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A pseudopotential generation method is presented which significantly improves transferability. The method
exploits flexibility contained in the separable Kleinman-Bylander form of the nonlocal pseudopotential @Phys.
Rev. Lett. 48, 1425 ~1982!#. By adjusting the functional form of the local potential, we are able to improve the
agreement with all-electron calculations. Results are presented for the H, Si, Ca, Zr, and Pb atomic pseudo-
potentials. Configuration testing, logarithmic derivatives, chemical hardness, and structural tests all confirm the
accuracy of these pseudopotentials. @S0163-1829~99!14715-5#

I. INTRODUCTION

The pseudopotential approximation, or the separation of
electrons into core and valence based on their level of par-
ticipation in chemical bonding, is central to most modern
electronic structure calculations. The original atomic pseudo-
potential formalism1 grew out of the orthogonalized plane-
wave approach.2 The pseudopotential replaces the nuclear
Coulomb potential plus core electrons, thus simplifying the
original system of differential equations. Adopting the
pseudopotential approximation may introduce some unphysi-
cal results if the pseudopotentials are not constructed judi-
ciously. The accuracy of the pseudopotential, or its transfer-
ability, may be gauged by its ability to reproduce the results
of all-electron calculations in a variety of atomic environ-
ments.

The earliest pseudopotentials generated for use in density-
functional theory calculations replaced the strongly attractive
Coulombic potential near the origin with a weaker local po-
tential, and core electrons were eliminated from the
calculations.3 In this approach, approximate agreement be-
tween pseudopotential and all-electron eigenvalues as well as
logarithmic derivatives was achieved for many elements.
However, first-row nonmetals and first-row transition metals
could not be accurately described by these pseudopotentials.

To improve pseudopotential transferability, more compli-
cated ~and more flexible! semilocal pseudopotentials were
designed4 with a different spherically symmetric potential for
each angular momentum. This added flexibility permits the
enforcement of the norm-conservation condition at the refer-
ence energy, « i , for R greater than the core radius, rc
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where f i
AE(r) and f i

PS(r) are the all-electron and pseudopo-
tential Kohn-Sham eigenstates for the state i . Including this
criterion into pseudopotential generation greatly improves
transferability.

Incorporating norm conservation makes it possible to
have exact agreement between the all-electron and pseudo-
potential eigenvalues and wave functions outside rc for one

electronic reference state.4 However, the corresponding
single-particle differential equation for a pseudopotential
constructed with this method is more complicated because of
the angular momentum projection. Expressing the semilocal
pseudopotentials within a plane-wave basis requires the com-
putation of V(G,G8) instead of just V(G2G8), where G is a
reciprocal-lattice vector. This results in a huge memory ex-
pense.

The fully separable nonlocal Kleinman-Bylander pseudo-
potential form5 dramatically reduces the memory cost of the
semilocal pseudopotentials. These pseudopotentials are con-
structed from a local potential and angular-momentum-
dependent nonlocal projectors. In Fourier space, the projec-
tor can be expressed as W(G)•W(G8) replacing V(G,G8).
This reduces the pseudopotential memory scaling from N2 to
N . With the inclusion of the nonlocal projectors, the resulting
single-particle Kohn-Sham equation becomes an integrodif-
ferential equation. The solutions to an integrodifferential
equation may violate the Wronskian theorem and possess
noded eigenstates lower in energy than the nodeless
solution.6 A simple diagnostic procedure7 allows for detec-
tion of these lower-energy or ghost states. The separable
form of these potentials also permits efficient evaluation in
solid-state calculations with N2 or N2 log2 N CPU time
scaling8,9 for the nonlocal energy contribution and its gradi-
ents. These potentials have proven very effective for the
study of computationally intensive large-scale systems.10

To improve the transferability of the Kleinman-Bylander
pseudopotentials, multiple-projector separable nonlocal
pseudopotentials have been developed.11,12 In these ap-
proaches, the Kleinman-Bylander nonlocal projector form is
considered the first term of a series expansion of projectors.
These projectors provide agreement of the pseudoatom scat-
tering properties over a broader energy range.

While characterization of the scattering properties is an
important tool in ascertaining the transferability of a pseudo-
potential, there are some properties that cannot be sampled
using this diagnostic. These remaining properties involve ef-
fects of electrostatic screening and nonlinearity of the
exchange-correlation energy. Recently, chemical hardness
conservation has been used as an effective measure of how
these self-consistent terms vary with electronic configuration
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and as an indication of accurate pseudopotential
generation.13 The chemical hardness is defined as the matrix
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where E tot@r(r)# is the total energy of the atom and is a
functional of the total electronic charge density r(r), f nl is
the occupation number of the nlth state, and «nl is the self-
consistent nlth eigenvalue. In the second equality, we have
used the fact that «nl5]E tot@r(r)#/] f nl .

One of the other major objectives in pseudopotential gen-
eration, besides transferability, is rapid convergence in a
plane-wave basis. It has been shown that the residual kinetic
energy of the reference state pseudo-wave-functions lying
beyond the plane-wave cutoff energy is an excellent predic-
tor of the basis set convergence error of the pseudopotential
in a solid or molecule.14 The optimized pseudopotential con-
struction is designed to minimize this residual kinetic energy.

The ultrasoft pseudopotential construction12 was formu-
lated to generate highly transferable multiple-projector
pseudopotentials with rapid convergence in a plane-wave ba-
sis. In order to improve pseudo-wave-function smoothness,
the norm-conservation constraint on the wave function is re-
laxed. To reintroduce norm conservation, a compensating va-
lence charge density is added.

In this paper, we present a method for nonlocal pseudo-
potential construction according to the Kleinman-Bylander
separable form which improves accuracy while retaining the
convenience of a single-projector representation. We exploit
the inherent arbitrariness in the separation of the local and
nonlocal components of the potential. The present work
should be placed in context with other recent studies that
have focused on this same flexibility. One such study in-
volved constructing the local potentials from various linear
combinations of the semilocal potentials.15 Chemical hard-
ness testing showed that the accuracy of these pseudopoten-
tials approached the accuracy of a semilocal pseudopotential
from the same set of l-dependent potentials, but did not ex-
ceed it. In another study, the form of the local potential is
expressed as a sum of Gaussians for the first two rows of the
Periodic Table.16 These dual-space multiple-projector
pseudopotentials have more recently been extended to in-
clude the scalar relativistic effect.17 Using this approach, a
high level of transferability can be obtained for elements up
to Rn.

The paper is organized as follows. We give a brief review
of the Kleinman-Bylander nonlocal pseudopotential formal-
ism in Sec. II. We also illustrate our approach for improving
transferability. In Sec. III, we present atomic and solid-state
testing results for potentials constructed with our form of the
nonlocal components for the H, Si, Ca, Zr, and Pb atoms.
Conclusions are presented in Sec. IV.

II. DESIGNED NONLOCAL PSEUDOPOTENTIAL

FORMALISM

To construct a pseudopotential, an electronic reference
state is chosen, and an all-electron calculation is performed.
From this calculation we obtain the all-electron potential
(V̂AE), the total energy (E tot

AE), the all-electron wave func-

tions „fnl
AE(r)… and their eigenvalues («nl

AE). Then a pseudo-

potential V̂PS and pseudo-wave-functions ufnl
PS& are chosen

which satisfy
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where T̂ is the single-particle kinetic-energy operator, and
V̂H@r# and V̂XC@r# are the self-consistent Hartree and
exchange-correlation energy operators, respectively. The lat-
ter two operators are functionals of the total charge density
r(r), where r(r)5(nl f nlufnl

PS(r)u2. We require that the
pseudo-wave-functions obey the following criteria:
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If V̂PS is not l dependent, the resulting pseudopotential is
called local ~radially and angularly local!. More generally,
V̂PS can be separated into a local potential and a sum of
short-ranged corrections:

V̂PS5V̂ loc
1(

l
DV̂ l , ~4!

where

V̂ loc[E d3rur&V loc~r!^ru. ~5!

For a semilocal pseudopotential, the corrections DV̂ l
SL are

projection operators in the angular coordinates and local in
the radial coordinate. To construct a fully separable nonlocal
pseudopotential, DV̂ l is formed according to

DV̂ l
NL[

DV̂ l
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When V̂PS operates on ufnl
PS&, we obtain

V̂PSufnl
PS&5~ V̂ loc

1DV̂ l
SL!ufnl

PS&. ~7!

Therefore, for the reference configuration we are guaranteed
exact agreement between the eigenvalues and wave functions
of the semilocal and nonlocal atoms.

However, for any state uc
n8l

PS
& other than the reference

state,

V̂PSucn8l

PS
&Þ~ V̂ loc

1DV̂ l
SL!uc
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PS
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where n8 is not required to equal n . The inequality in Eq. ~8!
illustrates the difficulties involved in assessing and improv-
ing the transferability of nonlocal pseudopotentials: the
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transferability of a nonlocal pseudopotential can be dramati-
cally different from the corresponding semilocal pseudopo-
tential.

For simplicity, we have focused on the single-projector
nonlocal pseudopotential construction in the current ap-
proach. We begin by constructing an optimized semilocal
pseudopotential. Since Eq. ~4! is simply an addition of local
and nonlocal terms, we may alter V̂ loc arbitrarily without
losing the exact agreement between the all-electron and non-
local eigenvalues and pseudo-wave-functions at the reference
state, provided we adjust the nonlocal corrections accord-
ingly. However, we change the eigenvalue agreement at any
other configuration by doing so.

Operationally, additional electronic configurations or de-
sign configurations are chosen. A local augmentation opera-
tor (Â) is added to the local potential forming a designed
nonlocal pseudopotential. The augmentation operator is sub-
tracted from the nonlocal corrections DV̂ l in the following
way:

V̂PS5~ V̂ loc
1Â !1(

l
DV̂ l

DNL , ~9!
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When the augmented V̂PS operates on the reference state, the
result reduces to Eq. ~7!. In doing so we are not only guar-
anteed the exact agreement of the nonlocal pseudopotential
eigenvalues with the semilocal eigenvalues due to the
Kleinman-Bylander construction but we also insure agree-
ment with the all-electron eigenvalues due to the semilocal
construction. However for any state other than the reference
state, the second term in Eq. ~9! will contribute differently.

By adjusting Â , it is possible to obtain almost exact agree-
ment between the all-electron and designed nonlocal eigen-
values for the manifold of design configurations. With the
proper selection of the reference electronic configuration and
pseudopotential construction parameters, excellent transfer-
ability can be obtained for a variety of ionized and excited
configurations.

The position of Â deserves particular attention. We begin
by examining the transferability error of a standard
Kleinman-Bylander nonlocal pseudopotential constructed in
the absence of an augmentation operator. Based on these
results we can determine optimal placement of Â in the ra-
dial grid. We have identified two different cases for the po-
sitioning of the operator.

~1! The valence orbitals may have different charge-
density profiles which lead to spatial separation among the
states. This situation allows placement of the augmentation
operator in a region that will preferentially affect certain
states while leaving other states nearly unchanged.

~2! Due to electrostatics, as an atom becomes more posi-
tively charged its charge density will move inward toward
the nucleus of the atom. Positioning of the operator can
therefore be made according to desired adjustments of vari-
ous ionized configurations.

As an example, we have found that for the Ca nonlocal
pseudopotential, the magnitudes of the transferability errors
of the 3s , 3p , and 3d orbitals increase as the pseudo-atom
becomes less ionized ~see Table III!. However, the magni-
tude of the error in the 4s orbital decreases over this same
range of ionization. Therefore, the augmentation is required
to adjust the n53 orbitals preferentially. Figure 1 shows the
charge density distribution of the Ca pseudo-atom in the 12
configuration. We find that there is a spatial separation be-

TABLE I. Construction parameters for the H, Si, Ca, Zr, and Pb
pseudopotentials. HSC potentials were generated with the method
described in Ref. 4. OPT potentials were generated with methods
described in Ref. 14. Core radii (rc) are in atomic units, qc are in
Ry1/2, and plane-wave cutoffs (Ecut) are in Ry.

Atom
Reference

configuration

HSC OPT

rc Ecut rc qc Ecut

H 1s0.5 0.35 70 0.72 7.07 50

Si 3s2 1.21 16 1.90 3.60 13
3p0.5 1.18 1.90 3.60
3d0.5 1.31 2.20 3.60

Ca 3s2 0.74 83 1.29 7.07 50
3p6 1.15 1.60 7.07
3d0 0.70 1.27 7.07

Zr 4s2 0.92 92 1.80 7.07 50
4p6 0.81 1.51 7.07
4d0 1.15 1.90 7.07

Pb 6s0 1.10 72 1.70 6.05 50
6p0 1.20 2.00 5.52
5d10 1.10 1.75 7.07

TABLE II. Parameters for the augmentation operator (Â) for the
designed nonlocal pseudopotentials. Step widths are in atomic units,
and step heights are in Ry.

Step Step
Atom width height

H 0.70 2.00
Si 1.35 70.00
Ca 0.93 6.76
Zr 1.72 0.66
Pb 1.90 1.60

FIG. 1. Radial charge-density distribution for the Ca12 pseudo-
atom (3s23p64s03d0). Results are given for 3s ~dotted line!, 3p

~dashed line!, 4s ~solid line!, and 3d states ~dot-dashed line!.

PRB 59 12 473DESIGNED NONLOCAL PSEUDOPOTENTIALS FOR . . .



tween the n53 and 4s charge densities. In order to maxi-
mize the effectiveness of Â , it should be positioned between
r50 and r51 a.u.

III. RESULTS AND DISCUSSION

We have applied the designed nonlocal pseudopotential
approach to the H, Si, Ca, Zr, and Pb atoms. All atomic
energy calculations were done within the local-density ap-
proximation ~LDA! and optimized pseudopotential genera-
tion methods were used. For the Zr and Pb atoms, we have
included the scalar relativistic effect.18 The parameters used
in the pseudopotential construction are presented in Table I.
We have chosen the s angular momentum channel to be the

foundation for the local potential, and a square step in the
radial coordinate as our augmentation operator. ~These
choices are made for simplicity. Choosing other angular mo-
mentum channels for the local potential or using a multiple-
step augmentation operator can lead to enhanced transfer-
ability or efficiency.! The height and width of the step have
been adjusted to reproduce the all-electron eigenvalues for
the design configuration.

Our selection of reference configurations deserves addi-
tional mention. Semicore orbitals were included as valence
in the Ca (3s and 3p), Zr (4s and 4p), and Pb (5d) pseudo-
potentials. The inclusion of these states allowed for the re-
moval of ghost levels, greater local potential design flexibil-
ity, and better overall transferability of the pseudopotential.

TABLE III. Configuration testing for the H, Si, and Ca atoms. Eigenvalues and DE tot are given for an all-electron atom ~AE!. Absolute
errors are given for a nonlocal pseudopotential generated with the method described in Ref. 4 ~HSC!, an optimized nonlocal pseudopotential
generated with the method described in Ref. 14 ~OPT!, and a designed nonlocal pseudopotential generated with the presented method ~DNL!.
The design configurations used to construct the DNL potentials are identified with a dagger (†). All energies are in Ry.

AE HSC OPT DNL AE HSC OPT DNL
State energy error error error State energy error error error

H
1s0

21.0000 0.0000 20.0001 20.0001 1s1
20.4673 0.0000 0.0000 0.0000

†DE tot 0.5504 0.0000 0.0000 0.0000 †DE tot 20.3413 0.0000 0.0000 0.0000

1s0.5
20.9067 0.0000 0.0000 0.0000 1s1.5

20.1133 0.0000 0.0000 0.0000
DE tot 0.0000 0.0000 0.0000 0.0000 †DE tot 20.4819 0.0000 0.0000 0.0000

Si
3s2

21.4870 0.0000 0.0000 0.0000 3s2
21.4007 20.0012 20.0010 20.0007

3p0.5
20.9406 0.0000 0.0000 0.0000 3p1

20.8647 20.0009 20.0008 20.0006
3d0.5

20.3270 0.0000 0.0000 0.0000 3d0
20.2689 0.0001 0.0000 0.0000

DE tot 0.0000 0.0000 0.0000 0.0000 †DE tot 20.3015 20.0002 20.0002 20.0001

3s1
22.1516 0.0051 0.0050 0.0040 3s2

21.2890 0.0000 0.0000 0.0000
3p1

21.5641 0.0038 0.0040 0.0032 3p0.5
20.7492 0.0000 0.0000 0.0000

3d0
20.8310 0.0019 0.0030 0.0025 3d1.0

20.1756 0.0000 0.0000 0.0000
†DE tot 1.4690 20.0015 20.0016 20.0012 †DE tot 20.1240 0.0000 0.0000 0.0000

3s2
20.7966 20.0017 20.0018 20.0008 3s1

20.8514 20.0010 20.0011 20.0005
3p2

20.3071 20.0009 20.0011 20.0005 3p3
20.3491 20.0007 20.0008 20.0003

†DE tot 20.8778 20.0013 20.0013 20.0001 †DE tot 20.3817 20.0007 20.0008 20.0005
Ca

3s2
24.5277 0.0000 0.0000 0.0000 3s2

23.2284 0.0039 0.0021 0.0005
3p6

23.1688 0.0000 0.0000 0.0000 3p6
21.8875 0.0007 0.0023 0.0007

4s0
21.0537 20.0087 20.0099 0.0000 4s1

20.2469 20.0022 20.0022 0.0001
3d0

21.1933 0.0000 0.0000 0.0000 3d1
20.0648 0.0012 0.0012 0.0000

†DE tot 0.0000 0.0000 0.0000 0.0000 DE tot 21.1903 20.0119 20.0036 20.0001

3s2
23.9220 0.0061 0.0059 0.0000 3s2

24.4495 0.0189 0.0199 0.0003
3p6

22.5681 0.0050 0.0057 0.0000 3p5
23.0670 0.0258 0.0192 0.0007

4s1
20.6716 20.0033 20.0039 0.0000 4s2

20.8070 20.0040 20.0045 0.0000
3d0

20.6401 0.0043 0.0044 0.0000 3d0
21.0294 0.0142 0.0156 0.0006

DE tot 20.8746 20.0079 20.0062 0.0000 DE tot 1.2031 20.0097 20.0223 20.0003

3s2
23.4115 0.0095 0.0093 0.0000 3s2

25.0789 0.0129 0.0139 0.0004
3p6

22.0601 0.0078 0.0089 0.0000 3p5
23.6924 0.0212 0.0135 0.0009

4s2
20.2833 20.0010 20.0011 0.0000 4s1

21.2845 20.0085 20.0095 0.0001
3d0

20.1659 0.0061 0.0064 0.0000 3d0
21.6335 0.0098 0.0111 0.0009

†DE tot 21.3478 20.0112 20.0086 0.0000 DE tot 2.2464 20.0014 20.0155 20.0003
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It is also important to note that although we have included
multiple s-channel states, we do not treat these states with
different projection operators. The pseudopotentials are gen-
erated using only one nonlocal projector for each angular
momentum channel.

In the case of the H atom, we have found that a high level
of transferability was achieved without adding an augmenta-
tion operator, although addition of an augmentation operator
did produce a slight improvement. For all other atoms we
have found that a square potential step as the augmentation

TABLE IV. Configuration testing for the Zr and Pb atoms. Eigenvalues and DE tot are given for an all-electron atom ~AE!. Absolute
errors are given for a nonlocal pseudopotential generated with the method described in Ref. 4 ~HSC!, an optimized nonlocal pseudopotential
generated with the method described in Ref. 14 ~OPT! and a designed nonlocal pseudopotential generated with the presented method ~DNL!.
The design configurations used to construct the DNL potentials are identified with a dagger (†). All energies are in Ry.

AE HSC OPT DNL AE HSC OPT DNL
State energy error error error State energy error error error

Zr
4s2

27.0190 0.0000 0.0000 0.0000 4s2
23.7412 20.0077 20.0079 20.0011

4p6
25.3582 0.0000 0.0000 0.0000 4p6

22.1484 20.0043 20.0048 0.0000
5s0

22.4422 20.0553 20.0552 20.0007 5s0
20.2693 20.0083 20.0088 0.0010

4d0
22.9835 0.0000 0.0000 0.0000 4d4

20.1251 20.0001 20.0004 0.0007
†DE tot 0.0000 0.0000 0.0000 0.0000 DE tot 25.4996 20.0123 20.0106 0.0019

4s2
25.3220 0.0104 0.0106 0.0008 4s2

25.4808 0.0089 0.0111 20.0017
4p6

23.6964 0.0102 0.0104 0.0007 4p5
23.8375 0.0105 0.0118 20.0004

5s1
21.3047 20.0211 20.0215 0.0019 5s1

21.3385 20.0252 20.0253 0.0011
4d1

21.4711 0.0075 0.0082 0.0000 4d2
21.5623 0.0101 0.0108 0.0010

DE tot 24.0782 20.0309 20.0303 0.0013 DE tot 21.8274 20.0325 20.0320 0.0016

4s2
23.9956 0.0119 0.0118 0.0000 4s2

23.8446 20.0003 20.0005 20.0005
4p6

22.3881 0.0125 0.0124 0.0002 4p6
22.2458 0.0019 0.0015 0.0002

5s2
20.3371 20.0062 20.0065 0.0011 5s1

20.2957 20.0075 20.0079 0.0012
4d2

20.2760 0.0097 0.0100 0.0000 4d3
20.1835 0.0032 0.0032 0.0006

†DE tot 25.7174 20.0348 20.0340 0.0030 DE tot 25.6291 20.0217 20.0203 0.0023
Pb

6s0
23.5516 0.0000 0.0000 0.0000 6s0

22.8615 20.0014 20.0019 20.0013
6p0

22.6398 0.0000 0.0000 0.0000 6p1
22.0243 20.0002 20.0007 20.0006

5d10
24.5497 0.0000 0.0000 0.0000 5d10

23.7642 20.0048 20.0060 20.0045
DE tot 0.0000 0.0000 0.0000 0.0000 †DE tot 22.3331 20.0007 20.0005 20.0004

6s1
22.1243 20.0022 20.0031 20.0016 6s1

21.5149 20.0017 20.0025 20.0010
6p1

21.3651 20.0007 20.0013 20.0011 6p2
20.8161 0.0009 0.0003 0.0003

5d10
22.9194 20.0044 20.0056 20.0010 5d10

22.2559 20.0068 20.0084 20.0036
†DE tot 24.8228 20.0031 20.0031 20.0019 †DE tot 25.9090 20.0033 20.0037 20.0024

6s2
20.8961 20.0002 20.0010 20.0009 6s2

21.4323 20.0024 20.0034 20.0013
6p2

20.2777 0.0030 0.0027 0.0026 6p1
20.7556 20.0001 20.0008 20.0006

5d10
21.5607 20.0039 20.0054 0.0015 5d10

22.1339 20.0039 20.0053 0.0018
†DE tot 27.1077 20.0049 20.0057 20.0027 †DE tot 26.5967 20.0061 20.0064 20.0035

TABLE V. Chemical hardness testing for the Ca atom. Absolute hardness values are compared for an
all-electron atom ~AE!, a nonlocal pseudopotential generated with the method described in Ref. 4 ~HSC!, an
optimized nonlocal pseudopotential generated with the method described in reference 14 ~OPT! and a de-
signed nonlocal pseudopotential generated with the presented method ~DNL!. Hardness values were deter-
mined for two different electronic configurations. Each element of the symmetric hardness matrix, Hnl ,n8l8

,
is the change in the nlth eigenvalue ~in Ry! for a change of the n8l8th occupation number.

3s1.953p5.94s13d0.1 3s23p64s23d0.01

nl n8l8 AE HSC OPT DNL AE HSC OPT DNL

3s 3s 0.5655 0.5670 0.5620 0.5657 0.4945 0.4946 0.4897 0.4946
3p 0.5474 0.5453 0.5441 0.5475 0.4767 0.4735 0.4722 0.4767
4s 0.2830 0.2853 0.2853 0.2830 0.2257 0.2269 0.2269 0.2257
3d 0.4614 0.4612 0.4586 0.4614 0.3677 0.3654 0.3634 0.3677

3p 3p 0.5310 0.5250 0.5279 0.5309 0.4607 0.4540 0.4565 0.4606
4s 0.2813 0.2832 0.2835 0.2813 0.2250 0.2260 0.2262 0.2250
3d 0.4506 0.4491 0.4482 0.4507 0.3593 0.3562 0.3554 0.3594

4s 4s 0.2079 0.2095 0.2097 0.2079 0.1790 0.1799 0.1800 0.1790
3d 0.2639 0.2654 0.2655 0.2639 0.2101 0.2105 0.2106 0.2101

3d 3d 0.3941 0.3928 0.3915 0.3936 0.2989 0.2959 0.2951 0.2986
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operator gives improved transferability. The parameters for

Â are contained in Table II. Table III contains configura-
tional testing results for the H, Si, and Ca atoms. Table IV
contains testing results for Zr and Pb atoms. In both tables,
the design configurations have been identified. For Ca and Zr
atoms, for which semicore states were included, the refer-
ence configuration is also a design configuration due to the
presence of the second s state. We present results from an
all-electron atom, a nonlocal pseudopotential generated ac-
cording to the Hamann-Schlüter-Chiang construction, an op-
timized pseudopotential generated with an unaugmented lo-
cal potential consisting of only the s angular momentum
channel potential, and a designed nonlocal pseudopotential
which includes the square step. The potentials were tested in
both ionized and excited electronic configurations. In addi-
tion to eigenvalue information, the table also compares total-
energy differences from the reference state. It is important to
note that the most substantial improvements occur in atoms
in which highly spatially separated semicore states ~Ca and
Zr! were included in the pseudopotential construction. The
inclusion of these states provides charge-density separation
and therefore the placement of the augmentation operator in
those regions of separation provides dramatic improvement
@case ~1! above#. The eigenvalue and total-energy errors for
the Ca and Zr designed nonlocal pseudopotentials are one to
two orders of magnitude smaller than the Hamann-Schlüter-
Chiang and optimized results. For atoms in which charge
separation is not as complete ~Si and Pb!, the improvements
are less dramatic.

Logarithmic derivative determination has been exten-
sively used as a testing procedure to investigate the transfer-
ability of a pseudopotential. For brevity we present only the
results for the Ca pseudopotential. Figure 2 shows the loga-
rithmic derivative differences between the all-electron poten-
tial and the three pseudopotential generation methods for the
s , p , and d potentials of the Ca atom. For the s and p chan-
nels, we find excellent agreement over a large energy range
between the pseudopotentials generated with the designed
nonlocal method and the all-electron potentials. The energy
errors in the s and p states for the Hamann-Schlüter-Chiang
and optimized pseudopotentials presented in Table III are
directly related to the logarithmic derivative differences. In-
terestingly, we find that the designed nonlocal pseudopoten-
tial d state logarithmic derivative differs from the all-electron
results more than the other methods. This finding is in ap-
parent contradiction to the configuration testing presented in
Table III. The origin of the discrepancy lies in the nature of
the logarithmic derivative test. This test only probes the be-
havior an electron of a given energy scattered off a static
potential. Self-consistent effects are therefore not included.
This phenomenon has been identified previously.19 We find
that chemical hardness testing tracks more closely with con-
figuration testing than logarithmic derivative testing does. In
logarithmic derivative testing at other electronic configura-
tions, the designed nonlocal pseudopotential d state scatter-
ing properties are significantly more accurate than the other
pseudopotentials.

Table V contains chemical hardness testing results for Ca
all-electron and pseudoatoms, for two electronic configura-
tions. In both cases, we find excellent agreement in chemical
hardness between the all-electron and designed nonlocal po-

tentials for each electronic configuration. With errors below
0.5 mRy, the designed nonlocal pseudopotential is one to
two orders of magnitude more accurate than the Hamann-
Schlüter-Chiang and optimized pseudopotentials. All matrix
elements involving the 3d state show a higher level of trans-
ferability for the designed nonlocal pseudopotential than the
other pseudopotentials.

As a final set of tests, we have completed density-
functional calculations within the LDA for various hydride
molecules involving the presented atoms as well as bulk Si,
Ca, Zr, and Pb. The results of these tests are contained in
Table VI. We also provide experimental results20–22 and the-
oretical studies where available.16,23–25 The cited linearized-
augmented plane-wave ~LAPW! calculations23–25 treat all

TABLE VI. Density-functional results for various diatomic and
bulk systems. Structural parameters are compared for a nonlocal
pseudopotential generated with the method described in Ref. 4
~HSC!, an optimized nonlocal pseudopotential generated with the
method described in Ref. 14 ~OPT! and a designed nonlocal
pseudopotential generated with the presented method ~DNL!. Ex-
perimental and previous theoretical results using dual-space ~DS!

pseudopotentials and linearized-augmented plane-wave ~LAPW!

methods are also provided for comparison.

Expt. DS LAPW HSC OPT DNL

H2

re ~Å! 0.741 a 0.766 b 0.773 c 0.767 0.766 0.767
ve (cm21) 4395 4040 4169 4178 4165

Si(s)
a ~Å! 5.43 d 5.41 e 5.363 5.361 5.412
B ~GPa! 98.8 98 96.2 98.1 96.0

SiH4

re ~Å! 1.479 f 1.486 1.485 1.482 1.491
n1 (cm21) 2187 2140 2145 2182

Ca(s)
a ~Å! 5.58 d 5.33 e 5.332 5.332 5.338
B ~GPa! 15.2 19 19.1 19.2 19.4

CaH
re ~Å! 2.002 a 1.961 1.954 1.950 1.954
ve (cm21) 1299 1290 1275 1285

Zr(s)
a ~Å! 3.232 d 3.145 g 3.122 3.120 3.161
c ~Å! 5.147 5.116 5.047 5.043 5.122
B ~GPa! 83.3 98.6 102.9 105.0 93.4

Pb(s)
a ~Å! 4.95 d 4.866 4.859 4.868
B ~GPa! 43.0 55.0 55.2 55.0

PbH
re ~Å! 1.839 a 1.817 1.852 1.850 1.853
ve (cm21) 1564 1536 1579 1530

aReference 20.
bReference 16.
cReference 23.
dReference 21.
eReference 24.
fReference 22.
gReference 25 using Hedin-Lundqvist exchange-correlation poten-
tials.

12 476 PRB 59NICHOLAS J. RAMER AND ANDREW M. RAPPE



the electrons explicitly. The dual-space pseudopotential
calculations16 treat the valence electrons explicitly; for Ca, a
shell of semicore states is also included. Typically, structural
parameters computed using LDA underestimate the experi-
mental values by 1–2 %. For the hydride calculations, results
differ from the expected underestimation due to the core
overlap with the H pseudopotential. All the pseudopotentials
show very similar results for the H2 , SiH4, and CaH. In the
case of PbH, our deviation from the previous theoretical re-
sults using highly transferable dual-space pseudopotentials
can be explained by the omission of the 5d semicore state in
the dual-space construction. For the bulk materials, we find
good agreement with the LAPW method results which rep-
resent the LDA computational limit of these structural prop-
erties. In the case of bulk Zr, we find that the use of the
designed nonlocal potential has a significant effect on the
calculation of structural parameters. This improvement is

due to the considerable transferability enhancement which
the designed nonlocal approach provides ~see Table IV!.
Since Zr is a transition metal, its s and d orbitals are very
similar in energy; this makes the structural parameters of Zr
more sensitive to the pseudopotential transferability than the
other elements tested.

It is important to note that the calculation of these struc-
tural parameters is very robust and is therefore not a particu-
larly sensitive test of transferability. Instead, studies involv-
ing electronic properties of systems such as electron-phonon
interactions may be more fruitful in ascertaining the effects
of improved transferability.

IV. CONCLUSIONS

In this paper, we have developed and implemented a fully
nonlocal pseudopotential approach using the separable form
of Kleinman and Bylander. In our approach, we have ex-
ploited the implicit flexibility contained within the separation
of the pseudopotential into local and nonlocal parts by in-
cluding an augmentation operator into the local and nonlocal
parts of the potential. By adjusting the augmentation opera-
tor, we have been able to achieve almost exact agreement
with all-electron results for a variety of ionized and excited
configurations. In addition to configuration testing, we have
presented logarithmic derivatives and chemical hardness
tests. All the tests demonstrate significant improvement of
the designed pseudopotentials over Hamann-Schlüter-Chiang
and standard nonlocal potentials. The designed nonlocal
pseudopotential approach is able to achieve these improve-
ments in transferability without compromising the level of
convergence error obtained using the optimized pseudopo-
tential construction. Furthermore, we have shown that for
electronic configurations that contain multiple states with the
same angular momentum, it is possible to construct a
pseudopotential with a single nonlocal projector that will
yield very accurate results.
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23 P. E. Blöchl, Phys. Rev. B 50, 17 953 ~1994!.
24 N. A. W. Holzwarth, G. E. Matthews, R. B. Dunning, A. R.

Tackett, and Y. Zeng, Phys. Rev. B 55, 2005 ~1997!.
25 Z.-W. Lu, D. Singh, and H. Krakauer, Phys. Rev. B 36, 7335

~1987!.

12 478 PRB 59NICHOLAS J. RAMER AND ANDREW M. RAPPE


