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Abstract: The PMSM (Permanent Magnet Synchronous Motor) is being studied a lot in traction motors
for high efficiency and high performance. Usually, magnets containing rare earth elements are used.
However, since rare earth elements are not suitable for future industries due to their limited reserves,
many studies on magnets excluding rare earth elements are being conducted. Magnets excluding
rare earth elements have a low coercive force and are vulnerable to irreversible demagnetization, so
their design must be robust. Additionally, the design used for reducing the cogging torque, which
is a major variable of traction motors, is also important. Therefore, in this study, a design process
for reducing irreversible demagnetization and cogging torque is proposed. There are three methods
for this process. The first one is the application of the tapering structure, and the second one is the
tapering skew structure. The third one is the application of an asymmetric air hole. As a result of
these methods, the target irreversible demagnetization ratio was satisfied and the cogging torque
was reduced. This was proven through FEA (Finite Element Analysis) and verified by comparing
and analyzing the experimental results and simulation results of actual manufacturing.

Keywords: demagnetization; irreversible demagnetization; Dy; Dy-free; traction motor; cogging
torque; cogging torque reduction; PMSM; rare earth; tapering; skew

1. Introduction

Many studies have been conducted on PMSMs (Permanent Magnet Synchronous Mo-
tor) for high performance and efficiency [1–6]. The permanent magnet used here is made
by including rare earth elements in the magnet [7,8]. However, rare earth elements have
limited reserves, so they have many disadvantages in the future industry. Therefore, re-
cently, many studies have been conducted on magnets excluding rare earth elements [9–12].
Magnets that completely exclude rare earth elements are called Dy-free magnets. Dy-free
magnets are susceptible to irreversible demagnetization due to low coercive forces. There-
fore, if a Dy-free magnet is applied, a design for reducing irreversible demagnetization
is required. [13–17]. Additionally, a traction motor is used, and the traction motor is an
application that is sensitive to noise and vibration. Therefore, it is necessary to reduce the
cogging torque, which is one of the leading causes of these problems [18–21]. In summary,
this study proposes a process that satisfies the target value of irreversible demagnetization
and reduces the cogging torque by selecting a traction motor with a Dy-free magnet as
the target motor [22]. In this study, three important processes are proposed to reduce the
cogging torque and irreversible demagnetization. The first method Is to apply a tapering
structure. The second is to apply a tapering skew structure. When the tapering skew
structure is applied, asymmetry occurs in the rotor structure, resulting in asymmetry in
the cogging torque and back emf. To improve this asymmetry, a two-step tapering skew
structure can be applied. To be more precise, the asymmetry is improved by symmetrically
applying the tapering skew angle to the upper and lower halves of the rotor stacking
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halves. The third method is to insert an air hole. By inserting the air hole, the irreversible
demagnetization ratio can be reduced. By inserting air holes asymmetrically, the cogging
torque can be reduced. Irreversible demagnetization occurs more in the magnet located in
the area where the tapering skew structure is not applied than it does in the area where the
tapering skew structure is applied. Therefore, by inserting two air holes in the pole piece
where the tapering skew structure is applied and one air hole in the other part, the target
demagnetization ratio can be satisfied and the cogging torque can be reduced. Figure 1
shows the design process for irreversible demagnetization and cogging torque reduction.
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Figure 1. A rotor design process to reduce irreversible demagnetization and cogging torque.

2. Conventional Model Analysis

Figure 2 illustrates the manufactured model of the stator and rotor of the hybrid
traction motor to which the existing Dy-free magnet was applied. Table 1 shows the
specifications of conventional motors.
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Table 1. Specification of 35kW class hybrid traction motor with Dy-free magnet.

Description Value Unit

Pole/Slot/Phase 16/24/3 -
Power 35 kW

Maximum speed/Rated speed 6000/1770 rpm
Maximum current/Rated current 205/102.5 Arms
Maximum torque/Rated torque 205/102.5 Nm

Stator diameter 280 mm
Rotor diameter 200 mm

Turns/Number of parallel 69/8 -
Dy-free magnet residual flux density 1.31 -

Dy-free magnet Coercive force (At 20 ◦C) −984 kA/m
Dy-free magnet Coercive force (At 150 ◦C) −488 kA/m

Figure 3 shows the irreversible demagnetization area of the existing model and the B–H
curve of the Dy-free magnet at 150 (◦C). After confirming that the coercive force of the Dy-
free magnet was low, a design was established to improve the irreversible demagnetization.
The irreversible demagnetization was analyzed based on applying 1.2 times the maximum
current, and as a result, the irreversible demagnetization ratio was less than 1 (%).
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Figure 3. The irreversible demagnetization area of the conventional model and the B–H curve based
on Dy-free magnet at 150 ◦C: (a) area of irreversible demagnetization; (b) B–H curve of Dy-free
magnet (second quadrant).

Figure 4 depicts the back emf and cogging torque. In this study, a design was per-
formed to reduce the cogging torque while satisfying the irreversible demagnetization ratio
of less than 1(%) during the same performance.
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3. A Study on Reducing Cogging Torque and Irreversible Demagnetization through
the Application of a Tapering Structure
3.1. Application of Tapering Structure

Figure 5 illustrates the parameters of the tapering structure design. As Ltap increases,
the tapering depth increases. The tapering depth is indicated by g(θ). The formula for g(θ)
is shown in Equation (1).

g(θ) =
{

R − (Ltap cos θ +
√
(R − Ltap)

2 − (Ltap sin (θ)2))

}
× 2 (1)

The formula for θ is shown in Equation (2).

θ = rem(θm +
360 ◦M
P × 2

,
360 ◦M

P
)− 360 ◦M

P × 2
(2)

The depth of tapering can be calculated using the above two equations. The cogging
torque and back emf increase according to Figure 6.
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Figure 6. Cogging torque and back emf according to the length of Ltap: (a) cogging torque; (b) back emf.

In Figure 6a, it is confirmed that the cogging torque rapidly decreases as Ltap increased,
and then gradually increases again from 15 mm. When Ltap is too long, the cogging torque
hardly changes. As shown in (b), the back emf continues to decrease as Ltap increases.
An increase in Ltap indicates a greater depth of tapering. As Ltap increases, the tapering
deepens, and the air gap widens. As a result, when Ltap increases, the performance worsens.
In addition, in order to apply Dy-free permanent magnets, the analysis of irreversible
demagnetization caused by the low coercive force of Dy-free permanent magnets is essential.
Figure 7 shows the irreversible demagnetization ratio depending on Ltap.
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As illustrated in Figure 7, as Ltap increases, the irreversible demagnetization ratio
increases. This is because the tapering depth, g(θ), increases as Ltap increases. Then, the
reverse magnetic field directly affects the magnet. Therefore, when Ltap increases, the
irreversible demagnetization ratio increases.

3.2. Application of Tapering skew Structure

As illustrated in Figure 8, the skew angle range was selected as −3.5 ◦ ~3.5 ◦. The
tapering angle range was specified inside the barrier.
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Figure 8. Tapering skew angles: (a) −3.5 deg, (b) 0 deg, and (c) 3.5 deg.

If tapering is applied to the other ranges, the performance worsens. The reason
for the deterioration of the performance is that the v-shape type is a type that improves
its performance by concentrating the magnetic flux to a pole piece. However, when
tapering is applied to the pole piece, air gaps are formed in the area where magnetic flux is
concentrated, resulting in a worse performance. Therefore, the range of the tapering skew
angle was selected as follows. Figure 9 shows the back emf when the skew angle is 2.5 deg.

As shown in Figure 9, back EMF asymmetry occurred. Since the tapering skew angle is
biased to one side, the maximum value is 101.94 (V) and the minimum value is −100.51 (V),
resulting in counter-electromotive force asymmetry. To improve this asymmetry, a two-
stage skew angle structure was applied. For example, if half of the laminated length is
3 deg, the other half is −3 deg. For symmetry, a symmetrical combination was selected as
above. Figure 10 shows the two-stage skew tapering model and back emf.

The back emf asymmetry is improved by the symmetrical skew structure of the upper
and lower halves of the rotor. When two-stage skew tapering structure is applied, the
cogging torque generated in the upper half of the rotor and the cogging torque generated
in the lower half are expected to offset each other, thereby reducing the cogging torque.
Figure 11 shows the cogging torque when the two-stage skew tapering structure is applied.
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Figure 10. Two-stage skew tapering model and back emf: (a) two-stage skew tapering; (b) back emf.

As shown in Figure 11, the cogging torque waveforms of −3.5 deg~0 deg and
0 deg~3.5 deg are reversed. If the upper and lower halves of the rotor are combined
at a symmetrical skew angle, the cogging torque will be reduced. Figure 12 shows the
back-emf and cogging torque according to the increase in depth. Model 1 is a model in
which tapering skew angles of 1 deg and −1 deg are combined. Models 2 to 6 represent the
sum of 1.5 deg and −1.5 deg, 2 deg and −2 deg, 2.5 deg and −2.5 deg, 3 deg and −3 deg,
and 3.5 deg and −3.5 deg, respectively. As illustrated in Figure 12, the shaded area is the
selectable area.

Figure 12a shows the back emf depending on the tapering skew angle. As Ltap
increases or the tapering skew angle approaches 3.5 deg, the back emf tends to decrease.
Figure 12b shows the cogging torque depending on the tapering skew angle. As Ltap
increases, the cogging torque decreases, and when the tapering skew angle increases, the
cogging torque shows a different tendency for each model. In the area where the cogging
torque is small, it tends to decrease in Model 2, and then slowly increase again. In the area
where the cogging torque is small, it shows a tendency to decrease in Model 2, and then
slowly increase again. Here, a model that falls within the target range of back emf and
cogging torque was selected. Models that fall within the two target ranges are Model 1
and Model 2 when Ltap is 25 mm, and Models 1 and 2 when Ltap is 20 mm. Among them,
Model 2 with 25 mm Ltap, which is a combination of 1.5 deg and −1.5 deg is selected. This
is because it has a high back emf and low cogging torque. Since a Dy-free magnet with
low coercive force was used as the magnet, an irreversible demagnetization analysis was
performed according to the tapering skew angle. This is shown in Figure 13.
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As shown in Figure 13a, irreversible demagnetization occurs less often in the area
where tapering is applied than it does in the area where tapering is not applied. This is
because irreversible demagnetization occurs due to demagnetization caused by windings.
However, irreversible demagnetization occurs less often in the area where tapering is
applied because the air gap is larger. Figure 13b shows the irreversible demagnetization



Machines 2023, 11, 345 8 of 16

ratio according to the tapering skew angle. It can be seen that the irreversible demagnetiza-
tion does not change significantly depending on the tapering skew angle. In addition, it
was confirmed that irreversible demagnetization had no effect on the selection of a model
in which the Ltap of the selected model was 25 mm and the tapering skew angle was
1.5 deg and −1.5 deg combined. Afterwards, in this study, an additional reduction design
was created to match the irreversible demagnetization ratio and cogging torque to the
target performance.
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4. Research on Irreversible Demagnetization Ratio and Cogging Torque Reduction
through Asymmetric Air Hole Insertion
4.1. Bridge and Barrier Support Structure Design

Steel plates were inserted into bridges and barriers to serve as a support structure
for the magnets and to reduce the irreversible demagnetization ratio. When a steel plate
is inserted, the reverse magnetic field generated by the winding uses the steel plate as
a magnetic flux path. Then, the diamagnetic field generated by the windings going to
the magnet flows into the steel plate and reduces the irreversible demagnetization ratio.
Figure 14 shows the irreversible demagnetization area when steel plates are inserted into
the bridges and barriers.
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Figure 14 shows the irreversible demagnetization area before and after the steel plate
was inserted into the barrier and bridge. Although it was not significantly reduced, there
was a slight decrease. A steel plate must be inserted to support the magnet. A steel
plate was inserted to reduce irreversible demagnetization as much as possible to perform
the role of a magnet support structure and reduce the demagnetization at the same time.
Figure 15 illustrates the cogging torque waveforms before and after barrier and bridge
design was applied.
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As shown in Figure 15, the cogging torque after designing the barrier and bridge was
2.51 (Nm), which increased by 1.5 (%) compared to 2.47 (Nm) before the design was applied.
Barrier and bridge designs were applied to reduce the magnet support and irreversible
demagnetization ratio, and as a result, the cogging torque increased slightly, but it was
confirmed that there was no significant difference.

4.2. Insertion of Air Hole

An air hole was inserted in the pole piece to reduce the irreversible demagnetization.
If an air hole is inserted in the pole piece in front of the area where irreversible demagne-
tization occurs a lot, the flow of the reverse magnetic field generated by the winding to
the magnet can be reduced. If an air hole is inserted in the pole piece in front of the area
where diamagnetic field occurs a lot, the flow of the reverse magnetic field generated by
the winding to the magnet can be reduced. In this way, irreversible demagnetization can
be reduced. Figure 16 shows the irreversible demagnetization area, cogging torque, and
air hole insertion model according to the air hole insertion. Insertion was performed at a
distance of 0.6 mm from the magnet pocket side to consider mechanical stiffness.
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In Figure 16a, an air hole was inserted into the pole piece, and the tendency of the
cogging torque and irreversible demagnetization ratio was confirmed as we moved the
air hole toward the bridge. The cogging torque decreased as we changed the air hole
position. Additionally, the irreversible demagnetization ratio also decreased as the air hole
position changed, and it was constant from 1.2 mm. Therefore, the air hole position was
set as 1.4 mm. The target cogging torque was satisfied. However, it did not satisfy the
most important irreversible demagnetization ratio. So, in order to reduce the irreversible
demagnetization ratio, a second air hole was inserted. The second air hole was inserted
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only on the pole piece side where irreversible demagnetization occurs a lot, and the cogging
torque reduction design was applied by shifting the phase of the cogging torque waveform
through the air hole asymmetric structure. In addition, the irreversible demagnetization
ratio reduction design was performed by inserting an air hole in front of the pole piece
where irreversible demagnetization occurs a lot. Figure 17 depicts the asymmetric air hole
insertion structure, irreversible demagnetization ratio, and cogging torque graph.
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final model. 

Figure 17. Asymmetric air hole insertion model, and the graph of cogging torque and demagnetization:
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As shown in Figure 17, irreversible demagnetization occurred largely in the part where
tapering skew was not applied, so the second air hole was inserted only in the pole piece in
front of this magnet. The second airhole was inserted asymmetrically. Figure 17b shows
the second cogging torque and irreversible demagnetization ratio. The cogging torque
decreases as the second air hole position changes, and it remains constant from 0.4 mm. The
irreversible demagnetization ratio decreases as the second air hole position changes, and
then increases from 1 mm. The second air hole that satisfies these two target performances
was selected as 1 mm. Finally, all the target performances were satisfied. Figure 18 shows a
model for an asymmetric air hole structure.
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Figure 18. Rotor with asymmetric air hole structure.

Figure 18 shows the final model, a rotor with an asymmetric air hole structure. The
part corresponding to the dotted circle mark is the part to which the tapering skew structure
was applied, and the part corresponding to dark color represents the air hole part. If you
look at the dark part, you can see the asymmetric structure in the air hole.

5. Electromagnetic and Mechanical Performance Analysis
5.1. Electromagnetic Performance Analysis

Figure 19 shows the back emf and cogging torque of the conventional model and the
final model.

Figure 19a shows the back emf of the two models. The back emf values for both
models are almost identical. That is, both models have the same performance. Figure 19b
shows the cogging torque. The cogging torque in the conventional model is 3.96 (Nm), and
the cogging torque in the final model is reduced to 1.81 (Nm). Figure 20 shows the torque
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waveform at a speed of 1770 (rpm) and a current of 205 (Arms). The torque ripple in the
conventional model is 43.6 (Nm), and the torque ripple in the final model is 29.41 (Nm).
The torque ripple of the final model was reduced by 32.5 (%) compared to that of the
conventional model. Table 2 shows the main performances of the conventional model and
the final model.
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Table 2. Conventional model and final model performance comparison.

Description Conventional Model Final Model Unit

Cogging torque (pk to pk) 3.96 1.81 Nm
Torque ripple (pk to pk) 43.6 29.41

Noload back emf 78.2 76.9 Vrms
Irreversible demagnetization ratio 0.55 0.61 %

The cogging torque of the conventional model is 3.96 (Nm), and the cogging torque
of the final model is 1.81 (Nm). That is, the cogging torque of the final model compared
to the conventional model was reduced by 54.3(%). The target value of the irreversible
demagnetization ratio is within 1%. The irreversible demagnetization ratio in the final
model was 0.61%, which was less than 1%. Table 3 shows the losses for the conventional
model and the final model. The loss was shown for a speed of 1770 (rpm) and a current of
102.5 (Arms).

Table 3 shows the losses for the conventional model and the final model. Since the
final model uses the same stator and designed only the rotor, the copper loss is the same.
However, core loss and lac eddy current loss were reduced because tapering was applied
in the design of the final model rotor. Compared to the conventional model, the core loss
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of the final model was reduced by 11.7 (%), and the eddy current loss was reduced by
10.8 (%).

Table 3. Conventional model and final model performance comparison.

Conventional Model Final Model Unit

Core loss 140.37 123.95 W
Eddy current loss 41.41 36.93 W

Copper loss 630.38 630.38 W

5.2. Mechanical Performance Analysis

It is important to analyze the electromagnetic performance. However, it is meaningless
unless the mechanical rigidity is checked. It is necessary to check whether the mechanical
rigidity is satisfied. Figure 21 shows the safety factor for the conventional model and the
final model. Both models analyzed the mechanical stiffness in the air hole application state.
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Figure 21. Mechanical stiffness in conventional model and final model: (a) conventional model;
(b) final model.

Figure 21 showed mechanical stiffness in both models. The equivalent stress in the
conventional model is 148.34 (MPa), and the minimum safety factor is seven. The equivalent
stress in the final model is 113.15 (MPa), and the minimum safety factor is eight. Compared
to the conventional model, it was confirmed that the final model had a lower equivalent
stress and a higher minimum safety factor. In other words, it proved that it is mechanically
safer than the conventional model is.

6. Experimental Results

Figure 22 shows the final model rotor and stator. Figure 23 shows pictures of the
final prototype, controller, and performance evaluation environment. Figure 24 shows a
dynamo test bench combined with a temperature and humidity chamber for analyzing the
irreversible demagnetization ratio and a temperature data log. The irreversible demag-
netization ratio can be confirmed by looking at the counter electromotive force reduction
rate when a reverse magnetic field was applied at a high temperature. The results of the
experiment with these experimental equipment are shown below.

Figure 25 shows the current waveform during the maximum output operation of the
final model motor and the current waveform during maximum efficiency operation. Table 4
shows the motor torque and maximum output, and Table 5 shows the maximum efficiency
test results.
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Figure 26 shows the measurement result of the reduction rate of counter-electromotive
force of the Dy-free magnet final prototype motor. Table 6 shows the experimental results.

Table 6, it can be seen that the counter electromotive force is reduced by 16.28 (%) at
room temperature (20 ◦C) and at (150 ◦C).

Figure 27 shows the back emf waveform before applying the demagnetizing current,
the back emf waveform after applying the demagnetizing current, and the demagnetizing
current. At this time, the temperature condition was 150 ◦C, the speed was 1000 (rpm), and
the applied demagnetization current was measured under the conditions of 554 (Apeak).
Additionally, the scale of the back emf test waveform y-axis is 50 (Vrms). At this time, the
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no-load back emf before applying the demagnetizing current was 40.61 (Vrms), and the
no-load back emf after applying the demagnetizing current was 40.51 (Vrms). At this time,
the irreversible demagnetization ratio was 0.25 (%).
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Table 4. Maximum output test result of the final model.

Inverter Input Voltage Rotating Speed Output Torque Maximum Output

302.6 (V) 2000 (rpm) 187.26 (Nm) 39.23 (W)

Table 5. Maximum efficiency test result.

Inverter Input Voltage Inverter Input Voltage Motor Output Maximum Efficiency

302.1 (V) 17,242 (W) 16.53 (W) 95.91 (%)
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temperature of the final Dy-free magnet motor prototype: (a) measurement result of no-load counter-
electromotive force at 25 ◦C; (b) measurement result of no-load counter-electromotive force at 150 ◦C.

Table 6. Measurement result of back EMF reduction rate according to the temperature of the
final prototype.

Temperature Conditions 20 ◦C 150 ◦C

Noload back emf U phase (Vrms) 48.51 40.61
temperature reduction ratio (%)

(Compared to 20 ◦C) - 16.28
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7. Conclusions

In this paper, a hybrid traction motor with a Dy-free magnet was selected as a target
model, and cogging torque and irreversible demagnetization ratio reduction studies were
conducted. A Dy-free magnet has a low coercive force and is vulnerable to irreversible
demagnetization. Therefore, if a Dy-free magnet is applied, an irreversible demagnetization
design is essential. However, the cogging torque of the traction motor is also a design
variable that should be considered as a major factor. Therefore, in this paper, a design
for reducing the cogging torque and irreversible demagnetization ratio was performed by
applying a Dy-free magnet. The design was carried out for the same v-shape type as that of
the target model, and a tapering structure was applied to reduce the cogging torque. After
that, a tapering skew structure was applied to maximize the reduction of the cogging torque.
However, when the tapering skew structure is applied, asymmetry of the rotor occurs,
resulting in back emf asymmetry. To improve this, a two-stage tapering skew structure
was applied. A two-step tapering skew structure was applied by dividing the upper and
lower halves, which are symmetrically stacked rotor halves, with skew angles. Accordingly,
the cogging torque and irreversible demagnetization ratio were analyzed, and the cogging
torque and irreversible demagnetization ratio were reduced. An additional reduction
design was performed to satisfy the target cogging torque and irreversible demagnetization
ratio. The design was performed by inserting an air hole into the pole piece. At this time,
two air holes were inserted on the pole piece side to which skew tapering was applied, and
an air hole asymmetric structure was applied to insert one air hole on the pole piece side
to which skew tapering was not applied. Through this, the cogging torque was reduced
by 54.3 (%) for the same performance standard, and the irreversible demagnetization ratio
was 0.61 (%), which satisfied the target value of one (%).
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