Me 33.9 0.07 484.3 77.77 (70.59–84.95) >0.05

5p Me 5-Me 19.6 0.12 163.3 71.01 (64.46–77.56)* <0.05

Methoxy 5q OMe H 16.5 0.39 42.3 65.62 (55.73–75.61)* <0.05

5r OMe 8-Me 30.0 0.08 375.0 43.80 (36.29–51.31)*** <0.001

5s OMe 7-Me 29.7 0.10 297 51.27 (45.29–57.25)*** <0.001

5t OMe 5-Me 21.1 0.09 234.4 52.79 (46.87–58.71)*** <0.001

Celecoxib 24.3 0.06 405 64.29 (50.81–77.78)*** <0.001

Control – – – 107.90 (97.29–118.5) –

*p < 0.05; **p < 0.01; ***p < 0.001 significant difference compared with the control group (n= 6)
aValues are means of two determinations acquired using an ovine/human recombinant COX-1/COX-2 assay kit, and the deviation from the mean is
<10% of the mean value
bIn vitro COX-2 selectivity index (COX-1 IC50/COX-2 IC50)
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amino acids of the COX-2 secondary pocket. As shown in
Fig. 2, the oxygen atoms of SO2Me of each molecule can
form hydrogen bonds with NH of Arg513, His90, and
Phe518 (distances= 2.3, 3.5, and 2.3 Å for the compound

5n; 2.1, 3.1, and 2.2 Å for compound 5h). The imidazo-
pyridine moiety of molecules form hydrogen bonds with
NH of Arg120 within nitrogen atoms of the ring
(distances= 4.2 Å for both compounds 5h and 5n). Further,
fluoro substituent of 5h interacts with NH of Gly526
(distance= 2.2 Å). These docking studies show that
hydrophobic side chains of Trp387, Leu531, Val 349,
Leu384, Tyr385, and Met522 residues surround hydro-
phobic moieties of molecules such as phenyl or pyridine
rings which may undergo hydrophobic interactions. The
docking results also revealed that 5h and 5n positions in the
COX-2 active site provided a suitable orientation. These
molecules were perfectly superimposed on SC-558, a
selective inhibitor in a complex with COX-2 (Fig. 3).

As mentioned in the introduction, due to the presence of
a secondary pocket in COX-2, the compounds containing
the pharmacophore moiety, such as SO2Me, could insert the
secondary pocket and inhibit COX-2 selectively. Therefore,
based on the docking study results, it is expected that the
designed compounds would be able to inhibit the COX-2
enzyme selectively.

The re-docking of the co-crystalized ligand SC-558 con-
firmed the validation of the molecular modeling study. The
RMS over 21 pairs was 0.33. The SC-558 revealed high-
affinity binding (−10.5 Kcal/mol) to the COX-2 active site.

Conclusion

In conclusion, a series of 2-(4-(methylsulfonyl)phenyl)-N-
phenylimidazo[1,2-a]pyridin-3-amine having different sub-
stituents at the para position of the N-phenyl ring were

Table 2 The docking affinity scores of the designed compounds,
celecoxib, and SC-558

Structure Affinity (kcal/mol)

5a −11.0

5b −11.1

5c −10.6

5d −9.8

5e −11.1

5f −11.4

5g −10.5

5h −10.6

5i −10.0

5j −10.0

5k −9.4

5l −9.2

5m −10.3

5n −10.3

5o −9.5

5p −10.2

5q −8.7

5r −9.0

5s −9.2

5t −9.3

Celecoxib −10.4

SC-558 −10.5

Fig. 2 Binding model of compound 5h (A), 5n (B) in COX-2 (6COX) active site

Medicinal Chemistry Research (2023) 32:856–868 861



introduced as COX-2 inhibitors. These compounds were
synthesized through two-step reactions with high purity and
yields. The docking studies demonstrated that all designed
compounds possess well docking scores; even 5a, 5b, 5c,
5e, 5f and 5h showed higher affinity than celecoxib and SC-
558. It should be noted that the biological assays were in
accordance with the docking score; most compounds
showed high potencies and selectivity indices against the
COX-2 isozyme. The 8-methyl-2-(4-(methylsulfonyl)phe-
nyl)-N-(p-tolyl)imidazo[1,2-a]pyridin-3-amine (5n) was the
most active compound in enzyme inhibition assay, even
more, selective than reference drug celecoxib (S.I.= 508).
The formalin test indicated that N-(4-methoxyphenyl)-8-
methyl-2-(4-(methylsulfonyl)phenyl)imidazo[1,2-a]pyridin-
3-amine (5r) displayed the highest analgesic activity. In
addition, compounds 5a, 5s, and 5t, with significant
reductions in AUC of pain scores, were also promising
compounds in the formalin test.

Materials and methods

General methods

All chemicals handled in the preparations were purchased
from Merck and/or Sigma-Aldrich. 1H and 13C NMR
spectra were recorded on a Brucker FT-400 MHz
instrument (Brucker Biosciences, USA) using
Chloroform-D and DMSO-d6 as solvents and tetra-
methylsilane (TMS) as an internal standard. Melting
points were determined with a Thomas–Hoover capillary
apparatus. Infrared spectra were obtained using a Perkin

Elmer Model 1420 spectrometer. The mass spectral
measurements were observed on a 6410 Agilent LC-MS
triple quadrupole mass spectrometer (LC-MS) with an
electrospray ionization (ESI) interface. Microanalyses
determined for C, H and N were within ±0.4% of the
theoretical values, using the elemental combustion sys-
tem, Costech 4010. A Waters 2695 HPLC system (Mil-
ford, USA) employed consisted of a Waters 2695 pump,
Rheodyne 7125 injector and a 2996 PDA detector.

Chemical synthesis

General procedure for the synthesis of 1-(4-(methylsulfonyl)
phenyl)-2-(phenylamino)ethan-1-ones (3)

A mixture of α-bromo-4-(methylsulfonyl)acetophenone 1
(7 mmol) and 4-substituted-aniline 2 (7 mmol) in anhydrous
methanol (10 ml) and in the presence of two equivalents of
sodium hydrogen carbonate was stirred at room temperature
for 16 h. The reaction mixture was filtered out and washed
with cold MeOH and water. The crude was used in the next
step without any purification.

1-(4-(methylsulfonyl)phenyl)-2-(phenylamino)ethan-1-
one (3a)

Yield, 91%; Yellow powder; mp: 156–158 °C; IR (KBr
disk): νcm−1 1155, 1296 (SO2), 1700 (C=O), 3396 (NH);
LC-MS (ESI) m/z: 288 ([M-H]−, 100).

2-((4-fluorophenyl)amino)-1-(4-(methylsulfonyl)phenyl)
ethan-1-one (3b)

Yield, 89%; Yellow powder; mp: 166–168 °C; IR (KBr
disk): νcm−1 1142, 1309 (SO2), 1692 (C=O), 3364 (NH);
LC-MS (ESI) m/z: 306 ([M-H]−, 100).

Fig. 3 Binding model of compound SC-558 (A) and superimposition of 5h and 5n on SC-558 (B)
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2-((4-chlorophenyl)amino)-1-(4-(methylsulfonyl)phenyl)
ethan-1-one (3c)

Yield, 87%; Yellow powder; mp: 171–173 °C; IR (KBr
disk): νcm−1 1142, 1308 (SO2), 1692 (C=O), 3355 (NH);
LC-MS (ESI) m/z: 322 ([M-H]−, 100).

1-(4-(methylsulfonyl)phenyl)-2-(p-tolylamino)ethan-1-
one (3d)

Yield, 86%; Yellow powder; mp: 153–154 °C; IR (KBr
disk): νcm−1 1152, 1297 (SO2), 1683 (C=O), 3390 (NH);
LC-MS (ESI) m/z: 302 ([M-H]−, 100).

2-((4-methoxyphenyl)amino)-1-(4-(methylsulfonyl)phe-
nyl)ethan-1-one (3e)

Yield, 81%; dark yellow powder; mp: 149–151 °C; IR
(KBr disk): νcm−1 1154, 1297 (SO2), 1675 (C=O), 3361
(NH); LC-MS (ESI) m/z: 318 ([M-H]−, 100).

General procedure for the synthesis of 2-(4-(methylsulfonyl)
phenyl)-N-phenylimidazo[1,2-a]pyridin-3-amine derivatives
(5)

An appropriate derivative of 3 (1.73mmol), 2-aminopyridine
derivatives (1.73mmol), ZnI2 (0.52mmol), 4 Å MS (850mg),
and i-PrOH (8.5 ml) were added, and the mixture was stirred
at 80 °C. After completing the reaction, the mixture was
cooled to room temperature and then filtered and washed with
water and cool i-PrOH to obtain 20 different derivatives. For
further purification, recrystallization with ethanol 96% was
carried out.

2-(4-(Methylsulfonyl)phenyl)-N-phenylimidazo[1,2-a]
pyridin-3-amine (5a)

Yield, 79%; yellow powder; mp: 189 °C (decomposed);
IR (KBr disk): νcm−1 1158, 1299 (SO2), 1682 (C=N), 3404
(NH); 1H NMR (DMSO-d6): δ ppm 3.25 (s, 3H, SO2Me),
6.56 (d, 2H, J= 7.6 Hz, phenyl H2 and H6), 6.74 (t, 1H,
J= 7.6 Hz, phenyl H4), 6.90 (t, 1H, J= 6.8 Hz, imidazo-
pyridine H6), 6.99 (t, 2H, J= 7.6 Hz, phenyl H3 and H5),
7.25 (t, 1H, J= 6.8 Hz, imidazopyridine H7), 7.42 (d, 1H,
J= 8.8 Hz, imidazopyridine H8), 7.65 (d, 1H, J= 6.8 Hz,
imidazopyridine H5), 7.99 (d, 2H, J= 8.4 Hz, methylsul-
fonylphenyl H2 and H6), 8.12 (d, 2H, J= 8.4 Hz, methyl-
sulfonylphenyl H3 and H5), 8.16 (s, 1H, NH); 13C NMR
(DMSO-d6): δ ppm 43.57, 113.26, 113.49, 117.67, 117.84,
119.32, 123.80, 127.25, 127.67, 127.97, 129.31, 129.44.
130.09, 140.50, 144.72, 146.77; LC-MS (ESI) m/z: 364
([M+H]+, 100); Anal. Calcd. For C20H17N3O2S: C, 66.10;
H, 4.72; N, 11.56. Found: C, 65.88; H, 4.74; N, 11.68.

8-Methyl-2-(4-(methylsulfonyl)phenyl)-N-phenylimi-
dazo[1,2-a]pyridin-3-amine (5b)

Yield, 71%; yellow powder; mp: 261–263 °C; IR (KBr
disk): νcm−1 1158, 1269 (SO2), 1631 (C=N), 3373 (NH);
1H NMR (CDCl3): δ ppm 2.62 (s, 3H, CH3), 2.96 (s, 3H,
SO2Me), 5.61 (s, 1H, NH), 6.53 (d, 2H, J= 7.6 Hz, phenyl
H2 and H6), 6.67 (t, 1H, J= 6.8 Hz phenyl H4), 6.81 (t, 1H,

J= 7.2 Hz, imidazopyridine H6), 7.00 (d, 1H, J= 6.8 Hz,
imidazopyridine H7), 7.15 (t, 2H, J= 7.6 Hz, phenyl H3 and
H5), 7.67 (d, 1H, J= 6.8 Hz, imidazopyridine H5), 7.83 (d,
2H, J= 8.4 Hz, methylsulfonylphenyl H2 and H6), 8.18 (d,
2H, J= 8.4 Hz, methylsulfonylphenyl H3 and H5);

13C
NMR (DMSO-d6): δ ppm 16.65, 43.99, 113.20, 113.48,
119.25, 121.29, 121.56, 124.76, 127.23, 127.40, 127.72,
130.07, 135.61, 139.18, 139.57, 142.85, 145.71; LC-MS
(ESI) m/z: 378 ([M+H]+, 100); Anal. Calcd. For
C21H19N3O2S: C, 66.82; H, 5.07; N, 11.13. Found: C,
66.76; H, 4.96; N, 11.24.

7-Methyl-2-(4-(methylsulfonyl)phenyl)-N-phenylimi-
dazo[1,2-a]pyridin-3-amine (5c)

Yield, 78%; yellow powder; mp: 239–241 °C; IR (KBr
disk): νcm−1 1162, 1317 (SO2), 1661 (C=N), 3235 (NH);
1H NMR (DMSO-d6): δ ppm 2.38 (s, 3H, CH3), 3.20 (s, 3H,
SO2Me), 6.51 (d, 2H, J= 7.6 Hz, phenyl H2 and H6), 6.73
(t, 1H, J= 7.2 Hz, phenyl H4), 6.8 (d, 1H, J= 6.8 Hz,
imidazopyridine H6), 7.14 (t, 2H, J= 7.6 Hz, phenyl H3 and
H5), 7.43 (s, 1H, imidazopyridine H8), 7.86 (d, 1H,
J= 6.8 Hz imidazopyridine H5), 7.93 (d, 2H, J= 8.0 Hz,
methylsulfonylphenyl H2 and H6), 8.28 (d, 2H, J= 8.4 Hz,
methylsulfonylphenyl H3 and H5), 8.32 (s, 1H, NH); 13C
NMR (DMSO-d6): δ ppm 21.32, 43.99, 113.45, 115.70,
116.10, 119.23, 120.59, 123.05, 127.14, 127.69, 130.06,
135.72, 136.89, 139.23, 139.50, 142.96, 145.75; LC-MS
(ESI) m/z: 378 ([M+H]+, 100); Anal. Calcd. For
C21H19N3O2S: C, 66.82; H, 5.07; N, 11.13. Found: C, 66.
69; H, 5.11; N, 11.19.

5-Methyl-2-(4-(methylsulfonyl)phenyl)-N-phenylimi-
dazo[1,2-a]pyridin-3-amine (5d)

Yield, 72%; yellow powder; mp: 210 °C (decomposed);
IR (KBr disk): νcm−1 1162, 1326 (SO2), 1668 (C=N), 3361
(NH); 1H NMR (DMSO-d6): δ ppm 2.66 (s, 3H, CH3), 3.21
(s, 3H, SO2Me), 6.66 (d, 2H, J= 6.8 Hz, phenyl H2 and
H6), 6.70 (t, 1H, J= 7.6 Hz, phenyl H4), 6.81 (d, 1H,
J= 6.8 Hz, imidazopyridine H6), 7.15 (t, 2H, J= 7.2 Hz,
phenyl H3 and H5), 7.23 (t, 1H, J= 7.2 Hz, imidazopyridine
H7), 7.50 (d, 1H, J= 8.8 Hz, imidazopyridine H8), 7.91 (d,
2H, J= 8.8 Hz, methylsulfonylphenyl H2 and H6), 8.22 (s,
1H, NH), 8.31 (d, 2H, J= 8.8 Hz, methylsulfonylphenyl H3

and H5);
13C NMR (DMSO-d6): δ ppm 18.25, 43.91,

113.24, 114.26, 116.09, 118.78, 121.66, 126.57, 127.38,
127.62, 130.23, 136.66, 137.77, 139.10, 139.71, 144.29,
148.15; LC-MS (ESI) m/z: 378 ([M+H]+, 100); Anal.
Calcd. For C21H19N3O2S: C, 66.82; H, 5.07; N, 11.13.
Found: C, 66.91; H, 5.09; N, 11.02.

N-(4-Fluorophenyl)-2-(4-(methylsulfonyl)phenyl)imi-
dazo[1,2-a]pyridin-3-amine (5e)

Yield, 56%; cream powder; mp: 238 °C (decomposed);
IR (KBr disk): νcm−1 1170, 1330 (SO2), 1648 (C=N), 3263
(NH); 1H NMR (DMSO-d6): δ ppm 3.22 (s, 3H, SO2Me),
6.50–6.54 (m, 2H, phenyl H2 and H6), 6.95–7.02 (m, 3H,
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phenyl H3 and H5, imidazopyridine H6), 7.36 (t, 1H,
J= 7.2 Hz, imidazopyridine H7), 7.67 (d, 1H, J= 9.2 Hz,
imidazopyridine H8), 7.95 (d, 2H, J= 8.4 Hz, methylsul-
fonylphenyl H2 and H6), 8.00 (d, 1H, J= 6.8 Hz, imida-
zopyridine H5), 8.30 (d, 2H, J= 8.4 Hz,
methylsulfonylphenyl H3 and H5), 8.36 (s, 1H, NH); 13C
NMR (DMSO-d6): δ ppm 43.97, 113.26, 114.48, 114.56,
116.47, 116.70, 117.94, 121.17, 123.78, 126.36, 127.24,
127.76, 136.05, 138.99, 139.73, 142.08, 142.57, 155.17,
157.49; LC-MS (ESI) m/z: 382 ([M+H]+, 100); Anal.
Calcd. For C20H16FN3O2S: C, 62.98; H, 4.23; N, 11.02.
Found: C, 63.15; H, 4.21; N, 11.08.

N-(4-Fluorophenyl)-8-methyl-2-(4-(methylsulfonyl)phe-
nyl)imidazo[1,2-a]pyridin-3-amine (5f)

Yield, 47%; white powder; mp: 224–226 °C; IR (KBr
disk): νcm−1 1144, 1308 (SO2), 1621 (C=N), 3212 (NH);
1H NMR (DMSO-d6): δ ppm 2.59 (s, 3H, CH3), 3.22 (s, 3H,
SO2Me), 6.50–6.53 (m, 2H, phenyl H2 and H6), 6.87 (t, 1H,
J= 6.8 Hz, imidazopyridine H6), 6.99 (t, 2H, J= 8.8 Hz,
phenyl H3 and H5), 7.17 (d, 1H, J= 6.8 Hz, imidazopyr-
idine H7), 7.85 (d, 1H, J= 6.8 Hz, imidazopyridine H5),
7.96 (d, 2H, J= 8.4 Hz, methylsulfonylphenyl H2 and H6),
8.31 (d, 2H, J= 8.4 Hz, methylsulfonylphenyl H3 and H5),
8.35 (s, 1H, NH); 13C NMR (DMSO): δ ppm 16.63, 44.00,
113.25, 114.47, 114.54, 116.44, 116.67, 121.54, 124.79,
127.22, 127.42, 127.75, 135.59, 139.13, 139.60, 142.17,
142.87, 155.13, 157.46; LC-MS (ESI) m/z: 396 ([M+H]+,
100); Anal. Calcd. For C21H18FN3O2S: C, 63.78; H, 4.59;
N, 10.63. Found: C, 63.61; H, 4.62; N, 10.57.

N-(4-Fluorophenyl)-7-methyl-2-(4-(methylsulfonyl)phe-
nyl)imidazo[1,2-a]pyridin-3-amine (5g)

Yield, 52%; yellow powder; mp: 238–240 °C; IR (KBr
disk): νcm−1 1152, 1310 (SO2), 1645 (C=N), 3215 (NH);
1H NMR (DMSO-d6): δ ppm 2.38 (s, 3H, CH3), 3.21 (s, 3H,
SO2Me), 6.48–6.52 (m, 2 H, phenyl H2 and H6), 6.80 (d,
1H, J= 6.8 Hz, imidazopyridine H6), 6.99 (t, 2H,
J= 8.8 Hz, phenyl H3 and H5), 7.43 (s, 1H, imidazopyridine
H8), 7.88 (d, 1H, J= 7.2 Hz, imidazopyridine H5), 7.93 (d,
2H, J= 8.8 Hz, methylsulfonylphenyl H2 and H6), 8.27 (d,
2H, J= 8.8 Hz, methylsulfonylphenyl H3 and H5), 8.30 (s,
1H, NH); 13C NMR (DMSO-d6): δ ppm 21.31, 43.99,
114.41, 114.49, 115.76, 116.11, 116.44, 116.66, 120.74,
123.02, 127.11, 127.71, 135.69, 136.93, 139.16, 139.54,
142.21, 142.96, 155.12, 157.44; LC-MS (ESI) m/z: 396
([M+H]+, 100); Anal. Calcd. For C21H18FN3O2S: C,
63.78; H, 4.59; N, 10.63. Found: C, 63.88; H, 4.55;
N, 10.66.

N-(4-Fluorophenyl)-5-methyl-2-(4-(methylsulfonyl)phe-
nyl)imidazo[1,2-a]pyridin-3-amine (5h)

Yield, 60%; white powder; mp: 230 °C (decomposed);
IR (KBr disk): νcm−1 1153, 1315 (SO2), 1648 (C=N), 3343
(NH); 1H NMR (DMSO-d6): δ ppm 2.68 (s, 3H, CH3), 3.21
(s, 3H, SO2Me), 6.48 (m, 2H, phenyl H2 and H6), 6.86 (d,

1H, J= 6.8 Hz, imidazopyridine H6), 6.99 (t, 2H,
J= 8.8 Hz, phenyl H3 and H5), 7.24 (t, 1H, J= 8.4 Hz,
imidazopyridine H7), 7.51 (d, 1H, J= 8.8 Hz, imidazopyr-
idine H8), 7.93 (d, 2H, J= 8.4 Hz, methylsulfonylphenyl H2

and H6), 8.11 (d, 2H, J= 8.4 Hz, methylsulfonylphenyl H3

and H5), 8.33 (s, 1H, NH); 13C NMR (DMSO-d6): δ ppm
18.83, 43.92, 114.25, 116.08, 116.56, 116.78, 121.96,
126.53, 127.37, 127.63, 130.11, 136.69, 137.72, 139.09,
139.70, 141.21, 144.28, 154.71, 157.03; LC-MS (ESI) m/z:
396 ([M+H]+, 100); Anal. Calcd. For C21H18FN3O2S: C,
63.78; H, 4.59; N, 10.63. Found: C, 63.59; H, 4.63;
N, 10.71.

N-(4-Chlorophenyl)-2-(4-(methylsulfonyl)phenyl)imi-
dazo[1,2-a]pyridin-3-amine (5i)

Yield, 55%; yellow powder; mp: 226–228 °C; IR (KBr
disk): νcm−1 1154, 1307 (SO2), 1669 (C=N), 3333 (NH);
1H NMR (DMSO-d6): δ ppm 3.22 (s, 3H, SO2Me), 6.53 (d,
2H, J= 8.4 Hz, phenyl H2 and H6), 6.97 (t, 1H, J= 6.8 Hz,
imidazopyridine H6), 7.19 (d, 2H, J= 8.8 Hz phenyl H3 and
H5), 7.37 (t, 1H, J= 8.4 Hz, imidazopyridine H7), 7.68 (d,
1H, J= 8.8 Hz, imidazopyridine H8), 7.96 (d, 2H,
J= 8.4 Hz, methylsulfonylphenyl H2 and H6), 8.01 (d, 1H,
J= 6.8 Hz, imidazopyridine H5), 8.29 (d, 2H, J= 8.4 Hz,
methylsulfonylphenyl H3 and H5), 8.54 (s, 1H, NH); 13C
NMR (DMSO-d6): δ ppm 43.97, 113.36, 115.08, 117.96,
120.47, 122.81, 123.77, 126.45, 127.25, 127.80, 129.86,
136.15, 138.90, 139.80, 142.66, 144.64; LC-MS (ESI) m/z:
398 ([M+H]+, 100), 400 (M+ 3, 32%); Anal. Calcd. For
C20H16ClN3O2S: C, 60.38; H, 4.05; N, 10.56. Found: C,
60.45; H, 4.01; N, 10.58.

N-(4-Chlorophenyl)-8-methyl-2-(4-(methylsulfonyl)phe-
nyl)imidazo[1,2-a]pyridin-3-amine (5j)

Yield, 59%; creamy-yellowish powder; mp: 199–201 °C;
IR (KBr disk): νcm−1 1141, 1304 (SO2), 1670 (C=N), 3354
(NH); 1H NMR (DMSO-d6): δ ppm 2.58 (s, 3H, CH3), 3.22
(s, 3H, SO2Me), 6.52 (d, 2H, J= 8.4 Hz, phenyl H2 and
H6), 6.88 (t, 1H, J= 6.8 Hz, imidazopyridine H6), 7.18 (m,
3H, imidazopyridine H7, phenyl H3 and H5), 7.85 (d, 1H,
J= 6.4 Hz, imidazopyridine H5), 7.96 (d, 2H, J= 8.4 Hz,
methylsulfonylphenyl H2 and H6), 8.30 (d, 2H, J= 8.4 Hz,
methylsulfonylphenyl H3 and H5), 8.54 (s, 1H, NH); 13C
NMR (DMSO-d6): δ ppm 16.64, 44.00, 113.34, 115.06,
120.85, 121.51, 122.74, 124.88, 127.23, 127.46, 127.78,
129.84, 135.68, 139.03, 139.67, 142.96, 144.73; LC-MS
(ESI) m/z: 412 ([M+H]+, 100), 414 ([M+H+ 2]+, 32%);
Anal. Calcd. For C21H18ClN3O2S: C, 61.24; H, 4.40; N,
10.20. Found: C, 61.01; H, 4.44; N, 10.30.

N-(4-Chlorophenyl)-7-methyl-2-(4-(methylsulfonyl)phe-
nyl)imidazo[1,2-a]pyridin-3-amine (5k)

Yield, 71%; yellow powder; mp: 238 °C (decomposed);
IR (KBr disk): νcm−1 1150, 1299 (SO2), 1670 (C=N), 3201
(NH); 1H NMR (DMSO-d6): δ ppm 2.38 (s, 3H, CH3), 3.21
(s, 3H, SO2Me), 6.51 (d, 2H, J= 8.4 Hz, phenyl H2 and
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H6), 6.81 (d, 1 H, J= 6.8 Hz, imidazopyridine H6), 7.18 (d,
2H, J= 8.8 Hz, phenyl H3 and H5), 7.44 (s, 1H, imidazo-
pyridine H8), 7.88 (d, 1H, J= 6.8 Hz, imidazopyridine H5),
7.94 (d, 2H, J= 8.4 Hz, methylsulfonylphenyl H2 and H6),
8.25 (d, 2H, J= 8.4 Hz, methylsulfonylphenyl H3 and H5),
8.50 (s, 1H, NH); 13C NMR (DMSO-d6): δ ppm 21.31,
43.99, 115.02, 115.85, 116.13, 120.04, 122.71, 123.01,
127.12, 127.75, 129.84, 135.78, 137.04, 139.06, 139.60,
143.05, 144.77; LC-MS (ESI) m/z: 412 ([M+H]+, 414
([M+H+ 2]+, 32%); Anal. Calcd. For C21H18ClN3O2S: C,
61.24; H, 4.40; N, 10.20. Found: C, 61.20; H, 4.37;
N, 10.26.

N-(4-Chlorophenyl)-5-methyl-2-(4-(methylsulfonyl)phe-
nyl)imidazo[1,2-a]pyridin-3-amine (5l)

Yield, 73%; yellow powder; mp: 249 °C (decomposed);
IR (KBr disk): νcm−1 1148, 1316 (SO2), 1655 (C=N), 3372
(NH); 1H NMR (DMSO-d6): δ ppm 2.65 (s, 3H, CH3), 3.21
(s, 3H, SO2Me), 6.50 (d, 2H, J= 8.4 Hz, phenyl H2 and
H6), 6.68 (d, 1H, J= 6.8 Hz, imidazopyridine H6),
7.18–7.26 (m, 3H, phenyl H3 and H5, imidazopyridine H7),
7.50 (d, 1H, J= 8.8 Hz, imidazopyridine H8), 7.92 (d, 2H,
J= 8.4 Hz, methylsulfonylphenyl H2 and H6), 8.27 (d, 2H,
J= 8.4 Hz, methylsulfonylphenyl H3 and H5), 8.40 (s, 1H,
NH); 13C NMR (DMSO-d6): δ ppm 18.81, 43.90, 114.41,
116.14, 121.14, 122.28, 126.69, 127.34, 127.69, 129.35,
130.03, 136.56, 137.76, 138.92, 139.82, 144.37, 147.07;
LC-MS (ESI) m/z: 412 ([M+H]+, 100), ([M+H+ 2]+,
32%); Anal. Calcd. For C21H18ClN3O2S: C, 61.24; H, 4.40;
N, 10.20. Found: C, 61.16; H, 4.43; N, 10.16.

2-(4-(Methylsulfonyl)phenyl)-N-(p-tolyl)imidazo[1,2-a]
pyridin-3-amine (5m)

Yield, 63%; yellow powder; mp: 198–200 °C; IR (KBr
disk): νcm−1 1153, 1313 (SO2), 1635 (C=N), 3335 (NH);
1H NMR (DMSO-d6): δ ppm 2.15 (s, 3H, CH3), 3.21 (s, 3H,
SO2Me), 6.42–6.44 (d, 2H, J= 8.0 Hz, phenyl H3 and H5),
6.93–6.97 (m, 3H, imidazopyridine H6, phenyl H2 and H6),
7.33–7.37 (t, 1H, J= 7.6 Hz, imidazopyridine H7),
7.65–7.67 (d, 1H, J= 9.2 Hz, imidazopyridine H8),
7.93–7.97 (m, 3H, methylsulfonylphenyl H2 and H6, imi-
dazopyridine H5), 8.21 (s, 1H, NH), 8.29–8.31 (d, 1H,
J= 8.4 Hz, methylsulfonylphenyl H3 and H5);

13C NMR
(DMSO-d6): δ ppm 20.55, 43.97, 113.13, 113.51, 117.89,
121.42, 123.79, 126.25, 127.23, 127.72, 127.90, 130.51,
135.99, 139.11, 139.63, 142.48, 143.18; LC-MS (ESI) m/z:
378 ([M+H]+, 100); Anal. Calcd. For C21H19N3O2S: C,
66.82; H, 5.07; N, 11.13. Found: C, 66.98; H, 5.11;
N, 11.19.

8-Methyl-2-(4-(methylsulfonyl)phenyl)-N-(p-tolyl)imi-
dazo[1,2-a]pyridin-3-amine (5n)

Yield, 59%; dark yellow powder; mp: 200–202 °C; IR
(KBr disk): νcm−1 1156, 1315 (SO2), 1632 (C=N), 3370
(NH); 1H NMR (DMSO-d6): δ ppm 2.15 (s, 3H, 4-CH3),
2.58 (s, 3H, 8-CH3), 3.21 (s, 3H, SO2Me), 6.42 (d, 2H,

J= 8.0 Hz, phenyl H3 and H5), 6.85 (t, 1H, J= 6.8 Hz,
imidazopyridine H6), 6.95 (d, 2H, J= 8.0 Hz, phenyl H2

and H6), 7.15 (d, 1H, J= 6.8 Hz, imidazopyridine H7), 7.81
(d, 1H, J= 6.8 Hz, imidazopyridine H5), 7.94 (d, 1H,
J= 8.4 Hz, methylsulfonylphenyl H2 and H6), 8.20 (s, 1H,
NH), 8.31 (d, 1H, J= 8.4 Hz, methylsulfonylphenyl H3 and
H5);

13C NMR (DMSO-d6): δ ppm 16.64, 20.55, 44.01,
113.10, 113.50, 121.55, 121.79, 124.68, 127.22, 127.36,
127.69, 127.83, 130.48, 135.52, 139.25, 139.49, 142.78,
143.27; LC-MS (ESI) m/z: 392 ([M+H]+, 100); Anal.
Calcd. For C22H21N3O2S: C, 67.50; H, 5.41; N, 10.73.
Found: C, 67.41; H, 4.39; N, 10.78.

7-Methyl-2-(4-(methylsulfonyl)phenyl)-N-(p-tolyl)imi-
dazo[1,2-a]pyridin-3-amine (5o)

Yield, 61%; creamy powder; mp: 274 °C (decomposed);
IR (KBr disk): νcm−1 1158, 1320 (SO2), 1648 (C=N), 3224
(NH); 1H NMR (DMSO-d6): δ ppm 2.16 (s, 3H, 4-CH3),
2.38 (s, 3H, 7-CH3), 3.20 (s, 3H, SO2Me), 6.41 (d, 2H,
J= 8.0 Hz, phenyl H3 and H5), 6.79 (d, 1H, J= 6.8 Hz,
imidazopyridine H6), 6.94 (d, 2H, J= 8.4 Hz, phenyl H2

and H6), 7.42 (s, 1H, imidazopyridine H8), 7.83 (d, 1H,
J= 6.8 Hz, imidazopyridine H5), 7.92 (d, 1H, J= 8.4 Hz,
methylsulfonylphenyl H2 and H6), 8.15 (s, 1H, NH), 8.27
(d, 2H, J= 8.4 Hz, methylsulfonylphenyl H3 and H5);

13C
NMR (DMSO-d6): δ ppm 19.47, 20.23, 42.91, 112.38,
114.53, 114.99, 119.91, 121.95, 126.02, 126.58, 126.73,
129.39, 134.53, 135.71, 138.21, 138.35, 141.80, 142.23;
LC-MS (ESI) m/z: 392 ([M+H]+, 100); Anal. Calcd. For
C22H21N3O2S: C, 67.50; H, 5.41; N, 10.73. Found: C,
67.64; H, 5.42; N, 10.66.

5-Methyl-2-(4-(methylsulfonyl)phenyl)-N-(p-tolyl)imi-
dazo[1,2-a]pyridin-3-amine (5p)

Yield, 63%; yellow powder; mp: 330 °C (decomposed);
IR (KBr disk): νcm−1 1156, 1321 (SO2), 1648 (C=N), 3390
(NH); 1H NMR (DMSO-d6): δ ppm 2.15 (s, 3H, CH3), 2.66
(s, 3H, CH3), 3.20 (s, 3H, SO2Me), 6.43 (d, 2H, J= 8.0 Hz,
phenyl H3 and H5), 6.65 (d, 1H, J= 6.8 Hz, imidazopyr-
idine H6), 6.95 (d, 2H, J= 8.0 Hz, phenyl H2 and H6), 7.22
(t, 1H, J= 7.2 Hz, imidazopyridine H7), 7.49 (d, 1H,
J= 9.6 Hz, imidazopyridine H8), 7.90 (d, 1H, J= 8.4 Hz,
methylsulfonylphenyl H2 and H6), 8.04 (s, 1H, NH), 8.30
(d, 1H, J= 8.4 Hz, methylsulfonylphenyl H3 and H5);

13C
NMR (DMSO-d6): δ ppm 18.82, 20.53, 43.81, 114.19,
116.06, 117.43, 122.06, 126.50, 127.23, 127.35, 127.59,
128.10, 130.67, 136.69, 137.68, 139.66, 144.26, 145.81;
LC-MS (ESI) m/z: 392 ([M+H]+, 100); Anal. Calcd. For
C22H21N3O2S: C, 67.50; H, 5.41; N, 10.73. Found: 67.59;
H, 5.38; N, 10.75.

N-(4-Methoxyphenyl)-2-(4-(methylsulfonyl)phenyl)imi-
dazo[1,2-a]pyridin-3-amine (5q)

Yield, 38%; dark yellow powder; mp: 103–105 °C; IR
(KBr disk): νcm−1 1160, 1320 (SO2), 1639 (C=N), 33230
(NH); 1H NMR (CDCl3): δ ppm 3.22 (s, 3H, SO2Me), 3.63
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(s, 3H, OCH3), 6.47 (d, 2H, J= 8.8 Hz, phenyl H3 and H5),
6.76 (d, 2H, J= 9.2 Hz, phenyl H2 and H6), 6.95 (t, 1H,
J= 6.8 Hz, imidazopyridine H6), 7.34 (t, 1H, J= 8.0 Hz,
imidazopyridine H7), 7.65 (d, 1H, J= 9.2 Hz, imidazopyr-
idine H8), 7.94 (d, 1H, J= 8.8 Hz, methylsulfonylphenyl H2

and H6), 7.98 (d, 1H, J= 6.8 Hz, imidazopyridine H5), 8.07
(s, 1H, NH), 8.31 (d, 1H, J= 8.8 Hz, methylsulfonylphenyl
H3 and H5);

13C NMR (CDCl3): δ ppm 43.98, 55.67,
113.09, 114.48, 117.89, 121.89, 123.81, 126.21, 127.22,
127.71, 135.90, 139.15, 139.60, 142.42, 153.04; LC-MS
(ESI) m/z: 394 ([M+H]+, 100); Anal. Calcd. For
C21H19N3O3S: C, 64.11; H, 4.87; N, 10.68. Found: C,
63.93; H, 4.89; N, 10.76.

N-(4-Methoxyphenyl)-8-methyl-2-(4-(methylsulfonyl)
phenyl)imidazo[1,2-a]pyridin-3-amine (5r)

Yield, 41%; white-creamy powder; mp: 229–231 °C; IR
(KBr disk): νcm−1 1151, 1314 (SO2), 1627 (C=N), 3252
(NH); 1H NMR (DMSO-d6): δ ppm 2.57 (s, 3H, CH3), 3.21
(s, 3H, SO2Me), 3.62 (s, 3H, OCH3), 6.46 (d, 2H,
J= 8.8 Hz, phenyl H3 and H5), 6.76 (d, 2H, J= 8.8 Hz,
phenyl H2 and H6), 6.85 (t, 1H, J= 7.2 Hz, imidazopyridine
H6), 7.15 (d, 1H, J= 6.8 Hz, imidazopyridine H7), 7.83 (d,
1H, J= 6.8 Hz, imidazopyridine H5), 7.95 (d, 1H,
J= 8.4 Hz, methylsulfonylphenyl H2 and H6), 8.07 (s, 1H,
NH), 8.33 (d, 1H, J= 8.8 Hz, methylsulfonylphenyl H3 and
H5);

13C NMR (DMSO-d6): δ ppm 16.64, 44.01, 55.67,
113.07, 114.47, 115.54, 121.57, 122.27, 124.64, 127.21,
127.70, 135.43, 139.28, 139.46, 142,73, 153.00; LC-MS
(ESI) m/z: 408 ([M+H]+, 100); Anal. Calcd. For
C22H21N3O3S: C, 64.85; H, 5.19; N, 10.31. Found: C,
65.01; H, 5.15; N, 10.25.

N-(4-Methoxyphenyl)-7-methyl-2-(4-(methylsulfonyl)
phenyl)imidazo[1,2-a]pyridin-3-amine (5s)

Yield, 44%; white powder; mp: 138–140 °C; IR (KBr
disk): νcm−1 1155, 1307 (SO2), 1648 (C=N), 3227 (NH);
1H NMR (DMSO-d6): δ ppm 2.37 (s, 1H, CH3), 3.21 (s, 3H,
SO2Me), 3.63 (s, 3H, OCH3), 6.46 (d, 2H, J= 8.8 Hz,
phenyl H3 and H5), 6.75–6.77 (m, 3H, phenyl H2 and H6,

imidazopyridine H6), 7.41 (s, 1H, imidazopyridine H8), 7.85
(d, 1H, J= 7.2 Hz, imidazopyridine H5), 7.93 (d, 1H,
J= 8.4 Hz, methylsulfonylphenyl H2 and H6), 8.03 (s, 1H,
NH), 8.29 (d, 1H, J= 8.4 Hz, methylsulfonylphenyl H3 and
H5);

13C NMR (DMSO-d6): δ ppm 21.31, 44.00, 55.67,
114.42, 115.55, 116.06, 121.47, 123.05, 127.10, 127.67,
135.54, 136.75, 139.33, 139.40, 142.83, 152.99; LC-MS
(ESI) m/z: 408 ([M+H]+, 100); Anal. Calcd. For
C22H21N3O3S: C, 64.85; H, 5.19; N, 10.31. Found: C,
64.98; H, 5.14; N, 10.24.

N-(4-Methoxyphenyl)-5-methyl-2-(4-(methylsulfonyl)
phenyl)imidazo[1,2-a]pyridin-3-amine (5t)

Yield, 50%; yellow-orange powder; mp: 156 °C
(decomposed); IR (KBr disk): νcm−1 1152, 1313 (SO2),
1641 (C=N), 3365 (NH); 1H NMR (DMSO-d6): δ ppm

2.68 (s, 1H, CH3), 3.21 (s, 3H, SO2Me), 3.62 (s, 3H,
OCH3), 6.38 (d, 2H, J= 8.4 Hz, phenyl H3 and H5), 6.64
(d, 1H, J= 6.8 Hz, imidazopyridine H6), 6.77 (d, 2H,
J= 8.4 Hz, phenyl H2 and H6), 7.21 (t, 1H, J= 7.2 Hz,
imidazopyridine H7), 7.48 (d, 1H, J= 8.8 Hz, imidazo-
pyridine H8), 7.90–7.92 (m, 3H, methylsulfonylphenyl H2

and H6, NH), 8.32 (d, 1H, J= 8.0 Hz, methylsulfonyl-
phenyl H3 and H5);

13C NMR (DMSO-d6): δ ppm 18.86,
43.93, 55.61, 114.03, 114.15, 114.92, 115.70, 116.06,
122.48, 126.47, 127.36, 127.59, 136.72, 137.66, 139.20,
139.62, 141.93, 144.18, 152.50; LC-MS (ESI) m/z: 408
([M+ H]+, 100); Anal. Calcd. For C22H21N3O3S: C,
64.85; H, 5.19; N, 10.31. Found: C, 64.76; H, 5.22;
N, 10.35.

Molecular modeling and docking studies

The docking studies between designed compounds and
COX-2 isozyme were carried out by the AutoDock Vina
program [43]. This procedure was accomplished after
ligand and enzyme preparation. In brief, the 3D structure
of murine COX-2 (ID: 6COX) was obtained from RCSB
Protein Data Bank [44]. After eliminating the crystallized
ligand and water molecules, polar hydrogens and Kollman
charges were added to the protein. The 3D structures of
two potent and selective derivatives were created and
energetically minimized in HyperChem 8.0 software by
the MM+ method. Then, the Gasteiger charges were
added to ligands. Finally, the pdbqt files of ligands and the
enzyme, which were used in docking created with Auto-
Dock tools. Acquired configurations resulting from
docking were searched to find suitable and efficient
interactions with the COX-2 enzyme.

It was then validated by redocking the co-crystalized
ligand, SC-558, under the same condition and super-
imposition on the co-crystallized ligand pose.

Biological assay

In vitro cyclooxygenase (COX) inhibition assays

This assay was performed using a COX fluorescent inhi-
bitor screening assay kit (Cayman Chemical, MI, USA).
The Cayman COX (ovine COX-1/human recombinant
COX-2) inhibitor screening assay utilizes the peroxidase
component of COXs. In this assay, the reaction between
PGG2 and ADHP (10-acetyl-3,7-dihydroxyphenoxazine)
produces the highly fluorescent compound resorufin.
Resorufin fluorescence can be analyzed with a 530–540 nm
excitation wavelength and an emission wavelength of
585–595 nm [45]. Consequently, higher inhibition of the
COX enzyme leads to lower resorufin production, which
means less fluorescence intensity.
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In vivo evaluation of compound analgesic effects

Animals and reference drug The analgesic effects of
compounds were evaluated using a formalin test in rats [46].
Male Wistar rats (Pasteur Institute, Iran) weighing
110–150 g, were used. Rats were housed in a temperature-
controlled condition (25 ± 2 °C) and 12 h light/dark cycle
and free access to food and water except during the
experiment. Animals were randomly divided into groups for
each test compound (N= 6), and each rat was used only
once during the experiments.

Formalin test The basis of this pain assessment is the
subcutaneous injection of formalin 5% into the paw and
then monitoring of the animal’s pain-related behavior in
test and control groups. Synthesized compounds or cel-
ecoxib (Sigma-Aldrich, Germany) were dissolved in
DMSO and were administered by intraperitoneal (i.p.)
injection (40 mg/kg, Volume of injection 1 ml/kg) 30 min
before the test. The control group received DMSO (1 ml/
kg) 30 min before the test. Formalin 5% (40 µl) was
injected into the dorsal surface of the left hind paw, and the
rats were placed individually in plexiglass chambers
(30 × 30 × 30 cm) and continuously observed for 60 min.
Pain-related behaviors were quantified according to the
following numerical scale: 0= normal weight-bearing on
the injected paw, 1= limping during locomotion or resting
the paw lightly on the floor, 2= elevation of the injected
paw so that, at most, the nails touch the floor, and
3= licking, biting or shaking the injected paw as described
by Dubuisson and Dennis. The area under the curve (AUC)
for pain score against the time plot was measured and
compared between groups.

Statistical analysis of the data Results were shown as
mean and 95% confidence interval. Statistical analysis was
done using Prism 6 (GraphPad Software Inc.). One-way
analysis of variance (ANOVA) followed by Bonferroni’s
multiple comparison tests was used to compare AUCs of
pain scores between groups. The p < 0.05 was regarded as
statistically significant.
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