
Design Tradeoffs for Simplicity and Efficient
Verification in the Execution Migration Machine

Keun Sup Shim*, Mieszko Lis*, Myong Hyon Cho, Ilia Lebedev, Srinivas Devadas

Massachusetts Institute of Technology, Cambridge, MA, USA

{ksshim, mieszko, mhcho, ilebedev, devadas}@mit.edu

Abstract—As transistor technology continues to scale, the
architecture community has experienced exponential growth in
design complexity and significantly increasing implementation
and verification costs. Moreover, Moore’s law has led to a
ubiquitous trend of an increasing number of cores on a single chip.
Often, these large-core-count chips provide a shared memory
abstraction via directories and coherence protocols, which have
become notoriously error-prone and difficult to verify because
of subtle data races and state space explosion. Although a very
simple hardware shared memory implementation can be achieved
by simply not allowing ad-hoc data replication and relying on
remote accesses for remotely cached data (i.e., requiring no
directories or coherence protocols), such remote-access-based
directoryless architectures cannot take advantage of any data
locality, and therefore suffer in both performance and energy.

Our recently taped-out 110-core shared-memory processor,
the Execution Migration Machine (EM²), establishes a new design
point. On the one hand, EM² supports shared memory but
does not automatically replicate data, and thus preserves the
simplicity of directoryless architectures. On the other hand,
it significantly improves performance and energy over remote-
access-only designs by exploiting data locality at remote cores via
fast hardware-level thread migration. In this paper, we describe
the design choices made in the EM² chip as well as our choice
of design methodology, and discuss how they combine to achieve
design simplicity and verification efficiency. Even though EM²
is a fairly large design—110 cores using a total of 357 million
transistors—the entire chip design and implementation process
(RTL, verification, physical design, tapeout) took only 18 man-
months.

I. INTRODUCTION

During the past decade, continued growth in transistor
densities [1] has permitted increasingly large and complex
silicon designs. Because of power limitations, this increased
complexity has mostly tended towards Chip Multiprocessors
(CMPs): multiple cores on a single chip have become main-
stream, and forward-looking pundits predict large-scale CMPs
with hundreds or thousands of cores in the near future.

At the same time, chip implementation and verification
costs have become more significant than ever. In addition to
the increased costs of verifying the larger amount of logic
in the increasingly complex cores, the sheer number of cores
results in combinatorial explosion of the state space that must
be examined: designers must ascertain not only the correctness
of each core operating in isolation, but also of the concurrent
execution of all of the cores, as well as of any protocols
responsible for coordinating among them.

* Keun Sup Shim and Mieszko Lis contributed equally to this work.

One example where verification complexity has skyrock-
eted is hardware support for shared memory in large-scale
CMPs. A full shared-memory abstraction provides programming
convenience and is therefore widely accepted as a sine qua
non for general-purpose parallel programming. In order to
support shared-memory, current commodity multicore CMPs
maintain coherence among private (per-core) caches using
distributed directory coherence protocols. The design of even
a simple coherence protocol, however, is not trivial [2]; more
significantly, since the state space explodes combinatorially
as the number of cores grows, many researchers have found
implementing distributed directories in hardware and verifying
them to be extremely difficult and not scalable [3], [4], [5], [6],
[7]. Covering the entire space is impractical at even large and
well-funded design houses, and verifying only small subsystems
does not guarantee the correctness of the entire system [4], [6];
indeed, in modern CMPs, errors in cache coherence are one of
the leading bug sources in the post-silicon debugging phase [5],
and occasionally survive in chips already on the market [8].

For these reasons, various researchers have explored alterna-
tive ways to support shared memory in the realm of many-core
CMPs. Several projects have proposed to transfer the burden of
cache coherence from hardware to the OS and software [9], [10],
or moved the coherence handling to the OS while preserving
hardware support for remote cache accesses [11]. Designs
like DeNovo [12] have offered simplified hardware coherence
protocols at the cost of relying on more disciplined shared-
memory programming models. Some general-purpose designs

10 mm!

10 mm!

917 um!

855 um!

8KB I-$!

32KB D-$!

Core!

Router!Router!Router!Router!Router!Router!

Off-chip!
memory!

Off-chip!
memory!

Fig. 1. The 110-core EM² chip layout. The physical chip comprises
approximately 357 million transistors on a 10mm×10mm die in 45nm ASIC
technology, using a 476-pin wirebond package. 110 tiles are placed on a 10×11
grid, connected via an on-chip network.

have done away with coherence altogether: for example, Intel’s
48-core Single-Chip Cloud Computer (SCC) entirely forgoes a
hardware coherence mechanism and requires the programmer
to explicitly manage data coherence [13].

The 110-core Execution Migration Machine (EM²) de-
sign [14] provides a new design point on the in-hardware
coherence spectrum. Built as a proof of concept for a fine-
grained thread migration infrastructure [15], [16], EM² eschews
traditional coherence protocols in which multiple copies of data
can exist in multiple on-chip caches, and instead uses remote
cache accesses to operate on remotely cached data as in [11].
Since only one copy is ever cached, coherence is trivially
ensured without the need for a coherence protocol; because
all decisions are local and there are no directories that must
keep information about all cores in the system, the hardware is
simple to implement and verification scales well with increasing
core counts.

This naı̈ve remote-access scheme, however, cannot take
advantage of any data locality for remote data and therefore
compromises performance and energy. To leverage this local-
ity, EM² complements the remote cache access mechanism
with fine-grained hardware-level thread migration [16]. This
significantly improves both performance and energy by turning
multiple remote round-trip accesses into a single migration
followed by many accesses to the now local cache; because
migration decisions remain local and there is no conceptually
central repository holding information about all cores, the
design simplicity and verification efficiency of the directoryless
memory substrate are maintained.1 Since EM² supports a
shared memory model (including full sequential consistency) in
hardware,2 it provides more fine-grained coherence and more
strict memory models than OS- and software-based approaches;
at the same time, unlike conventional directory protocols, EM²
has no transient states and indirections, which ensures that
verification scope does not grow with the number of cores.

Although our primary goal in implementing the EM² chip
was a proof-of-concept design for fast, fine-grained hardware
thread migration, we secondarily strove to maintain the ease of
implementation and verification that the EM² memory model
provides throughout the entire design flow; our on-chip inter-
connect architecture, core architecture, and design/verification
methodology all reflect this goal. Altogether, the entire 110-
core chip design (cf. Figure 1) and implementation process
(RTL, verification, physical design, tapeout) took a total of
18 man-months, proving that our implementation/verification
scales efficiently despite the fairly large core count.

In the remainder of this paper, we describe the EM² memory
architecture in Section II below, and the salient design choices
we made to simplify design and verification in Section III.
Then, in Section IV, we outline how our implementation and
verification methodology helped reduce design and verification
time, and offer concluding remarks in Section V.

1A detailed performance and energy analysis of EM², showing up to 25%
improvement in performance and up to 14× reduction in network traffic over
the remote-access-only design, is presented in [17]; the present paper focuses
instead on how the EM² architecture enables design simplicity and verification
efficiency.

2While software may have to be optimized to ensure optimal performance

under EM², no program changes or restrictions are required to maintain
execution correctness.

II. EM² MEMORY ARCHITECTURE

EM² provides a global shared address space in hardware,
where the first 86%

(

=
110
128

)

of the entire memory space of
16GB is divided into 110 non-overlapping regions as required
by the EM² shared memory semantics (cf. Figure 2). Each
core’s data cache may only cache the address range assigned
to it, and the core where the data can be cached, i.e., the
home core, is easily computed by taking the high 7 bits of
the corresponding memory address.3 The remaining 14% of
the address range is cacheable by any core but without any
hardware coherence guarantees, which allows software to take
advantage of patterns like read-only shared data replication.
Memory is word-addressable and there is no virtual address
translation; cache lines are 32 bytes. The memory subsystem
consists of a single level (L1) of instruction and data caches,
and a backing store implemented in external DRAM. Each tile
contains an 8KB read-only instruction cache and a 32KB data
cache, for a total of 4.4MB on-chip cache capacity; the caches
are capable of single-cycle read hits and two-cycle write hits.

EM² implements a hybrid memory access framework which
combines a remote cache access protocol (as in [11]) with
a hardware-level thread migration protocol [16] for non-
local memory accesses (i.e., accesses to addresses out of the
requesting core’s cacheable memory region). The two protocols
are described below.

A. Remote Cache Access

Under the remote-access protocol [18], [11], each load or
store access to an address cached in a different core causes
a word-granularity round-trip message to the tile allowed to
cache the address: a request is transmitted over the interconnect
network, the access is performed in the remote core, and the
data (for loads) or acknowledgement (for writes) is sent back
to the requesting core. Note that the retrieved data (word) for
loads is never cached locally; the combination of word-level
access and no local caching ensures correct memory semantics.

Unlike a private cache organization where a coherence
protocol (e.g., directory-based protocol) takes advantage of
spatial and temporal locality by making a copy of the block
containing the data in the local cache, this protocol incurs
round-trip costs for every remote access. Design complexity,
on the other hand, is extremely low and scalable because every
cache line can only reside in a single cache at its home core.

B. Thread Migration

EM² complements the remote access mechanism with fine-
grained, hardware-level thread migration to better exploit data
locality [16]. This mechanism brings the execution to the
locus of the data instead of the other way around: when a
thread needs access to an address cached on another core, the
hardware efficiently migrates the thread’s execution context to
the core where the data is (or is allowed to be) cached. This
can automatically turn contiguous sequences of remote cache
accesses into a migration to the core where the data is cached
followed by a sequence of local accesses, potentially improving
performance over a remote-access-only design.

3Instruction caches are read-only and can cache a memory line with any
address.

Gl b l M Add S H b id M A F k

Migrate another

thread back to
yes0x00000000

Global Memory Address Space Hybrid Memory Access Framework
(word-addressable)

Migrate

thread to

home core

Migrate
threads

exceeded?

thread back to

its native core

yes

Decision

0x00000000

0x02000000

Cacheable only in core 0

Cacheable only in core 1

Send remote

request to Access memory

Access memory &

continue execution

no
Decision

Procedure

0xDA000000

when accessed by core C (C ≠ 1)

request to

home core

Access memory

R t d t (d)

Remote

Access

0xDA000000

0xDC000000

Cacheable only in core 109

Return data (read)

or ack (write) to

the requesting core C

Continue execution
Cacheable in any core

(No coherence maintained)

0xFFFFFFFF

Core originating

memory access (core C)
Core where address

can be cached (home core H)
Network

0xFFFFFFFF

16 GB of memory

Fig. 2. The global memory address space of EM² and its access mechanism. In EM², shared memory leverages a combination of remote access and thread
migration; memory accesses to addresses not assigned to the local core can either result in a remote cache access or cause the execution context to be migrated to
the relevant core.

If a thread is already executing at the destination core, it
must be evicted and moved to a core where it can continue
running. To reduce the need for evictions and amortize
migration latency, cores duplicate the architectural context
(register file, etc.) and allow a core to multiplex execution
among two concurrent threads. To prevent deadlock, one context
is marked as the native context and the other as the guest context:
a core’s native context may only hold the thread that started
execution there (called the thread’s native core), and evicted
threads must return to their native cores to ensure deadlock
freedom [15].

C. Hybrid Framework

The EM² memory access framework is the combination of
remote access and thread migration: for each access to memory
cached on a remote core, an instruction-granularity decision
algorithm (see Section III-E) determines whether the thread
should migrate or execute a remote access, as illustrated in
Figure 2. The overall memory access protocol of EM² for
accessing address A by thread T executing on core C is as
follows:

1) compute the home core H for A (by masking the
appropriate bits);

2) if H = C (a core hit),

a) forward the request for A to the cache hierar-
chy (possibly resulting in a DRAM access);

3) if H 6= C (a core miss), and remote access is selected,

a) send a remote access request for address A
to core H,

b) when the request arrives at H, forward it to
H’s cache hierarchy (possibly resulting in a
DRAM access),

c) when the cache access completes, send a
response back to C,

d) once the response arrives at C, continue
execution.

4) if H 6= C (a core miss), and thread migration is
selected,

a) interrupt the execution of the thread on C (as
for a precise exception),

b) migrate the microarchitectural state to H via
the on-chip interconnect:

i) if H is the native core for T , place it in
the native context slot;

ii) otherwise:

A) if the guest slot on H contains
another thread T ′, evict T ′ to its
native core N′

B) move T into the guest slot for H;

c) resume execution of T on H, requesting
A from its cache hierarchy (and potentially
accessing DRAM).

Although the migration framework requires hardware changes
to the remote-access-based design, the combined architecture
of EM² is still significantly less complex than a directory-based
coherence protocol. Since the absence of a conceptually central
directory means that correctness arguments do not depend on
the number of cores, and the combined remote-access/migration
protocol does not incur the many transient states endemic in
coherence protocols, EM² is far easier to reason about. In the
next section, we explore how this shared-memory mechanism
results in a simple implementation, and in Section IV-B we
show how it enables a scalable verification flow.

III. EM² DESIGN AND ITS COMPLEXITY

Our goals in building the EM² chip focused on (a) achieving
the most efficient implementation of thread migration possible,
and (b) evaluating how fine-grained thread migration can
reduce on-chip traffic (and therefore dynamic power dissipation).
Below, we describe how these criteria allowed us to make design
choices that lead to a simpler, more easily verifiable design.

A. Homogeneous tiled architecture

As an effective evaluation of the potential of our migration
architecture directed us towards as large a core count as feasible
in our 10mm×10mm of silicon, we chose a tiled architecture
with simple, homogeneous tiles, laid out in a 2D grid. Out
of 110 tiles in the EM² ASIC, 108 are identical, while the
remaining two include interfaces to off-chip memory (Figure 1).

The alternative here would have been to save area by
separately optimizing tiles at each of the four edges and each of
the four corners; this would have permitted us to elide on-chip
network buffers as well as parts of the crossbar that faced
the unused direction(s). Optimizing the edge and corner tiles,

however, would have required us to verify eleven different
kinds of tiles instead of three (one for the regular tiles, eight
for the edge and corner tiles, and two for the tiles with off-
chip interfaces), and significantly complicated our scalable
verification strategy (described in Section IV-B below) while
still not extracting sufficient area to add an extra row or column
to the 2D mesh layout.

B. Memory architecture

Because our main targets were fast migration and reduction
of on-chip traffic, we chose to maximize on-chip performance
and forgo a high-bandwidth off-chip memory interface. Instead,
EM² connects off-chip memory via simple rate-matching
interfaces (described below) that extend the on-chip interconnect
to the outside at two points on the sides of the chip (see
Figure 1); these in turn connect to a “northbridge” FPGA that
implements DDR3 memory controllers.

This choice allowed us to make several simplifications in
the development process. Firstly, we avoided implementing
or purchasing—and, more importantly, verifying—a DDR3
interface. Instead, verifying correct off-chip memory operation
was as simple as verifying that the relevant on-chip networks
extended to the outside, the packets carried correct request data,
and injected response packets were properly transmitted to the
on-chip interconnect. Secondly, reducing off-chip bandwidth
allowed us to tape out with the simpler wirebond I/O rather
than using the higher-bandwidth but more complex flip-chip
option; this also meant that we could use a 476-pin package and
fit in a standard socket, thus making our bring-up infrastructure
simpler and more modular.

Since the EM² memory architecture eschews a coherence
protocol by allowing data to be cached only in a single L1 cache
based on its memory address, the L1 cache is already effectively
shared and partitioned among the 110 tiles (see Figure 2). This
first-level cache organization maximizes effective on-chip cache
capacity given a fixed amount of on-chip SRAM, and therefore
leaves no strong reason to add another higher-level of shared
cache. In addition, because the L1 is already shared, leaving
out a second level of cache does not significantly affect cache
access patterns, since the L2 would only back up the L1 cache
segment located in the same tile (in contrast to a design with
a private L1 and shared L2, where each L2 slice handles
requests from any private L1). Our implementation, therefore,
includes only L1 instruction and data caches, and we focus our
evaluation on how thread migration can effectively complement
a remote cache access protocol. This choice simplified both
design and verification: there were only two cache controllers to
design and verify (I$ and D$), and no need to test interactions
between different cache levels. Moreover, this allowed us to fit
more tiles on the chip: the inflexible nature of SRAM blocks
significantly complicates tile layout around them, and, since
the tiles were already dominated by their large cache SRAMs,
adding additional SRAM blocks would have resulted in bigger
(and fewer) tiles.

The off-chip I/O interface itself (see Figure 3) uses a simple
and reliable credit-based protocol with dedicated wires (rather
than control messages) for control flow; the interface is content-
oblivious (i.e., it directly transmits on-chip network flits). In
this way, nearly all of the complexity is relegated to the off-
chip “northbridge” FPGA. The ASIC generates an I/O clock

Credit Based

Flow Control

Credit Based

Flow Control

i Delay

i Delay

i Delay

o Delay

IO

Clock

BufferBuffer

FPGA ASIC

Fig. 3. Block diagram of the chip↔northbridge interface. Advanced
FPGA I/O capabilities allow the ASIC side of the link to be
implemented in a very simple and easy-to-verify manner.

(at a rate configurable to an integral fraction of the chip’s clock
speed), and all data transfer is governed by this clock. Although
this means that the FPGA we interface to has to individually
phase-align each pin using delay lines, this choice made it
unnecessary to add clock matching and arbitrary clock crossing
logic on the ASIC side, and greatly simplified I/O verification
and reduced tapeout risk.

Critically, we were able to make these simplifying choices
without jeopardizing our evaluation goals. This is because we
specifically aimed to examine how migration can accelerate a
remote-cache-access design; because programs running under
both regimes access exactly the same cache lines (either via
remote cache access or by thread migration followed by a local
access), they induce the same cache miss patterns and therefore
make the same off-chip memory requests. This observation
allows us to factor out off-chip memory, implement a single-
level cache, and focus on a steady-state evaluation of on-chip
memory performance and interconnect traffic.

C. Stack-based core architecture

data cache! instruction cache!

PC!PC!

aux!
stack!

aux!
stack!

main!
stack!

main!
stack!

native context! guest context!

Fig. 4. The processor core consists of two contexts in an SMT
configuration, each of which comprises two stacks and a program
counter, while the cache ports and migration network ports (not shown)
are shared between the contexts. Stacks of the native context are backed
by the data cache in the event of overflow or underflow.

EM² supports hardware-level thread migration which di-
rectly moves the thread’s architectural context via the on-chip
interconnect; the migration cost, therefore, depends on the
amount of migrated context. Since always moving the entire
thread context can be wasteful if only a portion of it will be
used at the destination core, our quest for the most efficient
thread migration dictated that we implement partial context

Source core Destination core

PCstack

Source core Destination core

PCstack

IV B body flits
I. Context unload

(1 cycle)

IV. B body flits

(B cycles)

Body #2Body #2
Body #1Body #1

HeadHead

II. Travel H hops

(H cycles)
III. Context load

(1 cycle)

startstartFig. 5. Hardware-level thread migration via the on-chip interconnect.
Only the main stack is shown for simplicity.

migration (i.e., allow the transfer of only the necessary part of
the thread context).

Transferring a partial context, however, requires the hard-
ware to predict/know which part of the context is likely to be
used remotely. While implementing this in a register-to-register
RISC architecture is not impossible, the random-access nature
of a register file makes for complex prediction logic. Instead,
we chose to implement a custom 32-bit stack architecture as
shown in Figure 4; two stacks (main and auxiliary) are provided
for programmer convenience. This choice greatly simplifies
predicting which part of the context to migrate, since the entries
near the top of the stack are far more likely to be used than
entries closer to the bottom: instead of tracking precisely which
registers should be migrated for each migration entry point,
the prediction logic need only track how many stack entries
should be taken along.

D. Deadlock avoidance in thread migration

Figure 5 illustrates how the processor cores and the on-chip
network efficiently support fast instruction-granularity thread
migration. When the core fetches an instruction that triggers a
migration (for example, because of a memory access to data
cached in a remote tile), the migration destination is computed,
the thread context is serialized onto the network, and execution
resumes at the destination core; the serialization and instruction
fetch are pipelined, resulting in a very low migration latency
that ranges from a minimum of 4 cycles to a maximum of 33
cycles (assuming no network congestion).

In a naı̈ve implementation, a difficulty can arise if the
destination core is already executing a thread. This thread can
be evicted, but it is unclear where it should be sent; for example,
sending it to the core that originated the migration might seem
like a good idea, but this can lead to network deadlock, and
at any rate another thread might already have started running
there. Although a number of strategies can be employed to
mitigate this kind of deadlock (for example, additional virtual
channels and buffers), many require complex coordination and
have special deadlock-recovery states that would complicate
verification. Instead, we chose to guarantee that deadlock never
arises by implementing two SMT-like thread contexts in each
core: one for the thread that originated there (the native context)
and one for any threads that originated in other cores (the guest
context). Restricting the native context to only the thread that
originated on a given core, together with requiring an evicted
thread to return to its native context, ensures that deadlock
never arises [15].

When multiple threads contend for the same guest core due

to high data sharing within a relatively small time window,
threads will evict each other according to our deadlock-free
protocol. This core contention may result in ping-pong effect
where a thread repeatedly migrates to access data only to be
evicted and return to its native core, potentially degrading
performance. In [17], however, we observed that performance
penalty due to such evictions is not significant for our set of
benchmarks, and can be kept low by allowing a guest thread
to execute a set of N instructions before being evicted.

Although the extra context incurs an additional area cost, it
significantly eases verification. In addition to the protocol itself
being provably livelock- and deadlock-free [15], implementing
it requires no exceptional deadlock recovery state, as both the
native and guest contexts are used in normal operation and are
therefore already verified.

E. Migration decision scheme

For a load/store instruction that accesses an address that
cannot be cached locally, EM² has a choice either to perform
remote access or to migrate a thread (see Figure 2 and
Section II-C). Although our ISA allows the programmer to
directly specify whether the instruction should migrate or
execute via remote cache access, in general this decision can be
dynamic and dependent on the phase of the program; therefore,
EM² relies on an automatic hardware migration predictor [19]
in each tile.

The main goals for the migration predictor were efficiency
and simplicity—a prediction might be required in every cycle,
and the state space of the hardware must be simple enough to
verify exhaustively. Therefore, we implemented the predictors
as a simple direct-mapped data structure indexed by the program
counter (PC): a memory instruction will result in a migration
only if a given PC is in the predictor table, i.e., if it is a
migratory instruction. The predictor is based on the observation
that, much like branches, sequences of consecutive memory
accesses to the same home core are highly correlated with the
program (instruction) flow, and the predictors learn in a fashion
similar to a simple branch predictor: detecting a contiguous
sequence of accesses to the same core causes the start PC to
be added to the table, and migrating without executing enough
local memory instructions to make the trip “worth it” causes
the entry to be deleted. The simplicity of this design and its
state space allowed us to verify the predictor in isolation and
integrate it with the CPU cores without the need for extensive
end-to-end verification.

The detection of migratory instructions is done by tracking
how many consecutive accesses to the same remote core have
been made, and if this exceeds a threshold, inserting the PC
into the predictor to trigger migration. If it does not exceed
the threshold, the instruction is classified as a remote-access
instruction, which is the default state. Each thread tracks (1)
Home, which maintains the home core ID for the current
requested memory address, (2) Depth, which indicates how
many times so far a thread has contiguously accessed the
current home location (i.e., the Home field), and (3) Start PC,
which tracks the PC of the very first instruction among memory
sequences that accessed the home location in the Home field.
We separately define the depth threshold θ, which indicates the
depth at which we determine the instruction as migratory.

The detection mechanism is as follows: when a thread T
executes a memory instruction for address A whose PC = P, it
must first find the home core H for A; then,

1) if Home = H (i.e., memory access to the same home
core as that of the previous memory access),

a) if Depth < θ,

i) increment Depth by one; then if
Depth = θ, StartPC is regarded as a mi-
gratory instruction and thus, is inserted
into the migration predictor;.

2) if Home 6= H (i.e., a new sequence starts with a new
home core),

a) if Depth < θ,

i) StartPC is regarded as a remote-access
instruction;

b) reset the entry (i.e., Home = H, PC = P,
Depth = 1).

While the predictor described in [19] only supports full-
context migration, the migration predictor of EM² further
supports stack-based partial context migration. Each predictor
entry consists of a tag for the PC and the transfer sizes for the
main and auxiliary stacks upon migrating a thread. When an
instruction is first inserted into the predictor, the stack transfer
sizes for the main and auxiliary stack are set to the default
values of 8 and 0, respectively; when the thread migrates back
to its native core due to stack overflow (or underflow) at the
guest core, the stack transfer size of the corresponding PC is
decremented (or incremented), accordingly.

Guided by the goal of simplicity and verification efficiency,
we chose to implement one per-core migration predictor, shared
between the two contexts in each core (native and guest), rather
than dual per-core predictors (one for the native context and one
for the guest), or per-thread predictors whose state is transferred
as a part of the migration context. The per-thread predictor
scheme was easy to reject because it would have significantly
increased the migrated context size and therefore violated our
goal of the most efficient thread migration mechanism. The
dual predictor solution, on the other hand, could in theory
improve predictions because the two threads running on a
core would not “pollute” each other’s predictor tables—at
the cost of additional area and verification time. Instead, we
chose to preserve simplicity and implement a single per-core
predictor shared between the native and guest contexts, sizing
the predictor tables so that our tests showed no noticeable
performance degradation (32 entries).

With our partial-context migration predictor, EM² never
performs worse than the remote-access only baseline for our set
of benchmarks; a detailed evaluation is presented in [17]. EM²
offers up to 25% reduction in completion time, and throughout
our benchmark suite, EM² also offers significant reductions in
on-chip network traffic, up to 14× less traffic (66% less on
average).

F. On-chip interconnect

EM² has three types of on-chip traffic: migration, remote
access, and off-chip memory access. Although it is possible for
this traffic to share on-chip interconnect channels, this would
require suitable arbiters (and possibly deadlock recovery logic),

and would significantly expand the state space to be verified.
To avoid this, we chose to trade off area for simplicity, and
route traffic via six separate channels, which is sufficient to
ensure deadlock-free operation [15].

Further, the six channels are implemented as six physically
separate on-chip networks, each with its own router in every
tile. While using a single network with six virtual channels
would have utilized available link bandwidth more efficiently
and made inter-tile routing simpler, it would have exponentially
increased the crossbar size and significantly complicated the
allocation logic (the number of inputs grows proportionally to
the number of virtual channels and the number of outputs to
the total bisection bandwidth between adjacent routers). More
significantly, using six identical networks allowed us to verify
in isolation the operation of a single network, and then safely
replicate it six times to form the interconnect, significantly
reducing the total verification effort.

G. Module complexity comparison

ISA impl.: 61!

data cache: 18!

instr. cache: 12!

migration: 13!

remote access: 8!

stack mgmt: 8!

NoC router: 9!

Fig. 6. Complexity comparison of the main modules contributing to
the EM² tile, expressed in terms of Bluespec rule counts.

Figure 6 shows the breakdown of implementation complex-
ity in the core modules as the number of Bluespec [20] rules
used to implement each of them. A single rule roughly corre-
sponds to a semantic operation that the hardware must perform
(e.g., executing an instruction), and a rule count therefore makes
a good proxy for overall complexity (see Section IV-A below).
The migration infrastructure adds relatively little to the overall
complexity (about 10% of the logic), and is comparable in
complexity to the remote cache access mechanism or a simple
cache controller. Although our chip implementation did not
include a directory-based coherence protocol, the complexity
would far exceed the combined complexity of the migration and
remote access mechanisms in EM²: the number of equivalent
rules in a basic MSI protocol would be 33 (22 state transitions
for caches and 11 for directories), vs. 13 for migration and 8
for remote access.

IV. EM² DESIGN AND VERIFICATION METHODOLOGY

A. Hardware design language

Bluespec [20] is a high-level hardware design language
based on synthesizable guarded atomic actions [21]. In Blue-
spec, a design is described using rules, each of which specifies
the condition under which it is enabled (the guard) and the

consequent state change (the action). Unlike standard Verilog
always blocks, rules are atomic—in each clock cycle, a given
rule will either be applied in its entirety or not at all, and
the final state can be reconstructed as a sequence of rule
applications. Actions in different rules may attempt to alter
the same state element; when those changes conflict (e.g., two
rules attempting to enqueue something in a single-port FIFO),
the compiler automatically generates control logic (called a
schedule) to ensure that only one of the conflicting rules may
fire in a given clock cycle. When rule actions do not overlap
or can be executed in parallel (e.g., one rule enqueuing into
a FIFO and the other dequeuing from it), the compiler will
allow the rules to fire in the same clock cycle. Source written
in Bluespec is compiled to synthesizable Verilog, which is then
combined with any custom Verilog/VHDL modules (such as
SRAMs) and synthesized as part of the standard ASIC flow.
The quality of results in terms of timing and area has been
shown to be on par with hand-optimized Verilog RTL [22].

The atomic rule semantics of Bluespec encourage a coding
style where each semantically distinct operation is described
separately, instead of a style that focuses on describing each
hardware element (as in Verilog). For example, in our stack-
ISA CPU, the operations of automatically refilling and spilling
the in-CPU stack into backing data memory (fill_stack
and spill_stack) both access the stack registers and the
data cache interface, but are described in two separate rules;
the Bluespec compiler automatically creates the necessary
data path muxes and control logic. Crucially, rule atomicity
means that adding or removing a rule does not require any
changes in existing rules: for example, the rule that completes
an ALU operation (alu_op) also accesses the stack registers,
but adding this rule requires no changes to fill_stack and
spill_stack—the compiler will just infer slightly different
muxes and control. This independence is handy in the design
phase, and encourages a progressive-refinement approach to
design “one rule at a time.” Far more significantly, however,
it means that implementation errors are localized to specific
rules; thus, a bug-fix that changes fill_stack will not require
changing or verifying alu_op even if the changes affect which
stack registers are accessed and how, and the fix will work
regardless of why the stack is being refilled (stack-to-stack
computation, outbound migration, etc).

Less obvious but equally important, reasoning about our
design in an operation-centric manner and expressing it using
atomic rules allowed us to separate functionality and perfor-
mance, and verify (and correct) the two aspects independently.
By far most of our verification effort focused on functionality
(i.e., the module being tested producing the correct output
for any given input). Relying on the Bluespec compiler to
automatically generate muxes and interlocks for conflicting
rules, we did not have to think about the precise cycle-
to-cycle operations or worry that concurrent execution of
separate operations might combine to cause unexpected bugs.
Once functionality was verified, we tuned the cycle-to-cycle
operation to meet our performance goals, mostly by guiding
the compiler with respect to rule priority and ordering and
without changing any of the rules themselves. This separation
of functionality and cycle-to-cycle performance also allowed us
to optimize performance without fear of breaking functionality.
For example, at a late stage, we discovered an unnecessary
bubble in our pipeline between some pairs of instructions. In

S
IV. 110-tile system

I. Module II. Single-tile III. 4-tile system
IV. 110 tile system

(a full EM2 chip)

Core

Cache
Core Cache

Router
Router

Migration Migration

Router

No b gs introd ced
bugs within

each module

No bugs introduced

by increasing the

t i

inter-module

bugs
inter-tile

bugs> > >>each module
system size

bugs bugs

Fig. 7. Bottom-up verification methodology of EM². The high
modularity and design simplicity of EM² enabled verification to scale
as we integrated modules and increase the system size: the number of
bugs found decreased at each step, and no new bugs were discovered
by moving from a 4-tile model to the full 110-tile system.

our flow, the fix was simple and localized to a faulty bypass
rule; because we knew that the compiler would preserve the
operational correctness as described in the rules, we needed to
re-verify only the performance aspect. Had we used a design
methodology where correctness and performance cannot be
easily separated, we might well have judged that the risk of
breaking existing functionality was not worth the benefit of
improved performance, and taped out without fixing the bug.

B. System verification

With evolving VLSI technology and increasing design
complexity, verification costs have become more critical than
ever. Increasing core counts are only making the problem
worse because any pairwise interactions among cores result in
a combinatorial explosion of the state space as the number of
cores grows. Distributed cache coherence protocols in particular
are well known to be notoriously complex and difficult to design
and verify. The response to a given request is determined
by the state of all actors in the system (for example, when
one cache requests write access to a cache line, any cache
containing that line must be sent an invalidate message);
moreover, the indirections involved and the nondeterminism
inherent in the relative timing of events requires a coherence
protocol implementation to introduce many transient states that
are not explicit in the higher-level protocol. This causes the
number of actual states in even relatively simple protocols
(e.g., MSI, MESI) to explode combinatorially [4], and results
in complex cooperating state machines driving each cache
and directory [2]. In fact, one of the main sources of bugs in
such protocols is reachable transient states that are missing
from the protocol definition, and fixing them often requires
non-trivial modifications to the high-level specification. To
make things worse, many transient states make it difficult
to write well-defined testbench suites: with multiple threads
running in parallel on multicores, writing high-level applications
that exercise all the reachable low-level transient states—or
even enumerating those states—is not an easy task. Indeed,
descriptions of more optimized protocols can be so complex
that they take experts months to understand, and bugs can
result from specification ambiguities as well as implementation
errors [3]. Significant modeling simplifications must be made to
make exploring the state space tractable [23], and even formally
verifying a given protocol on a few cores gives no confidence
that it will work on 100.

While design and verification complexity is difficult to

quantify and compare, both the remote-access-only baseline
and the full EM² system we implemented have a significant
advantage over directory cache coherence: a given memory
address may only be cached in a single place. This means
that any request—remote or local—will depend only on the
validity of a given line in a single cache, and no indirections
or transient states are required. The VALID and DIRTY flags
that together determine the state of a given cache line are
local to the tile and cannot be affected by state changes in
other cores. The thread migration framework does not introduce
additional complications, since the data cache does not care
whether a local memory request comes from a native thread or
a migrated thread: the same local data cache access interface is
used. The overall correctness can therefore be cleanly separated
into (a) the remote access framework, (b) the thread migration
framework, (c) the cache that serves the memory request, and
(d) the underlying on-chip interconnect, all of which can be
reasoned about separately. This modularity makes the EM²
protocols easy to understand and reason about, and enabled
us to safely implement and verify modules in isolation and
integrate them afterwards without triggering bugs at the module
or protocol levels (see verification steps I and II in Figure 7).

The homogeneous tiled architecture we chose for EM²
allowed us to significantly reduce verification time by first
integrating the individual tiles in a 4-tile system. This resulted
in far shorter simulation times than would have been possible
with the 110 cores, and allowed us to run many more test
programs. At the same time, the 4-tile arrangement exercised
all of the inter-tile interfaces, and we found no additional bugs
when we switched to verifying the full 110-core system. Unlike
directory entries in directory-based coherence designs, EM²
cores never store information about more than the local core,
and all of the logic required for the migration framework—
the decision whether to migrate or execute a remote cache
access, the calculation of the destination core, serialization
and deserialization of network packets from/to the execution
context, evicting a running thread if necessary, etc.—is local to
the tile. As a result, it was possible to exercise the entire state
space in the 4-tile system; perhaps more significantly, however,
this also means that the system could be scaled to an arbitrary
number of cores without incurring an additional verification
burden.

C. System configuration and bootstrap

To initialize the EM² chip to a known state at during
power-up, we chose to use a scan-chain mechanism. Unlike the
commonly employed bootloader strategy, in which one of the
cores is hard-coded with a location of a program that configures
the rest of the system, successful configuration via the scan-
chain approach does not rely on any cores to be operating
correctly: the only points that must be verified are (a) that
bits correctly advance through the scan chain, and (b) that
the contents of the scan chain are correctly picked up by the
relevant core configuration settings. In fact, other than a small
state machine to ensure that caches are invalidated at reset, the
EM² chip does not have any reset-specific logic that would
have to be separately verified.

The main disadvantages here are (a) that the EM² chip is not
self-initializing, i.e., that system configuration must be managed
external to the chip, and (b) that configuration at the slow rate

D Q

lockup

reg

D Q

lockup

reg

D Q

config

reg

D Q

config

reg

to core to core

scan in scan out

clock 1

clock 2

Fig. 8. The two-stage scan chain used to configure the EM² chip. The
two separate scan clocks and two sets of registers prevent hold time
violations due to short paths between the scan chain registers.

permitted by the scan chain will take a number of minutes.
For an academic chip destined to be used exclusively in a lab
environment, however, those disadvantages are relatively minor
and worth offloading complexity from the chip itself onto test
equipment.

The scan chain itself was designed specifically to avoid
hold-time violations in the physical design phase. To this end,
the chain uses two sets of registers and is driven by two
clocks: the first clock copies the current value of the scan input
(i.e., the previous link in the chain) into a “lockup” register,
while the second moves the lockup register value to a “config”
register, which can be read by the core logic (see Figure 8).
By suitably interleaving the two scan clocks, we ensure that
the source of any signal is the output of a flip-flop that is not
being written at the same clock edge, thus avoiding hold-time
issues. While this approach sacrificed some area (since the
scan registers are duplicated), it removed a significant source
of hold-time violations during the full-chip assembly phase of
physical layout, likely saving us time and frustration.

V. CONCLUSION

The Execution Migration Machine (EM²) is a recently
taped-out 110-core shared-memory processor, built as a proof
of concept for a fine-grained thread migration infrastructure.
Within the wide design spectrum of hardware shared memory
support, EM² offers a new design point: it maintains the design
simplicity of a directoryless shared memory while improving
performance of a pure remote-cache-access design using fast
hardware-level migration support.

With many-core processors quickly becoming the norm,
design complexity and verification costs are receiving more
attention than ever. From design to tape-out, the architectural
and methodology choices we made in developing the 110-core
EM² processor have been guided by the desire to keep the
design easy to reason about and the implementation simple.
More importantly, those choices have allowed us to make the
time and effort required for verification independent of the
number of cores in the system, significantly reducing total
design and verification time.

REFERENCES

[1] International Technology Roadmap for Semiconductors, “Assembly and
Packaging,” 2007.

[2] D. E. Lenoski and W.-D. Weber, Scalable Shared-memory Multiprocess-

ing. Morgan Kaufmann, 1995.

[3] R. Joshi, L. Lamport, J. Matthews, S. Tasiran, M. Tuttle, and Y. Yu,
“Checking Cache-Coherence Protocols with TLA+,” Formal Methods in

System Design, vol. 22, pp. 125–131, 2003.

[4] Arvind, N. Dave, and M. Katelman, “Getting formal verification into
design flow,” in FM2008, 2008.

[5] A. DeOrio, A. Bauserman, and V. Bertacco, “Post-silicon verification
for cache coherence,” in ICCD, 2008.

[6] M. Zhang, A. R. Lebeck, and D. J. Sorin, “Fractal coherence: Scalably
verifiable cache coherence,” in MICRO, 2010.

[7] J. G. Beu, M. C. Rosier, and T. M. Conte, “Manager-client pairing: a
framework for implementing coherence hierarchies,” in MICRO, 2011.

[8] Intel Core 2 Duo and Intel Core 2 Solo Processor for Intel Centrino

Duo Processor Technology Specification Update, December 2010.

[9] L. Kontothanassis, G. Hunt, R. Stets, N. Hardavellas, M. Cierniak,
S. Parthasarathy, J. W. Meira, S. Dwarkadas, and M. Scott, “VM-based
shared memory on low-latency, remote-memory-access networks,” in
ISCA, 1997.

[10] H. Zeffer, Z. Radović., M. Karlsson, and E. Hagersten, “TMA: A Trap-
Based Memory Architecture,” in ICS, 2006.

[11] C. Fensch and M. Cintra, “An OS-Based Alternative to Full Hardware
Coherence on Tiled CMPs,” in HPCA, 2008.

[12] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo: Rethinking
the Memory Hierarchy for Disciplined Parallelism,” in PACT, 2011.

[13] T. Mattson, R. Van der Wijngaart, M. Riepen, T. Lehnig, P. Brett,
W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, and
S. Dighe, “The 48-core SCC Processor: the Programmer’s View,” in

High Performance Computing, Networking, Storage and Analysis (SC),

2010 International Conference for, 2010.

[14] M. Lis, K. S. Shim, B. Cho, I. Lebedev, and S. Devadas, “Hardware-level
thread migration in a 110-core shared-memory processor,” in HotChips,
2013.

[15] M. H. Cho, K. S. Shim, M. Lis, O. Khan, and S. Devadas, “Deadlock-
Free Fine-Grained Thread Migration,” in NOCS, 2011.

[16] M. Lis, K. S. Shim, M. H. Cho, O. Khan, and S. Devadas, “Directoryless
Shared Memory Coherence using Execution Migration,” in PDCS, 2011.

[17] M. Lis, K. S. Shim, B. Cho, I. Lebedev, and S. Devadas, “The
Execution Migration Machine,” in MIT CSAIL CSG Technical Memo

511, August 2013. [Online]. Available: http://csg.csail.mit.edu/pubs/
memos/Memo-511/memo511.pdf

[18] C. Kim, D. Burger, and S. W. Keckler, “An Adaptive, Non-Uniform
Cache Structure for Wire-Delay Dominated On-Chip Caches,” in
ASPLOS, 2002.

[19] K. S. Shim, M. Lis, O. Khan, and S. Devadas, “Thread migration
prediction for distributed shared caches,” Computer Architecture Letters,
Sep 2012.

[20] Bluespec SystemVerilog™ Reference Guide, Bluespec, Inc, 2011.

[21] J. C. Hoe and Arvind, “Scheduling and Synthesis of Operation-Centric
Hardware Descriptions,” in ICCAD, 2000.

[22] Arvind, N. Dave, R. Nikhil, and D. Rosenband, “High-level synthesis:
An Essential Ingredient for Designing Complex ASICs,” in ICCAD,
2004.

[23] D. Abts, S. Scott, and D. J. Lilja, “So Many States, So Little Time:
Verifying Memory Coherence in the Cray X1,” in PDP, 2003.

