
Research article

Design theory for dynamic complexity in

information infrastructures: the case of

building internet
Ole Hanseth1, Kalle Lyytinen2

1Department of Informatics, University of Oslo, Norway;
2Department of Information Systems, Weatherhead School of Management, Case Western Reserve University, Cleveland, USA

Correspondence:
O Hanseth, Department of Informatics, University of Oslo, Boks 1072 Blindern, NO-0316 OSLO, Norway.
Tel: þ 47 95 90 85 09;
Fax: þ 47 22 85 24 01;
E-mail: ole.hanseth@ifi.uio.no

Abstract
We propose a design theory that tackles dynamic complexity in the design for Information
Infrastructures (IIs) defined as a shared, open, heterogeneous and evolving socio-technical
system of Information Technology (IT) capabilities. Examples of IIs include the Internet, or
industry-wide Electronic Data Interchange (EDI) networks. IIs are recursively composed
of other infrastructures, platforms, applications and IT capabilities and controlled by
emergent, distributed and episodic forms of control. II’s evolutionary dynamics are
nonlinear, path dependent and influenced by network effects and unbounded user and
designer learning. The proposed theory tackles tensions between two design problems
related to the II design: (1) the bootstrap problem: IIs need to meet directly early users’
needs in order to be initiated; and (2) the adaptability problem: local designs need to
recognize II’s unbounded scale and functional uncertainty. We draw upon Complex
Adaptive Systems theory to derive II design rules that address the bootstrap problem by
generating early growth through simplicity and usefulness, and the adaptability problem by
promoting modular and generative designs. We illustrate these principles by analyzing the
history of Internet exegesis.
Journal of Information Technology (2010) 25, 1–19. doi:10.1057/jit.2009.19
Keywords: design theory; Complex Adaptive Systems; information infrastructure; Internet; historical
case study

Introduction

I
ncreased processing power and higher transmission and
storage capacity have made it possible to build increas-
ingly integrated and versatile Information Technology

(IT) solutions whose complexity has grown dramatically
(BCS/RAE, 2004; Hanseth and Ciborra, 2007; Kallinikos,
2007). Complexity can be defined here as the dramatic
increase in the number and heterogeneity of included
components, relations, and their dynamic and unexpected
interactions in IT solutions. Unfortunately, software
engineering principles and design methodologies have not
scaled up creating a demand for new approaches to better
cope with this increased complexity (BCS/RAE, 2004).
The growth in complexity has brought to researchers’
attention novel mechanisms to cope with it like architec-
tures, modularity or standards (Parnas, 1972; Schmidt and

Werle, 1998; Baldwin and Clark, 2000). Another, more
recent stream of research has adopted a more holistic,
socio-technical and evolutionary approach putting the
growth in the combined social and technical complexity
at the center of an empirical scrutiny (see, e.g., Edwards
et al., 2007). These scholars view these complex systems as
new types of IT artifacts and denote them with a generic
label of Information Infrastructures (IIs). So far, empirical
studies have garnered significant insights into the evolution
of IIs of varying scale, functionality and scope including
Internet (Abbate, 1999; Tuomi, 2002), electronic market
places and EDI networks (Damsgaard and Lyytinen, 2001;
Wigand et al., 2006), wireless service infrastructures (Funk,
2002; Yoo et al., 2005) or ERP systems (Ciborra et al., 2000).
At the same time effective design of IIs holds considerable

Journal of Information Technology (2010) 25, 1–19
& 2010 JIT Palgrave Macmillan All rights reserved 0268-3962/10

palgrave-journals.com/jit/



benefits for individuals, businesses and society at large as
testified, for example, by the success of Internet. Yet,
failures to design IIs are more common incurring huge
losses in foregone investments, opportunity costs, and
political and social problems. A case in point is current the
difficulty to implement a nation wide e-health system in the
UK (Sauer and Willcocks, 2007; Greenhalgh et al., 2008).

One challenge in the II research has been in the difficulty
of translating vivid empirical descriptions of IIs evolution
into effective socio-technical design principles that promote
their evolution, growth and complexity coordination. In
this paper we make some steps in addressing this challenge
by formulating a new design approach to address the
dynamic complexity of IIs. From a technical view point
designing an II involves discovery, implementation, in-
tegration, control and coordination of increasingly hetero-
geneous IT capabilities. Socially, it requires organizing and
connecting heterogeneous actors with diverging interests in
ways that allow for II growth and evolution. In the
proposed approach we posit that the growing complexity
of IIs originates from local, persistent and limitless shaping
of II’s IT capabilities due to the enrollment of diverse
communities with new learning and technical opportu-
nities. We argue that one common reason for the
experienced II design culprits is that designers cannot
design IIs effectively by following traditional top-down
design. In particular, the dynamic complexity poses a
chicken-egg problem for the would-be II designer that has
been largely ignored in the traditional approaches. On one
hand, IT capabilities embedded in II gain their value by
being used by a large number of users demanding rapid
growth in the user base (Shapiro and Varian, 1999).
Therefore, II designers have to come up early on with
solutions that persuade users to adopt while the user
community is non-existent or small. This requires II
designers to address head on the needs of the very first
users before addressing completeness of their design, or
scalability. This can be difficult, however, because II
designers must also anticipate the completeness of their
designs. This defines the bootstrap problem of II design. On
the other hand, when the II starts to expand by benefitting
from the network effects, it will switch to a period of rapid
growth. During this growth, designers need to heed for
unforeseen and diverse demands and produce designs that
cope technically and socially with these increasingly varying
needs. This demands infrastructural flexibility in that the II
adapts technically and socially. This defines the adaptability
problem of II design (Edwards et al., 2007). Clearly, these two
demands contradict and generate tensions at any point of
time in II design (Edwards et al., 2007).

In this paper we will address this tension by examining
emergent properties of IIs as adaptive complex systems. As
IIs exhibit high levels of dynamic complexity, they cannot
be designed in the traditional way starting with a ‘complete’
set of requirements. II designers cannot design IIs just
based on the ‘local’ knowledge, but they can increase the
likelihood for successful emergence and growth of IIs by
involving elements in their designs that take into account
socio-technical features of IIs generated by their dynamic
complexity. We call this engagement design for IIs.1 While
designing for IIs, the designers need to ask how they can
generate designs that promote continued growth and

adaptation of IIs. To this end we outline a socio-technical
II design theory (Walls et al., 1992, 2004) consisting of
design principles and rules (Walls et al., 1992, 2004;
Baldwin and Clark, 2000; Markus et al., 2002). This theory
can guide design behaviors in ways that allow IIs grow and
adapt as self-organizing systems. It is a socio-technical
theory, because its design domain involves both technical
and social elements and their relationships. It is a design
theory, because it consists of ‘how to’ design principles and
rules (Walls et al., 1992, 2004; Markus et al., 2002) backed
by ‘because of’ justifications derived from a kernel theory –
Complex Adaptive Systems (CAS) theory (Holland, 1995).
We illustrate the validity of these design principles and
rules by following the exegesis of Internet.

The remainder of this essay is organized as follows. In
the next section we define IIs and characterize their
dynamic complexity. The following section formulates the
design theory based on CAS to address dynamic complexity
by deriving design principles. In the subsequent section we
detail the design rules to address dynamic complexity and
illustrate their use during the design of the Internet. In the
final section we offer concluding remarks and note some
avenues for future research.

Information infrastructures

IT capabilities, applications and platforms
As noted, IIs form a different ‘unit’2 of design when compared
with traditional classes of IT solutions. These design classes
can be defined in their order of increasing complexity as: (1)
IT capabilities, (2) applications, (3) platforms, and (4) IIs.
The main differences between these classes lie in their overall
complexity, how they relate to their design and use
environments, and how they behave over time in relation
to those environments. They pose different challenges during
the design, are organized differently, controlled differently
and obtain distinct emergent properties. The main features of
each class are depicted in Table 1.

We denote an IT capability as the possibility and/or right
of the user or a user community to perform a set of actions
on a computational object or process. An example of such
capability would be a text editor. An IT capability is defined
and managed locally by single or a small group of
designers. They typically control its evolution locally. IT
capabilities are viewed here solely as engineered artifacts.

Applications consist of suites of IT capabilities. They are
developed to meet a set of specified user needs within a
select set of communities. They can grow amazingly
complex in terms of effort and scope, but despite this,
they still can be viewed as applications, if governed by a set
of specifications3 through which their design scope remains
bounded. An application is a priori determined by choice of
design context, user groups and functional goals. Conse-
quently, the application can be developed, and preferably
should be done so, by a hierarchy assuming centralized
control.4 Therefore, most proposed design theories address
the design of applications by promoting ways of generating
effectively a closure in the included IT capabilities as to
meet user’s needs (Boehm, 1976; Ross and Schoman, 1977;
DeMarco, 1978; Olle et al., 1983; Agresti, 1986; Walls et al.,
1992; Freeman, 2007).

Design theory for dynamic complexity O Hanseth and K Lyytinen

2



T
a
b

le
1

A
p
p
lic

a
ti
o
n
s
,

p
la

tf
o
rm

s
a
n
d

in
fo

rm
a
ti
o
n

in
fr

a
s
tr

u
c
tu

re
s

P
ro

pe
rt

y/
T

yp
e

of
IT

sy
st

em
A

pp
li

ca
ti

on
P

la
tf

or
m

In
fo

rm
a

ti
on

in
fr

a
st

ru
ct

u
re

E
m

er
ge

n
t

pr
op

er
ti

es
Sh

ar
ed

Y
es

,
lo

ca
ll

y
an

d
th

ro
u

gh
sp

ec
if

ie
d

fu
n

ct
io

n
s

Y
es

,
ac

ro
ss

in
vo

lv
ed

u
se

r
co

m
m

u
n

it
ie

s
an

d
ac

ro
ss

a
se

t
o

f
IT

ca
p

ab
il

it
ie

s

Y
es

,
u

n
iv

er
sa

ll
y

an
d

ac
ro

ss
m

u
lt

ip
le

IT
ca

p
ab

il
it

ie
s

(S
ta

r
an

d
R

u
h

le
d

er
,

19
96

;
P

o
rr

a,
19

99
)

O
p

en
N

o
,

cl
o

se
d

b
y

u
se

r
gr

o
u

p
an

d
fu

n
ct

io
n

al
it

y
P

ar
ti

al
ly

,
d

ep
en

d
s

o
n

d
es

ig
n

ch
o

ic
es

an
d

m
an

ag
er

ia
l

p
o

li
ci

es
Y

es
,

u
n

iv
er

sa
ll

y
al

lo
w

in
g

u
n

li
m

it
ed

co
n

n
ec

ti
o

n
s

to
u

se
r

co
m

m
u

n
it

ie
s

an
d

n
ew

IT
ca

p
ab

il
it

ie
s

(W
ei

ll
an

d
B

ro
ad

b
en

t,
19

98
;

K
ay

w
o

rt
h

an
d

Sa
m

b
am

u
rt

h
y,

20
00

;
F

re
em

an
,

20
07

)

H
et

er
o

ge
n

eo
u

s
Y

es
,

p
ar

ti
al

ly
an

d
m

ai
n

ly
b

y
in

vo
lv

ed
so

ci
al

gr
o

u
p

s
P

ar
ti

al
ly

,
m

ai
n

ly
b

y
so

ci
al

gr
o

u
p

s
b

u
t

al
so

b
y

te
ch

n
ic

al
co

n
n

ec
ti

o
n

s

Y
es

,
in

cr
ea

si
n

gl
y

h
et

er
o

ge
n

eo
u

s
b

o
th

te
ch

n
ic

al
ly

an
d

so
ci

al
ly

(K
li

n
g

an
d

Sc
ac

ch
i,

19
82

;
H

u
gh

es
,

19
87

;
K

li
n

g,
19

92
;

E
d

w
ar

d
s

et
a

l.
,

20
07

)

E
vo

lv
in

g
Y

es
,

b
u

t
li

m
it

ed
b

y
ti

m
e

h
o

ri
zo

n
an

d
u

se
r

co
m

m
u

n
it

y.
Y

es
,

an
d

li
m

it
ed

b
y

ar
ch

it
ec

tu
ra

l
ch

o
ic

es
an

d
fu

n
ct

io
n

al
cl

o
su

re
Y

es
,

u
n

li
m

it
ed

b
y

ti
m

e
o

r
u

se
r

co
m

m
u

n
it

y
(S

ta
r

an
d

R
u

h
le

d
er

,
19

96
;

F
re

em
an

,
20

07
;

Z
im

m
er

m
an

,
20

07
)

L
in

ea
r

gr
o

w
th

M
o

st
ly

li
n

ea
r

gr
o

w
th

B
o

th
li

n
ea

r
an

d
n

o
n

li
n

ea
r

gr
o

w
th

(H
u

gh
es

,
19

87
)

E
vo

lu
ti

o
n

b
o

u
n

d
ed

an
d

co
n

te
xt

fr
ee

E
vo

lu
ti

o
n

p
at

h
d

ep
en

d
en

t
E

vo
lu

ti
o

n
p

at
h

d
ep

en
d

en
t

(S
ta

r
an

d
R

u
h

le
d

er
,

19
96

;
P

o
rr

a,
19

99
;

E
d

w
ar

d
s

et
a

l.
,

20
07

)

St
ru

ct
u

ra
l

pr
op

er
ti

es
O

rg
an

iz
in

g
p

ri
n

ci
p

le
D

ir
ec

t
co

m
p

o
si

ti
o

n
o

f
IT

ca
p

ab
il

it
ie

s
w

it
h

in
a

h
o

m
o

ge
n

eo
u

s
p

la
tf

o
rm

D
ir

ec
t

co
m

p
o

si
ti

o
n

o
f

a
se

t
o

f
h

o
ri

zo
n

ta
l

IT
ca

p
ab

il
it

ie
s

w
it

h
in

a
se

t
o

f
h

o
m

o
ge

n
eo

u
s

p
la

tf
o

rm
s

R
ec

u
rs

iv
e

co
m

p
o

si
ti

o
n

o
f

IT
ca

p
ab

il
it

ie
s,

p
la

tf
o

rm
s

an
d

in
fr

as
tr

u
ct

u
re

s
o

ve
r

ti
m

e
(S

ta
r

an
d

R
u

h
le

d
er

,
19

96
;

E
d

w
ar

d
s

et
a

l.
,

20
07

)

C
o

n
tr

o
l

C
en

tr
al

iz
ed

C
en

tr
al

iz
ed

D
is

tr
ib

u
te

d
an

d
d

yn
am

ic
al

ly
n

eg
o

ti
at

ed
(W

ei
ll

an
d

B
ro

ad
b

en
t,

19
98

)
C

an
in

vo
lv

e
o

n
ly

b
as

is
o

rg
an

iz
in

g
p

ri
n

ci
p

le
s

(s
ta

n
d

ar
d

s)
an

d
re

ly
o

n
in

st
al

le
d

b
as

e
in

er
ti

a
(S

ta
r

an
d

R
u

h
le

d
er

,
19

96
;

E
d

w
ar

d
s

et
a

l.
,

20
07

).

Design theory for dynamic complexity O Hanseth and K Lyytinen

3



Platforms differ from applications due to their hetero-
geneous and growing user base, that is their design context
is not fixed due to the constant generification of included
IT capabilities (Williams and Pollock, 2008). Platforms
include, for example, office software platforms (MS Office,
Officestar), operating system platforms (Windows, Unix),
application frameworks like ERP or CRM packages (SAP,
Oracle, SalesForge) or application development platforms
(e.g. Service Oriented Architecture). Platform designs draw
upon architectural principles that organize IT capabilities
into frameworks allowing the software to address a family
of generic functional specifications that meet the needs of
multiple, heterogeneous and growing user communities
(Evans et al., 2006; Williams and Pollock, 2008). Platforms
are composed by formulating a design framework (archi-
tecture) that allows organizing a growing set of IT
capabilities into a relatively well-bounded and controlled
system. The platforms provide thus a (semi)-closed, and
highly complex suite of IT capabilities, which, thanks to the
original architecting, can be extended. A platform’s initial
design starts with a set of closed specifications determining
included IT capabilities and anticipated requirements for
their extensions and combinations. Their evolution is also
governed and constrained by these initial specifications.
Therefore, the design context remains controlled and the
relationships between the user and design communities do
not change significantly during the platform’s lifetime.
Platforms typically grow in complexity as designers take
into account heterogeneous user needs while maintaining
backward compatibility and horizontal compatibility across
different combinations of capabilities. Therefore, many
platforms, originally conceived as limited sets of IT
capabilities, obtain later emergent features; they start
growing in seemingly unlimited fashion and serve unex-
pected user communities generating exponentially growing
technical and social complexity. Consider, for example, the
growth of the MS Office platform, or Linux operating system
due to the increasingly distributed and open character of
their design and user communities (Scacchi, 2009).

Defining II
Based on an extensive literature review we will define next II.
Hughes (1987) recognized early on heterogeneity, socio-
technical nature and unbounded growth as essential features
of infrastructures. Kling (1992) and Kling and Scacchi (1982)
drew attention to additional material requirements of
infrastructures like connectivity. Porra (1999) and Star and
Ruhleder (1996) have recently emphasized the criticality of
sharing and learning within and across communities, while
Kayworth and Sambamurthy (2000), Weill and Broadbent
(1998) and Chung et al. (2003) have pinpointed the
possibility to shape infrastructures by local choice. Finally,
recent definitions of IIs recognize tensions between the local
and the global, their recursive nature, their unique
coordination challenges due to the lack of global control
(Star and Ruhleder, 1996; Edwards et al., 2007; Freeman,
2007; Zimmerman, 2007) (Table 1).

Accordingly, we will define an II as a shared, open (and
unbounded), heterogeneous and evolving socio-technical
system (which we call installed base) consisting of a set of
IT capabilities and their user, operations and design

communities. This definition highlights both the structural
properties and the emergent properties of IIs that
distinguish IIs from their constituent elements (Table 1).

Structurally an II is recursively composed of other
infrastructures, platforms, application and IT capabilities.
Recursion forms the organizing principle implying that IIs
return ‘onto’ themselves by being composed of similar
elements (Lee et al., 2006). Socially, IIs are also recursively
organized in that they are both outcomes and conditions of
design action and involve rule-following and rule-shaping
activity (Giddens, 1984). The control of II is distributed and
episodic and an outcome of negotiation and shared
agreements. Distributed forms of control form often the
only way to coordinate II evolution and thus IIs are never
changed from above (Star and Ruhleder, 1996). Therefore,
they cannot be truly ‘designed’ in a traditional sense as in
traditional approaches a designer assumes control over the
design space (Edwards et al., 2007; Freeman, 2007). Episodic
forms of control determine which groups of designers
control which parts or elements of the II; what IT capabilities
become integrated and how; who has access to the
capabilities and so on (Tuomi, 2002; Edwards et al., 2007).

IIs become shared across multiple communities in a
myriad and unexpected ways. In principle, they exhibit
unbounded openness: new components can be added and
integrated with them in unexpected ways and contexts. In
addition, there are no clear boundaries between those that
can use an II and those that cannot; and there are no clear
boundaries between those that can design the II and those
that may not. As a result, II designs need to be approached
as if no closure, in principle, is assumed in their form or
content, capability, form or scope of access.

The openness of IIs implies that during their lifetime the
social and technical diversity and heterogeneity of IIs will
increase (Edwards et al., 2007). IIs become increasingly
heterogeneous as the number of different kinds of technolo-
gical components are included, but first of all because IIs
include (an increasing number of) components of very
different nature: user communities, operators, standardization
and governance bodies, design communities, etc.

Finally, because IIs are open, they evolve, seemingly, ad
infinitum. IIs are never built in a green field, nor do they
die – though they may wither to rise in new forms (Edwards
et al., 2007). IIs are often bootstrapped by experimenting
and thereby enrolling new communities. For example,
Berners-Lee designed the first web service to meet
information sharing needs among high energy physicists
(Berners-Lee and Fischetti, 1999). As this design unfolded,
designers and users discovered additional IT capabilities, or
transformed the existing ones to new uses, or to other
design contexts thereby expanding the web (Ciborra et al.,
2000) generating its fractal evolution. Hence, the evolution
of ‘Infrastructure is fixed in modular increments, not all at
once or globally’ (Star and Ruhleder, 1996).

Overall, the evolution of infrastructures is both enabled
and constrained by the installed base,5 that is the existing
configuration of II components (Hughes, 1987; Star and
Ruhleder, 1996; Porra, 1999). Whatever is added needs to
be integrated and made compatible with this base. This sets
up demands for horizontal and/or backwards compatibility
and imposes constraints on what can be designed at
any time. Accordingly, II evolution is path dependent

Design theory for dynamic complexity O Hanseth and K Lyytinen

4



and shaped by neighboring infrastructures, existing IT
capabilities, user and designer learning, cognitive inertia,
etc. (Hughes, 1987; Kling, 1992; Star and Ruhleder, 1996;
Hanseth and Monteiro, 1997; Porra, 1999).

Related research
Most II research has aimed at identifying the main features
and characteristics of IIs – their ‘nature’ as they evolve and
developers and users are struggling to make them work (Star
and Ruhleder, 1996; Ciborra et al., 2000; Kallinikos, 2004,
2006, 2007; Edwards et al., 2007; Contini and Lanzara, 2009).

Standards are core elements of IIs; hence standards
research constitutes a major part of II research (Star and
Ruhleder, 1996; Edwards et al., 2007). A large part of this
research has focused on and disclosed a very dense and
complex web of relations between technical and social (or
non-technical) issues and elements of the standards
(Hanseth and Monteiro, 1997; Bowker and Star, 1999;
Lyytinen and Fomin, 2002) Another key part of the research
has focused on the creation and role of network effects, that
is self-reinforcing processes leading to lock-ins (Shapiro
and Varian, 1999; Hanseth, 2000).

A minor part of II research has focused explicitly on
strategies for developing standards and infrastructures.
Cordella (2004), Hanseth and Lundberg (2001), Grisot
(2008) and Pipek and Wulf (2009) describe how infrastruc-
tures emerge in use while users appropriate a variety of IT
capabilities and bring them together in novel ways by making
them components of IIs . Even without technically integrating
the capabilities, they are de facto becoming integrated and
interdependent in work practices (Pipek and Wulf, 2009).

A few researchers have addressed design strategies for
infrastructure development. Hanseth et al. (1996) recognize
the need to manage the tension between standardization
and flexibility (see also Egyedi, 2002). Hanseth and
Aanestad (2003) argue, using telemedicine as an illustra-
tion, that II design needs to be seen as a bootstrapping
process, which utilizes network effects and spillovers within
a growing user base by using simple solutions as a sort of
‘stunts,’ which offer ‘detours’ on the road toward infra-
structures (Aanestad and Hanseth, 2002). Hanseth (2001)
also demonstrates the importance of gateways in flexible II
design by reviewing the history of the Internet design in
Scandinavia. Lessig (2001) and David (2001) note the
criticality of Internet’s architectural features – especially its
end-to-end architecture – in supporting adaptability at the
‘edge of chaos’ (Saltzer et al., 1984). Benkler (2006)
emphasizes the importance of the local ‘programmability’
of terminals, and its mutual dependency on the end-to-end
architecture. Finally, Zittrain (2006) recently combined
these features into an encompassing concept of a generative
technology – a notion close to our idea of dynamic
complexity. We add next to Zittrain’s concept a more
coherent design framework formulated as a design theory.

Design theory for addressing adaptive complexity in II
evolution

IT design theories
Since the publication of Walls et al.’s (1992) article, the
term ‘IS design theory’ has denoted a set of concepts, beliefs

and ‘laws’ – either natural or social – which help designers
map a class of design problems to effective solutions that
meet design goals. Design theories are about ‘how to’
principles and rules of form and function, and justificatory
‘because of’ explanatory knowledge that can be mobilized
during the design (Gregor, 2006). They encapsulate three
elements: (1) a set of design goals shared by a family of
design problems; (2) a set of system features that meet
those goals; and (3) a set of design principles and rules to
guide the design so that a set of system features is selected
to meet chosen design goals. Design principles state broad
guidelines how the design can be carried out and where the
designer can focus his or her attention during function and
form shaping. They can be further detailed into design rules
that formulate in concrete terms how to generate and select
desired system features as to achieve stated system goals.

The crux of a design theory is its ‘kernel theory’ (Walls
et al., 1992). It postulates falsifiable predictions for a class
of design solutions (i.e. product theories), or design
processes (i.e. process theories) in relation to system goals.
They vary significantly in their generality, structure and
predictive power (Gregor, 2006). Each design theory applies
in a certain design context in which a specific set of system
goals have been selected, and apply to a specific class of
systems and associated design processes. The design context
is determined by the nature of the system, its size, the
design phase, the type of technology, the type of users or
designers (Walls et al., 1992, 2004). Next we will focus on II
design theory for dynamic complexity. Our main interest is
in generating technical and social components of the IIs in
ways that address the tensions between the bootstrap and
the adaptability problems.

CAS as a design theory about dynamic complexity in II
We draw upon CAS theory as our kernel theory (Holland,
1995; Benbya and McKelvey, 2006). CAS addresses non-
linear phenomena within physics and biology, but also in
social domains including financial markets (Arthur, 1994).
CAS investigates systems that adapt and evolve while they
self-organize. The systems are made up of autonomous
agents with the ability to adapt according to a set of rules in
response to other agent’s behaviors and changes in the
environment (Holland, 1995). Key characteristics of CAS
are: (1) nonlinearity, that is small changes in the input or
the initial state can lead to order of magnitude differences
in the output or the final state; (2) order emerges from
complex interactions; (3) irreversibility of system states,
that is, that change is path dependent; and (4) unpredict-
ability of system outcomes (Dooley, 1996).

We chose CAS as our kernel theory as it recognizes
factors that generate the dynamics associated with the II
bootstrap and adaptability problems and helps describe II
evolution as an example of path-dependent and nonlinear
change. CAS brings theoretical rigor to generate insights to
these two design challenges. In addition, these challenges
are not highlighted in two pet theories among II scholars:
the social shaping of technology (Edwards et al., 2007), and
Bateson’s ecological theory (Star and Ruhleder, 1996). Next,
the design principles are deductively derived from CAS. In
the section ‘Design rules to manage dynamic complexity –
the Internet case’ we instantiate these principles with a set

Design theory for dynamic complexity O Hanseth and K Lyytinen

5



of 19 design rules whose application is illustrated with
concrete episodes from the design history of Internet.6

CAS categories and design principles for dynamic complexity in IIs
CAS helps characterize how the IIs can be initiated and how
they grow and evolve while they self-organize. This is
addressed by following the two principles: (1) create an
attractor that feeds system growth to address the bootstrap
problem; and: (2) assure that the emerging system will
remain adaptable at ‘the edge of chaos’ while it grows to
address the adaptability problem. We surmise that these
principles can promote design for IIs in ways that lead them
to self-organize and to grow. We will next describe key
categories of CAS theory and the logic that underpins these
design principles and their ‘because of reasons’ as
suggested in Table 2.

Addressing growth in II
A central claim in CAS is that order emerges – it is not
designed by an omnipotent ‘designer.’ Typical example is
the dynamic arrangements among cells and the establish-
ment of standards without anyone ever intending to design
them as such (e.g. QWERTY, TCP/IP). According to CAS,
such orders emerge around attractors, that is a limited
range of states within which the system growth can
stabilize, and which allow the system to bootstrap (Holland,
1995). The simplest attractor is a single point in the system
state space. Attractors can also come in other forms, which
are called ‘strange attractors’ (Carpa, 1996) that stabilizes
the system into a specific region (David, 1986). De-facto

standards (e.g. MS Windows, QWERTY, Internet stan-
dards) are examples of such attractors. Attractors stabilize a
system through feed-back loops (also called network effects
or ‘increasing returns’). In case of standards this happens
because the value of a standard defining an IT capability
depends on the number of users having adopted it. So when
a user adopts a standard its value increases. This again
makes it more likely that another user will adopt it, which
further increases its value and so on (Arthur, 1994; Shapiro
and Varian, 1999). A large installed base will also attract
complementary IT capabilities thereby making the original
capability increasingly attractive (Shapiro and Varian, 1999).
A larger installed base increases also the credibility
associated with the capability and reduces user risks of
foregone investments. Together these features make an IT
capability more attractive leading to increased adoption that
further increases its installed base (Grindley, 1995). Some
describe this process of getting ‘the bandwagon moving.’

Positive network effects lead to self-reinforcing path-
dependent processes. Overall, the involved path dependency
suggests that past events – for example a serendipitous
adoption, or correctly timed designs – can change history by
generating irreversible effects – called butterfly effects. Such
path-dependent growth will eventually lead to a lock-in when
the adoption rates cross a certain threshold (David, 1986).
Such a lock-in happens when a system’s growth reaches what
Hughes (1987) calls a momentum. This creates a new lasting
order with irreversible effects (Arthur, 1994).

We distinguish two facets of path dependence in IIs:
cumulative adoption and technology traps. Cumulative
adoption takes place when an II designer builds up an

Table 2 CAS-based design theory for dynamic complexity in Information Infrastructures (IIs)

Design goals Bootstrap the IT capability into an installed base so that it gains momentum
Manage and allow for maximum II adaptability.

A set of system
features

II as an unbounded, evolving, shared, heterogeneous and open recursively organized
system of IT capabilities whose evolution is enabled and constrained by its installed base
and the nature and content of its components and connections.

Kernel theory
of flexible IIs

CAS informs how to address bootstrap problem in II designs by suggesting that
K Designer can gain momentum in the growth of II through attracting a critical mass

of users
K Designer can enable nonlinear growth by new combinations of the installed base
CAS informs how to address the adaptability problem in II designs by suggesting that
K Designer needs to recognize path dependencies within the installed base
K Designer needs to create lock-in through network externalities that exclude alternative pathways
K Designer need to achieve modularity to accommodate the growing need for openness and

heterogeneity in future

Design principles For the II bootstrap problem:
1. Design initially for usefulness
2. Draw upon existing installed base
3. Expand installed base by persuasive tactics
For the II adaptability problem:
4. Make each IT capability simple
5. Modularize the II by building separately its principal functions and sub-infrastructures using

layering and gateways

Design theory for dynamic complexity O Hanseth and K Lyytinen

6



installed base ahead of its alternatives and accordingly
becomes cumulatively attractive, and starts growing in an
unbounded manner. Bootstrapping for cumulative growth
is possible when the timing is right and users can still be
persuaded (Edwards et al., 2007; Zimmerman, 2007).
Design choices for II thereby become path dependent, as
conditions for cumulative adoption are created during the
early stages of growth (Grindley, 1995; Shapiro and Varian,
1999). Technology traps suggest that many times blind early
design decisions later constrain the further expansion of II
and become reverse salients (Hughes, 1987). Design for
expansion is typically carried out technically and socially in
ways that is compatible with the early installed base and its
predicted trajectory. Thereby, early design decisions can
later block the expansion as new communities join, or
technological trajectories change, and create adverse
constraints for growth. Such adverse constraints we call
technology traps. Examples of technology traps are, for
example, the need to support archaic computer architec-
tures (e.g. IBM 9010, IBM360 or Intel 8086), operating
systems (DOS, Windows95) (Mashey, 2009) or the effects of
architecture choices for the growth of the French Minitel
system (Cats-Baril and Jelassi, 1994).

Addressing adaptability in II
All systems evolve, but all systems do not adapt equally
well. Systems that reach early on lock-in, or exhibit a large
number of ‘reverse salients’ (Hughes, 1987) will fail to do
so. According to CAS, highly adaptable systems are
characterized by the increased variety achieved through
high modularity: ‘variation is the raw material for adapta-
tion’ (Axelrod and Cohen, 1999: 32). In other words, the
larger the variety of agents and pathways for evolution, the
more design alternatives can be tried out, and the more
agents learn (Holland, 1995; Benbya and McKelvey, 2006).
Accordingly, the larger the variety of IT capabilities and the
larger the number of II designers the larger is II
adaptability. At the same time a certain level of order is
necessary in order to maintain stability in the design
context. This stability is achieved through modularity.
According to CAS, modularity creates a balance between
variety and order by localizing the change and permitting
fast and deep change in parts of the system. Engineered as
well as living systems must thus be modular to remain
robust and at the same time to generate variety (Simon,
1969; Baldwin and Clark, 2000; Wagner, 2007). Adaptation
becomes optimal at ‘the edge of chaos’ (Stacey, 1996),
where variety generation and modularity are balanced.7 To
wit, traditional application design theory assumes the
complete order of stasis as designers are assumed to
control all the system states during the design. In contrast,
random order excludes the possibility for any design as no
order can be detected in the context. Hence, in designing
for II, designers need to establish a self-organization, where
the II will remain ‘at the edge of chaos.’

Design rules to manage dynamic complexity – the
Internet case
The design principles listed in Table 2 guide II designers to
conceive their designs in ways where they can generate
‘natural’ order at the edge of chaos. To carry out effectively

designs that conform to these principles we need to break
down the five design principles into design rules that
govern designer’s behaviors influencing specific II compo-
nents or their environments. In this section we will
articulate such design rules. The next section introduces
some modularity concepts necessary in stating design rules.
The following section offers a summary of their content and
reports how we used Internet design to illustrate them. The
section after that introduces each design rule with
illustrative examples from Internet design.

Modularization of II
In formulating the design rules we need to distinguish
properties of IIs that help modularize them. We therefore
next define analytical types of (sub) IIs that allow – when
composed together – the generation of modular IIs. We
apply recursively de-composition, that is identify separate
subsets of IT capabilities within any II, which also are IIs,
but which share either a set of common functions and/ or
internal or external connections without having strong
dependencies with the remaining IIs (Baldwin and Clark,
2000; Kozlowski and Klein, 2000).

We will first split IIs into vertical application IIs and of
horizontal support IIs. The former will deliver functional
capabilities, which are deployable directly by one or more
user communities. An example of application capability
would be e-mail. The latter – support infrastructures – offer
generic services often defined in terms of protocols or
interfaces necessary in delivering most, if not all application
services. They are primarily deployed by designer commu-
nities while building application capabilities8 and include
capabilities for data access and identification (addressing),
transportation (moving) and presentation (formatting). They
also constitute part of the installed base, which II designers
need to take into account when bootstrapping an application
infrastructure or making changes in support IIs.

We can further recursively decompose both application
and support IIs. Thus, any II can be split into its application
and support infrastructures until a set of ‘atomic’ IT
capabilities are reached (per recursive definition of II). In
addition, any support infrastructure can be split into
transport and service IIs. This split is justified as transport
infrastructure is necessary to make any service infrastruc-
ture work. The transport IIs offer data or message
transportation services like the UDP/TCP/IP protocol stack
(Leiner et al., 1997). On the other hand service infra-
structures support, for example, direct addressing, service
identification, service property discovery, access and
invocation, or security capabilities. They become useful
when IIs start to grow in complexity and scale, and
designers need more powerful capabilities to configure
application capabilities. A classic example of a service II is
the Domain Name Service (DNS) in the Internet, which
maps mnemonic identifiers like amazon.com to varying
length bit representations, that is IP addresses. Both
application and service IIs can be finally linked together
horizontally through gateways. These offer flexible path-
ways for II expansion and navigation (Hanseth, 2001;
Edwards et al., 2007). An example of a gateway would be an
IT capability, which supports multiple e-mail services
running on different e-mail protocols.

Design theory for dynamic complexity O Hanseth and K Lyytinen

7



Design rules for dynamic complexity in II’s

Derivation and summary of the design rules
In total, we propose 19 design rules for II dynamic
complexity shown in Table 3. Overall, the design rules
characterize: (1) appropriate ways to organize and relate II
components technically and socially (modular design,
organize recursively) that address dynamic complexity simi-
lar to Baldwin and Clark’s (2000) design rules; (2) desirable
properties of specifications of II components (e.g. simpli-
city), (3) desirable sequences for design (e.g. design one-
to-many IT capabilities before many-to-many IT capabil-
ities) (4) desirable ways to relate II specifications and
associated components to one another (modularity, recur-
sive application).

Illustrating II design rules- the case of Internet
Below we illustrate the deployment of each design rule by
referring to episodes of Internet design. We chose Internet
design as an illustration as its design history offers rich
insights into the situated application of the proposed design
theory ‘in use.’ We chose to illustrate the theory with the
design of Internet, because it qualifies as a grand ‘success’
story about II design par excellence (Table 4). By any
criterion its design involved cultivating an II, which is
shared, open and heterogeneous, organized recursively and
operates without centralized control. We also content that
the success of Internet testifies to the plausibility of the
design rules discussed below.

We gleaned the design rules by content analyzing design
episodes, that is, moments when new IT capabilities were
added, modified, expanded or purged in the Internet
regime. A review of these design situations permit us
generalize identified design rules by triangulating data with
the emerging theory (Eisenhardt, 1989). Documents like the
Internet Engineering Task Force (IETF) rules for Requests
For Change, but also the credo coined in Clark’s famous
speech in 1992: ‘We reject: kings, presidents, and voting.
We believe in rough consensus and running code’ (Russell,
2006), and personal biographies all exemplify the behaviors
of the Internet designers and consequently their design
theories-in-use. To this end we probed Internet standardi-
zation archives and primary secondary sources on Internet
history – especially Abbate’s (1999) excellent narrative. We
also examined personal accounts of Internet design (Leiner
et al., 1997; Berners-Lee and Fischetti, 1999), and recent
scholarly analyses of the Internet growth (Tuomi, 2002).
Finally, we interviewed Robert Kahn, one of the original
developers and sponsors of Internet protocols. As a result
we were able to solicit 19 design rules as summarized in
Table 5 founded on CAS that had ‘worked’ during Internet
design.

For sure, not all designers at all times and consciously
followed these rules. But many of them acted consistent with
these rules. For example, they underpin many common
‘interaction rules’ in the Internet design ecology. Many key
figures have also openly embraced proposed design princi-
ples. For instance, throughout Internet’s history, from Kahn’s
and Cerf’s initial design to the creation of BitTorrent, the
Internet designers have favored bottom-up, experimental
design and utilization of network effects. At the core was also

the recognition of high uncertainty related to desired IT
capabilities. Bob Kahn noted vividly this:

They (DoD) didn’t have a problem. And that’s why it’s so
hard for those kinds of things to actually get in motion. If
you’re saying, ‘Can I imagine a problem that somebody
might have at some unspecified point in the future?’
Absolutely, that was what was driving it. And, so you had
to really trust what was in your mind’s eye. And that was
the basis on which the internal justifications were
eventually made. But it took a while to get there. (Kahn,
2006)

Therefore, he argued that the only way to design was
experimental:

But when you’re dealing with something as really state of
the art, it’s hard to know what to build upfront because a
lot of what makes it what it is a function of, you know,
iterating with users and feedback and allowing the system
to evolve and grow and to see how it would work. This is
not something that most people, who are, you know, in
management chain, are very uncomfortable with because
they don’t exactly know what to expect. So it’s very hard
for those people, you know, to deal with those kinds of
creative processes. (Kahn, 2006)

Design rules for dynamic complexity in the design for II
We next discuss in detail how the 19 design rules in Table 3
were inferred from the CAS theory offering a ‘because of’
justification for the design principles. To wit, each design
rules offers a falsifiable statement of design outcomes to
validate the theory. By analyzing whether the designer
followed the rule and related design outcomes, we can
determine whether the rule following did not lead to the
predicted outcome thus falsifying (partly) the proposed
design theory.

Design rules for the bootstrap problem
Often new IT capabilities are not adopted despite their
novelty, because users wait others to adopt first: early
adopters face high risks and costs, but few benefits. In light
of CAS, an II designer must generate attractors to propel
users to adopt the IT capability so that its growth will reach a
momentum (Hanseth and Aanestad, 2003). We observe three
design principles decomposed into 12 design rules that help
generate and manage such attractors (see Tables 3 and 5).

Design rules for principle #1: Design initially for direct
usefulness: Early users cannot be attracted to IT capabil-
ities reasons like the size of their installed base. Therefore,
we need design rules that foster relationships between the
proposed IT capability and user adoption. Therefore, a
small user population needs to be identified and targeted
(Design Rule 1 (DR19)). The proposed IT capability has to
offer the group immediate and direct benefits (DR2).
Because first adopters accrue high adoption costs and
confront high risks, the IT capability to-be-adopted must be

Design theory for dynamic complexity O Hanseth and K Lyytinen

8



T
a
b

le
3

D
e
s
ig

n
ru

le
s

fo
r

d
y
n
a
m

ic
c
o
m

p
le

x
it
y

in
th

e
d
e
s
ig

n
fo

r
II

s

D
es

ig
n

pr
ob

le
m

E
le

m
en

t
of

C
A

S
D

es
ig

n
pr

in
ci

pl
es

D
es

ig
n

ru
le

s

B
oo

ts
tr

a
p

pr
ob

le
m

D
es

ig
n

go
al

:
G

en
er

at
e

at
tr

ac
to

rs
th

at
b

o
o

ts
tr

ap
th

e
in

st
al

le
d

b
as

e

C
re

at
e

an
IT

ca
p

ab
il

it
y

th
at

ca
n

b
ec

o
m

e
an

at
tr

ac
to

r
fo

r
th

e
sy

st
em

gr
o

w
th

.
1.

D
es

ig
n

in
it

ia
ll

y
fo

r
d

ir
ec

t
u

se
fu

ln
es

s.
D

R
1.

T
ar

ge
t

IT
ca

p
ab

il
it

y
to

a
sm

al
l

gr
o

u
p

D
R

2.
M

ak
e

IT
ca

p
ab

il
it

y
d

ir
ec

tl
y

u
se

fu
l

w
it

h
o

u
t

th
e

in
st

al
le

d
b

as
e

D
R

3.
M

ak
e

th
e

IT
ca

p
ab

il
it

y
si

m
p

le
to

u
se

an
d

im
p

le
m

en
t

D
R

4.
D

es
ig

n
fo

r
o

n
e-

to
-m

an
y

IT
ca

p
ab

il
it

ie
s

in
co

n
tr

as
t

to
al

l-
to

-a
ll

ca
p

ab
il

it
ie

s.

A
vo

id
d

ep
en

d
en

cy
o

n
o

th
er

II
co

m
p

o
n

en
ts

th
at

d
ef

le
ct

aw
ay

fr
o

m
th

e
ex

is
ti

n
g

at
tr

ac
to

rs
U

se
in

st
al

le
d

b
as

e
as

to
b

u
il

d
ad

d
it

io
n

al
at

tr
ac

to
rs

b
y

in
cr

ea
si

n
g

p
o

si
ti

ve
n

et
w

o
rk

ex
te

rn
al

it
ie

s

2.
B

u
il

d
u

p
o

n
ex

is
ti

n
g

in
st

al
le

d
b

as
es

D
R

5.
D

es
ig

n
fi

rs
t

IT
ca

p
ab

il
it

ie
s

in
w

ay
s

th
at

d
o

n
o

t
re

q
u

ir
e

d
es

ig
n

in
g

an
d

im
p

le
m

en
ti

n
g

n
ew

su
p

p
o

rt
in

fr
as

tr
u

ct
u

re
s

D
R

6.
D

ep
lo

y
ex

is
ti

n
g

tr
an

sp
o

rt
in

fr
as

tr
u

ct
u

re
s

D
R

7.
B

u
il

d
ga

te
w

ay
s

to
ex

is
ti

n
g

se
rv

ic
e

an
d

ap
p

li
ca

ti
o

n
in

fr
as

tr
u

ct
u

re
s

D
R

8.
U

se
b

an
d

w
ag

o
n

s
as

so
ci

at
ed

w
it

h
o

th
er

II
s

E
xc

lu
d

e
al

te
rn

at
iv

e
at

tr
ac

to
rs

b
y

p
er

su
as

iv
e

ta
ct

ic
s

O
ff

er
ad

d
it

io
n

al
p

o
si

ti
ve

n
et

w
o

rk
ex

te
rn

al
it

ie
s

b
y

ex
p

an
d

in
g

le
ar

n
in

g
in

th
e

u
se

r
co

m
m

u
n

it
y

3.
E

xp
an

d
in

st
al

le
d

b
as

e
b

y
p

er
su

as
iv

e
ta

ct
ic

s
to

ga
in

m
o

m
en

tu
m

D
R

9.
‘U

se
rs

b
ef

o
re

fu
n

ct
io

n
al

it
y’

–
gr

o
w

th
e

u
se

r
b

as
e

al
w

ay
s

b
ef

o
re

ad
d

in
g

n
ew

fu
n

ct
io

n
al

it
y

D
R

10
.

E
n

h
an

ce
an

y
IT

ca
p

ab
il

it
y

w
it

h
in

th
e

II
o

n
ly

w
h

en
n

ee
d

ed
D

R
11

.
B

u
il

d
an

d
al

ig
n

in
ce

n
ti

ve
s

so
th

at
u

se
rs

h
av

e
re

al
m

o
ti

va
ti

o
n

to
u

se
th

e
IT

ca
p

ab
il

it
ie

s
w

it
h

in
th

e
II

in
n

ew
w

ay
s

D
R

12
.

D
ev

el
o

p
su

p
p

o
rt

co
m

m
u

n
it

ie
s

an
d

fl
ex

ib
le

go
ve

rn
an

ce
st

ra
te

gi
es

fo
r

fe
ed

b
ac

k
an

d
le

ar
n

in
g

A
d

a
pt

a
bi

li
ty

pr
ob

le
m

D
es

ig
n

G
o

al
:

M
ak

e
th

e
sy

st
em

m
ax

im
al

ly
ad

ap
ti

ve
an

d
va

ri
et

y
ge

n
er

at
in

g
as

to
av

o
id

te
ch

n
o

lo
gy

tr
ap

s

B
u

il
d

ca
p

ab
il

it
ie

s
th

at
en

ab
le

gr
o

w
th

b
as

ed
o

n
ex

p
er

ie
n

ce
an

d
le

ar
n

in
g

U
se

ab
st

ra
ct

io
n

an
d

ga
te

w
ay

s
to

se
p

ar
at

e
II

co
m

p
o

n
en

ts
b

y
m

ak
in

g
th

em
lo

o
se

ly
co

u
p

le
d

4.
M

ak
e

th
e

IT
ca

p
ab

il
it

y
as

si
m

p
le

as
p

o
ss

ib
le

D
R

13
.

M
ak

e
th

e
II

as
si

m
p

le
as

p
o

ss
ib

le
in

te
rm

s
o

f
it

s
te

ch
n

ic
al

an
d

so
ci

al
co

m
p

le
xi

ty
b

y
re

d
u

ci
n

g
co

n
n

ec
ti

o
n

s
an

d
go

ve
rn

an
ce

co
st

D
R

14
.

P
ro

m
o

te
p

ar
tl

y
o

ve
rl

ap
p

in
g

IT
ca

p
ab

il
it

ie
s

in
st

ea
d

o
f

al
l-

in
cl

u
si

ve
o

n
es

.

D
es

ig
n

IT
ca

p
ab

il
it

ie
s

an
d

th
ei

r
co

m
b

in
at

io
n

s
in

w
ay

s
th

at
al

lo
w

II
gr

o
w

th
U

se
ev

o
lu

ti
o

n
ar

y
st

ra
te

gi
es

in
th

e
ev

o
lu

ti
o

n
o

f
II

th
at

al
lo

w
in

d
ep

en
d

en
t

in
cr

em
en

ta
l

ch
an

ge
in

se
p

ar
at

e
co

m
p

o
n

en
ts

D
ra

w
u

p
o

n
II

d
es

ig
n

s
th

at
en

ab
le

m
ax

im
al

va
ri

at
io

n
s

at
d

if
fe

re
n

t
co

m
p

o
n

en
ts

o
f

th
e

II

5.
M

o
d

u
la

ri
ze

th
e

II
D

R
15

.
D

iv
id

e
II

re
cu

rs
iv

el
y

al
w

ay
s

in
to

tr
an

sp
o

rt
at

io
n

,
su

p
p

o
rt

an
d

ap
p

li
ca

ti
o

n
in

fr
as

tr
u

ct
u

re
s

w
h

il
e

d
es

ig
n

in
g

th
e

II
D

R
16

.
U

se
ga

te
w

ay
s

b
et

w
ee

n
st

an
d

ar
d

ve
rs

io
n

s
D

R
17

.
U

se
ga

te
w

ay
s

b
et

w
ee

n
la

ye
rs

D
R

18
.

B
u

il
d

ga
te

w
ay

s
b

et
w

ee
n

in
fr

as
tr

u
ct

u
re

s
D

R
19

.
D

ev
el

o
p

tr
an

si
ti

o
n

st
ra

te
gi

es
in

p
ar

al
le

l
w

it
h

ga
te

w
ay

s

Design theory for dynamic complexity O Hanseth and K Lyytinen

9



simple, cheap and easy to learn (DR3). Here cheap is
defined in relation to both design and learning costs.
Simple means that the design covers only the essential
functionality expected and the capability is designed so that
it is easy to integrate the IT capability with the installed
base. Significant user investments cannot be expected
because a small user base does not contribute either to
the demand or the supply side economies of scale.

IT capabilities have varying impacts on the scale of
increasing returns and the amount of positive feedback.
They vary significantly between capabilities where every user
interacts symmetrically with every user (like e-mail) and
capabilities where one user interacts uni-directionally with
the rest. Capabilities can also have multiple possible
implementation sequences. In general, IT capabilities
supporting asymmetrical interactions (one-to-many) and
thus less dependent on network effects should be imple-
mented first as the growth can be promoted locally (DR4).
These capabilities have lower adoption barriers as they do
not need to reach a critical mass to generate fast adoption.

The Internet’s success has been widely attributed to its
successful bottom-up bootstrapping (Leiner et al., 1997;
Abbate, 1999; Tuomi, 2002; Kahn, 2006). Though early on
Internet designers built bold scenarios of how the future of
telecommunications would unfold (Tuomi, 2002), the early
uses of packet switching were targeted to small groups of
researchers, who were interested in accessing powerful and
expensive computers (DR1). The aim was to provide a
limited range of directly useful IT capabilities: remote login
and file transfer (DR1). Among these capabilities, remote

login was a perfect choice, because each user could adopt it
independently from others and users had the skills and
motivation to do so (DR3, DR4). While the number of users
grew, they could start share data through file transfer. Later
on, new capabilities have been introduced in the same way
(DR2). E-mail, for instance, was originally developed to
support communications between persons responsible for
maintaining the network when only four computers were
connected to it (Abbate, 1999) (DR1 and DR2). The design
of transportation services (TCP) followed also an evolu-
tionary approach as multiple versions of increasingly
complete protocols for TCP and IP were implemented in
the early 1980s (DR3).

Design rules for principle #2: build on installed bases:
The second principle promotes connections with the
existing installed base during design time. The II designer
should thus design toward existing support infrastructures
that the targeted user groups use (DR5). If an IT capability
is designed so that it requires a new support infrastructure,
this will erect heightened adoption barriers as, per our
definition, the support infrastructure will be sui generis an
II, which then needs to be bootstrapped with high learning
barriers (Attewell, 1992). As noted, transport infrastruc-
tures form the base for implementing II while the need for
service infrastructures depends on the size and sophistica-
tion of application capabilities, or the size of installed
base. While the installed base remains small, the II does
not need advanced service infrastructures. The II designer

Table 4 Internet as an II

Internet as an II

Structural properties
Organizing
principles

Internet is composed of multiple layers of distinct IT capabilities that carry out similar
functions at different layers (e.g. transport and application layer). It consists of or draws
upon multiple platforms, IT capabilities and social groups that design, implement and
maintain its functionality.

Control The control of Internet design is distributed among a large set of designers, user communities
and forms of governance. The control of different capabilities is separated and distributed
and the control forms are loosely coupled through architectural principles. Control forms
vary among different communities (IETF, W3C or OASIS) as well as governance structures
(Nickerson and Zur Muehlen, 2006; Russell, 2006).

Emergent properties
Shared Shared by an increasingly growing number of heterogeneous user communities, designers,

regulators and other social actors.

Open Any new IT capability, designer or user group can be added as long as it conforms to the
architectural principles of Internet and thus abstracts data transfer into a transfer of data
streams to a specified set of IP addresses.

Heterogeneous Internet has grown immensely in heterogeneity both socially and technically since its inception
and during its exponential growth.

Evolving Evolving set communication and distributed computing capabilities
For any set of users at any time Internet is seen as a distinct set of capabilities
(telnet, ftp, smtp, http, etc.) that are available. Internet evolves because this set has
grown significantly during its evolution integrating new users and design communities.

Design theory for dynamic complexity O Hanseth and K Lyytinen

10



T
a
b

le
5

D
e
s
ig

n
p
ri
n
c
ip

le
s

a
n
d

ru
le

s
fo

r
In

te
rn

e
t

C
h

a
ll

en
ge

:
B

oo
ts

tr
a

p
pr

ob
le

m

D
es

ig
n

pr
in

ci
pl

e
D

es
ig

n
ru

le
s

F
ol

lo
w

ed
E

vi
d

en
ce

fr
om

In
te

rn
et

d
es

ig
n

h
is

to
ry

1.
D

es
ig

n
in

it
ia

ll
y

fo
r

u
se

fu
ln

es
s

D
R

1.
T

ar
ge

t
IT

ca
p

ab
il

it
y

to
a

sm
al

l
gr

o
u

p
|

D
es

ig
n

ed
o

ri
gi

n
al

ly
as

a
su

p
p

o
rt

ca
p

ab
il

it
y

fo
r

D
ef

en
se

A
d

va
n

ce
d

R
es

ea
rc

h
P

ro
je

ct
s

A
ge

n
cy

(D
A

R
P

A
)

re
se

ar
ch

er
s

to
sh

ar
e

ex
p

en
si

ve
an

d
ce

n
tr

al
iz

ed
co

m
p

u
ti

n
g

re
so

u
rc

es
D

R
2.

M
ak

e
IT

ca
p

ab
il

it
y

d
ir

ec
tl

y
u

se
fu

l
w

it
h

o
u

t
an

in
st

al
le

d
b

as
e

|
D

es
ig

n
ed

as
ap

p
li

ca
ti

o
n

fo
r

lo
g

in
an

d
fi

le
d

o
w

n
lo

ad
s

T
h

e
d

ev
el

o
p

ed
IT

ca
p

ab
il

it
y

w
as

w
el

l
su

it
ed

fo
r

ex
p

er
im

en
ti

n
g

w
it

h
d

is
tr

ib
u

te
d

U
n

ix
an

d
L

A
N

te
ch

n
o

lo
gi

es
,

in
w

h
ic

h
o

ri
gi

n
al

ly
re

ac
h

in
g

la
rg

e
in

st
al

le
d

b
as

e
w

as
n

o
t

an
is

su
e

D
R

3.
M

ak
e

th
e

IT
ca

p
ab

il
it

y
si

m
p

le
to

u
se

an
d

im
p

le
m

en
t

|
O

b
ta

in
ex

p
er

ie
n

ce
b

as
ed

o
n

th
e

u
se

o
f

si
m

p
le

p
ro

to
ty

p
es

an
d

ca
p

ab
il

it
ie

s.
T

h
is

h
as

b
ee

n
an

im
p

o
rt

an
t

d
es

ig
n

p
ri

n
ci

p
le

in
th

e
In

te
rn

et
co

m
m

u
n

it
y,

in
p

ar
ti

cu
la

r
d

u
ri

n
g

th
e

ea
rl

y
ad

o
p

ti
o

n
(L

ei
n

er
et

a
l.

,
19

97
;

A
b

b
at

e,
19

99
)

D
R

4.
D

es
ig

n
fo

r
o

n
e-

to
-m

an
y

IT
ca

p
ab

il
it

ie
s

in
co

n
tr

as
t

to
al

l-
to

-a
ll

|
R

em
o

te
lo

gi
n

as
a

fi
rs

t
ca

p
ab

il
it

y

2.
B

u
il

d
u

p
o

n
ex

is
ti

n
g

in
st

al
le

d
b

as
es

D
R

5.
D

es
ig

n
IT

ca
p

ab
il

it
y

th
at

d
o

es
n

o
t

d
ep

en
d

o
n

n
ew

su
p

p
o

rt
in

fr
as

tr
u

ct
u

re
|

A
p

ri
n

ci
p

al
d

es
ig

n
ru

le
in

im
p

le
m

en
ti

n
g

th
e

T
C

P
/I

P
p

ro
to

co
l

st
ac

k
w

as
to

m
ak

e
it

ru
n

o
n

to
p

o
f

m
u

lt
ip

le
u

n
d

er
ly

in
g

p
h

ys
ic

al
ac

ce
ss

la
ye

rs
:t

el
ep

h
o

n
e,

ra
d

io
,

sa
te

ll
it

e,
L

A
N

te
ch

n
o

lo
gi

es
,

et
c.

(A
b

b
at

e,
19

99
)

D
R

6.
D

ep
lo

y
ex

is
ti

n
g

tr
an

sp
o

rt
in

fr
as

tr
u

ct
u

re
s

|
A

ll
ea

rl
y

ca
p

ab
il

it
ie

s
w

er
e

in
tr

o
d

u
ce

d
w

it
h

o
u

t
an

y
n

ew
re

la
te

d
tr

an
sp

o
rt

in
fr

as
tr

u
ct

u
re

s
D

R
7.

B
u

il
d

ga
te

w
ay

s
to

ex
is

ti
n

g
se

rv
ic

e
an

d
ap

p
li

ca
ti

o
n

in
fr

as
tr

u
ct

u
re

s
|

G
at

ew
ay

s
w

er
e

d
ev

el
o

p
ed

fo
r

ex
am

p
le

to
o

th
er

e-
m

ai
l

p
ro

to
co

ls
an

d
o

th
er

IT
ca

p
ab

il
it

ie
s.

R
ec

en
tl

y
ga

te
w

ay
s

(e
.g

.
C

G
I)

to
d

at
ab

as
es

an
d

ap
p

li
ca

ti
o

n
ca

p
ab

il
it

ie
s

h
av

e
b

ee
n

im
p

o
rt

an
t

in
m

ak
in

g
W

eb
-s

er
vi

ce
s

u
se

fu
l

D
R

8.
U

se
b

an
d

w
ag

o
n

s
as

so
ci

at
ed

w
it

h
o

th
er

II
s

|
D

u
ri

n
g

th
e

19
80

s,
In

te
rn

et
in

cr
ea

se
d

it
s

ac
ce

p
ta

n
ce

w
it

h
th

e
d

if
fu

si
o

n
o

f
w

o
rk

st
at

io
n

/U
n

ix
/L

A
N

te
ch

n
o

lo
gi

es
3.

E
xp

an
d

in
st

al
le

d
b

as
e

b
y

p
er

su
as

iv
e

ta
ct

ic
s

to
ga

in
m

o
m

en
tu

m
D

R
9.

U
se

rs
b

ef
o

re
fu

n
ct

io
n

al
it

y
|

M
an

y
In

te
rn

et
ca

p
ab

il
it

ie
s

h
av

e
b

ee
n

ad
d

ed
w

h
en

th
ei

r
n

ee
d

s
h

av
e

b
ee

n
re

co
gn

iz
ed

.
T

h
e

d
ev

el
o

p
m

en
t

o
f

T
C

P
/I

P
an

d
it

s
n

ew
ve

rs
io

n
s

IP
v6

,
th

e
in

tr
o

d
u

ct
io

n
o

f
D

N
S,

en
h

an
ce

m
en

t
o

f
th

e
w

eb
b

y
X

M
L

an
d

C
C

S
ar

e
ex

am
p

le
s

o
f

th
is

D
R

10
.

E
n

h
an

ce
th

e
IT

ca
p

ab
il

it
y

w
it

h
in

th
e

II
o

n
ly

w
h

en
n

ee
d

ed
|

In
te

rn
et

o
ff

er
ed

lo
w

co
st

an
d

in
n

o
va

ti
ve

w
ay

s
fo

r
m

an
y

sc
ie

n
ti

fi
c

an
d

en
gi

n
ee

ri
n

g
co

m
m

u
n

it
ie

s
to

co
m

m
u

n
ic

at
e

an
d

sh
ar

e
in

fo
rm

at
io

n
an

d
b

u
il

d
as

so
ci

at
ed

se
rv

ic
es

.
Im

p
o

rt
an

t
al

li
es

w
er

e
re

se
ar

ch
fu

n
d

in
g

ag
en

ci
es

an
d

re
se

ar
ch

co
m

m
u

n
it

ie
s

D
R

11
.

B
u

il
d

an
d

al
ig

n
in

ce
n

ti
ve

s
as

n
ee

d
ed

|
D

ev
el

o
p

m
en

t
an

d
u

se
in

te
rt

w
in

ed
to

b
u

il
d

co
m

m
u

n
it

ie
s.

A
la

rg
e

co
m

m
u

n
it

y
(c

ri
ti

ca
l

m
as

s)
w

as
,

e.
g.

,
b

u
il

t
o

ri
gi

n
al

ly
to

le
ar

n
fr

o
m

d
is

tr
ib

u
te

d
co

m
p

u
ti

n
g.

T
h

e
sa

m
e

ap
p

li
es

to
W

eb
,

In
st

an
t

m
es

sa
gi

n
g

o
r

m
u

lt
ic

as
ti

n
g

D
R

12
.

D
ev

el
o

p
su

p
p

o
rt

co
m

m
u

n
it

ie
s

|
D

ev
el

o
p

er
s

an
d

u
se

rs
ar

e
b

o
th

in
n

o
va

to
rs

fo
r

IT
ca

p
ab

il
it

ie
s

an
d

o
rg

an
iz

ed
su

p
p

o
rt

co
m

m
u

n
it

ie
s

to
d

o
so

Design theory for dynamic complexity O Hanseth and K Lyytinen

11



T
a
b

le
5

C
o
n
ti
n
u
e
d

C
h

a
ll

en
ge

:
B

oo
ts

tr
a

p
pr

ob
le

m

D
es

ig
n

pr
in

ci
pl

e
D

es
ig

n
ru

le
s

F
ol

lo
w

ed
E

vi
d

en
ce

fr
om

In
te

rn
et

d
es

ig
n

h
is

to
ry

4.
M

ak
e

th
e

d
es

ig
n

o
f

IT
ca

p
ab

il
it

y
as

si
m

p
le

as
p

o
ss

ib
le

D
R

13
.

M
ak

e
th

e
II

in
te

rm
s

o
f

it
s

te
ch

n
ic

al
an

d
so

ci
al

co
m

p
le

xi
ty

as
si

m
p

le
as

p
o

ss
ib

le

|
T

h
is

ru
le

w
as

ex
p

li
ci

tl
y

st
at

ed
ea

rl
y

o
n

(R
F

C
,1

99
4)

an
d

h
as

b
ee

n
im

p
o

rt
an

t
th

ro
u

gh
o

u
t

th
e

d
es

ig
n

h
is

to
ry

o
f

th
e

In
te

rn
et

D
R

14
.

P
ro

m
o

te
p

ar
tl

y
o

ve
rl

ap
p

in
g

IT
ca

p
ab

il
it

ie
s

in
st

ea
d

o
f

al
l-

in
cl

u
si

ve
o

n
es

|
T

h
is

ru
le

is
en

ab
le

d
b

y
th

e
p

ri
n

ci
p

le
th

at
st

an
d

ar
d

s
ar

e
o

p
en

an
d

an
y

o
n

e
ca

n
d

es
ig

n
at

th
e

ed
ge

n
ew

fu
n

ct
io

n
al

it
y

re
su

lt
in

g
in

m
u

lt
ip

le
o

ve
rl

ap
p

in
g

ca
p

ab
il

it
ie

s
5.

M
o

d
u

la
ri

ze
th

e
II

D
R

15
.

D
iv

id
e

in
fr

as
tr

u
ct

u
re

re
cu

rs
iv

el
y

in
to

tr
an

sp
o

rt
at

io
n

,
su

p
p

o
rt

an
d

ap
p

li
ca

ti
o

n
in

fr
as

tr
u

ct
u

re
s

|
T

h
e

ar
ch

it
ec

tu
ra

l
p

ri
n

ci
p

le
o

f
‘e

n
d

-t
o

-e
n

d
’

ar
ch

it
ec

tu
re

th
at

p
ro

m
o

te
s

in
d

ep
en

d
en

ce
an

d
m

o
d

u
la

ri
za

ti
o

n
(D

av
id

,
20

01
)

In
te

rn
et

is
co

m
p

o
se

d
o

f
a

la
rg

e
n

u
m

b
er

o
f

se
p

ar
at

e
ca

p
ab

il
it

ie
s,

su
b

-
in

fr
as

tr
u

ct
u

re
s

th
at

ar
e

es
ta

b
li

sh
ed

an
d

o
p

er
at

ed
b

y
in

d
ep

en
d

en
t

ac
to

rs
in

cl
u

d
in

g
IS

P
s,

et
c.

D
R

16
.

U
se

ga
te

w
ay

s
b

et
w

ee
n

sp
ec

if
ic

at
io

n
ve

rs
io

n
s

|
T

h
e

p
ar

ad
ig

m
at

ic
ex

am
p

le
o

f
th

is
is

th
e

u
se

o
f

tu
n

n
el

in
g

in
th

e
tr

an
si

ti
o

n
fr

o
m

ve
rs

io
n

4
to

6
o

f
th

e
IP

p
ro

to
co

l
D

R
17

.
U

se
ga

te
w

ay
s

b
et

w
ee

n
la

ye
rs

|
T

h
is

is
k

ey
ar

ch
it

ec
tu

ra
l

p
ri

n
ci

p
le

o
f

In
te

rn
et

th
at

se
p

ar
at

es
ap

p
li

ca
ti

o
n

s,
tr

an
sp

o
rt

,
ad

d
re

ss
in

g
an

d
p

h
ys

ic
al

co
n

n
ec

ti
o

n
s.

A
ll

th
es

e
la

ye
rs

ar
e

co
n

n
ec

te
d

th
ro

u
gh

o
p

en
ga

te
w

ay
s

D
R

18
.

B
u

il
d

ga
te

w
ay

s
b

et
w

ee
n

in
fr

as
tr

u
ct

u
re

s
|

T
h

is
w

as
o

ri
gi

n
al

ly
u

se
d

to
co

n
n

ec
t

d
if

fe
re

n
t

n
et

w
o

rk
s

(B
IT

N
E

T
,

D
ec

n
et

)
w

it
h

In
te

rn
et

e-
m

ai
l

p
ro

to
co

ls
.

T
h

e
sa

m
e

to
o

k
p

la
ce

w
it

h
A

O
L

an
d

P
ro

gi
d

y
D

R
19

.
D

ev
el

o
p

tr
an

si
ti

o
n

st
ra

te
gi

es
in

p
ar

al
le

l
w

it
h

ga
te

w
ay

s
|

C
o

n
si

d
er

at
io

n
o

f
tr

an
si

ti
o

n
st

ra
te

gi
es

is
ca

re
fu

ll
y

in
tr

o
d

u
ce

d
in

to
th

e
n

ew
ve

rs
io

n
s

o
f

th
e

p
ro

to
co

l
sp

ec
if

ic
at

io
n

s

Design theory for dynamic complexity O Hanseth and K Lyytinen

12



should therefore design toward the simplest possible service
infrastructure (DR6). Next, capabilities associated with
separate service and application infrastructures should be
connected, when possible, through gateways increasing
connections between isolated user communities and benefit-
ting adopters with larger positive network effects (DR7). As
the designers link the new IT capabilities to the existing IIs,
they need to take into account the speed and direction of the
adoption of IT capabilities in neighboring infrastructures,
and capitalize on their bandwagon effects (DR8).

The Internet’s early success resulted from exploiting
established infrastructures as transport infrastructures
(DR5) when TCP/IP was first implemented using modems
over the telephone lines (Abbate, 1999). In addition, each
adopted capability has served to develop more advanced
capabilities (Abbate, 1999) (DR6). Currently, the Internet
provides, for example, capabilities for electronic commerce
including transaction support (e.g. EbXML10), identification
support (e.g. digital certificates) or security (e.g. SET) built
as separate capabilities on top of TCP/IP and http (Faraj
et al., 2004; Nickerson and Zur Muehlen, 2006). Another
example is the initial growth of Internet’s service infra-
structures (DR6). In the beginning there was none and their
need was discovered later when new service capabilities
started to grow. Yet, the scale of Internet was still relatively
small so that it was easy to design DNS capabilities and link
it to a (now) stable transportation infrastructure. Later on
DNS became critical as it increased flexibility of use
through the management of dynamic IP addresses (DHCP).
The Internet designers have also increased the installed
base through gateways (DR7). The expansion of the Web
functionality is a case in point. The Web was originally
thought to be useful for static information provisioning so
that HTML tagged files could be downloaded using the http
protocol (Tuomi, 2002). A significant added value for Web
was created by building gateways that leveraged upon data
residing in organizational databases. This added dynamic
or ‘deep’ web features: a call to data base could be now
embedded in HTML as defined by Common Gateway
Interface (CGI) specifications,11 and later expanded with
Java standards (RMI12).

Design rules for principle #3: expand installed base with
persuasive enrollment tactics: After establishing the first
attractor (usefulness), the II designers have to sustain
growth. Therefore, when a simple version of the IT
capability is available, the II designer needs to seek as
many users as possible (DR9). This principle is captured
well in a slogan: ‘users before functionality’ emphasizing
the criticality of generating positive network effects: the IT
capability derives its value from the size of its user base –
not from its superior functionality. New functionality
should be added only when it is truly needed, and the
original capability obtains new adoption levels so that the
proposed capability will have enough users willing to cover
the extra cost of design and learning (DR10). Many times
useful new functionality emerges when users start deploy
the IT capability in unexpected ways through learning by
doing and trying, or re-organizing the connections between
the user communities and the IT capability (DR11). A
growing installed base urges II designers to find means to

align heterogeneous user interests and persuade them to
continue to participate in the II. One approach is to use the
installed base as a source of useful learning by creating user
communities that offer feedback. This helps introduce new
capabilities based on feedback and unexpected actor
interactions (DR12) (Tuomi, 2002; Zimmerman, 2007).

Many capabilities during Internet design were estab-
lished at times when the capabilities could be expected to
work satisfactorily and serve a useful purpose (DR9). As a
result increasingly sophisticated application capabilities
emerged including Gopher (Minnesota), WAIS (Cambridge,
Mass) and irc (University of Oulu) (Rheingold, 1993). As a
result Internet has grown over the years enormously in
terms of new services and protocols. Typically these
capabilities emerged as local community responses to an
identified local need (DR10), and only a tiny fraction of the
Internet’s current protocol stack was part of the initial
specifications (DR10). Main reason for this was that most
innovations took place at the ‘edge’ as design capability and
application functionality were early on moved to the
network boundary. New capabilities could be conceived
and tried out whenever a user with a ‘problem’ and enough
transportation capability could leverage upon the new
functionality (Tuomi, 2002). Internet was also widely
adopted by computer science and associated engineering
communities as their research-computing infrastructure
(DR11 and DR12). The open packet switching standards
turned out to be perfectly suited for the research vision
shared by this movement (Kahn, 2006).

Design rules for the adaptation problem
When the bandwagon starts rolling, the II designers need to
guarantee that the II will grow adaptively and re-organize
constantly with new connections between II components.
Ad hoc designs, which were originally created for early
users will now threaten to create technology traps. If
designers continue to generate highly interdependent and
local IT capabilities, the whole system will become
inflexible and reach a stasis. In contrast, if IT capabilities
are organized modularly through loosely coupled ‘layers,’
which can change independently, this will generate higher
component variation for successful adaptation. The follow-
ing two design principles decomposed into seven rules offer
guidance to promote modularity.

Design rules for principle #4: make the organization of IT
capabilities simple: The first principle asks for the use of
simple architectural principles during the initial design of
the IT capabilities (DR13). It is easier to change something
that is simple than something that is complex. What makes
a collection of IT capabilities simple or complex is a
function of its technical complexity as defined by the
number of its technical elements, their connections and rate
of change (Edwards et al., 2007). Therefore following
information hiding, simple interface protocols and func-
tional abstraction can help make the design simple. But,
just as important is it to recognize the socio-technical
complexity of the design space: the number and type of
connections between technical and the social elements. In
the lingo of Actor Network Theory (Latour, 1999) the actor
network constituted by the II, that is its data elements, use

Design theory for dynamic complexity O Hanseth and K Lyytinen

13



practices, specifications and their discovery and enforce-
ment practices, the relationships to other infrastructures,
the multiplicity of developers, the role of organizations, the
variety of users, the regulatory bodies etc. – and a myriad of
links between all affect what can be changed and how (Star
and Ruhleder, 1996; Latour, 1999). Simpler actor networks
can be created by making them initially as small as possible,
and keeping them loosely connected, and avoiding
confrontations with competing networks. This is achieved
by pursuing separate specifications for distinct domains
and separating the concerns of different social and
technical actors through functional abstraction (Tilson,
2008). Limiting the functional scope of application infra-
structures to a minimum keeps the related infrastructures
separate. Decomposing service IIs into a set of layers and
separating their governance achieves the same goal. These
principles decrease the technical complexity of specifica-
tions but, more importantly, reduce their social complexity.
Finally, designs should promote partly overlapping IT
capabilities instead of all-inclusive ones. This increases
variance and stimulates innovation at different pockets by
making it operate at ‘the edge of chaos’ (DR14).

The principles of early Internet design promoted
simplicity (DR13). Its protocols were lean and simple, and
therefore had less ambiguity and errors. As a result the
implementations were simpler, and easier to test and
change. Origins of this approach date back to early designs,
which confronted early on the challenge of how to promote
change, but at the same time to avoid technology traps. This
was expressed early in the Internet’s specification approach:

From its conception, the Internet has been, and is
expected to remain, an evolving system whose partici-
pants regularly factor new requirements and technology
into its design and implementation. (RFC, 1994: 6)

This vision was opposite to traditional design strategies
in the telecommunication industry followed in the design of
the ISO/OSI protocol stack where designers assumed one
homogeneous, complete and controllable network, which
had to be completely specified (Abbate, 1999; Russell, 2006).
This difference was later at the center of the controversy
between the Internet community and the ISO/OSI commit-
tee (Schmidt and Werle, 1998; Russell, 2006). The OSI
standardizers argued that Internet lacked critical functions;
in contrast, the Internet community advocated technical
simplicity and pragmatic value. As Kahn observed:

So the only way that you could ever get anything to be a
standard was: you had to have built it first; it had to be
deployed; and basically, people would speak by adoption.
So the things that became standard y were the things
that were starting to become in widespread use and they
would eventually become standards when they were
already used. This is the equivalent of ratification after
the fact, the standard is simply a means of ratifying what
has become in widespread use y a very different
approach than specifying upfront and hoping people will
build it. (Kahn, 2006)

Many scholars have attributed the demise of the OSI
to its disregard to this pragmatic approach (Rose, 1992;

Stefferud, 1994). Finally, Internet always promoted designs
that were partly overlapping increasing variety. For
example it has generated several transportation protocols,
e-mail protocols, information distribution protocols and so
on (DR14).

Design rules for principle #5: modularize the II: As noted, II
designers need to organize modularly capabilities into
loosely coupled sub-infrastructures (Parnas, 1972; Baldwin
and Clark, 2000). Therefore, IIs should be decomposed
recursively into separate application, transport and service
sub-infrastructures (DR15). Each II interface must hide
mechanisms that implement these capabilities as to
maintain loose couplings between the connected IIs. IIs
need to be also decomposed vertically into independent
neighboring application infrastructures, and II designers
need to build gateways to connect them. Consequently,
gateways must connect regions of II that run different
versions of the same IT capabilities (DR16), or between
different IT capability layers, for example, transport or
service (DR17), or between several dedicated application
infrastructures (DR18) (Edwards et al., 2007). Finally,
transitions between incompatible IT capabilities need to
be supported by navigation strategies that allow local
changes in different versions of the IT capability that run
on the current installed base (DR19).

One reason for the speed of innovation in Internet was its
initial modular design (DR15) (Tuomi, 2002). The Inter-
net’s simple end-to-end architecture, which puts the
‘intelligence’ into the end nodes, has proven to be a critical
for its adaptive growth (DR15, DR16, DR17) (Abbate, 1999;
David, 2001). The design stimulated continued local
application or service infrastructure innovation laid on
top of separate transportation infrastructure of TCP/IP or
UDP (DR15) (Rheingold, 1993; Tuomi, 2002). Each of these
capabilities was designed independently and its design
decisions were insulated from potential changes in the
underlying transport infrastructures. They were also
governed separately.13 The erection of the W3C and
governance of the web service community forms a case in
point (Berners-Lee and Fischetti, 1999). Gateways continue
to play a critical role in the evolution of Internet and
extensive use of gateways has prevented designers to act
like ‘blind giants,’ and made early decisions easier to
reverse (Hanseth, 2001). Multiple gateways prevail, for
instance, between the Internet’s e-mail service and pro-
prietary e-mail protocols (DR17). Another important family
of gateways has been built between the Internet’s access
services and organization’s applications and databases
through web servers (DR18). Over the years Internet
protocols have been revised and extended (DR16, DR19).
One example is the revision of the transportation protocol
from IPv4 to IPv6. The need to add new capabilities while
attempting to overcome installed base inertia has been a
major design challenge (RFC, 1994; Monteiro, 1998; Hovav
and Schuff, 2005). Between 1974 and 1978, four versions of
the IP protocol were developed in fast experimental cycles
until IPv4 was released (Kahn, 1994). For the next 15 years
IPv4 remained stable. In the early 1990s Internet’s address
space was expected to run out due to the Internet’s
exponential growth. Moreover, the addressing scheme in

Design theory for dynamic complexity O Hanseth and K Lyytinen

14



IPv4 did not support multicasting and mobility. This
triggered a new round of designs to deliver a new IP version
called IP version 6.14 The final version, however, fulfilled
only few of the original requirements – the most important
one being the extension of the reverse salient – address
space – to awesome 2128 addresses.15 The most important
criterion in accepting the final specifications was in
determining mechanisms that would introduce the new
version in a stepwise manner (DR19), though initially this
was not at all in the requirements (RFC, 1995; Steinberg,
1995; Hovav and Schuff, 2005).16

Concluding remarks
Today’s IT systems involve complexity that extends beyond
what can be addressed by traditional design approaches.
Accordingly, we need to theorize in fresh ways how to
design complex IT systems. To this end we have formulated
a design theory based on CAS theory that tackles IIs’
dynamic complexity. The theory was derived by scrutiniz-
ing design histories of large infrastructures, a review of CAS
theory principles and illustrated by the analysis of Internet
exegesis. The theory formulation follows an approach
similar to Lindgren et al. (2004), and Markus et al.
(2002). By formulating this design theory we make a
contribution to IS Design and Software Engineering
research on how to develop large and complex ICT
solutions viewed as IIs. We do so by drawing extensively
on prior research on II evolution and soliciting the
empirical insights into a coherent design theory.

The proposed theory defines its unit of analysis, its
essential properties and related kernel theory – CAS – as to
derive five design principles, and19 design rules. It
recognizes and draws upon earlier research on IIs (Kling,
1992; Star and Ruhleder, 1996) by observing pivotal
relationships between technical and social elements, and
their dynamic interactions. In contrast to earlier II research
(Freeman, 2007; Zimmerman, 2007), the proposed theory
adopts the viewpoint of designers: how to ‘cultivate’ an
installed base and promote its dynamic growth by
proposing design rules for II bootstrapping and adaptive
growth. Opposed to other design theories and methodol-
ogies, which are all ‘design from scratch’ approaches, our
design theory puts the installed base at the center: II
development is about how to create a self-reinforcing
installed base by drawing upon existing ones, and how to
avoid being trapped by the force of the installed base.

All theories are incomplete (Weick, 1989) and so is our
proposed theory. Hence, the key question is not to ask
whether the proposed theory is incomplete (as it will be),
but rather: what are the implications of its limits? We will
address this in two ways: (1) how to address incompleteness
in the scope of our theoretical formulation, (2) and how to
improve consequently its external validity. We drew upon
CAS as to account for the feedback-based growth within
complex socio-technical systems. The principles that
underlie CAS are widely accepted as illustrating how
complex systems evolve. Our contribution has been to
revise CAS into a form that can be utilized in design
thinking in the context of IIs. In doing so we drew upon
extant II and other literatures to propose a set of falsifiable
design rules (Baldwin and Clark, 2000). Unfortunately,

our theory refinement still does not offer detailed
recommendations of how to decide in specific contingen-
cies about II designs. We are confident that in some
situations the theory has limited applicability. For example,
the design of IIs that necessitate single ‘point’ coordination
through significant early investments like the design of
wireless systems may follow a more centralized specifica-
tion driven approach. Likewise, the theory does not help
estimate the economic consequences of choosing between
infrastructural alternatives (Fichman, 2004). The theory is
also limited in its scope. It says nothing about the politics
during II design and how a designer can cope with the
power. To do so, we would have to integrate the theory with
theories that recognize power like actor network theory
(Latour, 1999), or institutional theory (Scott, 2001). Finally,
it cannot account for all critical features of II design like
security.

The proposed theory was kept simple as we preferred
generality over accuracy (Weick, 1989). Consequently, it is
composed of a small set of concepts offering design
abstractions across a set of IT capabilities and their growth
patterns. These concepts hide differences by applying
abstraction and composition (Kozlowski and Klein, 2000).
Therefore, the simplicity of the theory comes at a cost: its
design rules offer no silver bullet for prediction, and it has
at most a pragmatic legitimacy (Robey, 2003). Its knowl-
edge claims can thus improve II designs instead of
suggesting the ‘optimal’ design. One use of the theory is
in explaining post hoc to what extent design processes with
observed outcomes followed or did not follow principles
derived from the CAS theory. Another use is to guide
designs through enacting rules that promote increased II
adaptability by stating what ‘thou shall not,’ that is:
(1) what not to assume (e.g. complete control), or (2) what
not to do (keep it simple stupid!).

We illustrated the theory through an investigation of
successful design episodes around Internet. In this
application we viewed the theory through its use utility –
that is did the enactment of the design rules lead to stated
design goals? These principles and rules have also been
applied during the successful design of national IIs for
health care in developing countries including South Africa,
Ethiopia, Tanzania, Nigeria, India and Vietnam (Braa et al.,
2007). These programs emphasized bottom-up and iterative
development and relied on simple solutions using flexible
standards. Our question for all these experiences is: did the
theory make a difference and how would we evaluate it
under counter-factual conditions? Had it made a difference
in the Internet case had the designers not pursued the
design rules?17 Naturally, we can never be completely
certain about this as we cannot carry out a new
‘experiment’ under the same conditions. We content,
however, that, had designers followed alternative design
rules, the Internet would not have been bootstrapped as
effectively. Many other II designs with similar goals
followed different rules, but failed despite huge institutional
backing and deep resource commitments (like ISO/OSI).
We have neither examined situation where not following
the design rules led to successful outcomes, or where
following the design rules led to failures.18

In future, we will expand the proposed theory by
analyzing other II design episodes. Some candidates

Design theory for dynamic complexity O Hanseth and K Lyytinen

15



are: the digital transformation in industries including
architecture and construction (Boland et al., 2006), health
care (Hanseth and Monteiro, 1997) or financial services
(Markus et al., 2006). Another route is the creation of
service infrastructures for web services (Nickerson and zur
Muehlen, 2006), and broadband mobile services (Yoo et al.,
2005; Tilson and Lyytinen, 2006).

Our theory has significant practical implications. If its
design rules were widely adopted, the II designers would
have to prefer continuous, local innovation, to increase
chaos, and to apply simple designs and crude abstractions.
This change is not likely, as design communities are often
locked into institutional patterns that reinforce design
styles assuming vertical control and complete specifica-
tions. The best example of this is perhaps Tim Berners-
Lee’s legacy. He successfully introduced the Web by
following design rules that address dynamic complexity,
but later changed into a specification-driven approach
during the development of the semantic web. This process,
however, has been more onerous. The lesson learned is:
designers learn often superstitiously (March, 1991). We
hope, however, that this essay highlights why changing such
superstitions makes a lot of sense in today’s design.

Acknowledgements
The paper has benefited from the helpful comments of Nick
Berente, Sean Hansen, David Tilson, Youngjin Yoo, Vallabh
Sambamurthy, Bo Dahlbom, Eric Monteiro, Margunn Aanestad,
Petter Nielsen, Lynne Markus and Omar El-Sawy, the senior editor
Jannis Kallinikos and two reviewers for their constructive
comments. We also thank faculties at the Helsinki School of
Economics, Umea University, University of Oslo and Case
Western Reserve University for constructive feedback. Finally,
we want to thank all the people who participated in the study for
sharing their experience and thoughts.

Notes

1 In one sense infrastructures just evolve, if we rely on biological
metaphor and the idea of ‘blind’ mutation. But, because
infrastructures are artifacts created by intentional action, we
prefer to use the term ‘design for’ instead of ‘design of’ as
designer’s behaviors matter how, and to what extent the
infrastructure can evolve. We have elsewhere proposed the
term ‘cultivate’ for this type of design activity.

2 We use the term information infrastructure as a symmetrical
concept to that of an application, that is an information
system. Both are socio-technical artifacts, and thus ‘designed.’
Both consist of elements of hardware, software and data that
are integrated into a suite of IT capabilities and designed, used
and regulated by social groups. But their behavior, design
parameters and characteristics that define good ‘designs’ are
different as argued below.

3 Consider, for example, the design of the aviation application
embedded in a modern airplane like Airbus A380. Its
specifications are derived from a host of avionics engineers,
regulators, airline managers and so on, and developed and
controlled by a group of developers who are organized into a
hierarchy. The Airbus 380 software is therefore also useful
immediately. It will, however, gradually obtain new features

that differentiate it from its initial specification. For example,
the navigation systems of A380 may have to communicate with
new air-traffic control systems and be integrated with new
media and communication software, or airplane maintenance
and control systems. During its use Airbus380 avionics
software will thus evolve in unanticipated ways based on user
learning, regulatory demands and innovation around IT that
support new avionic tasks. Accordingly, the Airbus A380
applications, when used over time, become connected with
multiple external IT capabilities that expand in unanticipated
ways. As a result the applications become a critical component
in a complex web of interlocked set of IT capabilities in the
modern avionics acquiring infrastructural features.

4 This is an idealized view as many times user needs are
unknowable, poorly expressed or change too fast to truly
address them.

5 II specifications are often called standards and regarded
essential in building IIs (Star and Ruhleder, 1996; Edwards
et al., 2007). Standards are shared and agreed upon specifica-
tions among a set of communities. We deem them not
analytically necessary for II design. They are, however, one of
the most effective means to coordinate the distributed design
of IIs, and they play a prominent role to expand, coordinate
and deploy IT capabilities in a distributed manner.

6 The theory has also been influenced by our experiences in
designing other types of IIs. These include mobile infrastruc-
tures, ERP implementations in large organizations and
electronic patient record infrastructures.

7 For example, Google follows 70-20-10 rule to maintain a
balance between order and chaos. They use 70% of their
resources and attention to improve the current order of the
core businesses, 20% to work on related and incremental
adaptations and 10% in other, non-related new ‘permutations.’

8 This principle is similar to decomposition of dedicated IT
applications if we distinguish between user defined computa-
tional functions (e.g. computing a salary), and generic
horizontal system functions (e.g. retrieving or storing an
employee record).

9 This refers to the rule label in Table 3.
10 See http://www.ebxml.org/.
11 See http://hoohoo.ncsa.uiuc.edu/cgi/overview.html.
12 See http://java.sun.com/products/jdk/rmi/.
13 This was not always done without friction (see, e.g., Nickerson

and Zur Muehlen, 2006).
14 For a definition see http://playground.sun.com/pub/ipng/html/

ipng-main.html.
15 It has been later observed that other ‘workarounds’ like DHCP

and NAT actually could circumvent the address space problem
and the value of IPv6 in this solving the original requirement
has been questionable.

16 See, e.g., http://www.ipv6.org/.
17 Falsification principle followed is contingent in the sense that

we can never be sure that the strategy would work successfully
in all future cases, that is, the theory remains always falsifiable.

18 We have no such evidence after analyzing multiple cases.

References

Aanestad, M. and Hanseth, O. (2002). Growing Networks: Detours, stunts and

spillovers, Proceedings of COOP 2002, Fifth International Conference on the

Design of Cooperative Systems, St. Raphael, France, 4–6th June 2002.

Design theory for dynamic complexity O Hanseth and K Lyytinen

16



Abbate, J. (1999). Inventing the Internet, Cambridge, MA: MIT Press.

Agresti, W.W. (1986). The Conventional Software Life-Cycle Model: Its

evolution and assumptions, in W.W. Agresti (ed.) New Paradigms for

Software Development, Washington, D.C: IEEE Computer Society.

Arthur, W.B. (1994). Increasing Returns and Path Dependence in the Economy,

Ann Arbor: The University of Michigan Press.

Attewell, P. (1992). Technology Diffusion and Organizational Learning: The

case of business computing, Organization Science 3(1): 1–19.

Axelrod, R.M. and Cohen, M.D. (1999). Harnessing Complexity: Organizational

implications of a scientific frontier, New York: Free Press.

Baldwin, C. and Clark, K. (2000). Design Rules, Cambridge, MA: MIT Press.

BCS/RAE (2004). The challenges of complex IT projects, British Computer

Society and Royal Academy Engineering Project [www document], http://

www.bcs.org/upload/pdf/complexity.pdf (accessed August 2009).

Benbya, H. and McKelvey, B. (2006). Toward Complexity Theory of Information

System Development, Information, Technology and People 19(1): 12–34.

Benkler, Y. (2006). The Wealth of Networks. How Social Production

Transforms Markets and Freedom, New Haven, CT; London: Yale University

Press.

Berners-Lee, T. and Fischetti, M. (1999). Weaving the Web-The Original Design

and Ultimate Destiny of World Wide Web by Its Inventor, San Francisco:

Harper-Collins.

Boehm, B.W. (1976). Software Engineering, IEEE Transactions on Computers

C-25(12): 1226–1241.

Boland, R., Lyytinen, K. and Yoo, Y. (2006). Path Creation with Digital 3D

Representations: Networks of innovation in architecture, engineering and

construction, Organization Science 18: 631–647.

Bowker, G. and Star, S.L. (1999). Sorting Things Out. Classification and Its

Consequences, Cambridge, MA: MIT Press.

Braa, J., Hanseth, O., Mohammed, W., Heywood, A. and Shaw, V. (2007).

Developing Health Information Systems in Developing Countries – The

flexible standards strategy, MIS Quarterly 31(2): 381–402.

Carpa, F. (1996). The Web of Life. A new scientific understanding of living

systems, London: Harper Collins.

Cats-Baril, W. and Jelassi, T. (1994). The French Videotext System Minitel:

A successful implementation of national information technology

infrastructure, MIS Quarterly 18(1): 1–20.

Chung, S., Kelly Rainer, R. and Lewis, B. (2003). The Impact of Information

Technology Infrastructure Flexibility on Strategic Alignment and

Applications Implementation, Communications of the Association of

Information Systems 11: 191–206.

Ciborra, C., Braa, K., Cordella, A., Dahlbom, B., Failla, A., Hanseth, O., Hepsø,

V., Ljungberg, J., Monteiro, E. and Simon, K. (2000). From Control to Drift.

The Dynamics of Corporate Information Infrastructures, Oxford: Oxford

University Press.

Contini, F. and Lanzara, G.F. (eds.) (2009). ICT and Innovation in the Public

Sector, Basingstoke, England: Palgrave Macmillan.

Cordella, A. (2004). Standardization in Action, Paper presented at European

Conference on Information Systems, Turku, Finland, 14–16th June 2004.

Damsgaard, J. and Lyytinen, K. (2001). Building Electronic Trading

Infrastructure: A private or public responsibility, Journal of Organizational

Computing and Electronic Commerce 11(2): 131–151.

David, P.A. (1986). Understanding the Economics of QWERTY, in W.N. Parker

(ed.) Economic History and the Modern Economist, Oxford and New York:

Basil Blackwell.

David, P.A. (2001). The Beginnings and Prospective Ending of ‘End-to-End’ –

An evolutionary perspective on internet architecture, Working Papers

01012, Stanford University, Department of Economics [www document]

http://ideas.repec.org/p/wop/stanec/01012.html.

DeMarco, T. (1978). Structured Analysis and System Specification, New York,

NY: Yourdon Press.

Dooley, K. (1996). Complex Adaptive Systems: A nominal definition,

[www document] http://www.public.asu.edu/�kdooley/papers/casdef

.PDF (accessed 13th August 2009).

Edwards, P., Jackson, S., Bowker, G. and Knobel, C. (2007). Report of a

Workshop on ‘History and Theory of Infrastructures: Lessons for new

scientific infrastructures’, University of Michigan, School of Information

[www document] http://www.si.umich.edu/InfrastructureWorkshop/

documents/UnderstandingInfrastructure2007.pdf (accessed 15th March 2007).

Egyedi, T.M. (2002). Standards Enhance System Flexibility? Mapping

Compatibility Strategies Onto Flexibility Objectives [www document]

http://www.tudelft.nl/live/binaries/0b330c26-def4-45e3-a367-43b61bf0ae45/

doc/mapping.pdf.

Eisenhardt, K. (1989). Building Theories from Case Study Research,

Academy Management Review 14(4): 532–550.

Evans, D.S., Hagiu, A. and Schmalensee, R. (2006). Invisible Engines: How

software platforms drive innovation and transform industries, Cambridge,

MA: MIT Press.

Faraj, S., Kwon, D. and Watts, S. (2004). Contested Artifact: Technology

sensemaking, actor networks, and the shaping of the web browser,

Information Technology & People 17(2): 186–209.

Fichman, R. (2004). Real Options and IT Platform Adoption: Implications

for theory and practice, Information Systems Research 15(2): 132–154.

Freeman, P.A. (2007). Is ‘Designing’ Cyberinfrastructure – or, even,

defining it – possible? First Monday 12(6), June [www document] http://

firstmonday.org/issues/issue12_6/freeman/index.html (accessed 8th August 2007).

Funk, J.L. (2002). Global Competition Between and within Standards: The case

of mobile phones, New York: Palgrave.

Giddens, A. (1984). The Constitution of Society, London: Polity Press.

Greenhalgh, T., Stramer, K., Bratan, T., Byrne, E., Mohammad, Y. and Russell, J.

(2008). Introduction of Shared Electronic Records: Multi-site case study using

diffusion of innovation theory, British Medical Journal, (Clinical research edn)

337: a1786.

Gregor, S. (2006). The Nature of Theory in Information Systems, MIS Quarterly

30(3): 611–642.

Grindley, P. (1995). Standards, Strategy, and Politics. Cases and Stories, New

York: Oxford University Press.

Grisot, M. (2008). Foregrounding Differences: A performative approach to the

coordination of distributed work and information infrastructures in use,

Ph.D. Thesis, Departments of Informatics, University of Oslo, Norway.

Hanseth, O. (2000). The Economics of Standards, in Ciborra et al. (eds.), From

Control to Drift. The Dynamics of Corporate Information Infrastructures,

Oxford: Oxford University Press, pp. 56–70.

Hanseth, O. (2001). Gateways – Just as important as standards. How the

internet won the ‘religious war’ about standards in Scandinavia, Knowledge,

Technology and Policy 14(3): 71–89.

Hanseth, O. and Aanestad, M. (2003). Bootstrapping Networks, Infrastructures

and Communities, Methods of Information in Medicine 42: 384–391.

Hanseth, O. and Ciborra, C. (2007). Risk, Complexity and ICT, Cheltenham, UK;

Northampton, MA, USA: Edward Elgar Publishing.

Hanseth, O. and Lundberg, N. (2001). Information Infrastructure in Use – An

empirical study at a radiology department, Computer Supported Cooperative

Work (CSCW). The Journal of Collaborative Computing 10(3–4): 347–372.

Hanseth, O. and Monteiro, E. (1997). Inscribing Behaviour in Information

Infrastructure Standards, Accounting Management and Information

Technology 7(4): 183–211.

Hanseth, O., Monteiro, E. and Hatling, M. (1996). Developing Information

Infrastructure: The tension between standardization and flexibility, Science,

Technology and Human Values 21(4): 407–426.

Holland, J. (1995). Hidden Order, Massachusetts: Addison-Wesley Reading.

Hovav, A. and Schuff, D. (2005). ‘The Changing Dynamic of the Internet’ Early

and Late Adopters of Ipv6 Standard, Communications of the Association of

the Information Systems 15: 242–262.

Hughes, T.P. (1987). The Evolution of Large Technical Systems, in W.E. Bijker,

T.P. Hughes and T. Pinch (eds.) The Social Construction of Technological

Systems, Cambridge, MA: MIT Press.

Kahn, R.E. (1994). The Role of Government in the Evolution of the Internet,

Communications of the ACM 37(8): 415–419, Special issue on Internet

technology.

Kahn, R.E. (2006). Personal interview on phone 6th December 2006.

Kallinikos, J. (2004). Deconstructing Information Packages: Organizational and

behavioural implications of large scale information systems, Information

Technology and People 17(1): 8–30.

Kallinikos, J. (2006). Information out of Information: On the self-referential

dynamics of information growth, Information Technology and People 19(1):

98–115.

Kallinikos, J. (2007). Technology, Contingency and Risk: The vagaries of

large-scale information systems, in O. Hanseth and C. Ciborra (eds.) Risk,

Complexity and ICT. Cheltenham, UK; Northampton, MA: Edward Elgar

Publishing, pp. 46–74.

Kayworth, T. and Sambamurthy, S. (2000). Facilitating Localized Exploitation

of Enterprise Wide Integration in the use of IT Infrastructures: The role of

Design theory for dynamic complexity O Hanseth and K Lyytinen

17



PC/LAN infrastructure standards, The Data Base for Advances in Information
Systems 31(4): 54–80.

Kling, R. (1992). Behind the Terminal: The critical role of computing

infrastructure in effective information systems’ development and use, in

W. Cotterman and J. Senn (eds.) Challenges and Strategies for Research in

Systems Development, London: John Wiley, pp. 153–201.

Kling, R. and Scacchi, W. (1982). The Web of Computing: Computing

technology as social organization, Advances in Computers, New York:

Academic Press, Vol. 21, pp. 3–87.

Kozlowski, S. and Klein, K. (2000). A Multi-Level Approach to Theory and

Research in Organizations: Contextual, temporal and emergent processes, in

K. Klein and S. Kozlowski (eds.) Multilevel Theory, Research and Methods in

Organizations, San Francisco: Jossey-Bass, pp. 3–90.

Latour, B. (1999). Pandora’s Hope. Essays on the Reality of Science Studies,

Cambridge, MA; London, UK: Harvard University Press.

Lee, C., Dourish, P. and Mark, G. (2006). The Human Infrastructure of the

Cyberinfrastructure, Proceedings of CSCW’06 (Banf, Canada); New York:

ACM Press, 483–492.

Leiner, B.M., Cerf, V.C., Clark, D.D., Kahn, R.E., Kleinrock, L., Lynch, D.C.,

Postel, J., Roberts, L.G. and Wolff, S.S. (1997). The Past and Future History

of the Internet, Communications of the ACM 40(2): 102–108.

Lessig, L. (2001). The Future of Ideas: The fate of the commons in a connected

world, New York: Random House.

Lindgren, R., Hendfridsson, O. and Schultze, U. (2004). Design Principles for

Competence Management Systems: A synthesis of an action research study,

MIS Quarterly 28(3): 435–472.

Lyytinen, K. and Fomin, W. (2002). Achieving High Momentum in the

Evolution of Wireless Infrastructures: The battle over the 1G solutions,

Telecommunications Policy 26: 149–190.

March, J.G. (1991). Exploration and Exploitation in Organizational Learning,

Organization Science 2(1): 71–78.

Markus, M.L., Majchrzak, A. and Gasser, L. (2002). A Design Theory for Systems

That Support Emergent Knowledge Processes, MIS Quarterly 26(3): 179–212.

Markus, M.L., Steinfield, C.W., Wigand, R.T. and Minton, G. (2006). Industry-

Wide Information Systems Standardization as Collective Action: The case of

the US residential mortgage industry, MIS Quarterly 30(Special Issue on

Standardization August 2006): 439–465.

Mashey, J. (2009). The Long Road to 64 Bits, Communications of the ACM 52(1):

45–53.

Monteiro, E. (1998). Scaling Information Infrastructure: The case of the next

generation IP in internet, The Information Society 14(3): 229–245.

Nickerson, J.V. and zur Muehlen, M. (2006). The Ecology of Standards

Processes: Insights from internet standard making, MIS Quarterly 30(5):

467–488.

Olle, T.W., Soland, H.G. and Tully., C.J. (eds.) (1983). Information Systems

Design Methodologies: A feature analysis, Amsterdam, The Netherlands:

Elsevier Science Publishers B.V.

Parnas, D.L. (1972). A Technique for Software Module Specification with

Examples, Communications of the ACM 15(5): 330–336.

Pipek, V. and Wulf, V. (2009). Infrastructuring: Toward an integrated

perspective on the design and use of information technology, Journal of the

Association for Information Systems 10(5): 447–473.

Porra, J. (1999). Colonial Systems, Information Systems Research 10(1): 38–69.

RFC (1994). The Internet Standards Process – Revision 2, RFC 1602, IAB and

IESG [www document] http://www.ietf.org/rfc/rfc1602.txt.

RFC (1995). The Recommendation for the IP Next Generation Protocol, RFC

1752, IAB and IESG [www document] http://www.ietf.org/rfc/rfc1752.txt.

Rheingold, H. (1993). The Virtual Community: Homesteading the electronic

frontier, Reading, MA: Addison Wesley.

Robey, D. (2003). Identity, Legitimacy, and the Dominant Research Paradigm:

An alternative prescription for the IS discipline, Journal of the Association of

for Information Systems 4(6): 352–359.
Rose, M.T. (1992). The Future of OSI: A modest prediction, in G. Neufeld and

B. Plattner (eds.) Proceedings of the Usenix Conference 1992; Berkley USA:

USENIX Association.
Ross, D.T. and Schoman Jr., K.E. (1977). Structured Analysis for Requirements

Definition, IEEE Transactions of Software Engineering SE 3(1): 69–84.

Russell, A. (2006). Rough Consensus and Running Code’ and the Internet – OSI

standards war, IEEE Annals of the History of Computing 28(July–September):

48–61.

Saltzer, J.H., Reed, D.P. and Clark, D.D. (1984). End-to-End Arguments in

Systems Design, ACM Transactions on Computer Systems 2: 277–288.

Sauer, C. and Willcocks, L. (2007). Unreasonable Expectations – NHS IT, Greek

choruses and the games institutions play around mega-programmes, Journal

of Information Technology 22: 195–201.

Scacchi, W. (2009). Understanding Requirements for Open Source Software, in

K. Lyytinen, P. Loucopoulos, J. Mylopoulos and W. Robinson (eds.) Design

Requirements Engineering: A ten-year perspective, LNBIP 14, Berling and

Heidelberg: Springer-Verlag, pp. 467–494.

Schmidt, S.K. and Werle, R. (1998). Coordinating Technology. Studies in the

International Standardization of Telecommunications, Cambridge MA: MIT

Press.

Scott, R.W. (2001). Institutions and Organizations, London: Sage.

Shapiro, C. and Varian, H.R. (1999). Information Rules: A strategic guide to the

network economy, Boston, MA: Harvard Business School Press.

Simon, H. (1969). The Sciences of the Artificial, Cambridge, MA: MIT Press.

Stacey, R.D. (1996). Complexity and Creativity in Organisations, San Francisco:

Berrett-Koehler.

Star, L.S. and Ruhleder, K. (1996). Steps Toward an Ecology of Infrastructure:

Design and access of large information spaces, Information Systems Research

7(1): 111–134.

Stefferud, E. (1994). Paradigms Lost, Connexions. The Interoperability Report 8(1).

Steinberg, S.G. (1995). Addressing the Future of the Net, WIRED 3(May):

141–144.

Tilson, D. (2008). Reconfiguring to Innovate: Innovation networks during the

evolution of wireless services in the United States and the United Kingdom,

Ph.D. Thesis, Department of Information Systems, Case Western Reserve

University.

Tilson, D. and Lyytinen, K. (2006). The 3G Transition: Changes in the US

wireless industry, Telecommunication Policy 30: 569–586.

Tuomi, I. (2002). Networks of Innovation. Change and Meaning in the Age of the

Internet, Oxford, UK: Oxford University Press.

Wagner, A. (2007). Robustness and Evolvability in Living Systems, Princeton,

NJ: Princeton University Press.

Walls, J.G., Widmeyer, G.R. and El Sawy, O.A. (1992). Building an Information

System Design Theory for Vigilant EIS, Information Systems Research 3(1):

36–59.

Walls, J.G., Widmeyer, G.R. and El Sawy, O.A. (2004). Assessing Information

System Design Theory in Perspective: How useful was our 1992 rendition?

Journal of Information Technology Theory and application 6(2): 43–58.

Weick, K.E. (1989). Theory Construction as Disciplined Imagination, Academy

of Management Review 14(4): 516–531.

Weill, P. and Broadbent, M. (1998). Leveraging the New Infrastructure,

Cambridge, MA: Harvard Business School Press.

Wigand, R.T., Lynne Markus, M., Steinfield, C.W. and Minton, G. (2006).

Standards, Collective Action and IS Development – Vertical information

systems standards in the US home mortgage industry, MIS Quarterly, Special

Issue on Standards and Standardization 30: 439–465.

Williams, R. and Pollock, N. (2008). Software and Organisations – The

biography of the enterprise-wide system or how SAP conquered the world,

London: Routledge.

Yoo, Y., Lyytinen, K. and Yang, E. (2005). The Role of Standards in Innovation

and Diffusion of Broadband Mobile Services: The case of South Korea,

Journal of Strategic Information Systems 14(2): 323–353.

Zimmerman, A. (2007). A Socio-Technical Framework for Cyberinfrastructure

Design, in Proceedings of e-Social Science Conference (Ann Arbor, Michigan,

October).

Zittrain, J. (2006). The Generative Internet, Harward Law Review 119:

1974–2040.

About the authors
Ole Hanseth is Professor in the Department of Informatics,
University of Oslo. His research focuses mainly on the
interplay between social and technical issues in the
development and use of large-scale networking applica-
tions. He is also a visiting professor at the Department of
Management, London School of Economics.

Kalle Lyytinen is Iris S. Wolstein Professor at Case Western
Reserve University, USA, Adjunct Professor at University
of Jyvaskyla, Finland, and a visiting professor at University

Design theory for dynamic complexity O Hanseth and K Lyytinen

18



of Loughborough, UK. He serves on the editorial boards of
leading information systems journals including Journal of
AIS (Editor-in-Chief), Journal of Strategic Information
Systems, Information and Organization, Requirements
Engineering Journal, Information Systems Journal, Scandi-
navian Journal of Information Systems, Journal of Informa-
tion Technology, and Information Technology and People.
He is AIS Fellow (2004), and the former chairperson of IFIP
WG 8.2, and a founding member of SIGSAND. He received
Dr. h.c. from Umeå University, Sweden in 2008 for his work
on social informatics. He has published over 200 articles

and conference papers and edited or written 11 books on
topics related to nature of IS discipline, system design,
method engineering, digital innovation, risk assessment,
computer supported cooperative work, standardization and
ubiquitous computing. He is currently involved in research
that looks at the IT-induced radical innovation in software
development, IT innovation in architecture, engineering
and construction industry, requirements discovery and
modeling for large scale systems, ERP implementation
processes, and the adoption of wireless services in the UK
and the US.

Design theory for dynamic complexity O Hanseth and K Lyytinen

19


