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We present designs of 2D, isotropic, disordered, photonic materials

of arbitrary size with complete band gaps blocking all directions

and polarizations. The designs with the largest band gaps are

obtained by a constrained optimization method that starts from a

hyperuniform disordered point pattern, an array of points whose

number variance within a spherical sampling window grows more

slowly than the volume. We argue that hyperuniformity, combined

with uniform local topology and short-range geometric order, can

explain how complete photonic band gaps are possible without

long-range translational order. We note the ramifications for

electronic and phononic band gaps in disordered materials.

dielectric heterostructures � electronic band gap � disordered structures �

amorphous materials

S ince their introduction in 1987, photonic band gap (PBG)
materials (1, 2) have evolved dramatically, and their unusual

properties have led to diverse applications, including efficient
radiation sources (3), sensors (4), and optical computer chips (5).
To date, although, the only known large-scale dielectric hetero-
structures with sizeable, complete band gaps (��/�C � 10%, say,
where �� is the width of the band gap and �C is the midpoint
frequency) have been periodic, which limits the rotational
symmetry and defect properties critical for controlling the flow
of light in applications.

In this paper, we show that it is possible to design 2D, isotropic,
translationally disordered photonic materials of arbitrary size
with large, complete PBGs. The designs have been generated
through a protocol that can be used to construct different types
of disordered, hyperuniform structures in two or more dimen-
sions, which are distinguished by their suppressed density fluc-
tuations on long length scales (6) and may serve as templates for
designer materials with various other novel physical properties,
including electronic, phononic, elastic, and transport behavior.

Here we focus on adapting the protocol for fabricating ma-
terials with optimal photonic properties because of their useful
applications and because it is feasible to manufacture the
dielectric heterostructure designs presented in this paper by
using existing techniques. Although the goal here is to produce
designs for isotropic, disordered heterostructures, we show
elsewhere how the same procedure can be used to obtain
photonic quasicrystals with complete PBGs (28).

The design procedure includes a limited number of free
parameters (two, in the cases considered here) that are varied to
find the largest possible band gap in this constrained subspace of
structures. The optimization requires modest computational cost
as compared with full-blown optimizations that search over all
possible dielectric designs. In practice, although, we find that the
protocol produces band gap properties that are not measurably
different from the optima obtained by the optimization methods
in cases where those computations have been performed. To
compute the PBGs for the various disordered structures, we
employ a supercell approximation in which the disordered
structure is treated as if it repeats periodically. We then perform
systematic convergence tests to ensure that results converge as
the supercell size increases.

Obtaining complete PBGs in dielectric materials without
long-range order is counterintuitive. We suggest on the basis of
a combination of theoretical arguments and numerical simula-
tions that the PBGs may be explained in the limit large dielectric
constant ratio by a combination of hyperuniformity, uniform
local topology, and short-range geometric order. All of these
conditions are automatically satisfied by photonic crystals and by
all of the disordered heterostructures (and quasicrystals) with
complete PBGs produced by our protocol.

We particularly want to emphasize the role of hyperuniform-
ity. The concept of hyperuniformity was first introduced as an
order metric for ranking point patterns according to their local
density f luctuations (6). A point pattern is hyperuniform if the
number variance �2(R) � �N2

R� � �NR�2 within a spherical
sampling window of radius R (in d dimensions) grows more
slowly than the window volume for large R, i.e., more slowly than
Rd. The hyperuniform patterns considered in this paper are 2D
and restricted to the subclass in which the number variance grows
like the window surface area for large R, i.e., �2(R) � AR, up to
small oscillations. The coefficient A measures the degree of
hyperuniformity within this subclass: Smaller values of A are
more hyperuniform. In reciprocal space, hyperuniformity cor-
responds to having a structure factor S(k) that tends to zero as
the wavenumber k � �k� tends to zero (omitting forward-
scattering), i.e., infinite wavelength density fluctuations vanish.
Hyperuniform patterns include all crystals and quasicrystals and
a special subset of disordered structures.

Although all crystal and quasicrystal point patterns are hy-
peruniform, it is considerably more difficult to identify and/or
construct disordered hyperuniform point patterns. Recently, a
collective coordinate approach has been devised to explicitly
produce point patterns with precisely tuned wave-scattering
characteristics [that is to say, tuned S(k) for a fixed range of
wavenumbers k], including a large class of hyperuniform point
patterns, even isotropic, disordered ones (7). Here we apply
these patterns to photonics and present an explicit protocol for
designing arrangements of dielectric materials optimal for pho-
tonics from hyperuniform point patterns. We observe that there
is a strong correlation between the degree of hyperuniformity
(smallness of A) for a variety 2D crystal structures as measured
in ref. 6 and the resulting band gaps. For example, a triangular
lattice of parallel cylinders has the smallest value of A and the
largest band gap for light polarized with its electric field oscil-
lating normal to the plane, whereas a square lattice of cylinders
has a larger value of A and a smaller photonic band gap. These
results motivated us to consider beginning from seed patterns
with a high degree of hyperuniformity to obtain complete PBGs.
Indeed, in the ensuing discussion, we show how this expectation
has been explicitly realized in systematically producing the first
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known examples of disordered heterostructures of arbitrary size
with complete PBGs.

Design Protocol for PBGs.

In the past, photonic crystals displaying large PBGs have been
found by a combination of physical intuition and trial-and-error
methods. Identifying the dielectric decoration that produces the
globally maximal PBG is well known to be a daunting computa-
tional task, despite the recent development of optimization meth-
ods, such as gradient-based approaches, exhaustive search methods,
and evolutionary methods (8–10). The major difficulty in solving
this inverse problem comes from the relatively large number of
iterations required to achieve an optimal design and the high
computational cost of obtaining the band structure for complex
distributions of dielectric materials, as needed to simulate hetero-
structures without long-range order. For instance, the evolutionary
algorithms used in ref. 11 require over 1,000 generations of designs
to achieve fully convergence. (By comparison, our protocol achieves
a nearly optimal solution in only 5–10 iterations.) Moreover, little
progress has been made on rigorous optimization methods appli-
cable to 3D photonic crystals.

For these reasons, the development of a simpler design
protocol that requires vastly less computational resources is
significant. Because our protocol only optimizes over two de-
grees of freedom, it does not guarantee an absolute optimum.
However, we find that the resulting band gap properties are not
measurably different from those obtained by the rigorous opti-
mization methods in the cases where rigorous methods have been
applied. Moreover, our method has already produced the largest
known full photonic band gaps for 2D periodic, quasiperiodic,
and disordered structures that are too complex for current
rigorous methods to be applied. The protocol begins with the
selection of a point pattern generated by any means with the
rotational symmetry and translational order desired for the final
photonic material. For crystal, quasicrystal, or random Poisson
patterns, a conventional procedure may be used. For hyperuni-
form and other designer point patterns, we use the previously
developed collective coordinate approach (7) to produce pat-
terns for certain specific forms of S(k), as described below.

If the goal were to have a band gap only for TM polarization
(electric field oscillating along the azimuthal direction), the rest
of the protocol would simply be to replace each point in the
original point pattern with a circular cylinder and vary the radius
of the cylinders until the structure exhibits a maximum TM band
gap (12–15). However, this design is poor for obtaining a band
gap for TE polarization (electric field oriented in the plane). We
find that the analogous optimum for TE modes is a planar,
continuous trivalent network (9) (as in the case of the triangular
lattice), which can be obtained from the point pattern by using
the steps described in Fig. 1. Namely, construct a Delaunay tiling
(16) from the original 2D point pattern and follow the steps in
Fig. 1 to transform it into a tessellation of cells. Then decorate
the cell edges with walls (along the azimuthal direction) of
dielectric material of uniform width w and vary the width of the
walls until the maximal TE band gap is obtained.

Finally, to obtain designs for complete PBGs, the protocol is
to optimally overlap the TM and TE band gaps by decorating the
vertices of the trivalent network of cell walls with circular
cylinders (black circles in Fig. 1) of radius r. Then, for any given
set of dielectric materials, the maximal complete PBG is
achieved by varying the only two free parameters, w and r. (In
practice, the optimal designs obtained by our protocol thus far
have almost the same values of w and r for a given point density,
so that a nearly optimal design may often be achieved without
any optimization.)

Although a constrained optimization method like this is not
guaranteed to produce the absolute optimum over all possible
designs, in examples where the absolute optimum is known by

rigorous optimization methods (8–10), our protocol produces a
design whose band gap is the same within the numerical error by
using exponentially less computational resources.

For the optimization of the two degrees of freedom (w and r), the
photonic mode properties must be computed as parameters are
varied. Because the computational requirements are modest, we
employ a supercell approximation and use the conventional plane-
wave expansion method (12, 17) to calculate the photonic band
structure; we generate the disordered pattern within a box of side
length L (with periodic boundary conditions) where L is much
greater than the average interparticle spacing and take the limit as
L becomes large. The PBGs for disordered heterostructures ob-
tained by our protocol turn out to be equivalent to the fundamental
band gap in periodic systems in the sense that the spectral location
of the TM gap, for example, is determined by the resonant
frequencies of the scattering centers (15) and always occurs be-
tween band N and N � 1, with N precisely the number of points per
unit cell. This behavior underscores the relevance of the individual
scattering center properties on the band gap opening and can be
interpreted in terms of an effective folding of the band structure as
a result of scattering on a collection of N similar (but not necessarily
identical) scattering units distributed hyperuniformly in space.

Results

Disordered Photonic Materials with Large, Complete PBGs. To obtain
the best results, we consider a subclass of hyperuniform patterns
known as ‘‘stealthy’’, so named because they are transparent to
incident radiation (S(k) � 0) for certain wavenumbers (7). In
particular, we consider stealthy point patterns with a structure
factor S(k) that is isotropic, continuous and precisely equal to
zero for a finite range of wavenumbers k � kC for some positive
kC. Fig. 2 presents four designs of photonic structures derived by
using the protocol in Fig. 1 starting from stealthy point patterns
and their structure factors, S(k).

Stealthy hyperuniform patterns are parameterized by kC or,

Fig. 1. Protocol for mapping point patterns into tessellations for photonic

structure design (see Design Protocol for PBGs). First, a chosen point pattern

(open circles) is partitioned by using a Delaunay triangulation (thin lines).

Next, the centroids of the neighboring triangles (solid circles) of a given point

are connected, generating cells (thick lines) around each point, as shown for

the five (green) Delaunay triangles in the upper left corner of the figure.
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equivalently, �, the fraction of wavenumbers k within the Bril-
louin zone that are set to zero; as � increases, kC and the degree
of hyperuniformity increase, thus, decreasing A in our definition
of the number variance. When � reaches a critical value �C(�0.77
for 2D systems) the pattern develops long-range translational
order (7).

The largest PBGs in hyperuniform patterns occur in the limit
of large dielectric contrast; our band structure computations
assume the photonic materials are composed of silicon (with
dielectric constant � � 11.56) and air. To confirm that the
computation converges and the complete PBGs are insensitive
to system size, we vary the number of points per unit cell
(sidelength L) ranges from n � 100�500 (see Fig. 3). For the
purposes of comparison, we use a length scale a � L/�N, such
that all patterns have the same point density 1/a2.

As shown in Fig. 4, significant band gap begins to open for the
stealthy hyperuniform designs for sufficiently large � � 0.35 (but
well below �C), at a value where there emerges a finite exclusion
zone between neighboring points in the real space hyperuniform
pattern (see Fig. 2). In reciprocal space, this value of � corresponds
to the emergence of a range of ‘‘forbidden’’ scattering, S(k) � 0 for
�k��kC for some positive kC, surrounded by a circular shell just
beyond �k� � kC with increased scattering. The structures built
around stealthy hyperuniform patterns with � � 0.5 are found to
exhibit remarkably large TM (of 36.5%) and TE (of 29.6%) PBGs,
making them competitive with many of their periodic and quasip-
eriodic counterparts. More importantly, there are complete PBGs
of appreciable magnitude reaching values of �10% of the central
frequency for � � 0.5.

Note that the density fluctuations for stealthy patterns are
dramatically suppressed for wavelengths greater than 2�/kC. The
lower limit 2�/kC is directly related to the midgap frequency �C

(see Fig. 2) for large enough �, and the band width is inversely
proportional to the magnitude of the density fluctuations on
length scales greater than 2�/kC.

A striking feature of the PBGs is their isotropy. In ref. 10, an
isotropy metric was introduced that measures the variation in
band gap width as a function of incident angle. The most
isotropic crystal band gap has a variation of 20%, compared with
�0.1% for the hyperuniform disordered pattern in Fig. 2D. As
noted in our closing discussion, isotropy can be useful for several
applications.

Conditions for PBGs. Photonic (and electronic) band gaps are
commonly associated with long-range translational order and

Fig. 2. Four designs of isotropic, dielectric heterostructures derived by using the protocol in Fig. 1 and their structure factors, S(k). (A) A disordered network

design derived from a Poisson (nonhyperuniform) point pattern. (B) A network derived from a nearly hyperuniform equiluminous point pattern in which the

structure factor S(k3 0) � S0	0 for k � kC. (C) A network derived from a RSA point pattern in which the structure factor S(k3 0) 	 0, but there is more local

geometric order than in B. D is derived from an isotropic, disordered, stealthy hyperuniform pattern, for which S(k) is precisely zero within the inner disk. Only

D exhibits a complete PBG. Note the two concentric shells of sharply increased density just beyond the disk. These features sharpen as the ordering parameter

� increases; this trend coincides in real space with the exclusion zone around each particle increasing and the emergence of complete PBGs.

Fig. 3. Optimal fractional photonic band gaps in photonic structures based

on stealthy disordered hyperuniform structures of different number of points

N with � � 0.5. The plot shows that TM (red circles), TE (orange squares) and

complete (green diamonds) band gaps do not vary significantly with system

size.
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Bragg scattering, so the examples of disordered PBGs presented
in this paper are counterintuitive. We argue below, based on
numerical evidence and physical arguments, that complete pho-
tonic band gaps can occur in disordered systems that exhibit a
combination of hyperuniformity, uniform local topology, and
short-range geometric order. This argument has ramifications
for electronic and phononic band gaps in disordered materials as
well.

First, consider the evidence provided by numerical experiments
to date. Photonic crystals are hyperuniform (an automatic conse-
quence of periodicity) and the known examples with the largest TM,
TE, and complete PBGs satisfy the two conditions (9, 18, 19). Our
own numerical experiments indicate that hyperuniformity is a
crucial condition. For example, we have compared results for the
hyperuniform pattern in Fig. 2B with networks generated from
nonhyperuniform Poisson point patterns, as in Fig. 2A; equilumi-
nous point patterns with S(k3 0) 	 0 for k � kC where the nonzero
constant S (0) is made very small, as shown in Fig. 2C; and with a
random-sequential absorption (RSA) point pattern (20) generated
by randomly, irreversibly, and sequentially placing equal-sized
circular disks in a large square box with periodic boundary condi-
tions subject to a nonoverlap constraint until no more can be added.
It has been shown that such 2D RSA packings have S(k3 0) slightly
positive at k � 0 and increasing as a positive power of k for small
k (21). The latter two patterns are very nearly hyperuniform,
presenting similar deviations from hyperuniformity (Se�lum(k 3
0) � 0.05 and SRSA(k3 0) � 0.053; and the RSA network in Fig.
2C exhibits uniform topological order (trivalency) and well-defined
short-range geometric order; furthermore, these two patterns pro-
duce TM and TE band gaps separately. Yet none of the three
families of patterns has been found to yield a complete PBG.

We also note that hyperuniform stealthy patterns with �� 0.35
(and keeping all other parameters fixed) do not produce sizable,
complete PBGs whereas those with �	0.35 do, as demonstrated
in Fig. 4. Fig. 5 indicates that a difference is the degree of
short-range geometric order, the variance in the near-neighbor
distribution of link lengths and the distance between centers of
neighboring links.

Based on these and other numerical experiments, we conclude
that both hyperuniformity and short-range geometric order are
required to obtain substantial PBGs. In principle, the two can be
varied independently, but it is notable that patterns with the
highest degree of hyperuniformity also possess the highest
degree of short-range geometrical order and that, for the case of
stealthy patterns, both hyperuniformity and short-range geo-
metric order increase as � increases.

To explain how hyperuniformity and short-range geometric
order, when combined with uniform local topology, can lead to
a complete PBG, we first return to the point that the band gaps
we have found arise in the limit of large dielectric constant ratio.
In this limit and for the optimal link widths and cylinder radii,
the interaction with electromagnetic waves is in the Mie scat-
tering limit. At frequencies near the Mie resonances (which
coincide with the PBG lower band edge frequencies), the
scattering of TM electromagnetic waves in a heterostructure
composed of parallel cylinders is similar to the scattering of
electrons by atomic orbitals in cases where the tight-binding
approximation can be reliably applied (22). The same applies for
TE modes for any one direction k if, instead of parallel azimuthal
cylinders, there are parallel thick lines (or walls in the azimuthal
direction) in the plane and oriented perpendicular to k; however,
to obtain a complete band gap, some compromise must be found
to enable band gap for all directions k. We conjecture, based on
comparison with rigorous optimization results, our own numer-
ical experiments, and arguments below, that uniform local
topology is advantageous for forming optimal band gaps. In two
dimensions, this condition is easiest to achieve in disordered

structures without disrupting the short-range geometric order if
the networks are trivalent.

If the arrangement of dielectrics has local geometric order (the
variance in link lengths and interlink distances is small), the
propagation of light in the limit of high dielectric constant ratio
is described by a tight binding model with nearly uniform
coefficients. In the analogous electronic problem, Weaire and
Thorpe (23, 24) proved that band gaps can exist in continuous
random tetrahedrally coordinated networks, commonly used as
models for amorphous silicon and germanium. In addition to
tight binding with nearly uniform coefficients, the derivation
required uniform tetrahedral coordination. (Weaire and Thorpe
call networks satisfying these conditions ‘‘topologically disor-
dered’’.) The analogy in two dimensions is a trivalent network.
Although their proof discussed three dimensions and tetrahedral
coordination specifically, we find that it can generalize to other
dimensions and networks with different uniform coordination.
Note that our protocol automatically imposes uniform topology
(e.g., trivalency in two dimensions) and limits variation of the
tight binding parameters by imposing local geometric order.

To complete their proof, Weaire and Thorpe added a mild
stipulation that the density has bounded variation, defined as the
condition that the density remains between two finite values as
the volume is taken to infinity. This condition is satisfied by any
homogeneous system, hyperuniform or not, and thus is much
weaker than hyperuniformity, for which �2(R) � AR in the
stealth 2D examples.

Although bounded variation may be sufficient to obtain a
nonzero electronic band gap, we conjecture that hyperuniform,
tetrahedrally coordinated, continuous random networks have
substantially larger electronic band gaps than those that do not.
This conjecture can be straightforwardly tested: The collective
coordinate method described in ref. 7 combined with our
protocol is a rigorous method for producing hyperuniform (as
well as a range of controlled nonhyperuniform) tetrahedrally
coordinated, continuous random network models. Our conjec-
ture can be explored by constructing explicit networks and
computing the electronic band gaps.

Analogous questions arise about real amorphous materials
made in the laboratory: Do different methods of producing

Fig. 4. A plot showing how the PBG increases as �, or, equivalently, the

degree of hyperuniformity and short-range geometric order increases. TM

(red circles), TE (orange squares), and complete (green diamonds) photonic

band gaps versus order parameter � for disordered, stealthy hyperuniform

derived by using the protocol in Fig. 1. The optimal structures have dimen-

sionless cylinder radius r/a � 0.189 for the TM case, dimensionless tessellation

wall thickness w/a � 0.101 for the TE case, and (r/a � 0.189, w/a � 0.031) for

the TM�TE case.
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amorphous silicon and germanium result in the same degree of
hyperuniformity, and is the behavior of S(k3 0) correlated with
their electronic properties? The same questions apply to pho-
nonic properties of disordered materials.

This line of reasoning also explains why hyperuniformity is
more important for obtaining complete photonic band gaps than
electronic band gaps. For the electronic case, the only issue is
whether there is a gap at all; the width and gap center frequency
are not considered. For the photonic case, a gap is needed
simultaneously for both TM and TE, and the gap centers must
have values that allow an overlap. Also, the goal is not simply to
have a gap but to have the widest gap possible. The evidence
shows that hyperuniformity is highly advantageous (perhaps
even essential) for meeting these added conditions.

The comparison to electronic band gaps is also useful in
comparing states near the band edges and continuum. For a
perfectly ordered crystal (or photonic crystal), the electronic
(photonic) states at the band edge are propagating such that the
electrons (electromagnetic fields) sample many sites. If modest
disorder is introduced, localized states begin to fill in the gap so
that the states just below and just above are localized. Although
formally the disordered heterostructures do not have equivalent
propagating states, an analogous phenomenon occurs. In the
upper four frames of Fig. 6, we compare the azimuthal electric
field distribution for modes well below or well above the band
gap (upper two frames), which we might call extended because
the field is distributed among many sites; and then modes at the
band edges, which are localized.

We find that the formation of the TM band gap is closely
related to the formation of electromagnetic resonances localized
within the dielectric cylinders (Fig. 6 A and B) and that there is
a strong correlation between the scattering properties of the
individual scatterers (dielectric cylinders) and the band gap
location. In particular, the largest TM gap occurs when the
frequency of the first Mie resonance coincides with the lower
edge of the PBG (15). Analogous to the case of periodic systems,
we also find that electric field for the lower band-edge states is
well localized in the cylinders (the high dielectric component),
thereby lowering their frequencies; and the electric field for the
upper band-edge states are localized in the air fraction, increas-

ing their frequencies (see Fig. 6 C and D). As shown in Fig. 6
E–H, an analogous behavior occurs for the azimuthal magnetic
field distribution for TE modes: For the lower-edge state, the

Fig. 5. A plot showing how the short-range geometric order for stealth

disordered structures increases as �, or, equivalently, the degree of hyperuni-

formity, increases. (Upper) The standard deviation of the average link length

vs. � for isotropic, disordered, stealthy, hyperuniform structures of the type

shown in Fig. 2D . (Lower) The standard deviation of the average link sepa-

ration distribution (calculated as the distance between the midpoints of two

neighboring links) as a function of �. Both plots show a significant decrease in

variance as � increases above 0.35.

Fig. 6. Electromagnetic field distribution in hyperuniform, disordered struc-

tures. (A–D) Electric field distribution in hyperuniform, disordered structures

for TM polarized radiation. The structure consists of dielectric cylinders (radius

r/a � 0.189 and dielectric constant � � 11.56) in air arranged according to a

hyperuniform distribution with � � 0.5 and displays a TM PBG of 36.5% of the

central frequency. Localized (A) and extended (B) modes around the lower

PBG edge, and localized (C) and extended modes (D) around the upper PBG

edge. (E–H) Magnetic field distribution in hyperuniform disordered structures

for TE polarized radiation. The structure consists of trihedral network archi-

tecture (wall thickness w/a � 0.101 and dielectric constant � � 11.56) obtained

from a hyperuniform distribution with � � 0.5 and displays a TE photonic band

gap of 31.5% of the central frequency. Localized (E) and extended (F) modes

around the lower PBG edge, and localized (G) and extended (H) modes around

the upper PBG edge.
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azimuthal magnetic field is mostly localized inside the air
fraction and presents nodal planes that pass through the high
index of refraction fraction of the structure, whereas the upper
edge state displays the opposite behavior.

The discussion above accounts in a nonrigorous way for the
conditions for obtaining PBGs and all of the properties observed
in numerical experiments by us and others to date. We hope to
develop the argument into a more precise theory in future work.

Discussion

This work demonstrates explicitly and proposes an explanation of
how it is possible to design isotropic, disordered, photonic materials
of arbitrary size with complete PBGs. Although photonic crystals
have larger complete band gaps, disordered hyperuniform hetero-
structures with substantial, complete PBGs offer advantages for
many applications. Disordered heterostructures are isotropic,
which is advantageous for use as highly efficient isotropic thermal
radiation sources (25) and waveguides with arbitrary bending angle
(14). The properties of defects and channels useful for controlling
the flow of light are different for disordered structures. Crystals
have a unique, reproducible band structure; by contrast, the band
gaps for the disordered structures have some modest random
variation for different point distributions. Also, light with frequen-
cies above or below the band edges are propagating modes that are
transmitted through photonic crystals but are localized modes in
the case of 2D hyperuniform disordered patterns, which give the
former advantages in some applications, such as light sources or
radiation harvesting materials. On the other hand, because of their
compatibility with general boundary constraints, PBG structures
based on disordered hyperuniform patterns can provide a flexible
optical insulator platform for planar optical circuits. Moreover,
eventual flaws that could seriously degrade the optical character-

istics of photonic crystals and perhaps quasicrystals are likely to
have less effect on disordered hyperuniform structures, therefore
relaxing fabrication constraints. The results presented here are
obtained for 2D structures, but a direct extension of our tessellation
algorithm to 3D can be used to produces hyperuniform tetravalent
connected network structures. Such a tetravalent connected net-
work decorated with dielectric cylinders along the its edges could
constitute the blueprint for 3D, disordered, hyperuniform, PBG
structures. [We note that the largest known 3D PBG is provided by
a similar periodic tetravalent network generated from a diamond
lattice (26, 27)]. Our preliminary investigation of 3D quasicrystal-
line patterns show that the protocol introduced here is able to
generate complete PBGs in 3D quasicrystalline photonic struc-
tures, and our plan calls for investigation of 3D hyperuniform
disordered structures as well. Further analysis of the character of
the electromagnetic modes supported by the disordered structures
and the extension to 3D systems may be able to provide a better
understanding of the interplay between disorder and hyperunifor-
mity and between localized and extended electromagnetic modes in
the formation of the PBGs.

Finally, we note that the lessons learned here have broad
physical implications. One is led to appreciate that all isotropic,
disordered solids are not the same: As methods of synthesizing
solids and heterostructures advance, it will become possible to
produce different types and degrees of hyperuniformity, and,
consequently, many distinct classes of materials with novel
electronic, phononic and photonic properties.
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