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Abstract. The concept of Designated Verifier Signatures (DVS) was introduced by Jakobsson,
Sako and Impagliazzo at Eurocrypt’96. These signatures are intended to a specific verifier, who
is the only one able to check their validity. In this context, we formalize the notion of privacy of
signer’s identity which captures the strong designated verifier property investigated in their paper.
We propose a variant of the pairing-based DVS scheme introduced at Asiacrypt’03 by Steinfeld,
Bull, Wang and Pieprzyk. Contrary to their proposal, our new scheme can be used with any
admissible bilinear map, especially with the low cost pairings and achieves the new anonymity
property (in the random oracle model). Moreover, the unforgeability is tightly related to the Gap-
Bilinear Diffie-Hellman assumption, in the random oracle model and the signature length is around
75 % smaller than the original proposal.

Keywords: Designated verifier signatures, Privacy of signer’s identity, Bilinear Diffie-Hellman
problems, Exact security, Tight reduction

1 Introduction.

Recently, Steinfeld, Bull, Wang and Pieprzyk [17] proposed a designated verifier signature
scheme based on pairings. In this article, we propose three techniques which significantly im-
prove this protocol. First of all, a novel use of a hash function in a context of digital signatures
permits to rehabilitate the low cost pairing, namely the discrete exponentiation, which has been
turned down because it suffers from some unavoidable drawbacks as a bilinear map. The effi-
ciency is increased by a factor of 3.5 to 16, and the signature length is around 75 % smaller
than the original proposal. Secondly, we formally define a notion of anonymity of signers, and,
randomizing the signatures makes our scheme achieve this property. As a side effect, its un-
forgeability is tightly related to the Gap Bilinear Diffie-Hellman assumption. Finally, the proofs
of security rely on a new use of a Decisional Bilinear Diffie-Hellman oracle in the simulation of
a random oracle.

Related work The self-authenticating property of digital signatures can be suitable for some
applications such as dissemination of official announcements, but it is sometimes undesirable
in personally or commercially sensitive applications. Therefore it may be preferable to put
some restrictions on this property to prevent potential misuses of signatures. To address this
concern, several techniques that allow users to generate a signature with anonymity have been
developed over the years. The concept of Designated Verifier Signatures (DVS) was introduced
by Jakobsson, Sako and Impagliazzo at Eurocrypt’96 [10] and independently by Chaum in the
patent [7], under the name of private signatures. They are intended to a specific and unique
designated verifier, who is the only one able to check their validity. This verifier cannot convince
another party that the signature is actually valid, essentially because he can also perform this
signature by himself. This means, in particular, that DVS do not provide the main property
of ordinary digital signatures, namely non-repudiation. As explained in [10], in some cases, it



may be desirable that DVS provide an even stronger notion of privacy: given a DVS and two
potential signing public keys, it is computationally infeasible for an eavesdropper to determine
under which of the two corresponding secret keys the signature was performed. Following [10],
we call strong designated verifier signatures, the DVS schemes that achieve this property.

In [14], Rivest, Shamir and Tauman introduced the ring signatures (see also [6]). By setting
the size of the ring to two members, these signatures provide DVS. Many ring signatures have
been proposed but they do not achieve the strong designated verifier property. Recently, in [15],
Saeednia, Kremer and Markowitch proposed very efficient DVS with signatures à la Schnorr.
They proved the existential unforgeability of their scheme under a no-message attack and argued
that their scheme performs the strong designated verifier property (this property is defined in
terms of simultability). But lacking a good security model, they could not prove that their
scheme achieves these security notions under adaptive chosen-message attack. In [19], Susilo,
Zhang and Mu proposed an identity-based strong DVS which is a pairing-based variant of [15]
and whose security is investigated in the same model. In [17], Steinfeld, Bull, Wang and Pieprzyk
proposed a formalization of Universal DVS (UDVS). These are ordinary digital signatures with
the additional functionality that any holder of a signature is able to convert it into a DVS
specified to any designated verifier of his choice. Moreover they showed that bilinear maps allow
an elegant construction of a UDVS scheme (DVSBM). A similar construction has been proposed
independently by the authors in [11]. At PKC’04 [18], Steinfeld, Wang and Pieprzyk proposed
a slightly stronger security model, which allows the attacker, while mounting a chosen-message
attack, to query the verification of any couple message/signature of its choice. In their article
they give three new DVS constructions based on Schnorr and RSA signatures.

Our contributions In this paper, we formalize the notion of privacy of signer’s identity which
captures the strong designated verifier property. For public-key encryption, Bellare, Boldyreva,
Desai and Pointcheval defined, in [1], an additional security requirement which includes the
notion that an attacker cannot determine under which key an encryption was performed: it
is the idea of key-privacy. Our formalization follows this notion. Steinfeld et al. proposed at
Asiacrypt’03 [17] an interesting and promising scheme based on pairing, which however suffers
from a lack of efficiency (compared to [15]’s scheme for instance). Moreover their scheme is not
secure with low cost pairings.

We revise it such that, at equal security guarantees, we obtain the most efficient UDVS
scheme, and instantiated with the discrete exponentiation we obtain the most efficient DVS
protocol in practice (cf. Section 4.2), but loose the universal property. The first modification
which consists in a novel use of hash function in the asymmetric signature setting makes it
possible to shorten the signatures and allows the scheme to be used with any admissible bilinear
map. Short signatures are useful for low-bandwidth devices and environments where a person
is asked to manually type in the signature. By using this technique, for a security level of 280

bit operations, the signature length is 271 bits and does not depend on the size of the ground
field. The second trick consists in making the signature generation not deterministic. With
this randomization we can draw a scheme which achieves privacy of signer’s identity under
an adaptive chosen-message attack in the random oracle model [3]. As in [8], it also makes
the unforgeability of the modified scheme tightly related to the underlying problem, in the
random oracle model. We introduce a new use of a Decisional Bilinear Diffie-Hellman oracle in
the security proofs to maintain a random oracle list. We obtain a very tight link between the
security of the scheme and the Gap Bilinear Diffie-Hellman assumption, with a quadratic time
reduction.



In the rest of the paper, we recall the definition of DVS, then we formalize the new anonymity
requirement for DVS. In section 4, we present our new scheme with a precise security treatment.
In appendix, we discuss the security of some other schemes.

2 Definition and security assumptions for designated verifier signatures

In this section, we state the definition of DVS schemes induced by Steinfeld et al.’s formalization.

Definition 1 (Designated Verifier Signature Scheme). Given an integer k, a (weak)
designated verifier signature scheme DVS with security parameter k is defined by the following:

– a common parameter generation algorithm DVS.Setup: it is a probabilistic algorithm which
takes k as input. The outputs are the public parameters;

– a signer key generation algorithm DVS.SKeyGen: it is a probabilistic algorithm which takes
the public parameters as input and outputs a pair of signing keys (pkA, skA);

– a verifier key generation algorithm DVS.VKeyGen: it is a probabilistic algorithm which takes
the public parameters as inputs, and outputs a pair of verifying keys (pkB, skB);

– a designated verifier signing algorithm DVS.Sign: it takes a message m, a signing secret key
skA, a verifying public key pkB and the public parameters as inputs . The output σ is a B-
designated verifier signature of m. This algorithm can be either probabilistic or deterministic;

– a designated verifying algorithm DVS.Verify: it is a deterministic algorithm which takes a
bit string σ, a message m, a signing public key pkA, a verifying secret key skB and the
public parameters as inputs, and tests whether σ is a valid B-designated verifier signature
of m with respect to the keys (pkA, skA,pkB, skB).

Moreover, a designated verifier signature scheme must satisfy the following properties (formally
defined in [18] and discussed below):

1. correctness: a properly formed B-designated verifier signature must be accepted by the veri-
fying algorithm;

2. unforgeability: given a pair of signing keys (pkA, skA) and a pair of verifying keys
(pkB, skB), it is computationally infeasible, without the knowledge of the secret key skA

or skB, to produce a valid B-designated verifier signature;

3. source hiding: given a message m and a B-designated verifier signature σ of this message,
it is (unconditionally) infeasible to determine who from the original signer or the designated
verifier performed this signature, even if one knows all secrets;

For digital signatures, the widely accepted notion of security was defined by Goldwasser,
Micali and Rivest in [9] as existential forgery against adaptive chosen-message attack (EF-

CMA). For a DVS scheme, the security model proposed in [17] and [18] (under the designation
ST-DV-UF) is similar, with the notable difference that, while mounting a chosen-message at-
tack, we allow the attacker to query a verifying oracle on any couple message/signature of its
choice. As usual, in the adversary answer, there is the natural restriction that the returned
message/signature has not been obtained from the signing oracle (for more details, we refer the
reader to [17] and [18]). In order to be consistent with the classical security model for usual
signatures, also for DVS we denote this security point by EF-CMA.

In their formalization of UDVS [17] [18], Steinfeld et al. defined the Non-Transferability
Privacy property to prevent a designated-verifier from using a DVS to produce evidence which
convinces a third-party that this DVS was actually computed by the signer. However, their
notion is computational, and we believe that the identity of the signer should be unconditionally



protected (i.e. DVS should provide information theoretical anonymity), as in ring signatures
(where this security requirement is called source hiding).

Finally, even with this unconditional ambiguity, anyone can check that there are only two
potential signers for a DVS. If signatures are captured on the line before reaching the verifier,
an eavesdropper will be convinced that the designated verifier did not produce the signature.
Therefore, in [10], Jakobsson et al. suggested a stronger notion of anonymity:

Definition 2 (Strong Designated Verifier Signature Scheme). Given an integer k, a
strong designated verifier signature scheme DVS with security parameter k is a designated verifier
signature scheme with security parameter k, which satisfies the following additional property
(formally defined in the next section):

4. privacy of signer’s identity: given a message m and a B-designated verifier signature σ of this
message, it is computationally infeasible, without the knowledge of the secret key of B or the
one of the signer, to determine which pair of signing keys was used to generate σ.

3 Anonymity of DVS

3.1 Formal definition

In this section, we define formally the privacy of signer’s identity under a chosen message attack
(PSI-CMA). We consider a PSI-CMA-adversary A in the random oracle model, which runs in two
stages: in the find stage, it takes two signing public keys pkA0

and pkA1
and a verifying public

key pkB, and outputs a message m⋆ together with some state information I⋆. In the guess

stage, it gets a challenge B-designated verifier signature σ⋆ formed by signing the message m⋆ at
random under one of the two keys and the information I⋆, and must say which key was chosen.
The adversary has access to the random oracle(s) H, to the signing oracles ΣA0,B, ΣA1,B and
to the verifying oracle ΥB, and is allowed to invoke them on any message with the restriction
of not querying (m⋆, σ⋆) from the verifying oracle in the second stage.

Definition 3 (Privacy of signer’s identity). Let k be an integer and DVS a designated veri-
fier signature scheme with security parameter k. We consider the following random experiment,
for r ∈ {0, 1}:

Experiment Exppsi-cma−r
DVS,A (k)

params
R
←− DVS.Setup(k)

(pkA0
, skA0

)
R
←− DVS.SKeyGen(params)

(pkA1
, skA1

)
R
←− DVS.SKeyGen(params)

(pkB, skB)
R
←− DVS.VKeyGen(params)

(m⋆, I⋆)← AΣA0,B ,ΣA1,B ,ΥB ,H(find,pkB,pkA0
,pkA1

)
σ⋆ ← DVS.Sign(params,m⋆, skAr

,pkB)

d← AΣA0,B ,ΣA1,B ,ΥB ,H(guess,m⋆, I⋆, σ⋆,pkB,pkA0
,pkA1

)
Return d

We define the advantage of the adversary A, via

Advpsi−cma
DVS,A (k) =

∣

∣

∣
Pr

[

Exppsi−cma−1
DVS,A (k) = 1

]

− Pr
[

Exppsi−cma−0
DVS,A (k) = 1

]∣

∣

∣
.

Let t ∈ N and ε ∈ [0, 1]. The scheme DVS is said to be (k, t, ε)-PSI-CMA secure, if the function
Advpsi−cma

DVS,A (k) is smaller than ε for any PSI-CMA-adversary A running in time complexity less
than t.



3.2 Semantically secure encryption implies anonymity

In [10], Jakobsson et al. suggested that “in order to make protocols strong designated verifier,
transcripts can be probabilistically encrypted using the public key of the intended verifier”.
This is not sufficient in general (for instance a plaintext El Gamal encryption does not protect
the anonymity of the signers). However, in this paragraph, we prove that using an additional
IND-CCA2 public-key encryption layer is actually sufficient to make any DVS scheme strong.

Basically, being able to distinguish two potential signing keys in the signature scheme will
give an advantage to distinguish two potential encrypted messages.

Let k be an integer, let DVS be a (weak)-designated verifier signature scheme with security
parameter k and let Π be any IND-CCA2 encryption scheme. We define a designated verifier
signature DVSΠ as follows: the generation of a DVSΠ signature of a message m is done by
encrypting a DVS signature σ of m under the designated verifier public key. Its verification is
performed by first decrypting the signature, then verifying it with the DVS.Verify algorithm.

Proposition 1. Let k be an integer, let DVS be a (weak)-designated verifier signature scheme
with security parameter k, and let Π be an IND-CCA2 encryption scheme with security parameter
k. Then DVSΠ is a strong designated verifier signature scheme. More precisely, for any PSI-

CMA adversary A with security parameter k which takes advantage Advpsi−cma

DVSΠ ,A
against DVSΠ

within time t, making qH, qΣ and qΥ queries to the random oracle(s), the signing oracle and
the verifying oracle respectively, there exists an IND-CCA2 adversary A′ against Π, making qH
queries to the random oracle(s), and qΥ queries to the decrypting oracle, within time t, which
has the same advantage as A.

Proof (sketch). A general study of the security notions and attacks for encryption schemes was
conducted in [2]. We refer the reader to this paper for the definition of IND-CCA2 encryption.

We construct the algorithm A′ as follows:

– A′ is fed with a public key EpkB for Π and chooses two pairs of signing keys (skA0
,pkA0

)
(skA1

,pkA1
) and a pair of verifying keys (skB,pkB).

– A is fed with EpkB, pkB, pkA0
and pkA1

.
– In both stages, for any signing query from A, A′ answers using the secret key of either A0

or A1. For any verifying query from A, A′ answers using the secret key DpkB of B and the
decryption oracle.

– Eventually, in the find stage, A outputs a message m ∈ {0, 1}∗.
– A′ computes two pre-signatures σ0 and σ1 using the DVS.Sign algorithm of the message m,

and queries these signatures to the IND-CCA2 challenger which answers with an encryption
of σb where b ∈R {0, 1}.

– A′ gives this challenge to A as the answer to the PSI-CMA challenge. The only verification
query that A′ cannot answer is the one A is not allowed to ask.

– Finally A outputs a bit b′ in the guess stage.

By definition of A, b′ = b with probability Advpsi−cma

DVSΠ ,A
and A′ distinguishes the two messages

σ0 and σ1 encrypted by Π with the same advantage Advind−cca
Π,A′ = Advpsi−cma

DVSΠ ,A
. This concludes

the proof.

4 The new scheme : DVSBMH

4.1 Bilinear maps and underlying problems.

In this section, we recall some definitions concerning bilinear maps.



Definition 4 (Admissible bilinear map [4]). Let (G0,+), (G1,+) and (H,×) be three groups
of the same prime order q and let P0 and P1 be two generators of G0 and G1 (respectively). An
admissible bilinear map is a map e : G0 ×G1 −→ H satisfying the following properties:

– bilinear: e(aQ, bR) = e(Q,R)ab for all (Q,R) ∈ G0 ×G1 and all (a, b) ∈ Z
2;

– non-degenerate: e(P0, P1) 6= 1;

– computable: there exists an efficient algorithm to compute e.

Definition 5 (prime-order-BDH-parameter-generator [4]). A prime-order-BDH-
parameter-generator is a probabilistic algorithm that takes a security parameter k as input
and outputs a 7-tuple (q, P0, G0, P1, G1, H, e) satisfying the following conditions: q is a prime
with 2k < q < 2k+1, the groups G0, G1 and H are of order q, P0 and P1 generates G0 and
G1 (respectively), and e : G0 × G1 −→ H is an admissible bilinear map. A prime-order-BDH-
parameter-generator Gen is said to be symmetric if P0 = P1 and G0 = G1 for any 7-tuple
(q, P0, G0, P1, G1, H, e) output by Gen.

Let (G0,+), (G1,+) and (H,×) be three groups of the same large prime order q, P0 and P1 be
two generators of G0 and G1 (respectively), and let e : G0 ×G1 −→ H be an admissible bilinear
map. For most of the applications of pairings in cryptography, it is necessary to know an efficient
way to compute an isomorphism ϕ : G0 ≃ G1. Contrary to Weil or Tate pairings, this is not
true for the discrete exponentiation e : 〈P0〉× (Z/qZ, +) −→ 〈P0〉, (P, x) 7−→ xP where the map
〈P0〉 −→ Z/qZ is the discrete logarithm.

At PKC’01, Okamoto and Pointcheval proposed a new class of computational problems,
called gap problems [13]. Essentially, a gap problem is a dual to inverting and decisional prob-
lems. More precisely, this problem is to solve an inverting problem with the help of an oracle
for a decisional problem. Following this idea, we state the following problems (where G0 and
G1 have not a symmetric role):

Computational Bilinear Diffie-Hellman (CBDH): let a, b and c be three integers. Given
aP0, bP0, cP1, compute e(P0, P1)

abc.

Decisional Bilinear Diffie-Hellman (DBDH): let a, b, c and d be four integers. Given
aP0, bP0, cP1 and e(P0, P1)

d, decide whether d = abc mod q.

Gap-Bilinear Diffie-Hellman (GBDH): let a, b and c be three integers. Given aP0, bP0,
cP1, compute e(P0, P1)

abc with the help of a DBDH Oracle.

Definition 6 (CBDH and GBDH assumption). Let Gen be a prime-order-BDH-
parameter-generator. Let D be an adversary that takes as input a 7-tuple (q, P0, G0, P1, G1, H, e)
generated by Gen and (X, Y, Z) ∈ G

2
0 ×G1. He returns an element of h ∈ H. We consider the

following random experiments, where k is a security parameter and ODBDH is a DBDH oracle:

Experiment Expcbdh
Gen,D(k) Experiment Expgbdh

Gen,D(k)

(q, P0, G0, P1, G1, H, e)
R
←− Gen(k) (q, P0, G0, P1, G1, H, e)

R
←− Gen(k)

setup← (q, P0, G0, P1, G1, H, e) setup← (q, P0, G0, P1, G1, H, e)

x
R
←− [[1, q − 1]], X ← xP0 x

R
←− [[1, q − 1]], X ← xP0

y
R
←− [[1, q − 1]], Y ← yP0 y

R
←− [[1, q − 1]], Y ← yP0

z
R
←− [[1, q − 1]], Z ← zP1 z

R
←− [[1, q − 1]], Z ← zP1

h← D(setup, X, Y, Z) h← DODBDH (setup, X, Y, Z)
Return 1 if h = e(P0, P1)

xyz, Return 1 if h = e(P0, P1)
xyz,

0 otherwise 0 otherwise



We define the success of D in solving the CBDH and the GBDH problems via

Succcbdh
Gen,D(k) = Pr[Expcbdh

Gen,D(k) = 1] and Succgbdh
Gen,D(k) = Pr[Expgbdh

Gen,D(k) = 1]

Let t be an integer and ε a real in [0, 1]. Gen is said to be (k, t, ε)-CBDH-secure (resp. (k, t, ε)-
GBDH-secure) if no adversary D running in time t has success Succcbdh

Gen,D(k) ≥ ε (resp.

Succgbdh
Gen,D(k) ≥ ε).

Notations : we denote by TExp−G the time complexity for evaluating exponentiation in a
group G and TO the time complexity of the oracle O.

4.2 Description of the new scheme DVSBMH

The scheme DVSBM, proposed at Asiacrypt’03 by Steinfeld et al. [17] is a pairing-based DVS.
The signature generation is deterministic, therefore this scheme can certainly not achieve the
PSI-CMA security point. The authors required that the isomorphism between G0 and G1 is
known and efficiently computable. In fact, DVSBM is trivially not secure if we use the discrete
exponentiation.

We introduce a variant of DVSBM which is more efficient, achieves the property of privacy
of signer’s identity and whose security is proven even if we use the discrete exponentiation. For
industrial purposes, where efficiency prevails over exact security, the choice of the parameters
is oriented by the underlying algorithmic problems without consideration of the reduction cost
in the security proof (we call it industrial security). Considering the best algorithms to solve
GBDH in both settings, the scheme with the discrete exponentiation will be prefered in practice,
whereas the scheme with the Weil or Tate pairing has a tighter security reduction.

In DVSBM, the verification of signatures consists only in checking an equality between two
quantities which can be computed independently by the signer and the verifier, it is actually
sufficient to check the equality of some hash values of these quantities. This first remark, which
seems to have been overlooked in [17], makes it possible to shorten the signature considerably
and to use the discrete exponentiation to instantiate the protocol.

Our second trick aims at randomizing the signature. We prove that this is sufficient to obtain
the anonymity of signers. Moreover, the security of the signature is tightly related to the GBDH
and this random salt ensures the anonymity of signers. Using these tricks, we define DVSBMH.

Description of DVSBMH



Setup Let k be a security parameter. Let Gen be a prime-order-BDH-parameter-
generator, f1, f2, fr : N→ N be three functions. We denote k1 = f1(k), k2 = f2(k)
and nr = fr(k). Let (q, P0, G0, P1, G1, H, e) be a 7-tuple generated by Gen(k1). Let
[{0, 1}∗ × {0, 1}nr −→ G1] be a hash function family, and h be a random member
of this family. Let [H −→ {0, 1}k2 ] be a hash function family, and g be a random
member of this family.

SKeyGen a ∈ [[1, q − 1]] is the secret key, PA = aP0 is the public one
VKeyGen b ∈ [[1, q − 1]] is the secret key, PB = bP0 is the public one

Sign Given a message m, the secret key a of the signer, the public key PB of the
designated verifier, compute H = h(m, r) for some random string r of length nr and
s = g(e(PB, aH)) and the signature is σ = (r, s).

Verify Given a pair (m, (s, r)), the signer’s public key PA, and the verifier’s secret
key b, the algorithm accepts the signature if and only if s = g(e(PA, bh(m, r))).

In practice, for a security requirement of 280 operations (i.e. k = 80), we use the values
k1 = k2 = 160 and nr = 111 which are derived from the security proofs (cf. [12]). The correctness
and source hiding properties of DVSBMH are straightforward. In general, the new scheme does
not satisfy the universal property from [17] any more, because the security of BLS signatures
[5] relies on the existence of an efficiently computable isomorphism from G0 to G1.

4.3 Security of DVSBMH when G0 = G1

Here we formally investigate the security of the version of DVSBMH for which we know an
algorithm to compute the isomorphism between G0 and G1 in the random oracle model (i.e.
we replace the hash functions h and g by random oracles H and G). For simplicity, we assume
G0 = G1 = G. In practice such a setting can be obtained with, for instance, the Weil or Tate
pairing. In this case our new scheme can be extended to a UDVS scheme related to the ran-
domized BLS signatures [5, 8]. This is an important consideration because we prove that the
unforgeability is tightly related to the GBDH problem, therefore this scheme offers the best ex-
act security of all DVS protocols. Moreover, it achieves the privacy of signer’s identity under the
CBDH assumption (with the random salt but without the g hash function, the anonymity would
have been related to DBDH, an easier problem). These results are described in the following
theorems.

Theorem 1 (Unforgeability of DVSBMH). Let Gen be a symmetric prime-order-BDH-
parameter-generator, let f1, f2, fr : N→ N be three functions and let DVSBMH be the associated
DVS scheme. For any EF-CMA-adversary A, in the random oracle model, against DVSBMH,
with security parameter k which has success ε = Succef−cma

DVSBMH,A(k), running time t, and makes
qH and qG queries to the random oracles, qΣ queries to the signing oracles and qΥ queries to the
verifying oracle, there exists an adversary D for GBDH which has advantage ε′ = Succgbdh

Gen,D(k)
running in time t′ ∈ N such that















ε′ ≥ ε−
(qH + qΣ)qΣ

2nr
− (1 + qΥ )

(

qG
2k1

+
1

2k2

)

t′ ≤ t +(qH + qΣ) (TExp−G + O(1)) + qΣ (TExp−H + O(1))
+(qΥ + 1) (TDBDH + O(1))



where k1 = f1(k), k2 = f2(k) and nr = fr(k).

Proof. The proof is a straightforward modification of the proof of [17] using the additional
technique in [8]. Due to the lack of space, we have not written it down.

Theorem 2 (Anonymity of DVSBMH). Let Gen be a symmetric prime-order-BDH-
parameter-generator, let f1, f2, fr : N→ N be three functions and let DVSBMH be the associated
DVS scheme. For any PSI-CMA-adversary A, in the random oracle model, against DVSBMH,
with security parameter k which has advantage ε = Advpsi−cma

DVSBMH,A(k), running time t, and makes
qH and qG queries to the random oracles, qΣ queries to the signing oracles and qΥ queries to the
verifying oracle, there exists an adversary D for CBDH which has advantage ε′ = Succcbdh

Gen,D(k)
running in time t′ ∈ N such that







ε′ ≥
ε

2qG
−

(qH + qΣ + 1)(qΣ + 1)

2nrqG
−

qΥ

2k2qG
−

qGqΥ

2k1qG
t′ ≤ t + (qH + qΣ)(TExp−G + O(1)) + (qΣ + qΥ )(TExp−H + O(1))

where k1 = f1(k), k2 = f2(k) and nr = fr(k).

Proof. Due to lack of space, the proof will be given in the full version of the paper [12].

4.4 Security of the general scheme

It is not necessary, thanks to our construction, to know explicitely an isomorphism between
G0 and G1 to achieve a secure scheme. In this general case, we have a leak in terms of exact
security compared to the previous case. In fact, we obtain a very tight link between the success
probability of the adversary and the success in solving the GBDH problem but the reduction
is quadratic time. When we use the discrete exponentiation as the underlying pairing (and so
without the isomorphism), we get the best industrial security. We provide here the proof of the
unforgeability, with the use of a decisional oracle to maintain the random oracle lists. The proof
of the anonymity follows the same lines.

Theorem 3 (Unforgeability of DVSBMH). Let Gen be a prime-order-BDH-parameter-
generator, let f1, f2, fr : N → N be three functions and let DVSBMH be the associated DVS
scheme. For any EF-CMA-adversary A, in the random oracle model, against DVSBMH, with se-
curity parameter k which has success ε = Succef−cma

DVSBMH,A, running time t, and makes qH and qG
queries to the random oracles, qΣ queries to the signing oracles and qΥ queries to the verifying
oracle, there exists an adversary D for GBDH which has success ε′ = Succgbdh

Gen,D(k) running in
time t′ ∈ N such that











ε′ ≥ ε−
qΣ(qH + qΣ + 1)

2nr
−

(qG + qΣ + 1)(qΣ + qΥ + 1)

2k1

−
(qΥ + 1)(qΣ + 1)

2k2

t′ ≤ t +(qH + 2qΣ + 1) (TExp−G1
+ O(1))

+(qG + qΣ + 1)(qG + qΣ + qΥ ) (TDDH + O(1)) ,

where k1 = f1(k), k2 = f2(k) and nr = fr(k).

Proof. The method of our proof is inspired by Shoup [16]: we define a sequence of games
of modified attacks starting from the actual adversary. Let k be a security parameter, let
(q, P0, G0, P1, G1, H, e) be a 7-tuple generated by Gen(k1) and (R1, R2, R3) be a random in-
stance of the GBDH problem.



Game0 We consider an EF-CMA-adversary A with success ε = Succef−cma
DVSBMH,A(k), within time t. The

key generation algorithms are run and produce two pairs of keys (skA,pkA) and (skB,pkB).
The adversary A is fed with pkA and pkB and, querying the random oracles H and G, the
signing oracle ΣA,B and the verifying oracle ΥA,B, it outputs a (m⋆, (r⋆, s⋆)) pair.
We denote by qH, qG , qΣ and qΥ the numbers of queries from the random oracles H and G,
from the signing oracle ΣA,B and from the verifying oracle ΥA,B. The only requirement is
that the output signature (r⋆, s⋆) has not been obtained from the signing oracle. When the
adversary outputs its forgery, it can be checked whether it is actually valid or not. In any
Gamej , we denote by Forgej the event DVSBMH.Verify(m⋆, (r⋆, s⋆), skB,pkA) = 1.
By definition, we have Pr[Forge0] = Succef−cma

DVSBMH,A(k).
Game1 We modify the simulation by replacing pkA by R1 and pkB by R2. The distribution of

(pkA,pkB) is unchanged since (R1, R2, R3) is a random instance of the GBDH problem.
Therefore we have Pr[Forge1] = Pr[Forge0].

Game2 In this game, we simulate the random oracle H. For any fresh query
(m, r) ∈ {0, 1}∗ × {0, 1}nr to the oracle H, we pick u ∈ [[1, q − 1]] at random and
compute Q = uR3. We store (m, r, u,Q) in the H-List and return Q as the answer to the
oracle call. In the random oracle model, this game is clearly identical to the previous one.
Hence, Pr[Forge2] = Pr[Forge1].

Game3 We simulate the random oracle G by maintaining an appropriate G-List. For any query s̃ ∈ H,
• we check whether the G-List contains a triple (s̃,⊥, s). If it does, we output s as the

answer to the oracle call,
• else, we browse the G-List and check for all triples (⊥, u, s) whether (pkA,pkB, uP1, s̃)

is a valid Bilinear Diffie-Hellman quadruple. If it does, we give s as the answer,
• otherwise we pick at random s ∈ {0, 1}k2 , record (s̃,⊥, s) in the G-List, and output s as

the answer to the oracle call.
We have Pr[Forge3] = Pr[Forge2].

Game4 We now simulate the signing oracle: for any m, whose signature is queried, we pick at random
three elements r ∈ {0, 1}nr , s ∈ {0, 1}k2 , u ∈ [[1, q − 1]], and compute Q = uP1.
• If the H-List includes a quadruple (m, r, ?, ?) we abort the simulation, else we store

(m, r, u,Q) in the H-List,
• we browse the G-List and check for all triples (s̃,⊥, ?) (resp. (⊥, v, ?)) whether

(pkA,pkB, uP1, s̃) is a valid Bilinear Diffie-Hellman quadruple (resp. wether u = v).
If it does, we abort the simulation,
• otherwise, we record (⊥, u, s) in the G-List, and output (r, s).

Since there are at most qH+qΣ +1 messages queried to the random oracle H and qG +qΣ +1
messages queried to the random oracle G, the new simulation aborts with probability at most
(qH + qΣ +1) · 2−nr +(qG + qΣ +1) · 2−k1 . Otherwise, this new oracle perfectly simulates the
signature. Summing up for all signing queries, we obtain

|Pr[Forge4]− Pr[Forge3]| ≤

(

(qH + qΣ + 1)

2nr
+

(qG + qΣ + 1)

2k1

)

qΣ

Game5 In this game, we make the verifying oracle reject all couples message/signature (m, (r, s))
such that s has not been obtained from G. As in Game5 of the previous proof, we get
|Pr[Forge5]− Pr[Forge4]| ≤ (qΥ + 1)2−k2 .

Game6 In this game, we finally simulate the verifying oracle. For any couple message/signature
(m, (r, s)), whose verification is queried, we check whether the H-List includes a quadruple
(m, r, ?, ?). If it does not, we reject the signature. Therefore the H-List includes a quadruple
(m, r, u,Q), and we browse the G-List: if it includes a triple (s̃,⊥, s), we accept the signature
if and only if (pkA,pkB, Q, s̃) is a valid Bilinear Diffie-Hellman quadruple; else the G-List

includes a triple (⊥, v, s) and we accept the signature if and only if u = v.



As in Game6 of the previous proof, we get

|Pr[Forge6]− Pr[Forge5]| ≤
(qG + qΣ + 1)(qΥ + 1)

2k1

+
qΣ(qΥ + 1)

2k2

.

When the game Game6 terminates, outputting a valid message/signature (m⋆, (r⋆, s⋆)) pair, by
definition of existential forgery, the H-List includes a quadruple (m⋆, r⋆, u⋆, Q⋆) with Q⋆ = u⋆R3.
By the simulation (pkA,pkB, Q⋆, s̃⋆) is a valid Bilinear Diffie-Hellman quadruple, and therefore
z = (s̃⋆)(u

⋆)−1

gives the solution to the GBDH problem instance (R1, R2, R3), and we obtained
the claimed bounds.

Theorem 4 (Anonymity of DVSBMH). Let Gen be a prime-order-BDH-parameter-
generator, let f1, f2, fr : N → N be three functions and let DVSBMH be the associated DVS
scheme. For any PSI-CMA-adversary A, in the random oracle model, against DVSBMH, with
security parameter k which has advantage ε = Advpsi−cma

DVSBMH,A(k), running time t, and makes qH
and qG queries to the random oracles, qΣ queries to the signing oracles and qΥ queries to the
verifying oracle, there exists an adversary D for GBDH which has success ε′ = Succgbdh

Gen,D(k)
running in time t′ ∈ N such that











ε′ ≥
ε

2
−

qΣ(qH + qΣ + 1)

2nr
−

(qG + qΣ + 1)

2k1

(qΣ + qΥ + 1)−
(qΥ + 1)(qΣ + 1)

2k2

t′ ≤ t +(qH + 2qΣ + 1) (TExp−G1
+ O(1))

+(qG + qΣ + 1)(qG + qΣ + qΥ ) (TDDH + O(1)) ,

where k1 = f1(k), k2 = f2(k) and nr = fr(k).

5 Conclusion

We designed an efficient construction for strong DVS based on any bilinear map (which is a
variant of DVSBM from [17]), and clarified the property of anonymity of the signers. Unlike Ste-
infeld et al., our construction can be instantiated with the discrete exponentiation. In this case,
the unforgeability and the privacy of signer’s identity are related to the Gap Diffie-Hellman
problem, since the discrete logarithm in G1 is easy. This new scheme offers the best perfor-
mance in terms of computational cost and signature length. The DVSBMH scheme built on the
discrete exponentiation is closely bound to a Diffie-Hellman session key exchange. The general
relationship between session key exchange and DVS seems to be an interesting topic for further
research.
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A Review of other schemes

A.1 Privacy of signer’s identity of SchDVS1, SchDVS2 and RSADVS

In [18], Steinfeld et al. proposed three Universal DVS schemes SchUDVS1, SchUDVS2 and
RSAUDVS. We refer the reader to [18], for the description of these schemes. The DVS schemes
induced by SchUDVS2 and RSAUDVS do not satisfy the PSI-CMA security property. Indeed, the
designated verifier secret key is not involved in the verifying algorithm. However it is easy to
see that SchDVS1, the DVS scheme induced by SchUDVS1, fulfills this property assuming the
difficulty of the Decision Diffie-Hellman (DDH) problem:

Theorem 5 (Anonymity of SchDVS1). Let A be a PSI-CMA-adversary, in the random oracle
model, against the SchDVS1 scheme, with security parameter k. Assume that A has advantage
ε = Advpsi−cma

SchDVS1,A(k), running time t, and makes qH, qΣ, qΥ queries to the hash function H,
to the signing oracles and to the verifying oracle (respectively). Then there exist ε′ ∈ [0, 1] and
t′ ∈ N verifying

{

ε′ ≥
ε

2
−

qΥ + qHqΣ + 1

2k

t′ ≤ t + (qΣ + qΥ )(3TExp−G + O(1))

such that the DDH problem can be solved with probability ε′, within time t′.

Proof. Due to lack of space, the proof will be given in the full version of the paper [12].

A.2 Security of Saeednia, Kremer and Markowitch’s scheme (SKM)

The unforgeability of the DVS scheme in [15] is only considered under a no-message attack
which is not acceptable in terms of security requirements. By using the technique introduced
in the proof of Theorem 3, we can prove the unforgeability of SKM’s scheme against a chosen
message attack:



Theorem 6 (Unforgeability of SKM signatures). Let A be an EF-CMA-adversary against
SKM’s scheme with security parameter k, in the random oracle model, which produces an exis-
tential forgery with probability ε = Succef−cma

SKM,A(k), within time t, making qH, qΣ and qΥ queries
to the hash oracle, to the signing oracle and to the verifying oracle. Then there exist ε′ ∈ [0, 1]
and t′ ∈ N verifying







ε′ ≥ ε−
(qH + qΣ)qΣ + qΥ

2k
,

t′ ≤ t + (qΣ + qΥ ) (2TExp−G + O(1)) + (qH + qΣ)(qH + qΣ + qΥ ) (TDDH + O(1)) ,

such that the Gap Diffie-Hellman (GDH) problem can be solved with probability ε′, within time
t′.

Theorem 7 (Anonymity of SKM signatures). Let A be a PSI-CMA-adversary, in the ran-
dom oracle model, against SKM’s scheme, with security parameter k. Assume that A has ad-
vantage ε = Advpsi−cma

SKM,A (k), running time t, and makes qH, qΣ, qΥ queries to the hash function
H, to the signing oracles and to the verifying oracle. Then there exist ε′ ∈ [0, 1] and t′ ∈ N

verifying







ε′ ≥
ε

2
−

(qH + qΣ)qΣ + qΥ

2k

t′ ≤ t + (qΣ + qΥ ) (2TExp−G + O(1)) + (qH + qΣ)(qH + qΣ + qΥ ) (TDDH + O(1))

such that GDH can be solved with probability ε′, within time t′.

Proofs. They are straightfoward adaptations of the proof of Theorem 3. Due to lack of space,
they will be omitted.




