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Abstract: Two series of pleuromutilin derivatives were designed and synthesized as inhibitors against
Staphylococcus aureus (S. aureus). 6-chloro-4-amino-1-R-1H-pyrazolo[3,4-d]pyrimidine or 4-(6-chloro-1-
R-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino-phenylthiol were connected to pleuromutilin. A diverse
array of substituents was introduced at the N-1 position of the pyrazole ring. The in vitro antibacterial
activities of these semisynthetic derivatives were evaluated against two standard strains, Methicillin-
resistant Staphylococcus aureus (MRSA) ATCC 43300, Staphylococcus aureus (S. aureus), ATCC 29213 and
two clinical S. aureus strains (144, AD3) using the broth dilution method. Compounds 12c, 19c and 22c
(MIC = 0.25 µg/mL) manifested good in vitro antibacterial ability against MRSA which was similar to
that of tiamulin (MIC = 0.5 µg/mL). Among them, compound 22c killed MRSA in a time-dependent
manner and performed faster bactericidal kinetics than tiamulin in time–kill curves. In addition,
compound 22c exhibited longer PAE than tiamulin, and showed no significant inhibition on the
cell viability of RAW 264.7, Caco-2 and 16-HBE cells at high doses (≤8 µg/mL). The neutropenic
murine thigh infection model study revealed that compound 22c displayed more effective in vivo
bactericidal activity than tiamulin in reducing MRSA load. The molecular docking studies indicated
that compound 22c was successfully localized inside the binding pocket of 50S ribosomal, and four
hydrogen bonds played important roles in the binding of them.

Keywords: antibacterial activity; MRSA; pleuromutilin; 1H-pyrazolo[3,4-d]pyrimidine

1. Introduction

The development of bacterial resistance to available antibiotics has been growing at
a high speed, becoming one of the greatest public health problems. Methicillin-resistant
Staphylococcus aureus (MRSA) has become one of the most important pathogens, which
was first identified in the 1960s [1,2]. MRSA can cause a variety of diseases, ranging from
skin infections to life-threatening invasive infections, such as pneumonia, endocarditis
and sepsis [3]. MRSA infections are associated with high mortality [4]. There were about
120,000 bloodstream infections caused by MRSA in the USA in 2017, and nearly 20,000 of
those affected lost their lives [5]. MRSA has been reported to be resistant to many clinical
antibiotics, including linezolid, vancomycin, penicillin and all commonly prescribed beta-
lactam antibiotics [6]. With the prevalence of MRSA, new antimicrobial agents are urgently
needed to address its increasingly serious drug resistance.

Pleuromutilin (1, Figure 1), containing a tricyclic core of five-, six- and eight-membered
rings, was first isolated from two basidiomycete species Pleurotus mutilus and Pleurotus
passeckerianus in 1951 [7]. Pleuromutilin has been proven to be effective against Gram-
positive pathogens [7]. It has been identified that pleuromutilin inhibits bacterial protein
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synthesis through its interaction with the 50S ribosomes [8,9]. This distinctive antibacterial
mechanism endowed pleuromutilin with great potential to deal with drug-resistant bacte-
rial infections, and encouraged researchers to develop novel pleuromutilin derivatives as
effective antibacterial agents [10]. It was found that the modification of the C-14 acyloxy
side chain significantly affected the antibacterial activity of pleuromutilin [11]. Based on
this modification strategy, four of them have reached the market: tiamulin (2, Figure 1),
valnemulin (3, Figure 1), retapamulin (4, Figure 1) and lefamulin (5, Figure 1) [12,13].
Tiamulin and valnemulin have been used to treat economically important infections in
swine and poultry, which were approved in 1979 and 1999, respectively [14,15]. Success
in veterinary antibiotics has encouraged researchers to focus on the development of new
pleuromutilin antibiotics for human use. Retapamulin is the first pleuromutilin antibiotic
for human skin infections caused by S. aureus [16]. In 2019, lefamulin was approved as an
oral and intravenous pleuromutilin antibiotic for the treatment of community-acquired
bacterial pneumonia in humans [17].
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Figure 1. Structure of pleuromutilin (1), tiamulin (2), valnemulin (3), retapamulin (4), lefamulin (5)
ibrutinib (6), formycin A (7) and pyrazolo[3,4-d]pyrimidine (8).

Our lab is devoted to the development of pleuromutilin derivatives containing ni-
trogenous bases in the C14 side chain. Previous work has led to quite a few target products
with powerful anti-MRSA activity. Fused N-heterocycles are important heterocyclic com-
pounds with a wide spectrum of bioactivities, such as anti-cancer (ibrutinib, 6, Figure 1) and
anti-bacterial (formycin A, 7, Figure 1) [18–21]. Among them, pyrazolo[3,4-d]pyrimidine
(8, Figure 1) derivatives possess antibacterial pharmacological activity [22,23]. These moti-
vated us to develop pleuromutilin derivatives contenting pyrazolo[3,4-d]pyrimidine moiety
(Scheme 1). Additionally, the introduction of 4-aminothiophenol has been reported to influ-
ence the antimicrobial activity of pleuromutilin [24]. Thus, another synthetic strategy is
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based upon attaching 4-aminothiophenol as a linker arm to the pleuromutilin and attaching
the other end to a pyrazolo[3,4-d]pyrimidine moiety via an amino group (Scheme 2). In
this work, 34 novel pleuromutilin derivatives were designed and synthesized via 2 di-
verse strategies, and we preliminarily evaluated their in vitro and in vivo antibacterial
activity. The interactions between the derivatives and 50S ribosomes were imitated by
molecular docking.
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Scheme 1. Reagent and conditions: (i) CH2(CO2Et)2, NaOEt, EtOH, 65 ◦C, 48 h, 92% yield; (ii) POCl3,
DMF, 100 ◦C, 48 h, 92% yield; (iii) hydrazine derivatives, Et3N, EtOH, −20 ◦C, 2 h, 83%~94% yield;
(iv) p-toluenesulfonyl chloride, NaOH, ACN, H2O rt, 3 h, 95% yield; (v) sodium azide, acetone, H2O,
80 ◦C, 4 h, 93%; (vi) triphenylphosphine, THF, H2O, 0~5 ◦C, 2 h; (vii) Et3N, THF, rt, 2~12 h.
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Scheme 2. Reagent and conditions: (i) 4-aminothiophenol, 20% aqueous NaOH, DCM, H2O, 70 ◦C,
2 h, 79% yield; (ii) Et3N, THF, rt, 2~12 h.

2. Results and Discussion
2.1. Chemistry

The general synthesis routes of target products were illustrated in Schemes 1 and 2.
Urea (compound 9) was used as starting material. Barbituric acid (compound 10) was obtained
via the condensation reaction of urea and diethyl malonate [25]. Trichloropyrimidine (com-
pound 11) was prepared using the Vilsmeier–Haack reaction [26]. Pyrazolo[3,4-d]pyrimidines
(compounds 12a~28a) were acquired via the cyclization reaction of 2,4,6-trichloropyrimidine-
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5-carbaldehyde (compound 11) with different substituted hydrazines [27,28]. The structure
of compounds 12a~28a is disclosed in Table S1.

As shown in Scheme 1, the reaction of pleuromutilin (compound 1) with p-toluenesulfonyl
chloride afforded compound 29 under alkaline condition [29]. Substitution of the p-toluenesulfonyl
group with sodium azide provided compound 30, which subsequently underwent Staudinger
reduction with triphenylphosphine to produce compound 31 [30]. Target compounds 12b~28b
were synthesized via the nucleophilic substitution reaction of compounds 12a~28a and
compound 31. As shown in Scheme 2, 22-(4-Amino-phenylsulfanyl)deoxypleuromutilin
(compound 32) was acquired in reference to our previous work [24]. Target compounds 12c~28c
were synthesized by a method similar used for compounds 12b~28b [28].

The pleuromutilin derivatives were purified by silica gel column chromatography and
characterized by 1H NMR, 13C NMR and high-resolution mass spectral (HR-MS) analysis.
The results confirmed that the synthesis of compounds was consistent with the expected
structure. All the spectra of synthesized pleuromutilin derivatives are supplied in the
Supplementary Materials.

2.2. In Vitro Antibacterial Activity

The in vitro antimicrobial activity of the pleuromutilin derivatives was assessed
against MRSA ATCC 43300, S. aureus ATCC 29213, S. aureus 144 and S. aureus AD3 accord-
ing to the Clinical and Laboratory Standards Institute (CLSI) [31]. Tiamulin was used as a
positive control drug. The results were summarized as the minimum inhibitory concen-
tration (MIC) and the minimum bactericidal concentration (MBC) in Tables 1 and 2. In
addition, MIC results for the pleuromutilin derivatives against four Gram-negative bacteria
are supplied in Tables S2 and S3.

Table 1. MIC and MBC (µg/mL) values of compounds 12b~28b against S. aureus ATCC 43300,
S. aureus ATCC 29213, S. aureus 144 and S. aureus AD3.

Compound No. R

MIC/MBC (µg/mL)

MRSA
ATCC
43300

S. aureus
ATCC
29213

S. aureus
144

S. aureus
AD3
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Table 1. Cont.

Compound No. R

MIC/MBC (µg/mL)

MRSA
ATCC
43300

S. aureus
ATCC
29213

S. aureus
144

S. aureus
AD3

14b
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Table 1. Cont.

Compound No. R

MIC/MBC (µg/mL)

MRSA
ATCC
43300

S. aureus
ATCC
29213

S. aureus
144

S. aureus
AD3

22b
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Table 2. MIC and MBC (µg/mL) values of compounds 12c~28c against S. aureus ATCC 43300,
S. aureus ATCC 29213, S. aureus 144 and S. aureus AD3.

Compound No. R

MIC/MBC (µg/mL)

MRSA
ATCC
43300

S. aureus
ATCC
29213

S. aureus
144

S. aureus
AD3
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Table 2. Cont.

Compound No. R

MIC/MBC (µg/mL)
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32 0.0015 0.0015 0.003 0.0015
Tiamulin 0.5/1 1/1 1/2 1/2

As illustrated in Tables 1 and 2, the antimicrobial activity of most compounds was
absent. Compounds 12c, 19c and 22c (MIC = 0.25 µg/mL) exhibited better anti-bacterial
effects than tiamulin (MIC = 0.5 µg/mL). Meanwhile, the preliminary structure-activity
relationships (SARs) were also studied. Two schemes were designed to investigate the effect
of the thioether bonds at the C-14 side chain on the antimicrobial activity of the pleuromu-
tilin derivative. The oxygen atom at the C-22 position of the pleuromutilin was replaced
by the nitrogen atom to furnish compounds 12b~28b in Scheme 1. MIC values of most
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compounds in Scheme 1 were not found (higher than 64 µg/mL), while compound 12b
exhibited a better antibacterial effect against MRSA (MIC = 8 µg/mL). In Scheme 2, the
oxygen atom at the C-22 position of the pleuromutilin was replaced by the sulfur atom,
namely the sulphydryl at 1 position on 4-aminothiophenol, resulting in the formation
of the thioether bond. As outlined in Table 2, the MIC of compound 32 against MRSA
was 0.0015. Compared with Scheme 1, compounds 12c, 19c and 22c displayed enhanced
antibacterial activity with the MIC values of 0.25 µg/mL against MRSA. The introduction
of 4-aminothiophenol caused the formation of a sulfide structure at the C22 position, the an-
tibacterial activity of the derivatives was significantly promoted. This is consistent with our
previous findings that the thioether bond has a positive influence on the antimicrobial effect
of pleuromutilin derivatives [31–35]. Furthermore, the substituents at the N1 position of the
pyrazolo[3,4-d]pyrimidine ring contained aromatic rings with different substituents. A va-
riety of electron-donating (methyl, ethyl) and electron-withdrawing (fluoro, chlorine, etc.)
groups were introduced on the aromatic rings. The meta-methyl-substituted compound 12c
(0.25 µg/mL) showed superior antibacterial activities than compounds 13c~17c against
MRSA. Compounds 18c, 20c and 21c with ortho-fluoro-substituted benzene derivatives
exhibited much less potency compared to compounds 19c and 22c in this series. Further-
more, compound 23c, bearing a trifluoromethoxy group in the 4-position, showed activity
comparable to tiamulin (MIC was 0.5 µg/mL) against MRSA. Generally, the ortho-position
appeared to have less positive influence on the antibacterial activity of these pleuromutilin
derivatives bearing a phenyl group.

This may be due to the pyrazolo [3,4-d] pyrimidine ring and their substituent groups
forming a rigid planar structure. There were a large number of hydrogen bond donors,
such as N, O and F. This may prevent the extension of the C14 side chain of pleuromutilin
to PTC of 50S ribosomes, because it does not have a flexible conformation. At the same
time, a large number of hydrogen bond donors in their structure must be disturbed by
environmental substances when the compounds produce effects, violating the Lipinski
rules. Thus, the introduction of this pyrimidine ring at the C14 side chain of pleuromutilin
may not be a good modification strategy.

MBC refers to the minimum drug concentration required to kill 99.9% of the test
microorganisms [33]. The MBC/MIC ratios of compounds 12c, 19c and 22c against
MRSA were ≤2. According to previous studies, an antimicrobial drug can be consid-
ered bactericidal when the MBC/MIC is ≤4 [36]. Thus, the antimicrobial activity of
compounds 12c, 19c and 22c was investigated for in-depth study.

Time–kill kinetic assays were performed, which were used to investigate the in vitro
bactericidal kinetic effect of compounds 12c, 19c, 22c and tiamulin. The results are presented
in Figure 2.

The test compounds displayed a significant inhibitory effect against MRSA at 1 ×MIC.
After 24 h incubation, compound 19c and tiamulin showed bactericidal effects, killing
99.9% of MRSA (−3.57 log10 CFU/mL and −3.78 log10 CFU/mL reduction, respectively)
at 2 ×MIC. After incubation for 24 h, compounds 12c and 22c displayed bactericidal
effects, killing 99.99% of MRSA (−4.51 log10 CFU/mL and −4.47 log10 CFU/mL reduc-
tion, respectively) at 2 × MIC. Compared with tiamulin, compounds 12c and 22c man-
ifested faster bactericidal kinetics against MRSA. Compounds 12c, 19c and 22c induced
MRSA killing significantly at 4 ×MIC (−5.76 log10 CFU/mL, −5.16 log10 CFU/mL and
−5.79 log10 CFU/mL reduction, respectively). However, after the test compounds reached
a certain concentration, the bactericidal effect did not significantly increase. The results
indicated that compounds 12c, 19c, 22c and tiamulin are time-dependent drugs rather than
concentration-dependent drugs. In clinical practice, multiple or continuous intravenous
time-dependent antimicrobial agents can achieve better therapeutic results [37].

PAE has been considered as pharmacodynamic assistance which provides a reference
for the rational formulation of dosing regimen [38]. PAE refers to the temporary suppression
of bacterial growth following transient antibiotic treatment [39]. PAE assays were conducted



Molecules 2023, 28, 3975 10 of 31

for compounds 12c and 22c. The results were shown in Table 3, and the bacterial growth
kinetics curves were exhibited in Figure 3.
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Table 3. The PAE values of compounds 12c, 22c and tiamulin against MRSA ATCC 43300.

Compounds Concentrations
PAE (h)

Exposure for 1 h Exposure for 2 h

Compound 12c 2 ×MIC 0.37 1.72
4 ×MIC 0.43 1.73

Compound 22c 2 ×MIC 0.92 2.18
4 ×MIC 0.93 2.68

Tiamulin
2 ×MIC 0.27 1.23
4 ×MIC 0.42 1.31
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PAE is calculated from growth curves on the difference in time required for the number
(1 log10 CFU/mL) of drug-exposed and unexposed microbes [40]. Following exposure
to compounds 12c and 22c at the concentration of 2 × MIC for 1 h, the corresponding
PAE values were 0.37 and 0.92 h, respectively. After exposure for 1 h, the PAE values of
compounds 12c and 22c were 0.43 and 0.93 h at 4 ×MIC. Correlatively, at the concentration
of 2 ×MIC, the PAE values of compounds 12c, 22c and tiamulin after exposure for 2 h were
1.72, 2.18 and 1.23 h, while at the concentration of 4 × MIC, corresponding PAE values
were 1.73, 2.68 and 1.31 h. This suggests that compounds 12c and 22c induced longer PAEs
against MRSA than tiamulin. The PAE values of compounds 12c and 22c increased with
increasing incubation time. Compound 22c showed the longest PAE.
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Results obtained from the PAE assays showed that compounds 12c and 22c had been
speculated to possess longer administration intervals than tiamulin. There is still a certain
antibacterial effect as the drug concentration drops below the MIC. In clinical medication,
pharmacodynamic parameters such as PAE, MIC and MBC can be used as references to
evaluate the efficacy of antimicrobial agents. PAE provides a theoretical basis for the
adjustment of the time interval to reduce adverse drug effects [41].

2.3. Cytotoxicity Assay

The presence of compounds can influence cellular basic physiological processes, sup-
press proliferation and even reduce cell survival, etc. In the community, MRSA generally
causes respiratory infection [42]. Therefore, cytotoxicity was evaluated to explore the effect
of compounds 12c and 22c on the viability of the respiratory tract cells 16-HBE (human
bronchial epithelial cell line). RAW 264.7 (mouse peritoneal macrophage cell line) and
Caco-2 (human epithelial colorectal adenocarcinoma cell line) were also used to evaluate
the cytotoxicity of compounds 12c and 22c by MTT assay.

As shown in Figure 4, compound 22c displayed slight inhibition on the viability of
RAW 264.7 cells at the concentration of 8 µg/mL. Compounds 12c and 22c did not affect
the viability of Caco-2 and 16-HBE cells at the concentrations of 1~8 µg/mL. The study
indicated that compounds 12c and 22c possessed a safety profile towards RAW 264.7 cells,
Caco-2 and 16-HBE cells at higher doses.

2.4. Neutropenic Murine Thigh Infection Model

Compounds 12c and 22c possessed superior in vitro activity against MRSA and had
been identified to be non-cytotoxic on RAW 264.7, Caco-2 and 16-HBE cells at high doses.
Therefore, the in vivo efficacy of compounds 12c and 22c were assessed using the murine
neutropenic thigh infection model. Mice groups treated with saline and tiamulin were
chosen as the negative and positive controls. The results are shown in Figure 5.

Compared to the growth control group, tiamulin could reduce MRSA load
(−0.56 log10 CFU/mL) against MRSA in thigh muscle (p < 0.0001, n = 6/group). Com-
pounds 12c and 22c at the same dose could reduce the MRSA load (−0.79 log10 CFU/mL
and −0.93 log10 CFU/mL, respectively) in thighs compared with the blank control group
(p < 0.0001, n = 6/group, both). Compounds 12c and 22c displayed more effective bacte-
ricidal activity than tiamulin in reducing MRSA load in thigh-infected mice (p = 0.0009
and 0.0001, respectively). This indicates preliminarily that compound 22c had a better
in vivo anti-MRSA effect than compound 12c and tiamulin in the neutropenic murine thigh
infection model, which could be used as a drug candidate against MRSA.

2.5. Molecular Docking Study

To predict the binding conformations of compound 22c to 50S ribosomes, molecu-
lar docking experiments were conducted [43]. The crystal structure (PDB: 1XBP) was
obtained from the RCSB Protein Data Bank [44]. The validation of the docking scheme
was performed by evaluating the quantitatively root mean square deviation (RMSD) of
atom positions between the docking pose (the test compound to 1XBP) and X-ray crystallo-
graphic conformation (tiamulin to 1XBP). The quality of protein–ligand interactions can
be expressed to some extent by the ligand efficiency (LE), the average binding free energy
per non-hydrogen (or heavy) atom of the ligand [44]. The RMSD of compound 22c was
0.921 Å. Compounds 22c and tiamulin showed similar binding modes with 50S ribosomes,
which were presented in Figure 6a.

The binding free energy of compound 22c with 50S ribosome was −7.11 kcal/mol. As
shown in Figure 6b, four strong hydrogen bonds were found through the interaction of
compound 22c and the 50S ribosome, namely 3-O and G2044 (distance: 2.2 Å, 2.2 Å), 11-O
and G2484 (distance: 2.7 Å) and 21-O and G2482 (distance: 2.4 Å). The result predicted
the binding mode of compound 22c to the 50S ribosome to indicate that they might have a
good affinity.
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3. Experimental Section
3.1. Materials

Pleuromutilin (>90% pure) was purchased from Great Enjoyhood Biochemical Co.,
Ltd., (Daying, China). Urea, sodium methanolatea and hydrochloric acid were purchased
from Titan Technology Co., Ltd., (Shanghai, China). Diethyl malonate and hydrazine
derivatives were purchased from Bide Technology Co., Ltd., (Shanghai, China). The
other analytical-grade solvents were purchased from Guangzhou General Reagent Fac-
tory (Guangzhou, China). Chromatographic purification was carried out on silica gel
columns (200–300 mesh, Branch of Qingdao Haiyang Chemical Co., Ltd., Shandong,
China). 1H NMR and 13C NMR spectra were measured on a Bruker AV-600 spectrom-
eter in chloroform-d or DMSO-d6. Tetramethylsilane was used as the internal standard.
Chemical shift values (δ) were indicated as ppm. High-resolution mass spectrometry
was performed using a Thermo Scientific Q Exactive Focus Orbitrap LC-MS/MS with an
electrospray ionization (ESI) source.

3.2. Synthesis

Two series of novel pleuromutilin derivatives containing 6-chloro-4-amino-1-R-1H-
pyrazolo[3,4-d]pyrimidine were synthesized. The general synthetic routes are illustrated in
Schemes 1 and 2.

3.2.1. 4,6-Dichloro-1-R-1H-pyrazolo[3,4-d]pyrimidine (12a~28a)

The raw material for synthesizing barbituric acid (compound 10) was urea (compound 9).
Urea powder (6 g, 100 mmol) was dissolved in EtOH (50 mL), and then diethyl malonate
(16 g, 120 mmol) was added to the solution. The reaction mixture was incubated with
sodium methanolate (6.48 g, 120 mmol) for 48 h at 65 ◦C. The solution was acidified to
pH 1~2, cooled down, crystallized and recrystallized to obtain pure barbituric acid. The
Vilsmeier–Haack reaction of barbituric acid provided the product 2,4,6-trichloropyrimidine-
5-carbaldehyde (compound 11). Phosphorus oxychloride (17.9 g, 117 mmol) was added
into a 3-neck boiling flask at −10 ◦C, then N,N-dimethylformamide (15 mL) was dropped
slowly into Phosphorus oxychloride, and then stirred for 1 h. Afterwards, Barbituric
acid (5 g, 39 mmol) was added to the mixture and stirred for 48 h at 100 ◦C. After the
reaction finished, the solution was slowly added into the ice water, a large number of
solid precipitated out and then filtered, and the yield of compound 11 was 92%. The
pyrazole ring was closed by treatment with hydrazine derivatives. Hydrazine derivatives
(5.64 mmol) and compound 11 (1 g, 4.7 mmol) were dissolved in EtOH (10 mL) and then
stirred for 2 h at −20 ◦C under alkaline conditions. After the reaction was completed, a
large amount of solid was precipitated from the reaction solution. The crude products were
purified using EtOH to obtain compounds 12a~28a. Yield: 83%~98%.

3.2.2. 22-Amino-deoxypleuromutilin (31)

4-methylbenzene-1-sulfonyl chloride (5.6 g, 29.2 mmol) and pleuromutilin (10 g,
26.5 mmol) were dissolved in acetonitrile (50 mL), then sodium hydroxide granules (3 g,
52.84 mmol) were dissolved in water (15 mL) and dropped slowly into the above mixture
solution and stirred in an ice bath for 3 h. The mixture was then vacuum-evaporated,
extracted with 30 mL of dichloromethane and washed with water (30 mL). The organic
layer was dried over anhydrous Na2SO4 and filtered. Afterwards, isopropanol (50 mL)
was added, and the mixture was heated at 70 ◦C until the solid was completely dissolved.
Stewing the solution at room temperature for 1–2 h, the white solid precipitated and the
white solid was collected (compound 29), yield: 95%.

Compound 29 (1 g, 1.88 mmol) and sodium azide (0.37 g, 5.65 mmol) were added
to 10 mL of acetone and 5 mL of water, respectively. The two solutions were mixed
under continuous stirring and heated at 80 ◦C for 4 h. The mixture was then vacuum-
evaporated, extracted with 30 mL of dichloromethane and washed with water (30 mL).
The organic layer was dried over anhydrous Na2SO4, filtered and concentrated under
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reduced pressure to obtain the product compound 30, yield: 93%. Compound 30 (10 g,
25.67 mmol) and triphenylphosphine (7.14 g, 28.24 mmol) were dissolved in THF (80 mL)
and H2O (20 mL) solution. The mixture was maintained in an ice bath for 2 h, then washed
with dichloromethane (30 mL) and water (50 mL) 3 times. The organic phase was dried
over anhydrous Na2SO4 and evaporated in vacuum. The crude product was purified by
column chromatography (dichloromethane: methanol = 200:1) using silica gel to obtain
compound 31.

3.2.3. 22-(4-Amino-phenylsulfanyl)deoxypleuromutilin (32)

Compound 29 (10 g, 18.8 mmol) was dissolved in dichloromethane (100 mL), to which
4-aminothiophenol (2.5 g, 20 mmol) was added. Afterwards, 20% aqueous NaOH (10 mL)
was added dropwise to the mixture and allowed to stir for 2 h at 70 ◦C. The crude product
was purified by column chromatography (dichloromethane: methanol = 200:1) using silica
gel to obtain compound 32. Yield: 79%.

3.2.4. General Procedure for the Synthesis of Compounds 12b~28b and 12c~28c

Compounds 12a~28a (0.25 mmol) and compound 31 (1.28 g, 2.65 mmol) were added
to tetrahydrofuran (15 mL). Triethylamine (0.001 mmol) was added as a catalyst. The
reaction proceeded for 2~12 h at room temperature. After completion of the reaction, the
crude product was obtained by filtration. Compounds 12b~28b were purified by silica gel
column chromatography (dichloromethane: methanol = 200:1). Compounds 12c~28c were
obtained by subjecting compounds 12a~28a and compound 32 to the same procedures.

3.2.5. 22-[(6-Chloro-1-(3-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino]-22-
deoxypleuromutilin (12b)

Yellow powder; yield: 79%; melting point: 97–99 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 9.46 (1 H, s), 8.10 (1 H, s), 7.17 (1 H, t, J = 7.8 Hz), 7.01 (1 H, s), 6.79 (2 H, m), 6.52 (1 H,
dd, J = 17.4, 11.0 Hz, H19), 5.95 (1 H, d, J = 8.5 Hz, H14), 5.29–5.18 (2 H, m, H20), 4.44–4.18
(2 H, m, H22), 3.39 (1 H, d, J = 6.5 Hz, H11), 2.38 (s, 3H), 2.36-2.06 (5 H, m, H2, H4, H10,
11-OH), 1.82–1.49 (6 H, m, H1, H6, H7, H8), 1.47 (3 H, s, H15), 1.43 (2 H, m, H13), 1.20 (3 H,
s, H18), 1.15 (1 H, m, H8), 0.91 (3 H, d, J = 7.0 Hz, H17), 0.80 (3 H, d, J = 7.0 Hz, H16).
13C NMR (151 MHz, Chloroform-d) δ 216.98 (C3), 168.80 (C21), 159.47, 156.63, 156.31, 142.94,
139.50, 138.82 (C19), 132.32, 129.23, 122.07, 117.58 (C20), 113.27, 109.73, 107.12, 74.62 (C11),
70.06 (C14), 58.16 (C4), 45.49 (C9), 44.75 (C6), 44.37 (C13), 44.02 (C12), 41.9 (C5), 36.71 (C10),
36.20 (C2), 34.46 (C22), 30.44 (C8), 26.90 (C7), 26.45 (C18), 24.89 (C1), 21.57, 16.87 (C16),
14.84 (C15), 11.50 (C17). HR-MS (ESI): Calcd for C34H42ClN5O4 (M + Cl−): 654.2619;
Found: 654.2618.

3.2.6. 22-[(6-Chloro-1-(4-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino]-22-
deoxypleuromutilin (13b)

Yellow powder; yield: 62%; melting point: 93–95 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 9.47 (1 H, s), 8.06 (1 H, s), 7.07 (2 H, d, J = 8.1 Hz), 6.97–6.85 (2 H, m), 6.54 (1 H, dd,
J = 17.4, 11.0 Hz, H19), 5.91 (1 H, d, J = 8.5 Hz, H14), 5.37–5.17 (2 H, m, H20), 4.41–4.20
(2 H, m, H22), 3.40 (1 H, d, J = 6.5 Hz, H11), 2.38–2.12 (8 H, m, H2, H4, H10, 11-OH, H34),
1.83–1.48 (6 H, m, H1, H6, H7, H8), 1.47 (3 H, s, H15), 1.43 (2 H, m, H13), 1.21 (3 H, m, H18),
1.16 (1 H, m, H8), 0.92 (3 H, d, J = 7.0 Hz, H17), 0.81 (3 H, d, J = 7.1 Hz, H16). 13C NMR
(151 MHz, Chloroform-d) δ 217.01 (C3), 168.63 (C21), 159.23, 157.89, 157.43, 146.47 138.76,
135.98, 132.58, 117.40 (C20), 115.42, 106.26, 74.61 (C11), 70.28 (C14), 58.16 (C4), 45.49 (C9),
44.78 (C13), 44.62 (C6), 43.96 (C12), 41.87 (C5), 36.72 (C10), 36.04 (C2), 34.46 (C22), 30.49 (C8),
26.71 (C7), 26.15 (C18), 24.87 (C1), 18.44, 16.82 (C16), 14.82 (C15), 11.46 (C17). HR-MS (ESI):
Calcd for C34H42ClN5O4 (M + Cl−): 654.2619; Found: 654.2617.
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3.2.7. 22-[(6-Chloro-1-(3,4-dimethylphenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino]-
22-deoxypleuromutilin (14b)

Yellow powder; yield:72%; melting point: 99–103 ◦C; 1H NMR (600 MHz, Chloroform-
d) δ 9.48 (1 H, s), 8.04 (1 H, s), 7.02 (1 H, d, J = 8.1 Hz), 6.96 (1 H, s), 6.75 (1 H, d, J = 9.9
Hz), 6.53 (1 H, dd, J = 17.4, 11.0 Hz, H19), 5.94 (1 H, d, J = 8.5 Hz, H14), 5.28-5.18 (2 H, m,
H20), 4.42-4.24 (2 H, m, H22), 3.40 (1 H, d, J = 6.4 Hz, H11), 2.31-2.14 (11 H, m, H2, H4, H10,
11-OH, H34, H35), 1.75-1.55 (6 H, m, H1, H6, H7, H8), 1.47 (3 H, s, H15), 1.42 (2 H, m, H13),
1.20 (3 H, m, H18), 1.16 (1 H, m, H8), 0.92 (3 H, d, J = 7.0 Hz, H17), 0.80 (3 H, d, J = 7.0 Hz,
H16). 13C NMR (151 MHz, DMSO-d6) δ 217.60 (C3), 168.41 (C21), 159.69, 155.53, 154.94,
142.09, 141.28, 137.63 (C19), 131.43, 130.59, 128.13, 115.81 (C20), 113.95, 110.47, 107.93, 73.07
(C11), 70.52 (C14), 57.64 (C4), 45.45 (C9), 44.57 (C6), 43.87 (C12), 41.98 (C5), 40.53 (C13),
37.00 (C10), 36.77 (C2), 34.46 (C22), 30.61 (C8), 29.02 (C7), 27.02 (C18), 24.95 (C1), 19.98,
19.12, 16.55 (C16), 14.80 (C15), 11.96 (C17). HR-MS (ESI): Calcd for C35H44ClN5O4 (M +
Cl−): 668.2776; Found: 668.2778.

3.2.8. 22-[(6-Chloro-1-(3,5-dimethylphenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino]-
22-deoxypleuromutilin (15b)

Yellow powder; yield: 66%; melting point: 95–100 ◦C; 1H NMR (600 MHz, DMSO-d6)
δ 9.48 (1 H, s), 8.3 (1 H, s) 6.81 (2 H, s), 6.50 (1 H, s), 6.17 (1 H, dd, J = 17.7, 11.2 Hz, H19),
5.72 (1 H, d, J = 8.2 Hz, H14), 5.03 (2 H, m, H20), 4.36 (2 H, m, H22), 3.44 (1 H, m, H11), 2.43
(1 H, s, 11-OH), 2.26 (6 H, s), 2.20-2.01 (4 H, m, H2, H4, H10), 1.69-1.20 (11 H, m, H1, H6,
H7, H8, H13, H15), 1.06 (4 H, m, H8, H18), 0.83 (3 H, d, J = 6.9 Hz, H17), 0.65 (3 H, d, J = 6.3
Hz, H16). 13C NMR (151 MHz, Chloroform-d) δ 216.84 (C3), 168.49 (C21), 159.37, 156.73,
156.41, 142.94, 139.28, 138.83 (C19), 132.25, 123.18, 117.55 (C20), 110.73, 107.03, 74.60 (C11),
69.82 (C14), 58.17 (C4), 45.47 (C9), 44.75 (C13), 44.54 (C6), 43.92 (C12), 41.88 (C5), 36.70
(C10), 36.28 (C2), 34.44 (C22), 30.45 (C8), 26.82 (C7), 26.37 (C18), 24.90 (C1), 21.40, 16.79
(C16), 14.82 (C15), 11.40 (C17). HR-MS (ESI): Calcd for C35H44ClN5O4 (M + Cl−): 668.2776;
Found: 668.2773.

3.2.9. 22-[(6-Chloro-1-(4-ethylphenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino]-22-
deoxypleuromutilin (16b)

Yellow powder; yield: 61%; melting point: 101–103 ◦C; 1H NMR (600 MHz, Chloroform-
d) δ 9.49 (1 H, s), 8.07 (1 H, s), 7.11 (d, J = 8.4 Hz, 2H), 6.96 (d, J = 8.4 Hz, 2H), 6.55 (1 H, dd,
J = 17.4, 11.0 Hz, H19), 5.92 (1 H, d, J = 8.5 Hz, H14), 5.31 (1 H, d, J = 11.0 Hz, H20), 5.24
(1 H, d, J = 18.7 Hz, H20), 4.43-4.22 (2 H, m, H22), 3.40 (1 H, d, J = 6.5 Hz, H11), 2.61 (2 H,
q, J = 7.6 Hz), 2.39-2.12 (5 H, m, H2, H4, H10, 11-OH), 1.83-1.49 (6 H, m, H1, H6, H7, H8),
1.47 (3 H, s, H15), 1.44 (2 H, m, H13), 1.23 (t, J = 7.6 Hz, 3H), 1.21 (3 H, m, H18), 1.16 (1 H,
m, H8), 0.91 (3 H, d, J = 7.0 Hz, H17), 0.81 (3 H, d, J = 7.0 Hz, H16). 13C NMR (151 MHz,
Chloroform-d) δ 216.96 (C3), 168.71 (C21), 159.54, 156.51, 156.23, 140.92, 138.76 (C19), 137.09,
132.04, 128.71, 117.56 (C20), 112.75, 107.16, 74.61 (C11), 70.05 (C14), 58.13 (C4), 45.47 (C9),
44.68 (C13), 44.27 (C6), 44.04 (C12), 41.88 (C5), 36.70 (C10), 36.12 (C2), 34.45 (C22), 30.43
(C8), 28.09, 26.93 (C7), 26.40 (C18), 24.86 (C1), 16.87 (C16), 15.65, 14.82 (C15), 11.53 (C17).
HR-MS (ESI): Calcd for C35H44ClN5O4 (M + Cl−): 668.2776; Found: 668.2773.

3.2.10. 22-[(6-Chloro-1-(3-methoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino]-22-
deoxypleuromutilin (17b)

Yellow powder; yield: 72%; melting point: 99–104 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 9.41 (1 H, t, J = 5.1 Hz), 8.27 (1 H, s), 8.09 (1 H, s), 7.18 (1 H, t, J = 8.1 Hz), 6.61 (1 H, dd,
J = 8.0, 1.6 Hz), 6.57 (1 H, t, J = 2.1 Hz), 6.53 (1 H, dd, J = 17.4, 11.0 Hz), 6.49 (1 H, dd, J = 8.1,
2.1 Hz, H19), 5.89 (1 H, d, J = 8.5 Hz, H14), 5.32–5.15 (2 H, m, H20), 4.44–4.22 (2 H, m, H22),
3.81 (3 H, s), 3.39 (1 H, d, J = 6.5 Hz, H11), 2.38–2.09 (5 H, m, H1, H6, H7, 11-OH), 1.81–1.496
(6 H, m, H1, H7, H6, H8), 1.47 (3 H, s, H15), 1.43 (2 H, m, H13), 1.20 (3 H, s, H18), 1.16 (1 H,
m, H8), 0.91 (3 H, d, J = 7.0 Hz, H17), 0.80 (3 H, d, J = 7.1 Hz, H16). 13C NMR (151 MHz,
Chloroform-d) δ 216.84 (C3), 168.36 (C21), 159.46, 156.66, 156.39, 141.05, 138.80 (C19), 137.88,
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132.04, 130.39, 129.52, 117.53 (C20), 114.42, 110.41, 107.07, 74.60 (C11), 69.85 (C14), 58.15
(C4), 45.48 (C9), 44.72 (C13), 44.48 (C6), 43.97 (C12), 41.88 (C5), 36.70 (C10), 36.21 (C2), 34.44
(C22), 30.46 (C8), 26.85 (C7), 26.36 (C18), 24.88 (C1), 19.88, 19.03, 16.82 (C16), 14.81 (C15),
11.47 (C17). HR-MS (ESI): Calcd for C34H42ClN5O5 (M + Cl−): 670.2568; Found: 670.2569.

3.2.11. 22-[(6-Chloro-1-(2-fluorophenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino]-22-
deoxypleuromutilin (18b)

Yellow powder; yield: 52%; melting point: 107–110 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 9.42 (1 H, t, J = 4.6 Hz), 8.28 (1 H, s), 7.68 (1 H, t, J = 8.8 Hz), 7.14 (1 H, t, J = 7.7 Hz),
7.07 (1 H, dd, J = 11.7, 8.2 Hz), 6.90 (1 H, q, J = 7.1, 6.6 Hz), 6.54 (1 H, dd, J = 17.4, 11.0 Hz,
H19), 5.90 (1 H, d, J = 8.5 Hz, H14), 5.32–5.15 (2 H, m, H20), 4.44-4.23 (2 H, m, H22), 3.39 (1 H,
d, J = 6.5 Hz, H11), 2.37–2.10 (5 H, m, H2, H4, H10, 11-OH), 1.80–1.54 (6 H, m, H1, H6, H7,
H8), 1.47 (3 H, s, H15), 1.41 (2 H, m, H13), 1.20 (3 H, m, H18), 1.17 (1 H, m, H8), 0.92 (3 H,
d, J = 7.0 Hz, H17), 0.78 (3 H, d, J = 7.1 Hz, H16). 13C NMR (151 MHz, Chloroform-d) δ
216.79 (C3), 168.36 (C21), 159.50, 157.58, 157.12, 138.69 (C19), 135.02, 131.60, 124.93, 120.87,
120.82, 117.59 (C20), 115.21, 114.39, 106.59, 74.60 (C11), 70.05 (C14), 58.09 (C4), 45.46 (C9),
44.70 (C13), 44.49 (C6), 44.04 (C12), 41.87 (C5), 36.66 (C10), 36.12 (C2), 34.43 (C22), 30.42 (C8),
26.90 (C7), 26.40 (C18), 24.86 (C1), 16.83 (C16), 14.80 (C15), 11.56 (C17). HR-MS (ESI): Calcd
for C33H39ClFN5O4 (M + Cl−): 658.2369; Found:658.2367.

3.2.12. 22-[(6-Chloro-1-(4-fluorophenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino]-22-
deoxypleuromutilin (19b)

Yellow powder; yield: 57%; melting point: 112–115 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 9.40 (1 H, d, J = 4.5 Hz), 8.18 (1 H, s), 7.14 (2 H, dd, J = 8.9, 4.4 Hz), 7.03 (2 H, t, J = 8.6 Hz),
6.53 (1 H, dd, J = 17.4, 11.0 Hz, H19), 5.89 (1 H, d, J = 8.6 Hz, H14), 5.33–5.23 (2 H, m,
H20), 4.40–4.23 (2 H, m, H22), 3.39 (1 H, dd, J = 6.5 Hz, H11), 2.41-2.10 (5 H, m, H2, H4,
H10, 11-OH), 1.75–1.53 (6 H, m, H1, H6, H7, H8, H13), 1.46 (3 H, s, H15), 1.41 (2 H, m,
H13), 1.20 (3 H, m, H18), 1.18 (1 H, m, H8), 0.93 (3 H, d, J = 7.0 Hz, H17), 0.77 (3 H, d,
J = 7.1 Hz, H16). 13C NMR (151 MHz, Chloroform-d) δ 216.90 (C3), 168.44 (C21), 159.45,
157.09, 157.08, 139.53, 138.69 (C19), 133.06, 117.60 (C20), 116.01, 114.17, 106.85, 74.61 (C11),
70.11 (C14), 58.10 (C4), 45.48 (C9), 44.67 (C13), 44.47 (C6), 44.05 (C12), 41.89 (C5), 36.66 (C10),
36.14 (C2), 34.45 (C22), 30.41 (C8), 26.91 (C7), 26.42 (C18), 24.86 (C1), 16.85 (C16), 14.81 (C15),
11.55 (C17). HR-MS (ESI): Calcd for C33H39ClFN5O4 (M + Cl−): 658.2369; Found: 658.2369.

3.2.13. 22-[(6-Chloro-1-(2,4-difluorophenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino]-
22-deoxypleuromutilin (20b)

Yellow powder; yield: 68%; melting point: 123–125 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 9.38 (1 H, s), 8.33 (1 H, s), 7.70-7.53 (1 H, m), 6.89-6.71 (2 H, m), 6.52 (1 H, dd, J = 17.5,
11.0 Hz, H19), 5.90 (1 H, d, J = 8.6 Hz, H14), 5.28–5.20 (2 H, m, H20), 4.33 (2 H, ddd,
J = 69.8, 18.9, 4.8 Hz, H22), 3.41 (1 H, dd, J = 10.2, 6.5 Hz, H11), 2.38–2.12 (5H, m, H2, H4,
H10, 11-OH), 1.94–1.49 (6 H, m, H1, H6, H7, H8), 1.49 (3 H, s, H15), 1.43 (2 H, m, H13),
1.20 (3 H, m, H18), 1.16 (1 H, m, H8), 0.93 (3 H, d, J = 7.0 Hz, H17), 0.79 (3 H, d, J = 7.0 Hz,
H16). 13C NMR (151 MHz, Chloroform-d) δ 216.81 (C3), 168.37 (C21), 159.41, 157.36,
156.99, 141.68, 138.65 (C19), 133.66, 129.43, 126.03, 117.64 (C20), 114.26, 106.67, 74.59 (C11),
70.17 (C14), 58.08 (C4), 45.47 (C9), 44.64 (C6), 44.53 (C13), 44.05 (C12), 41.89 (C5), 36.64 (C10),
36.14 (C2), 34.45 (C22), 30.40 (C8), 26.92 (C7), 26.39 (C18), 24.84 (C1), 16.87 (C16), 14.81 (C15),
11.54 (C17). HR-MS (ESI): Calcd for C33H38ClF2N5O4 (M + Cl−):676.2274; Found:676.2274.

3.2.14. 22-[(6-Chloro-1-(2,5-difluorophenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino]-
22-deoxypleuromutilin (21b)

Yellow powder; yield: 62%; melting point: 121–125 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 9.35 (1 H, s), 8.29 (1 H, s), 7.64–7.52 (1 H, m), 7.01–6.92 (1 H, m), 6.59 (1 H, dd, J = 17.3,
11.0 Hz), 6.55-6.47 (1 H, m, H18), 6.02 (1 H, d, J = 8.5 Hz, H14), 5.29-5.12 (2 H, m, H20),
4.33 (2 H, m, H22), 3.42-3.34 (1 H, m, H11), 2.46–2.11 (5 H, m, H2, H4, H10, 11- OH),
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1.85–1.48 (6 H, m, H1, H6, H7, H8), 1.48 (3 H, s, H15), 1.40 (2 H, d, J = 16.1 Hz, H13),
1.19 (3 H, m, H18), 1.16 (1 H, m, H8), 0.92 (3 H, d, J = 7.0 Hz, H17), 0.78 (3 H, d, J = 7.1 Hz,
H16). 13C NMR (151 MHz, Chloroform-d) δ 216.97 (C3), 168.77 (C21), 159.52, 156.45,
156.17, 140.72, 138.78 (C19), 131.98, 130.53, 129.89, 117.53 (C20), 112.63, 107.16, 74.61 (C11),
70.10 (C14), 58.11 (C4), 45.47 (C9), 44.67 (C6), 44.25 (C13), 44.06 (C12), 41.88 (C5), 36.69 (C10),
36.11 (C2), 34.46 (C22), 30.42 (C8), 26.93 (C7), 26.41 (C18), 24.85 (C1), 16.87 (C16), 14.82 (C15),
11.55 (C17). HR-MS (ESI): Calcd for C33H38ClF2N5O4 (M + Cl−):676.2274; Found:676.2274

3.2.15. 22-[(6-Chloro-1-(3,4-difluorophenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino]-
22-deoxypleuromutilin (22b)

Yellow powder; yield: 61%; melting point: 130–132 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 9.49 (1 H, t, J = 4.6 Hz), 8.22 (1 H, s), 7.28–7.21 (1 H, m), 7.06 (1 H, q, J = 8.9 Hz\), 6.73 (1 H,
d, J = 8.9 Hz), 6.53 (1 H, dd, J = 17.4, 11.0 Hz, H19), 5.95 (1 H, d, J = 8.5 Hz, H14), 5.29–5.16
(2 H, m, H20), 4.32 (2 H, m, H22), 3.32 (1 H, m, H11), 2.42–2.08 (5 H, m, H2, H4, H10,
11-OH), 1.86–1.46 (6 H, m, H1, H6, H7, H8), 1.46 (3 H, s, H15), 1.41 (2 H, m, H13), 1.19 (3 H,
s, H18), 1.16 (1 H, m, H8), 0.94 (3 H, d, J = 7.0 Hz, H17), 0.77 (3 H, d, J = 7.0 Hz, H16).
13C NMR (151 MHz, Chloroform-d) δ 216.74 (C3), 168.40 (C21), 159.40, 157.68, 157.25, 139.33,
138.67 (C19), 135.26, 132.09, 128.34, 117.58 (C20), 115.11, 111.57, 111.42, 106.50, 74.59 (C11),
70.17 (C14), 58.08 (C4), 45.46 (C9), 44.67 (C13), 44.58 (C6), 44.05 (C12), 41.88 (C5), 36.62 (C10),
36.16 (C2), 34.43 (C22), 30.40 (C8), 26.91 (C7), 26.43 (C18), 24.85 (C1), 16.84 (C16), 14.80 (C15),
11.54 (C17). HR-MS (ESI): Calcd for C33H38ClF2N5O4 (M + Cl−):676.2274; Found: 676.2274.

3.2.16. 22-[(6-Chloro-1-(4-(trifluoromethoxy)Phenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-
yl)amino]-22-deoxypleuromutilin (23b)

Yellow powder; yield: 62%; melting point: 132–125 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 9.39 (1 H, s), 8.19 (1 H, s), 7.20-7.11 (4 H, m), 6.53 (1 H, dd, J = 17.5, 11.0 Hz, H19), 5.92 (1 H,
d, J = 8.5 Hz, H14), 5.29–5.20 (2 H, m, H20), 4.43–4.24 (2 H, m, H22), 3.40 (1 H, d, J = 6.5 Hz,
H11), 2.37–2.11 (5 H, m, H2, H4, H10, 11-OH), 1.84–1.51 (7 H, m, H1, H6, H7, H8), 1.48 (3 H,
s, H15), 1.43 (2 H, m, H13), 1.21 (3 H, s, H18), 1.16 (1 H, m, H8), 0.93 (3 H, d, J = 7.2 Hz,
H17), 0.78 (3 H, d, J = 7.0 Hz, H16). 13C NMR (151 MHz, Chloroform-d) δ 216.97 (C3),
168.62 (C21), 159.41, 157.29, 156.93, 143.14, 141.82, 138.64 (C19), 133.75, 122.42, 117.55 (C20),
113.61, 106.74, 74.60 (C11), 70.23 (C14), 58.13 (C4), 45.49 (C13), 44.66 (C6), 44.50 (C12), 44.04,
41.89 (C5), 36.67 (C10), 36.17 (C2), 34.46 (C22), 30.40 (C8), 26.90 (C7), 26.41 (C18), 24.86 (C1),
16.84 (C16), 14.83 (C15), 11.44 (C17). HR-MS (ESI): Calcd for C34H39ClF3N5O5 (M + Cl−):
724.2286; Found: 724.2290.

3.2.17. 22-[(6-Chloro-1-(3-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino]-22-
deoxypleuromutilin (24b)

Yellow powder; yield: 69%; melting point: 117–119 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 9.37 (1 H, s), 8.24 (1 H, s), 7.39 (1 H, s), 7.19 (1 H, t, J = 8.0 Hz), 6.91 (1 H, d, J = 8.9 Hz),
6.84 (1 H, d, J = 9.5 Hz\), 6.61 (1 H, dd, J = 17.4, 11.0 Hz, H19), 6.00 (1 H, d, J = 8.5 Hz,
H14), 5.27–5.14 (2 H, m, H20), 4.32 (2 H, m, H22), 3.38 (1 H, d, J = 6.0 Hz, H11), 2.37–2.12
(5 H, m, H2, H4, H10, 11-OH), 1.67 (6 H, m, H1, H6, H7, H8), 1.48 (3 H, s, H15), 1.41 (2 H,
m, H13), 1.19 (3 H, s, H18), 1.16 (1 H, m, H8), 0.91 (3 H, d, J = 7.0 Hz, H17), 0.80 (3 H, d,
J = 7.0 Hz, H16). 13C NMR (151 MHz, Chloroform-d) δ 217.01 (C3), 168.50 (C21), 159.31,
157.39, 157.04, 144.17, 138.98 (C19), 135.66, 133.98, 130.28, 121.14, 117.45 (C20), 112.95, 111.10,
106.58, 74.60 (C11), 70.15 (C14), 58.16 (C4), 45.49 (C9), 44.76 (C13), 44.55 (C6), 43.98 (C12),
41.87 (C5), 36.74 (C10), 36.15 (C2), 34.47 (C22), 30.47 (C8), 26.82 (C7), 26.19 (C18), 24.87 (C1),
16.87 (C16), 14.82 (C15), 11.48 (C17). HR-MS (ESI): Calcd for C33H39Cl2N5O4 (M + Cl−):
676.2042; Found: 676.2042.
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3.2.18. 22-[(6-Chloro-1-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino]-22-
deoxypleuromutilin (25b)

Yellow powder; yield: 66%; melting point: 107–111 ◦C, 1H NMR (600 MHz, Chloroform-d)
δ 9.37 (1 H, s), 8.18 (1 H, s), 7.28 (2 H, d, J = 8.5Hz), 7.13 (2 H, d, J = 8.8 Hz), 6.54 (1 H,
dd, J = 17.4, 11.0 Hz, H19), 5.90 (2 H, d, J = 8.6 Hz, H14), 5.32 (1 H, d, J = 11.3 Hz, H20),
5.24 (1 H, d, J = 17.4 Hz, H20), 4.47-4.18 (2 H, m, H22), 3.44–3.34 (1 H, m, H11), 2.40–2.10
(5 H, m, H2, H4, H10, 11-OH), 1.75–1.56 (7 H, m, H1, H6, H7, H8), 1.47 (3 H, s, H15),
1.42 (2 H, m, H13), 1.20 (3 H, d, J = 7.0 Hz, H18), 1.16 (1 H, m, H8), 0.93 (3 H, d, J = 7.0 Hz,
H17), 0.77 (3 H, d, J = 7.1 Hz, H16). 13C NMR (151 MHz, Chloroform-d) δ 216.92 (C3),
168.45 (C21), 159.24, 157.53, 157.19, 144.44, 138.71 (C19), 134.07, 117.46 (C20), 108.20, 106.47,
102.79, 102.64, 74.62 (C11), 70.20 (C14), 58.14 (C4), 45.49 (C9), 44.63 (C13), 43.98 (C12),
41.88 (C5), 36.69 (C10), 36.10 (C2), 34.46 (C22), 30.46 (C8), 29.71 (C6), 26.77 (C7), 26.24 (C18),
24.87 (C1), 16.82 (C16), 14.81 (C15), 11.48 (C17). HR-MS (ESI): Calcd for C33H39Cl2N5O4
(M + Cl−): 676.2042; Found: 676.2042.

3.2.19. 22-[(6-Chloro-1-(3,5-dichlorophenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino]-
22-deoxypleuromutilin (26b)

Yellow powder; yield: 56%; melting point: 151–156 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 9.33 (1 H, s), 8.21 (1 H, s), 7.22 (1 H, s), 6.94 (1 H, s), 6.64 (1 H, dd, J = 17.3, 11.0 Hz, H19),
6.06 (1 H, d, J = 8.4 Hz, H14), 5.28–5.10 (2 H, m, H20), 4.30 (2 H, m, H22), 3.41–3.33 (1 H, m,
H11), 2.40–2.08 (5 H, m, H2, H4, H10, 11-OH), 1.89-1.58 (6 H, m, H1, H6, H7, H8), 1.47 (3 H,
s, H15), 1.36 (2 H, m, H13), 1.18 (3 H, s, H18), 1.16 (1 H, m, H8), 0.90 (3 H, d, J = 7.0 Hz, H17),
0.77 (3 H, d, J = 7.0 Hz, H16). 13C NMR (151 MHz, Chloroform-d) δ 216.92 (C3), 168.40 (C21),
159.13, 157.56, 144.74, 139.11 (C19), 135.93, 135.58, 135.24, 121.03, 117.39 (C20), 111.50,
106.16, 74.58 (C11), 70.16 (C14), 58.18 (C4), 45.50 (C9), 44.80 (C13), 44.72 (C6), 43.91 (C12),
41.85 (C10), 36.74 (C10), 36.23 (C2), 34.46 (C22), 30.50 (C8), 26.75 (C7), 26.07 (C18), 24.89 (C1),
16.85 (C16), 14.82 (C15), 11.41 (C17). HR-MS (ESI): Calcd for C33H38Cl3N5O4 (M + Cl−):
710.1654; Found: 710.1656.

3.2.20. 22-[(6-Chloro-1-(3-nitrophenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino]-22-
deoxypleuromutilin (27b)

Yellow powder; yield: 69%; melting point: 131–135 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 9.39 (1 H, s), 8.35 (1 H, s), 8.01 (1 H, s), 7.78 (2 H, d, J = 7.8 Hz), 7.44 (2 H, dt, J = 16.1,
8.3 Hz), 6.50 (1 H, dd, J = 17.4, 11.0 Hz, H19), 5.91 (1 H, d, J = 8.6 Hz, H14), 5.19–5.08 (2 H,
m, H20), 4.41–4.26 (2 H, m, H22), 3.44–3.34 (1 H, m, H11), 2.41–2.09 (5 H, m, H2, H4, H10,
11-OH), 1.88–1.60 (6 H, m, H1, H6, H7, H8), 1.48 (3 H, s, H15), 1.40 (2 H, m, H13), 1.18 (3 H,
m, H18), 1.14 (1 H, m, H8), 0.94 (3 H, d, J = 7.0 Hz, H17), 0.80 (3 H, d, J = 7.0 Hz, H16).
13C NMR (151 MHz, Chloroform-d) δ 216.91 (C3), 168.43 (C21), 159.42, 157.60, 149.65, 144.07,
138.89 (C19), 135.47, 130.15, 118.55, 117.13 (C20), 115.71, 107.61, 106.23, 98.57, 74.61 (C11),
70.55 (C14), 58.08 (C4), 45.50 (C9), 44.66 (C13), 44.51 (C6), 44.11 (C12), 41.90 (C5), 36.69 (C10),
35.98 (C2), 34.48 (C22), 30.45 (C8), 26.78 (C7), 26.24 (C18), 24.84 (C1), 16.95 (C16), 14.81 (C15),
11.48 (C17). HR-MS (ESI): Calcd for C33H39ClN6O6 (M + Cl−): 685.2314; Found: 685.2310.

3.2.21. 22-[(6-Chloro-1-(naphthalen-2-yl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino]-22-
deoxypleuromutilin (28b)

Yellow powder; yield:63%; melting point: 123–125 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 9.55 (1 H, s), 8.21 (1 H, s), 7.92 (1 H, d, J = 8.2 Hz), 7.84 (1 H, s), 7.77 (2 H, t, J = 8.7 Hz),
7.36 (2 H, m, 7.3 Hz), 7.20 (1 H, dd, J = 8.8, 2.1 Hz), 6.54 (1 H, dd, J = 17.4, 11.0 Hz, H19),
6.01 (1 H, d, J = 8.5 Hz, H14), 5.18–4.98 (2 H, m, H20), 4.48–4.27 (2 H, m, H22), 3.40 (1 H, d,
J = 6.4 Hz, H11), 2.48–2.14 (5 H, m, H2, H4, H10, 11-OH), 1.68–1.49 (6 H, m, H1, H6, H7,
H8), 1.49 (3 H, s, H15), 1.42 (2 H, m, H13), 1.19 (1 H, m, H8), 1.17 (3 H, s, H16), 0.98 (3 H,
d, J = 6.7 Hz, H17), 0.81 (3 H, d, J =6.8 Hz, H16). 13C NMR (151 MHz, Chloroform-d)
δ 216.83 (C3), 168.43 (C21), 159.34, 157.13, 156.76, 140.42, 138.60 (C19), 134.81, 133.33,
129.38, 129.29, 127.77, 126.93, 126.54, 123.64, 117.63 (C20), 115.15, 107.83, 106.88, 74.61 (C11),
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70.03 (C14), 58.14 (C4), 45.48(C9), 44.82 (C6), 44.74 (C13), 43.96 (C12), 41.91 (C5), 36.70 (C10),
36.26 (C2), 34.44 (C22), 30.51 (C8), 26.92 (C7), 26.38 (C18), 24.91 (C1), 16.84 (C16), 14.83 (C15),
11.75 (C17). HR-MS (ESI): Calcd for C37H42ClN5O4 (M + Cl−): 690.2619; Found: 690.2616.

3.2.22. 22-[4-(6-Chloro-1-(3-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino-
Phenylsulfanyl]-22-deoxypleuromutilin (12c)

Yellow powder; yield: 52%; melting point: 95–97 ◦C; 1H NMR (600 MHz, DMSO-d6) δ
11.42 (1 H, s), 8.35 (1 H, s), 7.66-7.60 (2 H, m), 7.47 (1 H, d, J = 8.2 Hz), 7.19 (1 H, t, J = 7.7 Hz),
6.86 (1 H, s), 6.75 (1 H, dd, J = 34.4, 7.4 Hz), 6.08–5.99 (1 H, m, H19), 5.51 (1 H, d, J = 8.3 Hz,
H14), 4.96 (2 H, m, H20), 3.90–3.75 (2 H, m, H22), 3.37 (1 H, t, J = 5.7 Hz, H11), 2.29 (3 H, s),
2.22-1.99 (5 H, m, H2, H4, H10, 11-OH), 1.70–1.34 (5 H, m, H1, H6, H7), 1.33 (3 H, s, H15),
1.25 (3 H, m, H8, H13), 0.98 (4 H, m, H8, H18), 0.79 (3 H, d, J = 7.0 Hz, H17), 0.58 (3 H,
d, J = 7.1 Hz, H16). 13C NMR (151 MHz, DMSO-d6) δ 217.59 (C3), 168.11 (C21), 157.33,
156.67, 154.91, 144.06, 141.17 (C19), 139.37, 136.40, 132.14, 131.26, 130.24, 129.87, 122.45,
121.73, 115.63 (C20), 113.12, 110.26, 108.50, 73.04 (C11), 70.23 (C14), 57.70 (C4), 45.40 (C9),
44.42 (C13), 44.14 (C12), 41.92 (C5), 36.83 (C6), 36.81 (C10), 36.20 (C2), 34.44 (C22), 30.55 (C8),
28.96 (C7), 27.04 (C18), 24.91 (C1), 21.79, 16.55 (C16), 14.98 (C15), 11.97 (C17). HR-MS (ESI):
Calcd for C40H46ClN5O4S (M + Cl−): 762.2653; Found: 762.2654.

3.2.23. 22-[4-(6-Chloro-1-(4-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino-
phenylsulfanyl]-22-deoxypleuromutilin (13c)

Yellow powder; yield: 61%; melting point: 101–105 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 11.26 (1 H, s), 8.29 (1 H, s), 7.64 (2 H, d, J = 8.6 Hz), 7.41 (2 H, d, J = 8.6 Hz), 7.12 (2 H,
d, J = 8.1 Hz,), 6.90 (2 H, d, J = 8.3 Hz), 6.45–6.36 (1 H, m, H19), 5.74 (1 H, d, J = 8.5 Hz,
H14), 5.31 (1 H, m, H20), 5.16 (1 H, d, J = 18.5 Hz, 1H20), 3.62–3.47 (2 H, m, H22), 3.32 (1 H,
m, H11), 2.32 (s, 3H), 2.30–1.98 (5 H, m, H2, H4, H10, 11-OH), 1.78–1.43 (6 H, m, H1, H6,
H7, H8, H13), 1.43 (3 H, s, H15), 1.35 (2 H, m, H13), 1.12 (4 H, m, H8, H18), 0.86 (3 H,
d, J = 7.0 Hz, H17), 0.70 (3 H, d, J = 7.1 Hz, H16). 13C NMR (151 MHz, Chloroform-d) δ
217.16 (C3), 168.36 (C21), 157.10, 156.29, 140.71, 138.87 (C19), 137.13, 132.32, 131.63, 131.27,
130.29, 130.17, 121.99, 117.33 (C20), 113.08, 113.06, 107.41, 74.60 (C11), 69.64 (C14), 58.18 (C4),
45.43 (C9), 44.76 (C13), 43.87 (C12), 41.77 (C5), 37.77 (C6), 36.77 (C10), 35.97 (C2), 34.48 (C22),
30.41 (C8), 26.84 (C7), 26.37 (C18), 24.83 (C1), 20.66, 16.79 (C16), 14.89 (C15), 11.51 (C17).
HR-MS (ESI): Calcd for C40H46ClN5O4S (M + Cl−): 762.2653; Found: 762.2654.

3.2.24. 22-[4-(6-Chloro-1-(3,4-dimethylphenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino-
Phenylsulfanyl]-22-deoxypleuromutilin (14c)

Yellow powder; yield: 58.58%; melting point: 103–105 ◦C; 1H NMR (600 MHz,
Chloroform-d) δ 11.09 (1 H, s), 8.20 (1 H, s), 7.88 (1 H, d, J = 8.8 Hz), 7.54 (1 H, d, J = 9.1 Hz),
7.37 (1 H, t, J = 8.4 Hz), 7.16 (1 H, t, J = 8.2 Hz), 6.77 (2 H, s), 6.59 (1 H, s), 6.36 (1 H,
dd, J = 17.4, 11.0 Hz, H19), 5.62 (1 H, d, J = 8.5 Hz, H14), 5.27 (1 H, d, J = 11.0 Hz, H20),
5.13 (1 H, d, J = 17.4 Hz, H20), 3.40–3.32 (2 H, m, H22), 3.29 (1 H, d, J = 6.5 Hz, H11),
2.25 (6 H, s), 2.18–1.89 (5 H, m, H2, H4, H10, 11-OH), 1.70–1.43 (6 H, m, H1, H6, H7, H8),
1.28 (3 H, s, H15), 1.26 (2 H, m, H13), 1.09 (4 H, m, H8, H18), 0.85 (3 H, d, J = 7.0 Hz,
H17), 0.53 (3 H, d, J = 7.0 Hz, H16). 13C NMR (151 MHz, Chloroform-d) δ 217.05 (C3),
168.27 (C21), 157.51, 157.26, 140.96, 138.88, 138.12 (C19), 137.21, 132.25, 131.69, 130.72, 130.23,
122.05, 117.35 (C20), 114.57, 110.59, 107.37, 74.62 (C11), 69.60 (C14), 58.17 (C4), 45.44 (C9),
44.78 (C13), 43.881 (C12), 41.78 (C5), 37.86 (C6), 36.77 (C10), 35.99 (C2), 34.46 (C22),
30.43 (C8), 26.84 (C7), 26.31 (C18), 24.84 (C1), 20.14, 19.02, 16.78 (C16), 14.88 (C15), 11.50 (C17).
HR-MS (ESI): Calcd for C41H48ClN5O4S (M + Cl−): 776.2810; Found: 776.2810.

3.2.25. 22-[4-(6-Chloro-1-(3,5-dimethylphenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino-
Phenylsulfanyl]-22-deoxypleuromutilin (15c)

Yellow powder; yield: 59%; melting point: 92–95 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 11.36 (1 H, s), 8.22 (1 H, s), 7.73 (2 H, d, J = 8.6 Hz), 7.44 (2 H, d, J = 8.6 Hz), 6.68 (3 H, s),
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6.50–6.37 (1 H, m, H19), 5.74 (1 H, d, J = 8.1 Hz, H14), 5.35–5.11 (2 H, m, H20), 3.62–3.51
(2 H, s, H22), 3.32 (1 H, m, H11), 2.33 (6 H, s), 2.21-2.02 (5 H, m, H2, H4, H10, 11-OH),
1.69–1.44 (6 H, m, H1, H6, H7, H8), 1.42 (3 H, s, H15), 1.35 (2 H, m, H13), 1.13 (1 H,
m, H8), 1.11 (3 H, m, H18), 0.86 (3 H, d, J = 6.9 Hz, H17), 0.69 (3 H, d, J = 6.8 Hz, H16).
13C NMR (151 MHz, Chloroform-d) δ 217.04 (C3), 168.24 (C21), 157.65, 157.17, 156.57, 142.93,
139.63, 138.86 (C19), 137.23, 132.51, 131.68, 130.41, 123.76, 121.96, 117.36 (C20), 110.99, 107.32,
74.61 (C11), 69.60 (C14), 58.17 (C4), 45.44 (C9), 44.79 (C13), 43.88 (C12), 41.77 (C5), 37.89 (C6),
36.77 (C10), 35.99 (C2), 34.46 (C22), 30.43 (C8), 26.84 (C7), 26.30 (C18), 24.84 (C1), 21.53,
16.77 (C16), 14.88 (C15), 11.50 (C17). HR-MS (ESI): Calcd for C41H48ClN5O4S (M + Cl−):
776.2810; Found: 776.2812.

3.2.26. 22-[4-(6-Chloro-1-(4-ethylphenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino-
Phenylsulfanyl]-22-deoxypleuromutilin (16c)

Yellow powder; yield: 74%; melting point: 97–99 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 11.26 (1 H, s), 8.23 (1 H, s), 7.67 (2 H, d, J = 8.6 Hz), 7.45 (2 H, d, J = 10.9 Hz), 7.19 (2 H, d,
J = 7.7 Hz), 6.97 (2 H, d, J = 7.5 Hz), 6.48–6.37 (1 H, m, H19), 5.74 (1 H, d, J = 8.1 Hz, H14),
5.33 (1 H, d, J = 11.0 Hz, H20), 5.17 (1 H, d, J = 17.4 Hz, H20), 3.58 (2 H, d, J = 15.7 Hz,
H22), 3.32 (1 H, m, H11), 2.65 (2 H, d, J = 7.4 Hz), 2.33–2.03 (5 H, m, H2, H4, H10, 11-OH),
1.78–1.43 (6 H, m, H1, H6, H7, H8), 1.43 (3 H, s, H15), 1.34 (2 H, m, H13), 1.24 (3 H, m),
1.12 (3 H, m, H18), 1.06 (1 H, m, H8), 0.86 (3 H, d, J = 7.0 Hz, H17), 0.70 (3 H, d, J = 6.9 Hz,
H16). 13C NMR (151 MHz, Chloroform-d) δ 217.05 (C3), 168.31 (C21), 157.61, 157.26, 156.53,
140.85, 138.90, 138.01 (C19), 137.10, 132.55, 131.67, 130.48, 129.09, 122.19, 117.35 (C20),
113.16, 107.31, 74.62 (C11), 69.61 (C14), 58.18 (C4), 45.45 (C9), 44.79 (C13), 43.89 (C12),
41.79 (C5), 37.81 (C6), 36.78 (C10), 36.00 (C2), 34.46 (C22), 30.43 (C8), 28.14, 26.85 (C7),
26.33 (C18), 24.84 (C1), 16.78 (C16), 15.78, 14.89 (C15), 11.51 (C17). HR-MS (ESI): Calcd for
C41H48ClN5O4S (M + Cl−): 776.2810; Found: 776.2814.

3.2.27. 22-[4-(6-Chloro-1-(3-methoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino-
Phenylsulfanyl]-22-deoxypleuromutilin (17c)

Yellow powder; yield: 73%; melting point: 97–102 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 11.20 (1 H, s), 8.24 (1 H, s), 7.68 (2 H, d, J = 8.7 Hz), 7.45 (2 H, d, J = 8.7 Hz), 7.25 (1 H,
t), 6.64–6.53 (3 H, m), 6.42 (1 H, dd, J = 17.4, 11.0 Hz, H19), 5.74 (1 H, d, J = 8.5 Hz, H14),
5.33 (1 H, dd, J = 11.0, 1.5 Hz, H20), 5.17 (1 H, dd, J = 17.4, 1H), 3.59–3.51 (2 H, m, H22),
3.35–3.29 (1 H, m, H11), 2.32–1.99 (5 H, m, H1, H6, H7, 11-OH), 1.77–1.46 (9 H, m, H1, H7,
H6, H8, H40), 1.42 (3 H, s, H15), 1.39–1.27 (2H, m, H13), 1.11 (4 H, s, H8, H18), 0.86 (3 H, d,
J = 7.0 Hz, H17), 0.70 (3 H, d, J = 7.1 Hz, H16). 13C NMR (151 MHz, Chloroform-d) δ 217.06
(C3), 168.26 (C21), 161.09, 157.93, 157.28, 156.79, 144.21, 138.87 (C19), 137.00, 133.24, 131.65,
130.66, 130.59, 122.23, 117.36 (C20), 107.13, 106.89, 105.67, 99.40, 74.62 (C11), 69.60 (C14),
58.17 (C4), 55.38, 45.44 (C9), 44.78 (C13), 43.88 (C12), 41.78 (C5), 37.81 (C6), 36.77 (C10),
35.99 (C2), 34.46 (C22), 30.43 (C8), 26.84 (C7), 26.31 (C18), 24.84 (C1), 16.77 (C16), 14.88 (C15),
11.50 (C17). HR-MS (ESI): Calcd for C40H46ClN5O5S (M + Cl−): 778.2602; Found: 778.2604.

3.2.28. 22-[4-(6-Chloro-1-(2-fluorophenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino-
Phenylsulfanyl]-22-deoxypleuromutilin (18c)

Yellow powder; yield: 68%; melting point: 123–127 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 11.12 (1 H, s), 8.32 (1 H, s), 7.63 (2 H, d, J = 8.6 Hz), 7.42 (2 H, d, J = 8.6 Hz), 7.26 (1 H, d,
J = 12.9 Hz), 7.21–7.06 (2 H, m), 6.93 (1 H, t, J = 10.9 Hz), 6.42 (1 H, dd, J = 17.4, 11.0 Hz,
H19), 5.74 (1 H, d, J = 8.5 Hz, H14), 5.31 (1 H, m, H20), 5.16 (1 H, d, J = 18.6 Hz, H20),
3.62–3.45 (2 H, m, H22), 3.33 (1 H, t, J = 7.6 Hz, H11), 2.32–1.99 (5 H, m, H2, H4, H10, 11-OH),
1.83–1.44 (6 H, m, H1, H6, H7, H8), 1.43 (3 H, s, H15), 1.39–1.18 (2 H, m, H13), 1.12 (3 H,
m, H18), 1.08 (1 H, m, H8), 0.86 (3 H, d, J = 7.0 Hz, H17), 0.70 (3 H, d, J = 7.1 Hz, H16).
13C NMR (151 MHz, Chloroform-d) δ 217.15 (C3), 168.30 (C21), 158.28, 157.28, 157.03, 150.84,
149.24, 138.90 (C19), 136.88, 135.25, 131.58, 130.68, 125.06, 122.14, 121.44, 117.27 (C20), 115.76,
115.64, 113.76, 106.92, 74.59 (C11), 69.65 (C14), 58.16 (C4), 45.43 (C9), 44.78 (C13), 43.88 (C12),
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41.77 (C5), 37.68 (C6), 36.76 (C10), 35.97 (C2), 34.45 (C22), 30.40 (C8), 26.83 (C7), 26.35 (C18),
24.82 (C1), 16.78 (C16), 14.88 (C15), 11.49 (C17). HR-MS (ESI): Calcd for C39H43ClFN5O4S
(M + Cl−): 766.2402; Found: 766.2405.

3.2.29. 22-[4-(6-Chloro-1-(4-fluorophenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino-
Phenylsulfanyl]-22-deoxypleuromutilin (19c)

Yellow powder; yield: 74%; melting point: 141–144 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 11.19 (1 H, s), 8.64 (1 H, s), 7.60 (2 H, d, J = 8.7 Hz), 7.41 (d, J = 8.6 Hz, 2H), 7.04 (2 H, t,
J = 8.5 Hz), 6.99-6.92 (2 H, m), 6.41 (1 H, dd, J = 17.4, 11.2 Hz, H19), 5.74 (1 H, d, J = 8.5 Hz,
H14), 5.29 (1 H, m, H20), 5.16 (1 H, d, J = 18.6 Hz, H20), 3.57 (2 H, m, H22), 3.34 (1 H, t,
J = 5.9 Hz, H11), 2.33–2.08 (5 H, m, H2, H4, H10, 11-OH), 1.77–1.44 (6 H, m, H1, H6, H7,
H8), 1.43 (3 H, s, H15), 1.36 (2 H, m, H13), 1.12 (4 H, m, H8, H18), 0.86 (3 H, d, J = 7.0 Hz,
H17), 0.70 (3 H, d, J = 7.1 Hz, H16). 13C NMR (151 MHz, Chloroform-d) δ 217.45 (C3),
168.39 (C21), 157.20, 156.97, 156.03, 139.72, 138.98 (C19), 136.94, 132.63, 131.38, 130.33, 121.80,
117.12, 116.27 (C20), 116.12, 114.03, 107.47, 74.56 (C11), 69.75 (C14), 58.18 (C4), 45.43 (C9),
44.77 (C13), 43.87 (C12), 41.78 (C5), 37.59 (C6), 36.77 (C10), 35.99 (C2), 34.49 (C22), 30.37 (C8),
26.82 (C7), 26.56 (C18), 24.81 (C1), 16.74 (C16), 14.88 (C15), 11.50 (C17). HR-MS (ESI): Calcd
for C39H43ClFN5O4S (M + Cl−): 766.2402; Found: 766.2405.

3.2.30. 22-[4-(6-Chloro-1-(2,4-difluorophenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino-
Phenylsulfanyl]-22-deoxypleuromutilin (20c)

Yellow powder; yield: 51%; melting point: 132–134 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 11.04 (1 H, s), 8.37 (1 H, s), 7.61 (2 H, d, J = 8.7 Hz), 7.45 (2 H, d, J = 8.6 Hz), 7.25–7.17 (1 H,
m, 1H), 6.99–6.87 (2 H, m), 6.43 (1 H, dd, J = 17.4, 11.0 Hz, H19), 5.74 (1 H, d, J = 8.5 Hz,
H14), 5.33 (1 H, d, J = 11.0 Hz, H20), 5.17 (1 H, d, J = 18.8 Hz, H20), 3.56 (2 H, d, J = 3.7 Hz,
H22), 3.36-3.29 (1 H, m, H11), 2.29–1.97 (5H, m, H2, H4, H10, 11-OH), 1.79–1.58 (6 H, m, H1,
H6, H7, H8), 1.42 (3 H, s, H15), 1.35–1.25 (2 H, m, H13), 1.12 (4 H, m, H8, H18), 0.86 (3 H, d,
J = 7.0 Hz, H17), 0.70 (3 H, d, J = 7.0 Hz, H16). 13C NMR (151 MHz, DMSO-d6) δ 217.59 (C3),
168.32 (C21), 160.01, 156.79, 155.80, 155.77, 148.48, 148.40, 141.29 (C19), 135.63, 129.45, 129.39,
115.79 (C20), 115.03, 115.00, 111.84, 111.67, 107.51, 104.62, 73.05 (C11), 70.51 (C14), 57.59 (C4),
45.43 (C9), 44.59 (C13), 44.44 (C12), 43.86 (C5), 41.94 (C6), 36.93 (C10), 36.74 (C2), 34.45 (C22),
30.57 (C8), 29.00 (C7), 27.07 (C18), 24.93 (C1), 16.61 (C16), 14.76 (C15), 12.00 (C17). HR-MS
(ESI): Calcd for C39H42ClF2N5O4S (M + Cl−): 784.2308; Found: 784.2314

3.2.31. 22-[4-(6-Chloro-1-(2,5-difluorophenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino-
Phenylsulfanyl]-22-deoxypleuromutilin (21c)

Yellow powder; yield: 77%; melting point: 115–118 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 11.14 (1 H, s), 8.75 (1 H, s), 7.68 (2 H, d, J = 8.7 Hz), 7.51 (2 H, d, J = 8.4 Hz), 7.37–7.28 (1 H,
m), 7.00 (1 H, t, J = 8.2 Hz), 6.75 (1 H, t, J = 8.4 Hz), 6.17 (1 H, dd, J = 17.2, 11.7 Hz, H19),
5.63 (1 H, d, J = 8.3 Hz, H14), 5.11–5.05 (2 H, m, H20), 3.98–3.82 (2 H, s, H22), 3.58–3.48 (1 H,
m, H11), 2.34–2.10 (5 H, m, H2, H4, H10, 11- OH), 1.73–1.26 (11 H, m, H1, H6, H7, H8, H13,
H15), 1.09 (4 H, m, H8, H18), 0.90 (3 H, d, J = 7.0 Hz, H17), 0.70 (3 H, d, J = 7.1 Hz, H16).
13C NMR (151 MHz, DMSO-d6) δ 217.54 (C3), 168.09 (C21), 160.27, 158.68, 157.96, 157.51,
155.83, 146.91, 145.34, 141.12 (C19), 136.58, 136.16, 133.53, 131.51, 130.02, 122.66, 117.11,
115.61 (C20), 107.89, 73.08 (C11), 70.22 (C14), 57.71 (C4), 45.40 (C9), 44.39 (C13), 44.17 (C12),
41.91 (C5), 36.81 (C6, C10), 36.23 (C2), 34.43 (C22), 30.55 (C8), 28.89 (C7), 27.02 (C18),
24.91 (C1), 16.52 (C16), 14.54 (C15), 11.94 (C17). HR-MS (ESI): Calcd for C39H42ClF2N5O4S
(M + Cl−): 784.2308; Found: 784.2311.

3.2.32. 22-[4-(6-Chloro-1-(3,4-difluorophenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino-
Phenylsulfanyl]-22-deoxypleuromutilin (22c)

Yellow powder; yield: 62%; melting point: 109–113 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 11.05 (1 H, s), 8.58 (1 H, s), 7.62 (2 H, d, J = 8.6 Hz), 7.43 (2 H, d, J = 8.6 Hz), 7.12 (1 H,
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d, J = 9.2 Hz), 6.89–6.82 (1 H, m), 6.68 (1 H, d, J = 8.5 Hz), 6.42 (1 H, dd, J = 17.4, 11.0 Hz,
H19), 5.74 (1 H, d, J = 8.6 Hz, H14), 5.31 (1 H, d, J = 10.8 Hz, H20), 5.17 (1 H, d, J = 17.4
Hz, H20), 3.62–3.51 (2 H, m, H22), 3.34 (1 H, d, J = 6.3 Hz, H11), 2.35–2.11 (5 H, m, H2, H4,
H10, 11-OH), 1.81–1.50 (6 H, m, H1, H6, H7, H8), 1.42 (3 H, s, H15), 1.35 (2 H, m, H13),
1.13 (3 H, s, H18), 1.07 (1 H, m, H8), 0.86 (3 H, d, J = 7.0 Hz, H17), 0.70 (3 H, d, J = 7.0 Hz,
H16). 13C NMR (151 MHz, Chloroform-d) δ 217.29 (C3), 168.39 (C21), 158.10, 157.19, 156.90,
139.07, 138.90 (C19), 136.79, 134.39, 134.20, 131.58 130.79, 122.01, 118.26, 118.14, 117.30 (C20),
117.15, 106.98, 102.19, 74.62 (C11), 69.73 (C14), 58.18 (C4), 45.46 (C9), 44.79 (C13), 43.89 (C12),
41.75 (C5), 37.66 (C6), 36.79 (C10), 35.99 (C2), 34.49 (C22), 30.42 (C8), 26.84 (C7), 26.37 (C18),
24.83 (C1), 16.79 (C16), 14.88 (C15), 11.50 (C17). HR-MS (ESI): Calcd for C39H42ClF2N5O4S
(M + Cl−): 784.2308; Found: 784.2313.

3.2.33. 22-[4-(6-Chloro-1-(4-(yrifluoromethoxy)Phenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-
yl)amino-Phenylsulfanyl]-22-deoxypleuromutilin (23c)

Yellow powder; yield: 69%; melting point: 144–147 ◦C; 1H NMR (600 MHz, DMSO-d6)
δ 11.17 (1 H, s), 8.40 (1 H, s), 7.63 (2 H, d, J = 8.8 Hz), 7.47 (2 H, d, J = 8.8 Hz), 7.32 (2 H, d,
J = 8.5 Hz), 7.11–7.06 (2 H, d, J = 8.5 Hz), 6.10–5.99 (1 H, m, H19), 5.52 (1 H, d, J = 8.3 Hz,
H14), 4.99–4.95 (2 H, m, H20), 3.91–3.76 (2 H, m, H22),3.34 (1 H, dd, H11), 2.19–1.99 (5 H,
m, H2, H4, H10, 11-OH), 1.68–1.36 (5 H, m, H1, H6, H7), 1.34 (3 H, s, H15), 1.31–1.19 (3 H,
m, H8, H13), 0.98 (4 H, s, H8, H18), 0.80 (3 H, d, J = 7.2 Hz, H17), 0.59 (3 H, d, J = 7.0 Hz,
H16). 13C NMR (151 MHz, DMSO-d6) δ 217.60 (C3), 168.12 (C21), 157.54, 157.27, 155.38,
143.34, 142.02, 141.17 (C19), 136.16, 133.70, 131.43, 130.20, 123.19, 115.61 (C20), 113.57, 108.19,
73.05 (C11), 70.24 (C14), 57.71 (C4), 45.40 (C13), 44.42 (C12), 44.13, 41.99 (C5), 36.84 (C6),
36.81 (C10), 36.12 (C2), 34.43 (C22), 30.53 (C8), 28.95 (C7), 27.03 (C18), 24.91 (C1), 16.54 (C16),
14.97 (C15), 11.94 (C17). HR-MS (ESI): Calcd for C40H43ClF3N5O5S (M + Cl−): 832.2320;
Found: 832.2327.

3.2.34. 22-[4-(6-Chloro-1-(3-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino-
Phenylsulfanyl]-22-deoxypleuromutilin (24c)

Yellow powder; yield: 73%; melting point: 121–124 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 11.09 (1 H, s), 8.60 (1 H, s), 7.66 (2 H, d, J = 8.6 Hz), 7.40 (2 H, d, J = 8.6 Hz), 7.20 (1 H, t,
J = 8.0 Hz), 7.03 (1 H, s), 6.91 (1 H, d, J = 7.9 Hz, 1H), 6.79 (1 H, d, J = 9.5 Hz), 6.41 (1 H, dd,
J = 17.4, 11.0 Hz, H19), 5.73 (1 H, d, J = 8.5 Hz, H14), 5.29 (1 H, d, J = 9.5 Hz, H20), 5.16 (1 H,
d, J = 17.5 Hz, H20), 3.63–3.52 (2 H, m, H22), 3.33 (1 H, t, J = 7.3 Hz, H11), 2.31–2.00 (5 H,
m, H2, H4, H10, 11-OH), 1.79–1.43 (6 H, m, H1, H6, H7, H8), 1.42 (3 H, s, H15), 1.34 (2 H,
m, H13), 1.13 (3 H, s, H18), 1.07 (1 H, m, H8), 0.86 (3 H, d, J = 7.0 Hz, H17), 0.71 (3 H, d,
J = 7.0 Hz, H16). 13C NMR (151 MHz, Chloroform-d) δ 217.17 (C3), 168.35 (C21), 158.27,
157.18, 157.05, 144.12, 138.86 (C19), 136.92, 135.67, 134.29, 131.70, 130.77, 130.65, 121.98,
121.56, 117.38 (C20), 112.99, 111.19, 106.93, 74.63 (C11), 69.67 (C14), 58.19 (C4), 45.45 (C9),
44.79 (C13), 43.89 (C12), 41.79 (C5), 37.78 (C6), 36.79 (C10), 35.99 (C2), 34.49 (C22), 30.43 (C8),
26.85 (C7), 26.34 (C18), 24.84 (C1), 16.81 (C16), 14.90 (C15), 11.51 (C17). HR-MS (ESI): Calcd
for C39H43Cl2N5O4S (M + Cl−): 784.2077; Found: 784.2079.

3.2.35. 22-[4-(6-Chloro-1-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino-
Phenylsulfanyl]-22-deoxypleuromutilin (25c)

Yellow powder; yield: 65%; melting point: 124–129 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 11.11 (1 H, s), 8.33 (1 H, s), 7.61 (2 H, d, J = 8.6 Hz), 7.42 (2 H, d, J = 8.6 Hz), 7.29 (2 H,
d, J = 8.7 Hz), 6.95 (2 H, d, J = 8.8 Hz), 6.42 (1 H, dd, J = 17.4, 11.0 Hz, H19), 5.74 (1 H, d,
J = 8.5 Hz, H14), 5.31 (1 H, d, J = 12.3 Hz, H20), 5.17 (1 H, d, J = 17.4 Hz, H20), 3.62–3.54
(2 H, m, H22), 3.33 (1 H, d, J = 6.3 Hz, H11), 2.34–2.08 (5 H, m, H2, H4, H10, 11-OH),
1.81–1.51 (6 H, m, H1, H6, H7, H8), 1.42 (3 H, s, H15), 1.39–1.30 (2 H, m, H13), 1.12 (3 H,
d, J = 7.0 Hz, H18), 1.08 (1 H, m, H8), 0.86 (3 H, d, J = 7.0 Hz, H17), 0.70 (3 H, d, J = 7.1 Hz,
H16). 13C NMR (151 MHz, Chloroform-d) δ 217.16 (C3), 168.35 (C21), 158.03, 157.21, 156.87,
141.66 (C19), 138.91, 136.87, 133.85, 131.60, 130.73, 129.70, 126.52, 122.09, 117.33 (C20), 114.13,
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107.02, 74.62 (C11), 69.69 (C14), 58.18 (C4), 45.45 (C9), 44.79 (C13), 43.90 (C12), 41.78 (C5),
37.71 (C6), 36.77 (C10), 35.99 (C2), 34.48 (C22), 30.41 (C8), 26.85 (C7), 26.37 (C18), 24.83 (C1),
16.80 (C16), 14.89 (C15), 11.50 (C17). HR-MS (ESI): Calcd for C39H43Cl2N5O4S (M + Cl−):
784.2077; Found: 784.2076.

3.2.36. 22-[4-(6-Chloro-1-(3,5-dichlorophenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino-
Phenylsulfanyl]-22-deoxypleuromutilin (26c)

Yellow powder; yield: 73%; melting point: 137–139 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 11.01 (1 H, s), 8.29 (1 H, s), 7.71 (2 H, d, J = 8.7 Hz), 7.46 (2 H, d, J = 8.7 Hz), 6.97 (1 H,
t, J = 1.7 Hz), 6.93 (2 H, d, J = 1.7 Hz), 6.42 (1 H, dd, J = 17.4, 11.0 Hz, H19), 5.74 (1 H d,
J = 8.5 Hz, H14), 5.32 (1 H, d, J = 11.0 Hz, H20), 5.17 (1 H, d, J = 16.1 Hz, H20), 3.61–3.53 (2 H,
m, H22), 3.38–3.28 (1 H, m, H11), 2.31–1.99 (5 H, m, H2, H4, H10, 11-OH), 1.73–1.42 (6 H,
m, H1, H6, H7, H8), 1.41 (3 H, s, H15), 1.36 (2 H, m, H13), 1.12 (4 H, s, H8, H18), 0.86 (3 H,
d, J = 7.0 Hz, H17), 0.70 (3 H, d, J = 7.0 Hz, H16). 13C NMR (151 MHz, Chloroform-d) δ
217.10 (C3), 168.28 (C21), 158.82, 157.54, 157.22, 144.66, 138.86 (C19), 136.75, 136.23, 135.55,
131.72, 130.90, 121.93, 121.38, 117.37 (C20), 111.40, 106.58, 74.63 (C11), 69.65 (C14), 58.18 (C4),
45.45 (C9), 44.80 (C13), 43.89 (C12), 41.78 (C5), 37.77 (C6), 36.78 (C10), 35.99 (C2), 34.47 (C22),
30.43 (C8), 26.85 (C7), 26.32 (C18), 24.84 (C1), 16.80 (C16), 14.88 (C15), 11.50 (C17). HR-MS
(ESI): Calcd for C39H42Cl3N5O4S (M + Cl−): 818.1688; Found: 818.1698.

3.2.37. 22-[4-(6-Chloro-1-(3-nitrophenyl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino-
Phenylsulfanyl]-22-deoxypleuromutilin (27c)

Yellow powder; yield: 74%; melting point: 137–139 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 10.90 (1 H, s), 8.79 (1 H, s), 7.87 (1 H, s), 7.75 (3 H, d, J = 8.5 Hz), 7.43 (3 H, d, J = 8.5 Hz),
7.16 (1 H, d, J = 9.3 Hz), 6.41 (1 H, dd, J = 17.4, 11.0 Hz, H19), 5.73 (1 H, d, J = 8.5 Hz, H14),
5.27 (1 H, d, J = 11.4 Hz, H20), 5.17 (1 H, d, J = 17.4 Hz, H20), 3.62–3.52 (2 H, m, H22),
3.35 (1 H, s, H11), 2.31–2.03 (5 H, m, H2, H4, H10, 11-OH), 1.80–1.46 (6 H, m, H1, H6,
H7, H8), 1.43 (3 H, s, H15), 1.40–1.26 (2H, m, H13), 1.13 (4 H, m, H8, H18), 0.86 (3 H, d,
J = 7.0 Hz, H17), 0.73 (3 H, d, J = 7.0 Hz, H16). 13C NMR (151 MHz, DMSO-d6) δ 216.83
(C3), 168.12 (C21), 158.32, 156.96, 156.64, 148.96, 143.60, 138.43 (C19), 136.25, 135.29, 131.21,
130.40, 130.02, 121.52, 118.17, 116.92 (C20), 115.42, 106.19, 74.19 (C11), 69.42 (C11), 57.73 (C4),
45.03 (C9), 44.32 (C13), 43.51 (C12), 41.38 (C5), 37.21 (C6), 36.37 (C10), 35.55 (C2), 34.08 (C22),
30.00 (C8), 26.44 (C7), 25.90 (C18), 24.40 (C1), 16.45 (C16), 14.46 (C15), 11.06 (C17). HR-MS
(ESI): Calcd for C39H43ClN6O6S (M + Cl−): 793.2347; Found: 793.2353.

3.2.38. 22-[4-(6-Chloro-1-(naphthalen-2-yl)-1H-pyrazolo[3,4-d]pyrimidine-4-yl-yl)amino-
Phenylsulfanyl]-22-deoxypleuromutilin (28c)

Yellow powder; yield: 63%; melting point: 115–118 ◦C; 1H NMR (600 MHz, Chloroform-d)
δ 11.32 (1 H, s), 8.33 (1 H, s), 7.79-7.70 (4 H, m, 4H), 7.64 (1 H, d, J = 8.2 Hz), 7.45 (3 H,
d, J = 8.0 Hz), 7.34 (2 H, s), 7.15 (1 H, d, J = 8.6 Hz), 6.42 (1 H, dd, J = 17.4, 11.0 Hz, H19),
5.74 (1 H, d, J = 8.4 Hz, H14), 5.28(1 H, m, H20), 5.14 (1 H, d, J = 17.4 Hz, H20), 3.63–3.50 (2 H,
m, H22), 3.31 (1 H, d, J = 5.3 Hz, H11), 2.31–2.02 (5 H, m, H2, H4, H10, 11-OH), 1.77–1.48
(6 H, m, H1, H6, H7, H8), 1.43 (3 H, s, H15), 1.30 (2 H, m, H13), 1.14 (1 H, m, H8), 1.10 (3 H,
s, H18), 0.84 (3 H, d, J = 6.9 Hz, H17), 0.71 (3 H, d, J = 7.1 Hz, H16). 13C NMR (151 MHz,
Chloroform-d) δ 217.18 (C3), 168.33 (C21), 157.74, 157.10, 156.58, 140.52, 138.84 (C19), 137.14,
134.38, 134.02, 133.33, 131.72, 130.43, 129.79, 129.45, 127.92, 127.21, 126.39, 124.03, 121.98,
117.36 (C20), 114.96, 107.51, 74.59 (C11), 69.65 (C14), 58.17 (C4), 45.43 (C9), 44.77 (C13),
43.87 (C12), 41.77 (C5), 37.80 (C6), 36.77 (C10), 35.97 (C2), 34.46 (C22), 30.40 (C8), 26.84 (C7),
26.34 (C18), 24.81 (C1), 16.80 (C16), 14.90 (C15), 11.49 (C17). HR-MS (ESI): Calcd for
C43H46ClN5O4S (M + Cl−): 798.2653; Found: 798.2651.
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3.3. In Vitro Efficacy of Pleuromutilin Derivatives
3.3.1. Minimal Inhibitory Concentration (MIC) Testing and Minimum Bactericidal
Concentration (MBC) Testing

The MIC and MBC values of the synthesized novel pleuromutilin derivatives against
MRSA ATCC 43300, S. aureus ATCC 29213, S. aureus 144 and S. aureus AD3 were mea-
sured. Tiamulin was used as a positive control drug. The MIC and MBC values were
manipulated by broth dilution according to the Clinical and Laboratory Standards (CLSI).
Each compound to be measured was dissolved in a solution of 95% deionized water, 2.5%
dimethyl sulfoxide (DMSO) and 2.5% Tween-80 with a concentration of 1280 µg/mL. Sub-
sequently, serial twofold dilutions were made in a concentration range from 64 µg/mL to
0.0625 µg/mL. The working bacterial suspension was inoculated into each well, which
provided the final inoculum density of 5 × 105 CFU/mL. Three parallel experiments were
performed for each compound. The MIC value was recorded as the lowest inhibitory con-
centration of the sample on the visible growth of the tested bacteria after 24 h of incubation
at 37 ◦C.

After obtaining the MIC results, the 96-well plates were incubated at 37 ◦C for 24 h.
Overall, 25 µL of the bacterial solution from the wells with no obvious bacterial growth
was inoculated on MH agar plates [45]. Then, the inoculated MH agar plates were further
cultured at 37 ◦C for 24 h. MBC was defined as the minimum concentration at which
bacterial growth was not observed (99.9% of the bacteria were killed).

3.3.2. Constant Concentration Time–Kill Curves

Time–kill curve assays were established with the MIC value to investigate the antibac-
terial effect of constant drug concentration on MRSA. The antibiotic concentrations were
equal to 1 × MIC, 2 × MIC, 4 × MIC, 8 × MIC, 16 × MIC and 32 × MIC as described.
MRSA ATCC 43300 was incubated in MH broth at 37 ◦C for 4.5 h and diluted to 1 × 106

CFU/mL in MH broth. The saline control group was subjected to the same schedule but
0.9% saline water was added instead of the test compound. All the samples were incubated
in an oscillating thermostatic at 37 ◦C, and then 100 µL of the mixture was extracted to
900 µL of sterile saline (0.9%) at 0, 3, 6, 9, 12 and 24 h, respectively. Samples were seri-
ally diluted 10-fold in sterile saline (0.9%) and inoculated onto agar plates. The colonies
were counted after incubation at 37 ◦C for 24 h. Three independent experiments were
performed according to our previous work [34]. Time–kill curves were constructed by
plotting the log10 CFU per millilitre versus time, and the change in bacterial concentration
was determined.

3.3.3. Determination of the Post-Antibiotic Effect (PAE)

PAE of compounds 12c and 22c on MRSA ATCC 43300 was determined using MH
broth according to our previous work [46]. The final concentration of MRSA was 1 × 106

CFU/mL by dilution with MH broth. Compounds 12c, 22c and tiamulin were supple-
mented in the suspension at a final concentration of 2 ×MIC and 4 ×MIC, respectively.
The negative control group contained untreated MRSA bacterial cells. The test tubes were
incubated with a 37 ◦C constant temperature vibration incubator for 1 and 2 h. After
incubation, the test compound was removed from the sample by diluting 1000-fold with
the preheated MH broth. Next, 100 µL of suspension from each culture was 10-fold diluted
in sterile saline and inoculated on MH agar plates at 0, 2, 4, 6 and 8 h after inoculation. The
number of colonies was calculated after incubation at 37 ◦C for 24 h. The experiments were
performed in triplicate.

3.4. Cytotoxicity Assay

Cytotoxicity of the test compounds was assessed using the conventional MTT method [46].
RAW 264.7 murine macrophage cells, Caco-2 cells and 16-HBE were used in this experiment.
The cells were seeded into 96-well plates at a density of 1.0 × 105 cells per well. After
4 h at 37 ◦C, the cells were treated with compounds 12c and 22c at various concentrations
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and incubated at 37 ◦C for 16 h. Next, MTT (0.5 mg/mL in PBS, 100 µL/well) was added
sequentially to each well in a humidified atmosphere of 95% air and 5% CO2 incubator and
the incubation continued for an additional four hours. After incubation, the medium was
peeled off and DMSO (150 µL/well) was added to dissolve the cells, and then the incuba-
tion was continued for 30 min. At the end of this period, the absorbance was measured at
490 nm by a microplate spectrophotometer (BIO-TEK Instruments, Winooski, VT, USA).

3.5. Neutropenic Murine Thigh Infection Model

Model experiments of neutropenic mouse thigh infection were manipulated as de-
scribed in the literature [32]. Female, six-week-old, specific-pathogen-free mice weighing
approximately 23~26 g were used throughout the study. Mice were rendered neutropenic
by injection of cyclophosphamide (Mead Johnson Pharmaceuticals, Evansville, IN) on day 4
(150 mg/kg) and day 1 (100 mg/kg) before the experiment. The neutrophil numbers in mice
blood should be <0.1 × 109/L [34]. In total, 0.1 mL of MH broth of MRSA (107 CFU/mL)
was inoculated into each thigh of the neutropenic mice. Mice were divided into 4 groups
(6 mice per group), including control (sterile saline), compounds 12c, 22c and tiamulin
groups. After 3 h post-infection, the corresponding drugs were injected into each mouse’s
thigh. Mice were euthanized following intravenous injection for 24 h. Thigh tissue of each
mouse was removed, collected, weighed and homogenized in 3 mL of ice sterile saline. Six
ten-fold serial dilutions were performed and 25 µL of the bacterial solution from each tube
was plated on MH agar plates. The resulting colonies were counted after 24 h incubation at
37 ◦C. The protocol for this study was reviewed and approved by the Institutional Animal
Care and Use Committee of the South China Agricultural University.

3.6. Molecular Modeling

Docking studies were carried out based on the binding mode of the Staphylococcus
aureus 50S ribosome with tiamulin (PDB ID code: 1XBP). The binding pattern of compound
22c to S. aureus 50S ribosome was investigated. All residues within 40 Å around tiamulin
in 1XBP were built as a peptidyl transferase centre (PTC) model. The model was then
refined using a standard energy minimization protocol. The test compound was prepared
by Avogadro 1.1.1, with a 5000-step Steepest Descent as well as a 1000-step Conjugate
Gradients geometry optimization using MMFF94 force field. Docking experiments were
performed using AutoDock, Vina and Pymol [47].

4. Conclusions

Two series of pleuromutilin derivatives containing 6-chloro-4-amino-1-R-1H-pyrazolo[3,4-
d]pyrimidine structures were synthesized and evaluated as inhibitors against MRSA. The
present study revealed the synthesis procedure, antibacterial activity and cytotoxicity of the
designed compounds. Compound 22c in Scheme 2 displayed better antibacterial activity
against MRSA than tiamulin. The resulting time–kill curve experiments indicated that
compound 22c was time-dependent rather than dose-dependent and manifested a more
rapid bactericidal kinetic effect than tiamulin. Compound 22c performed longer PAE than
tiamulin, indicating a longer administration interval than tiamulin. The results of the
cytotoxicity assay revealed that compound 22c exhibited no significant inhibitory effect on
RAW 264.7 cells, Caco-2 cells and 16-HBE cells at high doses. Meanwhile, compound 22c
exhibited more potent in vivo bactericidal effects than tiamulin in the neutropenic murine
thigh infection model studies. Moreover, the molecular docking studies indicated that four
hydrogen bonds played important roles in the binding of compound 22c to 50S ribosomes.
This study indicated that compound 22c was worthy of further development as a potential
drug against MRSA infection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28093975/s1. Figure S1–S102: The characterization
spectrum of synthesized compounds; Table S1: Structures of corresponding intermediates compounds
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12a~28a, and the MIC of compounds 12a~28a against MRSA; Table S2: MIC and MBC (µg/mL) values
of compounds 12b~28b against S. Typhimurium ATCC 14028, K. Pneumonia ATCC 70063, E. Coli ATCC
25922 and E. faecalis ATCC 29212; Table S3: MIC and MBC (µg/mL) values of compounds 12c~28c
against S. Typhimurium ATCC 14028, K. Pneumonia ATCC 70063, E. Coli ATCC 25922 and E. faecalis
ATCC 29212. The characterization spectrum of synthesized compounds.
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