
Design Techniques for Xilinx Virtex FPGA 

Configuration Memory Scrubbers 
I. Herrera-Alzu and M. López-Vallejo 

Abstract—SRAM-based FPGAs are in-field reconfigurable an 
unlimited number of times. This characteristic, together with 
their high performance and high logic density, proves to be very 
convenient for a number of ground and space level applications. 
One drawback of this technology is that it is susceptible to ionizing 
radiation, and this sensitivity increases with technology scaling. 
This is a first order concern for applications in harsh radiation 
environments, and starts to be a concern for high reliability 
ground applications. Several techniques exist for coping with 
radiation effects at user application. In order to be effective they 
need to be complemented with configuration memory scrubbing, 
which allows error mitigation and prevents failures due to error 
accumulation. Depending on the radiation environment and on 
the system dependability requirements, the configuration scrubber 
design can become more or less complex. This paper classifies 
and presents current and novel design methodologies and archi
tectures for SRAM-based FPGAs, and in particular for Xilinx 
Virtex-4QV/5QV, configuration memory scrubbers. 

Index Terms—Field Programmable Gate Array (FPGA), recon
figuration, scrubbing, single event upset, Xilinx. 

I. INTRODUCTION 

W HEN compared to other FPGA technologies, SRAM-

based FPGAs allow high performance, high logic den-

sity and low Non-Recurring Engineering (NRE) costs. At the 

same time, the FPGA can be statically reconfigured, after the 

initial power-on configuration, practically an unlimited number 

of times. Moreover, some FPGAs can be partially reconfigured 

during run-time without interrupting the application. Dynamic 

partial reconfigurability can be exploited in different ways, as 

will be seen in this paper. These are valuable features for a 

number of applications, for example those requiring reconfig-

urable processing or remote configuration upgrades. In partic-

ular, interest of re-programmable FPGAs for space applications 

has been shown since more than one decade ago [l]-[4]. Be-

cause configuration memory is volatile, an external device needs 

to take care of power-on and subsequent reconfigurations. In 

some cases this device can be simply an external non-volatile 

memory that provides configuration data for FPGA to self-re-

configure. In others, a higher level of intelligence is required. 

On the other hand, when designing for applications where 

ionizing radiation is relevant (e.g., space, medical or nuclear 

power plants) the device radiation tolerance is a first order con-

cern. SRAM-based FPGAs are known to be sensitive to radia-

tion, so in order to benefit from the aforementioned features also 

in harsh radiation environments, their radiation tolerance needs 

to be improved by design. The FPGA architecture and the radi-

ation effects on it need to be well understood for implementing 

effective error mitigation techniques. In particular, mitigation 

techniques for the FPGA configuration layer are addressed in 

this paper. 

Scrubbing is an effective error mitigation technique for 

configuration memory in SRAM-based FPGAs. It consists 

on a post-configuration write of the configuration memory 

to restore its initial state. This can be done in SRAM-based 

FPGAs without interrupting the system operation, and aims at 

mitigating errors before their accumulation induces a system 

failure. Circuitry performing such task is informally known as 

scrubber. Depending on the system-level constraints and on the 

radiation environment for the application, different scrubber 

implementation options exist involving more or less overhead 

in terms of complexity, area and power consumption. 

In spite of the complexity added to implement error miti-

gation, the benefits of SRAM-based FPGAs are considered to 

be dominant in many applications. Alternatives to this tech-

nology for harsh radiation environments are basically anti-fuse 

(ROM-based) and Flash-based [4]. Anti-fuse technology is 

inherently radiation-tolerant but, while suitable for many appli-

cations, it does not support in-field reconfiguration. Regarding 

flash technology, its TID limitations and potential charge 

leakage is undergoing scrutiny by the industry. Besides, for the 

moment it does not support dynamic partial reconfiguration. 

Finally, among SRAM alternatives, Xilinx Virtex-4QV/5QV 

are found to have the highest logic density, performance and 

radiation-tolerance altogether. Therefore, the present work will 

focus on the latter FPGAs. An in-depth comparison of FPGA 

technologies for harsh radiation environments is out of the 

scope of this paper and can be found in the literature [5], [6]. 

The main contribution of the present work has been to 

identify, classify and compare the main trends in configura-

tion scrubbing techniques, methodologies and architectures 

for SRAM-based FPGAs (and in particular for Xilinx Virtex 

series), to provide the designer with criteria for trading-off 

the different options, and to provide system-level considera-

tions when reliability and/or power consumption are design 

drivers. The paper is organized as follows. Section II recalls 

the Xilinx Virtex FPGA architecture. Section III summarizes 

the Radiation Effects on the Xilinx Virtex FPGA. Section IV 

presents the Configuration Memory Scrubbing Overview. 

Section V presents the Configuration Memory Scrubbing 

Basics. Section VI presents usual and novel Scrubbing Method-

ologies. Section VII presents the elementary Scrubber Design 



Ion 

Strike 

TABLE I 
XILINX VIRTEX XQR4V AND XQR5V RESOURCES 

Fig. 1. Xilinx Virtex conceptual layers: Application Layer (user logic and 

memory) and Configuration Layer (logic and routing resources configuration). 

Architectures. Section VIII discusses main System-Level Con-

siderations, in particular Reliability, Availability and Power 

Consumption. Finally, Section IX draws some Conclusions. 

II. XILINX VIRTEX FPGA ARCHITECTURE 

Xilinx Virtex FPGAs can be conceptually split in two layers, 

namely Application Layer (from now on, A-Layer) and Con-

figuration Layer (from now on, C-Layer). A-Layer includes the 

logic and memory elements managed by user's application and 

C-Layer includes the logic and memory elements that allow 

configuring the logic and routing resources in the A-Layer. 

These layers are represented in Fig. 1. 

A. Application Layer 

The A-Layer comprises the logic, memory and input/output 

resources for user application. Most of the layer implements 

Configurable Logic Blocks (CLBs), which can be configured to 

implement any user sequential or combinational circuit. Each 

CLB in turn consists of several slices, and each slice contains 

Look-Up Tables (LUTs), registers and carry logic. LUTs can be 

eventually used as distributed RAM resources (LUTRAMs) or 

shift registers (SRL16/32). Some static control signals have pre-

assigned logic levels via weak keeper pull-ups and pull-downs 

known as half-latches, wich can be forced to a hard logic level 

via internal routing. 

The other fundamental components are the Input/Output 

Blocks (IOBs). Each IOB can be configured for a wide va-

riety of interface standards and voltage levels. This layer also 

implements a number of application resources depending on 

the specific FPGA, being the most relevant the following: 

dedicated dual-port SelectRAM blocks (BRAMs), dedicated 

multipliers (physically located next to BRAMs) and DSP 

blocks, Digital Clock Managers (DCMs), embedded PowerPC 

processors (PPC), Multi-Gigabit serial Transceivers (MGT) and 

10/100/1000 Ethernet MAC (EMAC). Finally, a large General 

Routing Matrix (GRM) connects all the elementary blocks. 

Two main Xilinx Virtex-4 and -5 radiation-tolerant families 

have been released so far, namely Virtex-4QV and -5QV (or 

shortly, XQR4V and XQR5V). They are manufactured on a 

90-nm and 65-nm CMOS process, respectively, on thin epitaxial 

silicon wafers. Besides the manufacturing process, the XQR4V 

parts are functionally identical to their commercial counterparts. 

However the XQR5 V design has been optimized for a better ra-

diation tolerance, or as the manufacturer claims, it has been Ra-

Resource Type 

Config Mem (Mbit) 
BRAM (Mbit) 

Logic (Kslices)" 

DSP (Blocks)* 

PPC (Blocks) 

DCM (Blocks) 
MGT (Blocks) 

EMAC (Blocks) 

IOB (Blocks) 

SX55 
15.4 
5.9 

24.6 

512 

-
12 

-
-

640 

XQR4V 

FX60 FX140 
14.5 34.5 
4.3 10.2 

25.3 63.2 

128 192 

2 2 

12 20 

-
-

576 896 

LX200 
43.0 
6.2 

89.0 

96 

-
12 

-
-

960 

XQR5V 

FX130 
49.2 
10.7 

20.4 

320 

-
12 
18 

6 

836 

"XQR4V slices have 2 4-input LUTs and 2 registers. XQR5V slices 

have 4 6-input LUTs and 4 registers. 

*XQR4V DSP blocks have 18x18 multipliers. XQR5V DSP blocks have 

25x18 multipliers. 

diation Hardened By Design (RHBD). The resources available 

for user application are summarized in Table I. 

B. Configuration Layer 

The C-Layer comprises the configuration memory and 

associated access ports and control logic. Virtex-4 FPGAs 

implement the following access ports for reading and writing 

from/to configuration memory: JTAG (Joint Test Action 

Group), master/slave serial and master/slave SelectMAP (Se-

lectable Microprocessor Access Port), the latter available in 

8 and 32-bit bus width. In addition to them, Virtex-5 FPGAs 

implement master SPI (Serial Peripheral Interface), master BPI 

(Byte Peripheral Interface) and slave SelectMAP in 8/16/32-bit 

bus width. According to the manufacturer [7], SelectMAP 

provides the most efficient device access for scrubbing, and the 

8-bit bus width is typically used for scrubber implementations 

as it does not require data word alignment. In Virtex-5, a bus 

width auto-detection feature has been added, thus simplifying 

the implementation oí scrubbers for 16/32-bit bus widths. 

The configuration port is internally connected to a built-in 

circuitry that decodes the configuration data packets, providing 

read/write access to the configuration control registers and to the 

configuration memory. In addition to the configuration ports, the 

configuration controller can be reached from within the A-Layer 

via the Internal Configuration Access Port (ICAP). This allows 

the implementation of scrubbers internal to the FPGA. 

Major architectural changes were implemented in Virtex-4 

C-Layer with respect to its predecessors .frame size was reduced 

and kept uniform across the device, frames were distributed into 

rows allowing a 2D mapping of configuration memory, built-in 

masking of dynamic memory elements was implemented al-

lowing transparent readback, and Error Correction Code (ECC) 

was embedded into the frame structure. Further architectural im-

provements were implemented in Virtex-5, specifically built-in 

blocks supporting Cyclic Redundancy Check (CRC) computa-

tions. ECC and CRC will be described in Section VA. 

III. RADIATION EFFECTS ON XILINX VIRTEX FPGAS 

SRAM-based FPGAs are sensitive to ionizing radiation 

effects, which induce both a long term cumulative degradation 

(Total Ionization Dose, or TID, and displacement), as well as 



instantaneous damage (Single Event Effects, or SEE). SEE can 

in turn be classified into soft errors, which affect data integrity, 

and hard errors, which damage silicon structures. Soft errors 

are reversible, like Single Event Upset (SEU), Multiple Bit 

Upset (MBU) or Single Event Transient (SET), but hard errors 

can be destructive, like Single Event Latch-up (SEL). In par-

ticular, commercial Xilinx Virtex FPGAs are also sensitive to 

some SEE types. For harsh radiation environment applications, 

the XQR4V/5 V families offer improved protection against SEL 

and higher TID levels. For XQR4V, C-Layer SEUs are still a 

concern as they are a major contributor to system failure rate. 

A-Layer SEUs (but not MBUs) can be mitigated with different 

Triple Modular Redundancy (TMR) strategies. For XQR5V, 

the manufacturer claims that C-Layer SEUs are 1000 x lower 

than in XQR4V [8]. In addition, architectural improvements 

in this device, such as built-in Error Detection and Correc-

tion (EDAC) for BRAM and SET filters for flip-flops, allow 

reducing A-Layer upsets significantly. 

When high-energy particles strike the FPGA, soft errors can 

appear either in A-Layer or in the underlying C-Layer. When 

in A-Layer, soft error effects can be transient or persistent, de-

pending on whether the affected logic has memory (sequential 

logic, flip-flops, BRAMs, half-latches) or is memoryless (com-

binational logic). These soft errors can lead to Single Event 

Functional Interrupts (SEFIs) affecting part of the device or the 

whole of it. When in C-Layer, soft errors can affect configu-

ration logic or routing resources, and their effects are persistent 

until a partial or global reconfiguration restores the initially con-

figured value. In the case oí soft errors affecting the configura-

tion controller or other built-in functions, SEFIs may also occur 

and can only be recovered by FPGA re-initialization. 

The functional effects of soft errors in logic resources have 

been extensively researched [9], [10]. XQR4Vhas been experi-

mentally characterized for both static and dynamic soft errors 

[11], [12]. For XQR5V, some SEU/SEFI figures can also be 

found in [8], [13] and [14]. Soft errors in routing resources, even 

if not used by the A-Layer, may also have functional effect as 

they may create shorts or bridges between logic resources. In-

deed, soft errors in routing resources may induce single or mul-

tiple errors in the A-Layer [15]. The situation is dramatic con-

sidering that more than 60% of the configuration bits in modern 

Virtex FPGAs are linked to routing resources, although 10 to 

20% of them are typically used. On the other hand, configura-

tion SRAM density keeps on growing in every new FPGA gen-

eration, thus increasing the MBU cross-section [16], [17]. 

Radiation effects must be assessed for every application, as 

they depend on the particular radiation environment, on the 

specific FPGA, and on the specific design implemented on the 

FPGA. The FPGA SEU rate can be estimated using tools like 

CREME96 [18], which provides orbit-averaged static SEU 

rates from FPGA's static cross-section data. For XQR4V/5V 

FPGAs, the cross-section data can be obtained from the test 

reports produced by members of the Xilinx Radiation Test 

Consortium (XRTC) [19]. Fault injection methods [20]-[22], 

can be used to provide a qualitative view on how well a design 

is mitigated [23], but the dynamic SEE characterization on the 

specific design implementation can only be obtained experi-

mentally by accelerator testing. 

IV. CONFIGURATION MEMORY SCRUBBING OVERVIEW 

During the past decade, the research community has proposed 

different solutions for coping with Virtex FPGA configuration 

memory SEUs. This work was also fostered by the research on 

dynamic reconfiguration techniques and fault injection systems, 

and it is continuously supported by industry, government and 

academia via the XRTC. 

Complementary soft error tolerance techniques have been in-

corporated to enable the use of Virtex FPGAs in harsh radiation 

environments. EDAC techniques, such as TMR andECC codes, 

are typically used in user logic and memories for preserving de-

sign functionality and data integrity in the event of SEUs. On the 

other hand, the dynamic reconfigurability of the configuration 

memory can be used, not only for reconfiguring or upgrading the 

application, but also for mitigating soft-errors before they ac-

cumulate potentially defeating EDAC techniques implemented 

in A-Layer. This technique, widely used in SRAM memories, 

is known as memory scrubbing. Both TMR and configuration 

memory scrubbing, when used jointly, provide the highest SEU 

mitigation capability [24]. However, the configuration memory 

scrubbing has some limitations in what concerns error detection 

and mitigation, as will be explained in Section YD. 

Scrubbing is basically a post-configuration memory refresh. 

Typically it is performed in the background without disrupting 

the A-Layer. For this purpose the FPGA initialization com-

mands in the configuration bitstream are omitted, and only 

those required to initialize the scrubbing are kept. In other 

cases, the full bitstream is injected in the C-Layer and the 

application is momentarily suspended then reinitialized. On the 

other hand, readback is a post-configuration memory read. Also 

performed in the background, it does not disrupt the application 

but it may corrupt the data content of some memory elements 

in early Virtex families, as will be explained in Section VD. 

Scrubbing and readback are handled by an error detection 

and correction circuitry, sometimes referred as Configuration 

Manager and informally known as scrubber. Depending on 

system dependability requirements, scrubbers can implement 

anything from simple preventive mitigation to complex adap-

tive reconfigurable strategies. Some basic scrubbing techniques 

for Virtex-4 family are introduced in [7]. These techniques are 

still valid for Virtex-5 family, although they need to be adapted 

to the changes introduced in the configuration logic. Main 

guidelines on radiation effect mitigation for Xilinx FPGAs 

up to Virtex-4 are found in [10], which focuses mainly on 

TMR implementation. A follow-up work was found in [23], 

where both SEFI and SEU detection, mitigation and mitigation 

verification are covered in great detail. Regarding Virtex-5, 

new strategies for SEU handling are proposed by Xilinx in 

[25]. The main difference with respect to methods proposed for 

Virtex-4 is the use of built-in circuitry for error detection and 

correction, as will be explained in Section VA. 

V CONFIGURATION MEMORY SCRUBBING BASICS 

Upon SEEs in C-Layer, a generic scrubber has two main du-

ties: to detect the SEEs and to mitigate them before they ac-

cumulate and/or disrupt the application. The detection phase 

is optional and requires additional complexity, but it generally 



bit (binary) 

Configuration 

commands 

Configuration 

data 

Configuration 

commands 

= 

msk (binary) 

Mask 

data X 

Readback 

data 

Fig. 2. Configuration bitstream file (bit), mask file (msk) and readback data 
relationship: masked readback data matches configuration data if no error is 
present. 

allows a more robust mitigation. However in the highest con-

figuration memory size devices, the complexity of the detec-

tion scheme may not be affordable. The application disruption 

is sometimes unavoidable, and the system needs to implement 

functional monitoring (e.g., external watchdog timer circuit) to 

detect it and recover the system. 

A. SEUMBU Detection 

Configuration memory SEU/MBUs can be detected by 

reading back the FPGA configuration data via the configuration 

port, and comparing it with a golden reference stored in a 

non-volatile memory (from now on, golden memory). Xilinx 

development tools generate two files for each configuration bit-

stream file: a readback data file and a mask data file. The mask 

file is used to mask the readback bits that may change during 

operation. Although it is possible to use both the readback data 

and mask data files, the storage of the two files (in addition to 

the bitstream file) needs to be considered at system level, and 

may not be affordable for the most complex FPGA devices 

given the size of the files. A less stringent solution requires only 

the mask data file to be stored in addition to the bitstream file. 

Each masked readback word must be compared with the corre-

sponding golden reference in the bitstream, as shown in Fig. 2. 

In case of mismatch, an error detection flag must be raised to 

trigger the corresponding mitigation actions. For XQR5V, and 

according to latest findings reported by the manufacturer in [8], 

the mask data file (as generated by automated tools) needs to be 

modified in order to mask non-configuration bits (in particular, 

capture bits) that are also part of the readback stream. 

The word-by-word masking and comparison is a comprehen-

sive but rather slow technique and requires accessing the full 

configuration golden memory for comparison. A faster tech-

nique consists on performing a CRC check on the readback data, 

which needs reference CRC codes (much less information than 

the configuration data) to be previously generated and stored 

in internal or external memory. Using for example 32-bit CRC 

codes, the probability of not detecting upsets is as low as 2 - 3 2 . 

CRC can be checked for each frame data, or for the full device 

data [26]. 

For the particular systems implementing device-level TMR 

(in addition to TMR within each FPGA), a 3-way scrubber can 

detect SEU/MBU in each FPGA by comparing readback data 

from each of the independent channels. This allows a fast detec-

tion as a fault-free frame is available in a temporary buffer in-

stead of in external golden memory. The scrubber solution pre-

sented in [27] targets device-level TMR systems and propose 

this kind of solution combined with a self-repair approach. 

A new feature in Virtex-4/5 with respect to its predecessors 

is that every conügamiion frame contains a 12-bit built-in ECC 

code, which uses Single Error Correction Double Error Detec-

tion (SECDED), Hamming code parity values. In case & frame 

bit flips due to SEU, the ECC check will allow detection and 

identification of a single bit in error within the frame, which 

can be used for SEU mitigation. Double error or more can be 

detected but the ECC check does not identify the bits in error. 

ECC bit flips do not affect the A-Layer as they do not configure 

any resource, but may result in bogus SEU detection and the cor-

responding mitigation may corrupt the frame. Virtex-5 also pro-

vides a built-in readback CRC circuit for overall memory error 

detection. This circuit, clocked internally or externally, contin-

uously scans the configuration memory and computes a 32-bit 

CRC value. The CRC value computed right after device con-

figuration is used as the fault-free reference for comparing the 

values obtained in subsequent scans. In case of mismatch, a de-

vice pin is driven low to report the configuration error to an ex-

ternal supervisor. 

B. SEU/MBU Mitigation 

SEU/MBU in configuration memory are mitigated by means 

of static or dynamic reconfiguration. The former implies 

stopping the application and performing a full configuration, 

whereas the latter is to be performed in the background, for the 

full device or part of it, while the application is running. The 

minimum reconfigurable element is a frame. If the detection 

method provides the address of the frame in error, the recon-

figuration can then target that particular frame. If the faulty 

frame address is not available, a full device reconfiguration is 

needed. The former may be preferred, as it generally reduces 

the risk of corrupting the configuration memory. Moreover, 

from a reliability point of view, the time-to-repair is shorter, as 

will be shown in Section VTII.A. 

C. SEFI Detection and Recovery 

Different SEFI modes were found in XQR4V FPGAs during 

radiation testing [11], and a few of them were also found in 

XQR5V [8]. Some can be detected by using an external su-

pervisor, like a watchdog-timer, although others require a more 

complex diagnostic hardware, optionally included in the ex-

ternal scrubber. The exact SEFI mode may be difficult to iden-

tify due to the erratic behavior of the device. Some of them can 

be detected by periodic polling of critical configuration logic 

registers, like Frame Address Register (FAR), Status (STAT) and 

Control (CTL) registers, and comparison with golden reference 

values. For example, a continuous increase of the FAR indi-

cates that the built-in configuration sequencer is out of control, 

which in turn may prevent any attempt for the scrubber to read 

or write configuration memory. To detect this type of SEFI, a 

write-read-check test is recommended before starting any read-

back or scrub sequence [7]. 

Other SEFIs may be detected by monitoring configuration 

port pin voltages. For example, a transition to logic low in the 

DONE pin indicates that the device configuration is lost (or shut-

down sequence is on-going), due to the trigger of the Power-On-



Reset (POR). In most cases, a full reconfiguration is needed to 

recover from SEFI. Power cycling can be optionally used, al-

though in principle it is not needed [23]. 

D. Scrubbing Limitations 

Virtex FPGA SEU/MBU detection and mitigation via read-

back and scrubbing has some inherent limitations: 

• First, errors in hidden resources may propagate across the 

A-Layer without being detected by configuration memory 

readback. For example, half-latches cannot be read back 

nor scrubbed. Error mitigation techniques at A-Layer must 

be able to cope with them. 

• Second, some logic resources cannot be readback be-

cause they can get corrupted. For example, SRL16s and 

LUT-RAMs readback and scrubbing is not allowed in 

early Virtex families. This was fixed in Virtex-4/5 by 

setting a specific configuration register bit (GLUTMASK). 

• Third, some built-in circuitry in Virtex FPGAs cannot be 

scrubbed because they are not accessible. For example the 

configuration controller and the DCM. 

• Fourth, some type of errors are persistent and cannot be 

mitigated only by reconfiguration: a system reset is also re-

quired [28]. Fortunately the persistent error cross-section is 

orders of magnitude lower than the one for non-persistent 

errors (which do not require system reset). 

• Finally, SEU effects in the A-Layer may not be mitigated 

when they affect more than one logic path of a TMR system 

within the same scrub period. 

VI. SCRUBBING METHODOLOGIES 

Basic scrubbing techniques described in Section V can be 

used in different ways, leading to different methodologies. 

Choosing the right methodology for an application typically 

implies trading-off reliability, complexity, flexibility, power 

consumption and cost. Several trade-offs are presented in this 

section, providing the designer with system level considerations 

to be taken into account. 

A. Preventive vs. Corrective Scrubbing 

The simplest scrubbing methodology consists on recon-

figuring cyclically the FPGA, without performing any error 

detection whatsoever. This is referred as preventive or blind 

scrubbing [29], and such a scrubber is said to operate in 

open-loop. Thanks to the Virtex FPGA dynamic reconfigu-

ration capability, the A-Layer operation does not need to be 

interrupted while being scrubbed. In some applications the 

scrubbing can be scheduled periodically, for example just 

before starting an operation period. In that case, a full con-

figuration can be performed without caring about A-Layer 

interruption. With or without interrupting the operation, the 

scrubber would operate in write mode, so any unexpected 

error during the initial FAR configuration could potentially 

corrupt the configuration memory. Fortunately, the probability 

of such event is extremely low [30]. In order to minimize the 

impact of such event, frame-oriented blind scrubbing could be 

implemented instead of device-oriented. 

Another methodology consists on reading back cyclically the 

configuration memory, and triggering the scrubbing only in case 

Initial Config 

1— Scrub 

Fig. 3. Preventive vs. Corrective scrubbing flow. Preventive scrubbing (left) 
scrubs configuration memory periodically. Corrective scrubbing (right) reads 
back configuration memory periodically, and triggers scrubbing when error is 
detected. In both cases, the scrubbing can be done with (dashed line) or without 
(solid line) re-initiating the application. 

an error is detected. The readback and subsequent scrubbing can 

be either device or^/rawe-oriented, as will be discussed in VLB. 

Once the error scrubbing is completed, the readback process can 

be either resumed or restarted. This methodology is referred as 

corrective scrubbing, and such a scrubber is said to operate in 

closed-loop. Upon error detection, the A-Layer can be scrubbed 

with or without interrupting the operation. The scrubber would 

operate in read mode most of the time, in fact all of the time if 

no error is detected. It is only during scrubbing that configura-

tion memory can potentially get corrupted, but the probability 

is considered much lower than in the preventive scrubbing case, 

and can also be limited to a single frame or a block oí frames. 

A flow diagram for both preventive and corrective method-

ologies is shown in Fig. 3. It must be noted that the timeout 

checking is for the general case where the scrubber runs faster 

than the required scrub or readback rates. In some cases this 

checking is not needed, and the scrubber resources are full time 

devoted to readback and/or scrubbing. 

B. Device vs. Frame-Oriented Detection and Mitigation 

Configuration frames are typically read back or scrubbed se-

quentially by incrementing the FAR following a hardwired sys-

tematic sequence. This is automatically done by Virtex FPGA 

configuration controller when the number of read words exceeds 

the frame boundaries. Therefore, a simple open-loop scrubber 

can cyclically configure the scrub length for the total amount 

of configuration words, i.e., the total amount of configuration 

frames times the number of words per frame, plus a fixed over-

head. This is considered a device-oriented scrubbing as far as 

error detection and mitigation covers the device as a whole. The 

scrub method is simple and has a minimum processing over-

head, however it is exposed (with a very low probability) to the 

potential memory corruption, as highlighted in Section VI.A. 

Likewise, a device-oriented readback can be cyclically con-

figured. In case error is detected, scrubbing is triggered for the 

frame in error, for a block oí frames or for all of them, then 

readback is resumed or restarted depending on the scrubbing 

strategy. 



As opposed to the device-oriented approach, frames can be 

scrubbed or read back individually without using the built-in 

FAR auto-increment feature, which then needs to be imple-

mented in the scrubber itself. The scrubber configures the 

readback length just for the amount of words in & frame (plus 

a fixed overhead). In this case, if an error is detected during 

readback, scrubbing is performed for just one frame before 

reading back the following/rawe. The readback and scrubbing 

functions are interleaved in what is considered a frame-oti-

ented approach. This method has a higher overhead, but the 

mitigation time is minimized as well as corruption probability. 

Intermediate approaches can be envisaged by dividing the 

frame space into blocks, and performing a block-oriented detec-

tion and mitigation. Then one must trade-oííframe block length, 

readback overhead, detection and mitigation time and potential 

corruption probability and effects. 

C. Fixed vs. Adaptive Rate 

Scrub rate (for preventive mitigation) or readback rate (for 

corrective mitigation) was traditionally adjusted to a fixed rate 

of 10 x the maximum expected SEU rate along the mission, 

as recommended in [10]. This sometimes led to complex and 

power hungry scrubber implementations. Berg justified in [30] 

the need for a scrub rate of merely once every few days, which 

allows simpler scrubbers. 

However there are two main reasons for considering a 

variable rate. The first is that the FPGA may not be in op-

erational mode full time, being the rest of the time in idle, 

stand-by or even power-off mode. In stand-by mode, a higher 

SEFI rate may be tolerated (and mitigated by means of full 

reconfiguration), so readback or scrub rate could be reduced (or 

even stopped) in order to decrease system power consumption. 

Because SEUs may accumulate at both C-Layer and A-Layer 

during this mode, a full reconfiguration is deemed necessary 

before resuming operation. 

The second is that radiation environment will vary over time 

during the mission. For example, when the spacecraft is crossing 

the South Atlantic Anomaly (SAA) region, an increase in par-

ticle flux is expected [31]. Another example is the peak radiation 

levels due to solar activity or Van Allen radiation belts. In all 

these cases, the readback rate could be temporarily increased in 

order to improve reliability and availability. Keeping the read-

back rate to the minimum required anytime during a mission 

helps optimizing the power consumption and heat dissipation, 

as will be explained in VIII.B. The need for adaptability was 

also identified in [32] and [33]. 

The related concept of Reconfigurable Fault Tolerance (RFT) 

was introduced by [33]. The objective of RFT is to enable a 

system to adapt to the optimal balance of performance and reli-

ability during the mission. The performability metric, a combi-

nation of reliability and performance, shows improvements for 

applications using RFT architectures. 

D. ID vs. 2D Scrubbing 

Device configuration frames are typically scanned sequen-

tially along a ID frame space. However, in atypical application, 

part of the configurable fabric is not used. SEUs in the configu-

ration frames associated to unused logic may not be disruptive, 

Block A 

Block B 

Frame 

Address [j] 

S 
Block B <-» 

x 

/^ Block A <-> 
\ , 

(a) 

/ 
) 
J 

/ 

/ J 
/ 
J 
/ 

(b) 

y 
Bottom Half / 

"y/ Fop Half 
/ J 

/ J 
/ A 

Scrubbing Profile 

(c) 

Frame 

Number [i] 

Fig. 4. Scrubbing Profile (SP) example, (a) Physical placement of Blocks A&B 
and readback or scrubbing direction, (b) Full FPGA readback or scrubbing di-
rection, (c) SP sequence reading back or scrubbing Block A, then Block B, then 
full FPGA. 

although there is still a possibility that they affect used routing 

resources. On the other hand, specific configuration^awes may 

be more sensitive than others because they configure logic that is 

prone to propagate errors (e.g., voting logic in a TMR scheme). 

Such frames may be physically mapped into a 2D-block and 

read back (or scrubbed) at a higher rate. 

A Scrubbing Profile (SP) is defined as the frame sequence 

followed during readback (or scrubbing) to cover the frames 

of interest, a certain number of times and in a certain order. 

A ID-scrubber will not necessarily follow the frame address 

sequence pre-defined by the FPGA configuration logic, but the 

one defined by the SP. The SP is stored in the scrubber, it is 

repeated cyclically and it can be reprogrammed if needed. An 

SP example is shown in Fig. 4, where two FPGA blocks are read 

back (or scrubbed) at twice the rate than the rest. 

ID or 2D scrubbing can be combined with any of the method-

ologies described in the previous three sections. For example, 

a scrubber may perform 2D readback (for corrective scrub-

bing) on a frame-oriented basis and with a fixed readback rate. 

And a different scrubber may perform ID preventive scrubbing, 

on a device-oriented basis and with a variable readback rate. 

1D/2D reconfiguration was also considered in [34] for block-

based error mitigation. 

VII. SCRUBBER DESIGN ARCHITECTURES 

The scrubbing methodologies described in Section VI can 

be implemented in different scrubber architectures. Again, 

choosing the right architecture for an application typically 

implies trading-off reliability, complexity, flexibility, power 



Golden 

Memory 
— • Scrubber 

Config 

Port 

FPGA 

Config 

Mem 

Golden 

Memory 
• Scrubber 

FPGA 

< — • 
ICAP 

Port 

Config 

Mem 

Fig. 5. External vs. Internal scrubber. External scrubber (up) accesses config-
uration memory via the configuration port. Internal scrubber (down) accesses 
configuration memory via Internal Configuration Access Port (ICAP). 

consumption and cost. Some elementary architectures are 

presented in this section, with references to practical imple-

mentations found in previous works. 

A. External vs. Internal Scrubber 

Scrubbers are typically implemented in a radiation-hardened 

device external to the Virtex FPGA, such as an ASIC or an 

anti-fuse based FPGA. This ensures that scrubber logic itself 

is not affected by SEUs, or at least with a much lower prob-

ability than when embedded in the FPGA itself. Scrubbers in-

ternal to the Virtex FPGA may also be implemented by using the 

ICAP primitive, which provides internal access to the built-in 

configuration logic. However ICAP and internal logic are sus-

ceptible to radiation, so internal scrubbers are qualitatively less 

reliable than external ones, as was shown in [29]. Neverthe-

less, fault-tolerant implementations of ICAP controllers have 

also been investigated in [35]. An implementation combining 

internal scrubber and preventive scrubbing was found in [36], 

although it presents the limitations of both being internal and 

lacking error detection capability. Internal and external scrub

bers are represented in Fig. 5. 

Two scrubber implementations for Virtex-4 are compared in 

[29], the first one being internal to the FPGA itself and the 

second one implemented in an external FPGA. The internal im-

plementation uses configuration memory readback in conjunc-

tion with SECDED. The external one simply reconfigures cycli-

cally the configuration memory without any readback. Test re-

sults suggest a superior performance of the external implemen-

tation, however the limitations of such type of scrubber have 

been analyzed in Section VI.A. 

An external scrubber in combination with TMR was suc-

cessfully tested on a Virtex-II X-2V1000 device in [37]. The 

scrubber (referred as configuration monitor) was implemented 

on an auxiliary FPGA under the control of a host computer. This 

was continuously reading back, via SelectMAP or JTAG port, 

the configuration memory of the FPGA under test and com-

paring word-by-word with a mask file. Upon error detection, 

the auxiliary FPGA triggered a partial reconfiguration to mit-

igate the error. In addition, mechanisms were implemented to 

detect some types of SEFI and register corruption. 

B. Hardware vs. Software-Based 

Scrubbers can be implemented by hardware, either on an ex-

ternal or internal circuitry which defines a state machine for 

Golden 

Memory 

(0.P Memory 

Scrubbing 

Algorithm 

HW 

Drivers 

Scrubber 

UP 

GPIO k-
Config 

Port 

FPGA 

Config 

Mem 

Fig. 6. Software-Based scrubber. Scrubber includes a microprocessor (/zP) 
and its program memory. Program includes scrubbing algorithm and hardware 
drivers. /JLF accesses the FPGA via General Purpose Input/Outputs (GPIO). 

readback and/or scrubbing. The main advantage of this archi-

tecture is that it can be very fast both in error detection and 

correction. However it lacks flexibility for implementing com-

plex scrubbing strategies. Fig. 5 represents two typical hardware 

implementations based on radiation-hardened FPGA/ASIC (ex-

ternal) or embedded logic (internal). 

Scrubbers can be also implemented on a radiation-hardened 

microprocessor system running a software algorithm. If the mi-

croprocessor has enough General Purpose Input/Output (GPIO) 

ports, it can directly drive the FPGA configuration port. Other-

wise it needs an intermediate device to implement the hardware 

interface, as proposed in [38]. As shown in Fig. 6, the memory 

bus includes both the microprocessor memory (program and 

data) as well as the configuration golden memory. The software 

includes two main modules: the scrubbing algorithm (hardware 

independent) and the hardware drivers (specific for the micro-

processor device and configuration port). The main advantage 

of this architecture with respect to a purely hardware one is the 

flexibility and the capability of implementing one or more com-

plex algorithms. On the other hand, a software-based architec-

ture is inherently slower. When implementing a corrective ap-

proach, the microprocessor needs many instruction cycles per 

frame to complete readback and error detection, which could 

be optimized if the microprocessor is devoted to the scrubbing 

function. If detection and mitigation is^/ra/we-based, execution 

time can be improved by pre-computing and storing in program 

memory the frame address sequence. 

Hybrid HW/SW scrubber implementations can also be envis-

aged, for example with an FPGA embedding a microprocessor 

core running the scrubbing algorithm, and programmable logic 

for performing interface and data computation functions. 

Most of the standalone scrubbers found in the literature are 

hardware-based, and a few software/firmware-based were found 

[39], [40]. This excludes systems for accelerator testing setup, 

which may involve a host PC running control software and in-

terfacing the FPGA under test and associated logic. 

C. One vs. N-Way 

In a typical system, the scrubber has to manage a single 

FPGA configuration layer. This is a one-way architecture as 

opposed to others where the scrubber has to manage more 

than one. Systems implementing device-level Dual or Triple 

Modular Redundancy (DMR or TMR) are typical examples 

of the latter. In general, N-way architectures have to manage 

N configuration layers (i.e., channels), and those layers may 

belong to FPGAs implementing device-level redundancy or 

not. 



FPGA 

1 

FPGA 

k 

< — 

c 
< — 

X * X 
X 

c 

—> 

/—; 

rJ 

Golden 

Memory 

• ' 
N-way 

Scrubber 

• X 

X k 

Golden 

Memory 

• ' 
N-way 

Scrubber 

X * 
X * 

X k 

X 
X 
X 

1 — • 

< - ^ — • 

FPGA 

1 

FPGA 

k 

X * 

X * 

X * 

concerns the occurrence of the first failure. Reliability and 

MTTF are related by the following equation: 

Fig. 7. N-way scrubbers managing k independent channels in time multiplex 

(left) and k independent channels concurrently (right). 

In some cases, there are temporal constraints for which read-

back has to be concurrent across channels. This is the case for 

scrubbers that perform error detection by means of peer data 

comparison [27]. In that case, individual scrubber logic needs 

to be implemented for each channel. In the general case, when 

channels can be operated with functional and temporal indepen-

dence from others, the same scrubber core logic and data bus 

lines can be shared. Only a few control lines need to be ded-

icated for each channel. Fig. 7 represents two generic N-way 

scrubbers, one of them managing k independent channels in 

time multiplex and the other one managing k redundant chan-

nels concurrently. 

An external N-way scrubber was successfully tested on mul-

tiple Virtex VI 000s implementing a space-based reconfigurable 

radio in [41]. The scrubber was implemented on a radiation-

hardened anti-fuse FPGA, which was continuously scanning 

each of the nine Virtex VI000 via SelectMAP port. The anti-

fuse FPGA computed the CRC, frame by frame, and compared 

it with a codebook of stored CRCs. Upon error detection, the 

anti-fuse FPGA interrupted the main microprocessor, triggered 

a partial reconfiguration to restore the frame in error, then reset 

the system. 

VIII. SYSTEM-LEVEL CONSIDERATIONS 

Scrubbing methodologies and architectures need to be 

analyzed together with three essential system-level design re-

quirements: reliability, availability and power consumption. Of 

course, cost is also an important consideration but it is out of the 

scope of this paper. These requirements may impose additional 

constraints in the design of the configuration memory scrubber. 

In this section, a qualitative view is provided for each of them. 

A. Reliability and Availability 

Basic definitions for dependability metrics are given in [42]: 

• Reliability or R(t): the conditional probability that the 

system will perform correctly throughout the interval 

[trj,i], given that the system was performing correctly at 

time to, which concerns the continuity of service. 

• Mean Time To Failure (MTTF): the expected time that a 

system will operate before the first failure occurs, which 

MTTF 

/»oo 

= / R(t)dt 
Jo 

(1) 

Availability or A(t): the probability that a system is oper-

ating correctly and is available to perform its functions at 

the instant time t, which concerns the system readiness for 

the usage. For a simplex system with EDAC, steady-state 

Availability (A(oo)) is related to MTTF and to Mean Time 

To Repair (MTTR) by the following equation: 

A(oo) 
MTTF 

MTTR + MTTF 
(2) 

R(t) and A(t) can be estimated analytically by using Markov 

models [43]-[45]. The resulting expressions for systems with 

scrubbing are a function of t, A and fj,, where A is the upset rate 

(approximating SEU by a Poisson process) and ¡j, is the SEU 

repair rate for configuration memory. For analytical purposes, 

both A and ¡j, are assumed to be constant, leading the latter to a 

MTTR equal to l//i. 

The Availability (J4(OO)) expressions for TMR (with correc-

tion capability) systems can also be found in [45]. An important 

consideration from this previous work is that A{oo) for systems 

with a fixed scrubbing rate improves (up to the maximum) with 

increasing scrub period, but after a certain period it drops rela-

tively fast. Therefore, for a given A and /x, one should choose the 

scrub period that maximizes A(oo). Availability numbers based 

on experimental data are also given in [6]. 

Assuming that the application needs to be stopped while 

repairing (i.e., scrubbing), MTTR is lower when scrubbing 

a single frame than when scrubbing the full device, and this 

improves Availability. However in a TMR system, the applica-

tion may not need to be stopped as long SEUs are affecting no 

more than one design module. In that case Availability is not 

impacted until a second SEU affects a second module. 

TMR systems with an arbitrary number of partitions can be 

implemented to tolerate Multiple Independent Upsets (MIU) in 

multiple redundant circuits. Markov model theory and experi-

mental validation for such systems is presented in [44], where 

reliability is shown to improve with increasing number of par-

titions. Another consideration is the possibility of having per-

sistent errors [46]. Such type of errors cannot be mitigated by 

scrubbing, and the system becomes permanently unavailable. A 

Markov model for a TMR system having a fraction of errors 

being persistent is also presented in [43]. 

An alternate way to evaluate the reliability is found in [24]. 

In this work, a reliability model for estimating the MTTF of 

designs implemented on Virtex-4 XQR4VSX55 FPGA is pro-

posed. The failure probability during a single scrub cycle is an-

alyzed, and the composite failure rate Ac is the summation of 

several A¿/9¿ terms. Each term is the probability of being in an 

orbit condition pi, times the failure rate during such orbit con-

dition A¿. The obtained expression for MTTF includes two fac-

tors that need to be obtained separately by different means. The 

first factor, which is the probability of having i SEUs during the 



scrub period, needs to be estimated using CREME96 orbit-av-

eraged static SEU rates. The second factor, which is the prob-

ability of failure during the scrub period if i SEUs occurred 

during that period, needs to be obtained experimentally. For the 

latter, two experimental methods are tested and correlated: fault 

injection and accelerator testing. This experimental work yields 

a few important conclusions for the system designer: 

• The MTTF of a design with TMR and scrubbing is about 

four orders of magnitude greater than the non-TMR design. 

• With the same FPGA and irradiation conditions, the relia-

bility is very design-dependent. 

• The scrub rate increase reduces the probability of having 

more than one SEU per scrub period, and therefore im-

proves the reliability. 

As a final consideration, reliability can be improved at design 

time by analyzing the most sensitive parts of the design and 

performing a reliability-aware place and route of the design in 

the FPGA [47], [34]. 

B. Power Consumption 

Configuration memory scrubbing comes at a power cost that 

can be split in two components: power consumed and dissi-

pated by the configuration port and built-in configuration con-

troller, and power consumed and dissipated by the scrubber cir-

cuitry. When the scrubber is internal to the Virtex FPGA, both 

components add up and contribute to the overall FPGA power 

consumption and dissipation. When the scrubber is an external 

device, only considering its static power dissipation makes the 

overall system power increase substantially. 

The first thing to be considered is that power overhead is 

driven by the scrub or readback rate. If these rates are kept fixed 

to a value such that reliability requirement is met under peak ra-

diation levels predicted for the mission, most likely the power 

overhead is unnecessarily high most of the time. However, if 

rates are dynamically adapted to the radiation environment, the 

power overhead can be reduced to the the minimum necessary 

at any given time. The former would be the case for a fixed rate 

scrubbing methodology, while the latter could be achieved with 

an adaptive rate methodology, both described in Section VI.C. 

Another factor contributing to the power overhead is the 

configuration clock operation during scrub or readback phases. 

For SelectMAP (the usual configuration port used for scrub-

bing), the clock can be free-running or actively controlled (i.e., 

clocking only when necessary). The latter can be used in order 

to minimize power due to clock switching during readback 

and scrubbing, even to keep clock idle during the rest of the 

time. For example, in a corrective scrubbing scenario (see 

Section VI.A), variable clocking frequency can be envisaged 

in order to perform readback at lowest possible frequency 

(while meeting the readback rate requirement) and to perform 

scrubbing at higher frequency in order to minimize the MTTR 

and improve Availability (see Section VIII.A). 

In spite of the importance of power consumption at system 

level, no power characterization for mitigation techniques was 

found in previous work. This is outlined as a line for future 

work. 

IX. CONCLUSION 

This paper highlights the benefits of SRAM-based FPGAs, 

and in particular Xilinx Virtex-4QV and -5QV FPGAs, for 

high-performance reconfigurable applications, and at the same 

time addresses the inherent susceptibility to ionizing radiation. 

Virtex FPGA architecture is recalled, conceptually separating 

Application Layer from Configuration Layer. Radiation effects 

at both layers are reviewed, focusing on the latter. Configuration 

memory scrubbing basics, methodologies and architectures are 

identified and classified, trading-off benefits and limitations for 

each particular choice. Finally, system-level reliability, avail-

ability and power consumption considerations are discussed, 

as they provide driving requirements to the scrubber design. 

Future work is outlined in the research of novel design method-

ologies and architectures for reliability-aware and power-aware 

configuration memory scrubbers for SRAM-based FPGAs. 

REFERENCES 

[1] J. Wang, R. Katz, J. Sun, B. Cronquist, J. McCollum, T. Speers, and W. 
Plants, "SRAM based re-programmable FPGA for space applications," 
IEEE Trans. Nucl. Sci., vol. 46, no. 6, pp. 1728-1735, Dec. 1999. 

[2] S. Habinc, "Suitability of Reprogrammable FPGAs in Space Applica-
tions," Gaisler Research, Feasibility Rep., 2002. 

[3] K. Morris, "FPGAs in space," FPGA and Programmable Logic J., 
2004. 

[4] B. Osterloh, H. Michalik, S. Habinc, and B. Fiethe, "Dynamic partial 
reconfiguration in space applications," in Proc. AHS '09. NASA/ESA 
Conf. Adaptive Hardware and Syst., 2009, pp. 336-343. 

[5] R. Roosta, "A comparison of radiation-hard and radiation-tolerant 
FPGAs for space applications," NASA Electronic Parts and Packaging 
(NEPP) Program JPL D-31228, 2004. 

[6] M. Berg and K. LaBel, "Determining the best-fit FPGA for a space 
mission: An analysis of cost, SEU sensitivity, and reliability," in Proc. 
Microelectron. Reliab. Qualificat. Workshop (MRQW), 2007. 

[7] C. Carmichael and C. W. Tseng, "Correcting single-event upsets in 
Virtex-4 FPGA configuration Memory," Xilinx Application Note 
(XAPP1088), 2009. 

[8] Y. C. Wang, "Recommendations for managing the configuration of 
the RHBD virtex-5QV," Xilinx Presentation in NASA Military and 
Aerospace Programmable Logic Devices, MAPLD, 2011. 

[9] M. Ceschia, M. Violante, M. Reorda, A. Paccagnella, P. Bernardi, M. 
Rebaudengo, D. Bortolato, M. Bellato, P. Zambolin, and A. Candelori, 
"Identification and classification of single-event upsets in the configu-
ration memory of SRAM-based FPGAs," IEEE Trans. Nucl. Sci., vol. 
50, no. 6, pp. 2088-2094, Dec. 2003. 

[10] P. Adell and G. Allen, Assessing and Mitigating Radiation Effects in 
Xilinx FPGAs. Pasadena, CA, Jet Propulsion Laboratory, California 
Inst, of Technol., 2008. 

[11] G. Allen, G. Swift, and C. Carmichael, VIRTEX-4 VQ Static SEU 
Characterization Summary. Pasadena, CA, Jet Propulsion Labora-
tory, NASA, 2008. 

[12] G. Allen, Virtex-4VQ Dynamic and Mitigated Single Event Upset 
Characterization Summary. Pasadena, CA, Jet Propulsion Labora-
tory, NASA, 2009. 

[13] R. Monreal, C. Carmichael, and G. Swift, "Single-event characteriza-
tion of multi-gigabit transceivers (MGT) in space-grade virtex-5QV 
field programmable gate arrays (FPGA)," in Proc. Radiation Effects 
Data Workshop (REDW), Jul. 2011, pp. 1-8. 

[14] G. Allen, L. Edmonds, C. W. Tseng, G. Swift, and C. Carmichael, 
"Single-event upset (SEU) results of embedded error detect and correct 
enabled block random access memory (block RAM) within the xilinx 
XQR5VFX130," IEEE Trans. Nucl. Sci.,vol. 57,no. 6, pp. 3426-3431, 
Dec. 2010. 

[15] M. Sonza Reorda, L. Sterpone, and M. Violante, "Multiple errors pro-
duced by single upsets in FPGA configuration memory: A possible so-
lution," in Proc. Test Symp., Eur., May 2005, pp. 136-141. 

[16] H. Quinn, K. Morgan, P. Graham, J. Krone, M. Caffrey, and K. Lund-
green, "Domain crossing errors: Limitations on single device triple-
modular redundancy circuits in Xilinx FPGAs," IEEE Trans. Nucl. Sci., 
vol. 54, no. 6, pp. 2037-2043, Dec. 2007. 



[17] H. Quinn, K. Morgan, P. Graham, J. Krone, and M. Caffrey, "A re-
view of Xilinx FPGA architectural reliability concerns from Virtex to 
Virtex-5," inProc. 9thEur. Conf. Radiation and Its Effects on Compon. 
Syst., RADECS '07, Sep. 2007, pp. 1-8. 

[18] A. Tylka, J. Adams Jr., P. Boberg, B. Brownstein, W. Dietrich, E. 
Flueckiger, E. Petersen, M. Shea, D. Smart, and E. Smith, "CREME96: 
A revision of the cosmic ray effects on micro-electronics code," IEEE 
Trans. Nucl. Sci., vol. 44, no. 6, pp. 2150-2160, Dec. 1997. 

[19] Xilinx Radiation Test Consortium (XRTC), [Online]. Available: http:// 
www.xilinx.com/esp/aerospace-defense/space/xrtc.htm Xilinx Inc. 

[20] C. López-Ongil, M. García-Valderas, M. Pórtela-García, and L. En-
trena, "Autonomous fault emulation: A new FPGA-based acceleration 
system for hardness evaluation," IEEE Trans. Nucl. Sci., vol. 54, no. 1, 
pp. 252-261, Feb. 2007. 

[21] M. Alderighi, F. Casini, S. D'Angelo, M. Mancini, S. Pastore, and 
G. Sechi, "Evaluation of single event upset mitigation schemes for 
SRAM based FPGAs using the FLIPPER fault injection platform," in 
Proc. 22nd IEEE Int. Symp. Defect and Fault-Tolerance in VLSI Syst., 
DFT'07, 2007, pp. 105-113. 

[22] M. Aguirre, J. Tombs, V. Baena, F. Mufloz-Chavero, A. Torralba, A. 
Fernández-León, and F. Tortosa, "FT-UNSHADES: Anew system for 
SEU injection, analysis and diagnostics over post synthesis netlist," 
in Proc. NASA Military Aerosp. Programm. Logic Devices, MAPLD, 
2005, p. 2005. 

[23] G. Allen, Mitigation Selection and Qualification Recommendations for 
Xilinx Virtex, Virtex-II, and Virtex-4 Field Programmable Gate Ar-
rays. Pasadena, CA, Jet Propulsion Laboratory, NASA, 2009. 

[24] P. Ostler, M. Caffrey, D. Gibelyou, P. Graham, K. Morgan, B. Pratt, H. 
Quinn, and M. Wirthlin, "SRAM FPGA reliability analysis for harsh 
radiation environments," IEEE Trans. Nucl. Sci., vol. 56, no. 6, pp. 
3519-3526, Dec. 2009. 

[25] K. Chapman and L. Jones, SEU Strategies for Virtex-5 Devices Xilinx 
Application Note (XAPP864), 2009. 

[26] H. Quinn, P. Graham, K. Morgan, J. Krone, M. Caffrey, and M. 
Wirthlin, "An introduction to radiation-induced failure modes and 
related mitigation methods for Xilinx SRAM FPGAs," in Proc. Int. 
Conf. Eng. Reconfigurable Syst. Algorithms,(ERSA08), 2008, pp. 
139-145. 

[27] I. Herrera-Alzu and M. López-Vallejo, "Self-reference scrubber for 
TMR systems based on xilinx virtex FPGAs," Integr. Circuit Syst. De
sign. Power, Timing Modeling, Optimiz., Simulat., pp. 133-142, 2011. 

[28] D. Johnson, K. Morgan, M. Wirthlin, M. Caffrey, and P. Graham, "Per-
sistent errors in SRAM-based FPGAs," in 7th Annu. Conf. Military 
Aerosp. Programm. Logic Devices (MAPLD), 2004. 

[29] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, K. LaBel, M. 
Friendlich, H. Kim, and A. Phan, "Effectiveness of internal versus 
external SEU scrubbing mitigation strategies in a Xilinx FPGA: De-
sign, test, and analysis," IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 
2259-2266, Aug. 2008. 

[30] M. Berg, "Trading ASIC and FPGA considerations for system in-
sertion," in Proc. Short Course in Nucl. Space Radiat. Effects Conf, 
NSREC, 2009. 

[31] A. Vampola, M. Laúdente, D. Wilkinson, J. Allen, and F. Albin, 
"Single event upsets correlated with environment," IEEE Trans. Nucl. 
Sci., vol. 41, no. 6, pp. 2383-2388, Dec. 1994. 

[32] D. Fay, A. Shye, S. Bhattacharya, D. Connors, and S. Wichmann, "An 
adaptive fault-tolerant memory system for FPGA-based architectures 
in the space environment," in Proc. 2nd NASA/ESA Conf. Adaptive 
Hardware and Syst. AHS '07, 2007, pp. 250-257. 

[33] A. Jacobs, A. George, and G. Cieslewski, "Reconfigurable fault tol-
erance: A framework for environmentally adaptive fault mitigation in 
space," in Proc. Int. Conf. Field Programm. Logic Applic at., FPL '09, 
2009, pp. 199-204. 

[34] C. Bolchini, A. Miele, and C. Sandionigi, "A novel design method-
ology for implementing reliability-aware systems on SRAM-based 
FPGAs," IEEE Trans. Comput, vol. 60, no. 12, pp. 1744-1758, Dec. 
2011. 

[35] J. Heiner, N. Collins, and M. Wirthlin, "Fault tolerant ICAP controller 
for high-reliable internal scrubbing," in Proc. IEEE Aerosp. Conf, 
2008, pp. 1-10. 

[36] A. Martin-Ortega, M. Alvarez, S. Esteve, S. Rodriguez, and S. Lopez-
Buedo, "Radiation hardening of FPGA-based SoCs through self-re-
configuration and XTMR techniques," in Proc. IEEE 4th Programm. 
Logic, Southern Conf, 2008, pp. 261-264. 

[37] C. Yui, G. Swift, C. Carmichael, R. Koga, and J. George, "SEU mit-
igation testing of Xilinx Virtex II FPGAs," in Proc. IEEE Radiation 
Effects Data Workshop, 2003, pp. 92-97. 

[38] M. Ng and M. Peattie, "Using a microprocessor to configure Xilinx 
FPGAs via slave serial or SelectMap mode," Xilinx Application Note 
(XAPP502), 2002. 

[39] Y. Li, D. Li, and Z. Wang, "A new approach to detect-mitigate-correct 
radiation-induced faults for SRAM-based FPGAs in aerospace applica-
tion," inProc. IEEE Nat. Aerosp. Electron. Conf. NAECON '00, 2000, 
pp. 588-594. 

[40] G. A. Vera, "A programmable configuration scrubber for FPGAs," in 
Proc. Military/Aerosp. Programm. Logic Devices (MAPLD) Conf, 
2009. 

[41] M. Gokhale, P. Graham, M. Wirthlin, and D. Johnson, "Dynamic re-
configuration for management of radiation-induced faults in FPGAs," 
Int. J. Embedded Syst, vol. 2, no. 1, pp. 28-38, 2006. 

[42] B. Johnson, Design & Analysis of Fault Tolerant Digital Systems. 
Boston, MA: Addison-Wesley, 1988. 

[43] D. McMurtrey, K. Morgan, B. Pratt, and M. Wirthlin, "Estimating TMR 
reliability on FPGAs using Markov models," Brigham Young Univ. 
Dept. of Elect, and Comput. Eng., 2007, Tech. Rep. 

[44] B. Pratt, M. Caffrey, D. Gibelyou, P. Graham, K. Morgan, and M. 
Wirthlin, "TMR with more frequent voting for improved FPGA relia-
bility," Brigham Young Univ. Dept. of Elect, and Comput. Eng., 2008, 
Tech. Rep. 

[45] Z. Wang, L. Ding, Z. Yao, H. Guo, H. Zhou, and M. Lv, "The relia-
bility and availability analysis of SEU mitigation techniques in SRAM-
based FPGAs," inProc. Eur. Conf. Radiat. Its Effects on Compon. Syst. 
(RADECS), 2009, pp. 497-503. 

[46] K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt, and M. 
Wirthlin, "SEU-induced persistent error propagation in FPGAs," 
IEEE Trans. Nucl. Sci., vol. 52, no. 6, pp. 2438-2445, Dec. 2005. 

[47] L. Sterpone, M. Reorda, and M. Violante, "RoRA: A reliability-ori-
ented place and route algorithm for SRAM-based FPGAs," inResearch 
inMicroelectron. Electron., 2005, vol. 1, pp. 173-176. 

http://
http://www.xilinx.com/esp/aerospace-defense/space/xrtc.htm

