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nanobiotechnology tool for cell biology
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Abstract 

This article discusses the use of nanotechnology for subcellular compartment isolation and its application towards 

subcellular omics. This technology review significantly contributes to our understanding on use of nanotechnology 

for subcellular systems biology. Here we elaborate nanobiotechnology approach of using superparamagnetic nano-

particles (SPMNPs) optimized with different surface coatings for subcellular organelle isolation. Using pulse-chase 

approach, we review that SPMNPs interacted differently with the cell depending on its surface functionalization. The 

article focuses on the use of functionalized-SPMNPs as a nanobiotechnology tool to isolate high quality (both purity 

and yield) plasma membranes and endosomes or lysosomes. Such nanobiotechnology tool can be applied in gen-

erating subcellular compartment inventories. As a future perspective, this strategy could be applied in areas such as 

immunology, cancer and stem cell research.
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1  Background
Nanotechnology is defined as molecular engineering of 

functional systems for generating high performance tech-

nologies for both research and industry [1, 2]. Specifi-

cally, use of molecular engineering of biological systems 

resulted in emergence of Nanobiotechnology [3]. Some 

of the nanobiotechnology applications include (a) nanos-

copy for bio imaging [4–7]; (b) nanoparticle for subcel-

lular fractionation [8]; (c) nanoparticle for drug delivery, 

vaccine [9]; (d) nanoparticle for cancer therapy by hyper-

thermia [10]; (e) nanomaterials for tissue engineering and 

artificial/synthetic organ generation [11]; (f ) nanotech-

nology for cell tracking [12, 13]; and (g) nanotechnology 

for large-scale data generation [14]. Particularly, use of 

nanotechnology in generating subcellular omics is less 

studied and understood. �is article focuses on nanobio-

technology strategy for organelle isolation and also deci-

phers innovative approaches for omics analysis. Using 

physical properties, its nanoparticle-cell interaction and 

endocytosis machinery, we propose the nanobiotech-

nology strategy that has robust advantages in isolating 

subcellular compartments [15]. Due to such advantages, 

it is possible to isolate subcellular compartments in 

native and physiological conditions. In this article, we 

also case study the impact of nano-biotechnology tool for 

subcellular omics analysis.

2  Subcellular omics
To generate subcellular omics datasets, it is essential to 

understand the locality and functional activity of pro-

teins in given eukaryotic cell [16]. It is well-known that 

proteins are spatially distributed and localized function 

[17]. It has been reported that majority of the mature 

glycosylated protein (for example: Nicastrin) are present 

in post-Golgi compartments like plasma membrane, 

endosomes or lysosome and immature glycosylated pro-

tein are present in the pre-Golgi compartments [18]. 

Similarly, cholesterol is predominately present in the cell 

membrane at the level of 90  % of the total cholesterol 

level in cell extract [19]. While performing proteom-

ics or lipidomics in total cell extract or single cell omics, 

there is a high possibility of reduced spatial and localized 

distribution of proteins and lipids in any given cell. �is 

has led to a major interest for subcellular omics such as 

plasma membrane and endosomal compartments like 

endosomes and lysosomes [20]. �is is due to several 
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scientific findings which confirm that the majority of pro-

tein functional activity and substrate cleavage occurs at 

cell surface and endosomal compartments (Table 1) [21]. 

Similarly by isolating plasma membrane or endosomes, 

it is possible to generate proteomics, glycomics and lipi-

domics for these organelles [22]. By compiling obtained 

omics (proteomics, glycomics, and lipidomics), for dif-

ferent organelles, comprehensive whole cell omics can 

be generated both under native and altered conditions 

[23–26]. �e key factor for generating comprehensive 

omics datasets s is to isolate subcellular compartments 

with high purity and yield. Several types of fractionation 

methodologies have been applied for organelle isolation 

for subcellular omics analysis. In the technology review, 

we elaborate advantages among different subcellular 

compartmental isolation and how nanobiotechnology 

strategy is superior in isolating plasma membrane and 

endosomes as in Tables 2 and 3.

3  Technology review
3.1  Organelle fractionation and subcellular 

compartmental isolation

�e governing factor for organelle fractionation is 

high yield and high purity (Fig.  1). Most commonly 

used methodology is density-gradient centrifugation 

(sucrose-based fractionation). �is method is based on 

principle of differential (density) equilibrium or non-

equilibrium based centrifugation for organelle separa-

tion [27, 28]. Other commonly used fractionation is 

antibody based pulldown assay. �is assay makes use of 

magnetic beads that are tagged with antibodies selec-

tively targeting the subcellular compartments [29]. An 

example is the use of TOM22 antibodies conjugated 

with magnetic beads for mitochondria isolation [30, 31]. 

�is principle is also used for post-nanoparticle labeling 

based fractionation. Here, organelle-specific antibody 

conjugated nanoparticles are used to target fractionated 

Table 1 List of subcellular organelles and their functions

Subcellular Organelles Isolation techniques

Cell wall Gradient centrifugation

Chloroplast Gradient centrifugation antibody based pull-down assay, SPMNPS: Tag-anti-tag; Antibody conjugated; Biotin-streptavidin

Cilia and flagella Gradient centrifugation Antibody based pull-down assay; Tag-anti-tag; Antibody conjugated; Biotin-streptavidin

Cytoplasm Gradient centrifugation antibody based pull-down assay; Tag-anti-tagged; Antibody conjugated; Biotin-streptavidin tagged 
SPMNPs

Cytoskeleton Gradient centrifugation antibody based pull-down assay; Tag-anti-tagged; Antibody conjugated; Biotin-streptavidin SPM-
NPs

Early endosomes Gradient centrifugation SPMNP isolation assay antibody based pull-down assay; Biotin-streptavidin tagged SPMNPs; 
antibody-SPMNPs; Negatively charged lipid-SPMNPs

Endoplasmic reticulum 
(ER)—rough or smooth

Gradient centrifugation antibody based pull-down assay; Tag-anti-tag; Antibody conjugated; Biotin-streptavidin tagged 
SPMNPs

Golgi apparatus Gradient centrifugation antibody based pull-down assay; Tag-anti-tagged; Antibody conjugated; Biotin-streptavidin tagged 
SPMNPs

Late endosomes Gradient centrifugation SPMNP isolation assay; Biotin-streptavidin; antibody-SPMNPs; Negatively charged SPMNPs

Multi-vesicular bodies Gradient centrifugation SPMNP isolation assay; antibody based pull-down assay; Biotin-streptavidin; antibody-SPMNPs

Nucleus Gradient centrifugation antibody based pull-down assay; Tag-anti-tagged; Antibody conjugated; Biotin-streptavidin

Peroxisomes Gradient centrifugation antibody based pull-down assay; Tag-anti-tagged; Antibody conjugated; Biotin-streptavidin tagged 
SPMNPs

Phagosomes Gradient centrifugation SPMNP isolation assay Antibody based pull-down assay; Biotin-streptavidin; antibody SPMNPs

Lysosomes Gradient centrifugation SPMNP isolation assay Antibody based pull-down assay; Biotin-streptavidin tagged SPMNPs; 
antibody

Plasma Membrane or Cell 
Membrane

Gradient centrifugation; Cationic silica beads; SPMNP isolation; antibody conjugated; Biotin-Streptavidin; lectin–SPMNPs

Ribosomes Gradient centrifugation; pull -down assay; anti-S10/anti–EF-Tu-SPMNPs; Biotin-streptavidin; antibody- SPMNPs

Lipid rafts Gradient centrifugation antibody based pull-down assay; Tag-antitagged-SPMNPs; Biotin-streptavidin; protein conjugated 
magnetic isolation

Secretory granules or 
vesicles

Gradient centrifugation antibody based pull-down assay; Tag-antitagged SPMNPs; Biotin-streptavidin-SPMNPs

Synaptosomes Gradient centrifugation antibody based pull-down assay; Tag-anti-tag SPMNPs; Antibody conjugated; Biotin-streptavidin 
SPMNPs

Vacuoles Gradient centrifugation; antibody based pull-down assay; antibody conjugated magnetic nanoparticles

Mitochondria Gradient centrifugation; pull-down assay; antibody conjugated SPMNPs; Tag-anti-tagged; Antibody conjugated; Biotin-
streptavidin; Anti-TOM22 antibody tagged SPMNPs
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subcellular compartment. �is technique is largely used 

in isolating compartments that are larger in size and 

less dynamic or more static such as ER, Golgi, nucleus, 

mitochondria and lysosomes [32]. However, the applica-

bility of this technique is limited as it cannot be used to 

isolate intact cell membrane. Many methods have used 

Table 2 Comparison of existing technologies for plasma membrane isolation

Isolation methodologies Advantages Disadvantages

Density Gradient Centrifugation Conventional method that can be used to isolate plasma mem-
brane along with other subcellular compartments

 Effective method to isolate lysosomes from tissue or in vivo cell 
fractions

Simple procedure that can be performed using an ultracentri-
fuge

 Low yield and low purity
 Cannot isolate intact membrane layers
Not efficient for isolating cell membrane lipids 

and for performing functional studies

Cationic silica based isolation Classical method used to isolate cell membrane layers with high 
purity

Generic method used to isolate cell membrane from tissue, 
in vitro and in vivo

Formation of matrix by the use of polylysine crosslinker helps in 
the isolation of membrane layers without any breakage

 Low yield
 Isolates only available membrane layer i:e only 

50 % of cell surface of adherent cells grown on 
a petri dish

 Not robust to perform lipidomics, glycomics and 
native condition experiments

Cell Surface biotinylation based 
pull-down assay

Generic method that targets cell surface lysine residue
Can be used in combination with magnetic or non-magnetic 

beads
Can be used in combination to isolate endosomal compart-

ments

Can isolate only available membrane layer i:e only 
50 % of cell surface of adherent cells growing 
on a petri dish

Technology has not been established to isolate 
cell membrane from cell suspension

Requires detergent in fractionations

Antibody conjugated magnetic 
nanoparticle based pulldown 
assay

Can be used to pull down proteins after post-fractionation
Can also be used to target selective micro-domains
 Can be used in combination with biotin-streptavidin assay

 Isolates only available membrane layer (only 50 % 
surface of adherent cells on a petri dish

Technology has not been established to isolate 
cell membrane from cell suspension

requires detergent in fractionations

SPMNPs based plasma mem-
brane isolation;

A novel strategy that is generic for any kind of cell systems
 Method does not involve use of detergent or antibody that 

affects the nativity of membranes
 Method can also use targeted plasma membrane micro-domain 

by using ligand-tagging
Can be used to isolate protein under native conditions which 

can hence be used for functional studies
Can isolate cell membrane lipids
Can perform, first of its kind, cell membrane glycosylation
High yield and high purity
 Can be used in combination with endosomal isolations

 Technology has not be established for tissue cell 
membrane isolation and in vivo experiments

Isolates only available membrane layer (only 50 % 
surface of adherent cells on a petri dish

Technology has not been established to isolate 
cell membrane from cell suspension. Possibility 
exists to use this technology for cells in suspen-
sion culture

Table 3 Comparison of existing technologies for endosomes and lysosome isolation

Isolation meth-
odologies

Advantages Disadvantages

Density gradient 
centrifugation;

Conventional method that can be used to isolate endosomes and lys-
osomes along other subcellular compartments

 Effective method to isolate lysosomes from tissue or in vivo cell fractions
 Simple procedure that can be performed using an ultracentrifuge

 Low yield
Difficulties in separating endosomes from lysosome 

vesicles
Difficulties in separating different endosomal and its 

associated vesicles

Antibody based 
pull-down assay

Can be used to pull down proteins after post-fractionation
Can also be used to target selective endocytic uptakes
Can be used in combination with biotin-streptavidin assay

 Limited applicability for certain endocytosis uptake
 Limited yield and low purity
 Cannot isolate vesicles under native conditions

SPMNPs based 
isolation;

A novel strategy that is generic for any kind of cell systems with reason-
able purity and yield

 Method does not involve the use of detergent or antibody that affects 
native conditions

Method can also use targeted endosomal uptake pathway by using 
ligand tagged nanoparticle

 Can be used to isolate protein under native conditions and all endoso-
mal uptake

Technology has not be established for isolation of 
vesicles form tissue cells and in vivo experiments

 Technology has not been established to isolate vesi-
cles from cell suspension. Possibility exists to use this 
technology for cells in suspension culture
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charge based affinity to isolate eukaryotic cell mem-

brane [33]. �e cell membrane is negatively charged due 

to presence of anionic components such as proteins, 

lipids and carbohydrates. Hence, conventional method 

such as cationic latex or silica beads is used for isolat-

ing cell membrane. By using poly-lysine for crosslinking 

silica beads, cell membranes are isolated as cross-linked 

membrane layers which are disadvantage for performing 

functional studies [34]. An alternative method that has 

been used is biotin-streptavidin affinity fractionation. 

�e main principle behind biotin-streptavidin affin-

ity assay is based on selective binding of available lysine 

residues on cell surface protein by biotin molecule which 

is further captured by streptavidin [35]. �ese streptavi-

din tagged micro beads or magnetic beads are used to 

pull down cell membrane protein or protein complexes 

from cell fractionation. By using pulse-chase method 

(elaborated in the later part of the paper), biotin-strepta-

vidin affinity can be used to isolate early, intermediate 

and late endosomal compartments [36]. Recently, nano-

particle based fractionation has emerged as the strategy 

to isolate dynamic subcellular compartments like cell 

membrane, endosomes and lysosome by using endocy-

tosis machinery.

Fig. 1 Subcellular compartments and specific purification methodology
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�ere are different categories of endocytosis (Fig.  2). 

One of the main subsets is phagocytosis that mainly 

involves cellular uptake of beads of size 1–100 microns 

using phagosome [37, 38]. Another strategy is use of 

pinocytosis which is further classified into (1) micro-

pinocytosis (<1 micron) [39]; (2) clathrin-mediated 

pinocytosis: size ~120  nm by clathrin mediated recep-

tor-ligand induced cellular uptake [40]; (3) caveolin-

mediated pinocytosis: is cellular uptake that uses 

caveolin and lipid rafts in endosomal assembly with 

size of 20–60  nm [41]; and (4) caveolin and clathrin 

independent endocytosis (<90  nm) that is independ-

ent of clathrin and caveolin but includes ARF6 [42]. In 

macropinocytosis, there is non-specific cellular uptake, 

which is mainly utilized by several nanoparticles–cell 

interactions [43]. In clathrin mediated endocytosis, 

ligand coupled nanoparticle endocytosis through recep-

tor mediated uptake mechanism [44, 45]. While for 

caveolin mediated endocytosis, targeting caveolin1/2 or 

lipid raft associated protein flotilin-1 with the specific 

antibody tagged nanoparticle is the commonly used 

approach [46]. However, when clathrin mediated endo-

cytosis was blocked using sucrose, nanoparticle uptake 

was not limited, and thereby showing that there is size 

dependent cellular uptake of nanoparticle via caveo-

lin mediated endocytosis [47]. Nevertheless it is clear 

that surface coating and size of the nanoparticle are 

governing factors for selective endocytosis and cellular 

uptake.

4  Nanoparticle synthesis
�e surface functionalization, size, physical properties 

and endocytosis machinery of nanoparticle are key fac-

tors for nanobiotechnology strategy. �e physical proper-

ties are dependent on the type of core–shell material [48, 

49]. It is possible to govern the magnetic properties of the 

nanoparticle by using iron oxide or cobalt-iron oxide as a 

core. Here superparamagnetic properties can be achieved 

when nanomaterial is of size <30 nm [50]. Shell material 

(surface coating) which acts as an interface between core 

and biological environment governs the use of nanopar-

ticle for different biological applications. Nanoparticles 

that are synthesized in organic phase tend to be water 

insoluble. �ey require an additional step of exchange 

with water soluble ligands for biological applications. 

Commonly used methods for synthesizing nanoparticle 

are (a) chemical precipitation method and (b) thermal 

decomposition method [51]. �ermal decomposition 

method is preferred for its high monodispersity (in terms 

of its size) and high quality yield. However, it requires 

additional step for water-soluble ligand exchange or addi-

tion [52, 53] (Fig. 3). Further, functionalized nanoparticle 

can be used for ligand coupling and bioconjugation using 

the free end-groups like NH2, COOH and -SH.

Fig. 2 Endocytosis pathway
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5  Bioconjugation strategy for subcellular 
interaction

Surface functionalization of nanoparticle determines the 

kinetics behind nanoparticle-cellular uptake. Depending 

on the surface coating, nanoparticle can be  ±  charged 

which is determined by the presence of NH2 and COOH 

respectively. Addition of PEG group in supports bio-

compatibility [54] and the nanoparticle can be further 

functionalized by coupling with the endgroup (Fig.  4). 

By tagging fluorescent ligand, it is possible to perform 

live cell imaging and nanoparticle tracking for studying 

the receptor-ligand and nanoparticle-cell interaction. 

Depending on the target, an appropriate ligand can be 

selected and conjugated to the nanoparticle [55]. Ligand 

size and shape determines the surface area to volume 

ratio which is the governing factor for nanoparticle func-

tionalization [56]. Another key factor is ligand selection. 

Ligand selection depends—(a) receptor that can be well 

internalized (for cellular trafficking); b) 1:1 ratio of ligand: 

nanoparticle to avoid nanoparticle crosslinking. Here we 

illustrate three strategies for bioconjugation of SPMNPs 

that are functionalized with lipids, DMSA, TMAOH 

(Fig.  5). First approach is to use monovalent avidin and 

target biotinylated protein. Second approach proposes 

the conjugation of FIAsH-EDT2 with SPMNPs. FIAsH-

EDT2 coupled SPMNPs are used to couple tetra-cysteine 

containing motif proteins [57]. �ird approach is to con-

jugate SPMNPs with DOGS-NTA-Ni (II) in order to 

anchor histidine-tagged protein. However, major limita-

tion for bioconjugation is nanoparticle aggregation due 

to coupling reagent like glutaraldehyde. Although glu-

taraldehyde works very well for protein conjugation and 

crosslinking, there are tendency for reagent to result in 

multiple layer crosslinking among nanoparticles due to 

non-specific interaction and competitive affinity. Such 

multilayer crosslinking results in increase of size and 

change in physical properties, thereby affecting organelle 

isolation. Hence some key guidelines to be considered 

during bioconjugation of nanoparticles are (1) retain-

ing size and stability of nanoparticle; (2) performing 

sequential bioconjugation; (3) implementing biocompat-

ible surface functionalization; and (4) finally, a strategy 

that monitors protein association/disassociation with the 

nanoparticle. 

6  Pulse-chase methodology
Pulse-chase methodology is a commonly used approach 

to study the mechanism of endocytosis. Generally, pulse-

chase strategy for omics analysis includes five stages or 

phases wherein Phase-I: includes generation of water-

soluble nanoparticle by existing (thermal decomposi-

tion or chemical precipitation) synthesis and quality 

control using characterization; Phase II: includes selec-

tive bioconjugation of nanoparticle for a selective path-

way-specific cellular uptake. For such pathway-specific 

cellular uptake, protein/ligand/synthetic peptide is used 

for receptor mediated endocytosis and charge depend-

ent shell uptake is used for receptor independent endo-

cytosis. Phase III: Pulse-Chase methodology is used to 

optimize pulse and chase period to selectively localize 

nanoparticle in vesicle. Phase IV: Magnetic separation 

strategy is used for subcellular compartmental enrich-

ment along with ultracentrifugation. Phase V: Endo-

somal proteome using Mass Spectrometry analysis. 

Fig. 3 Manufacturing of water-soluble superparamagnetic nanopar-

ticles

Fig. 4 Nanoparticle-cell interaction
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�is pulse-chase strategy was commonly used in radio-

active labeling in the cell and this technique has now 

been extended to nanoparticle based subcellular com-

partmental isolation (Fig.  6). Briefly, pulse-chase strat-

egy is used to govern receptor-mediated endocytosis 

of nanoparticle-ligand complex and has recently been 

extended to other endocytosis mechanisms [58]. Dur-

ing pulse period, nanoparticle is incubated with cells at 

37  °C or at 4  °C for a certain period of time (0–1 h.) in 

the presence of medium. Depending on the application, 

nanoparticle with appropriate concentration is incu-

bated in PBS or culture medium at 4  °C (for non-chase 

conditions) and 37  °C (for chase conditions). �is time 

frame allows nanoparticle to interact with the cell sur-

face and its protein. Depending on the dynamics and 

kinetics of nanoparticle-ligand interaction, pulse incuba-

tion involves a time period in the range of 10 min to 1 h. 

For example, if it is for cell membrane or plasma mem-

brane isolation, the nanoparticle is incubated at 4 °C for 

15–20 min in PBS with the adherent cells. Depending on 

whether the cells are adherent or in suspension, or it is 

receptor mediated or charge mediated, there is variation 

in the pulse time period required for cellular uptake [59]. 

After pulse period is performed, the chase is incubated at 

appropriate time period depending on the compartmen-

tal isolation. Chase period represents the time where the 

nanoparticle containing medium is replaced with fresh 

medium without nanoparticle. �is supports stream-

lining nanoparticle internalization in the cell and accu-

mulation of nanoparticle into a certain compartment 

of interest depending on the timeframe. For endosomal 

isolation, chase period is generally for a timeframe of 

10–15 min. For late endosomes, chase period is generally 

for 15–20 min and for lysosomes it is more than 30 min. 

However since endocytosis is dynamic in mechanism, it 

is relatively difficult to isolate highly pure early and late 

endosomes (Fig. 7). At the same time it is possible to iso-

late highly pure lysosome by performing a chase period 

of more than 3 h and up to 24 h. �is is mainly because 

lysosome is the endpoint for most of the endocytosis 

[60]. For targeting, phagosome or autophagosome, chase 

period is adjusted accordingly for 30–60  min before 

phagosome fuses to lysosome. Nanoparticle can be con-

centrated in lysosome after 60  min of chase period. An 

advantage of using chase period is that it provides use-

ful information for nanoparticle tracking. For this reason, 

fluorescence tagged nanoparticle is used for pulse–chase 

methodology and live-cell imaging [61]. By incubating 

Fig. 5 Bioconjugation strategy for nanoparticle
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with endocytic inhibitors for endosomal or lysosomal 

fusion, it is possible to limit the nanoparticle-cellular 

internalization and subcellular trafficking. For example, 

by limiting the endosome-lysosomal fusion using Latrun-

culin-A, it is possible to concentrate the nanoparticle in 

early or late endosomes [62]. It is also reported that the 

Fig. 6 Step by step approach toward subcellular compartmental proteomics

Fig. 7 Pulse-chase methodology
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nanoparticle coupled ligand does not mimic the ligand 

cellular uptake and subcellular compartment localization. 

Few examples in the later part of this article elaborate 

on the deviation in cellular uptake. �ese examples are 

confirmed by using pulse-chase methodology, magnetic 

organelle isolation and live cell imaging using fluores-

cence tag [63]. For optimal use of pulse-chase method, it 

is important to establish a methodology for specific sub-

cellular compartments. Here, we describe two interest-

ing nanoparticle based methodologies to isolate plasma 

membrane and endosomal compartments using affinity 

purification.

7  Nanoparticle based novel method for plasma 
membrane a�nity puri�cation

Figure  8 represents the step-by-step strategy to isolate 

plasma membrane using nanoparticle based affinity puri-

fication. Briefly, SPMNPs coated with positively charged 

NH2 functionalized PEGylated lipids are incubated with 

adherent cells grown in a 10 cm dish or a 75 cm2 flasks. 

�e time period of incubation is generally 15 to 20 min 

at 4 °C in PBS with horizontal shaking such that it doesn’t 

detach the cells. (Note: An additional step of incubating 

adherent cells at 4 °C for 30 min before nanoparticle-cell 

interaction is recommended). After incubation, the nan-

oparticle containing supernatant is removed and washed 

twice with fresh ice-cold PBS. Cells are removed from 

the dish/flask by scrapping the cells. Detachment of cells 

using trypsin is not recommended as it might affect cell 

surface proteins which this method aims to isolate. Cell 

suspension is further homogenized using a homogenizing 

apparatus and buffers that maintain physiological condi-

tions. Further, nuclear fraction and unbroken cells are 

separated from post nuclear fraction by centrifuging at 

800 rpm for 10 min at 4 °C. �e post nuclear fraction is 

passed through the magnetic field. Here, the unbound 

fraction is eluted while the magnetic fraction is further 

washed with 1 M potassium chloride and 0.1 M sodium 

carbonate solution in the presence of magnetic field. An 

additional washing step with homogenizing buffer can be 

included to further clear the unbound material. 1 M KCl 

and 0.1 M Na2CO3 solution are used to remove cytoskel-

eton-associated compartments from the cell surface pro-

teins. Further, the magnetic field is removed and bound 

fraction is eluted from the column. Finally the bound 

fraction is enriched by pelleting at 50,000  rpm for 1  h. 

�e pellet is resuspended in an appropriate amount of 

PBS for further analysis like mass spectrometry.

8  Nanoparticle based novel method 
for endosomes and lysosomal a�nity 
puri�cation

Figure 9 represents another step-by-step strategy to iso-

late endosomes and lysosomes using nanoparticle based 

affinity purification. Briefly, DMSA or TMAOH or Silane 

coated nanoparticles are incubated with adherent cells 

that are grown in 10  cm dishes. �e pulse time period 

is generally 15 to 20 min at 37 °C in medium with hori-

zontal shaking such that it doesn’t detach the cells. After 

incubation, the SPMNPs containing medium is removed, 

washed twice with fresh medium and incubated for the 

chase period (0–24 h) with fresh medium. Cells are then 

Fig. 8 Strategy towards Plasma Membrane isolation
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removed from the dish/flask by scraping. Cell suspen-

sion is further homogenized as explained in the previous 

section. Further, nuclear fraction and unbroken cells are 

pelleted at 800 rpm for 10 min at 4 °C. �e post nuclear 

fraction is passed on the column in presence of magnetic 

field. Here, unbound fraction is eluted while the magnetic 

fraction is further washed with the homogenizing buffer 

to further clear unbound material. �is is followed by 

the removal of magnetic field and elution of the bound 

fraction from the column. Finally the bound fraction is 

enriched by pelleting at 50,000 rpm for 1 h. �e pellet is 

resuspended in PBS for further analysis. Based on chase, 

the subcellular localization of nanoparticles can be deter-

mined as illustrated Early (~10 min), Late (~20 min) and 

Lysosomes (>30 min) [57, 58, 64–68].

Although nanoparticle-protein complex can be used 

for endosomal trafficking and for proteomics, there 

are illustrations, which show that nanoparticle-pro-

tein complexes are trafficked differently compared 

to the target protein complex. For example, traffick-

ing of ricin conjugated nanoparticle is reported to be 

unlike the ricin ligand where trafficking occurs from 

early endosomes (EE), trans-Golgi network (TGN) and 

finally to endoplasmic reticulum (ER). It is well known 

that transferrin is recycled to the cell surface via recy-

cling endosomal compartments such as recycling endo-

some via early endosomes and multi-vesicular bodies. 

However, transferrin conjugated nanoparticle and Shiga 

toxin (ricin) conjugated nanoparticle are shown to traf-

fic from early endosomes to late endosomes and finally 

accumulated at lysosomes. It is also reported the Shiga 

toxin conjugated nanoparticle tend to accumulate at early 

endosomes while Shiga toxin traffic like ricin (from EE to 

TGN and finally to ER).

9  Conclusion
Tables  2 and 3 list the commonly used techniques for 

subcellular isolation of plasma membrane and lys-

osomes with high purity and yield. Both tables show 

that nanoparticle based methods hold many advantages 

as compared to existing methods. Using the isolation 

technology, several omics datasets for subcellular com-

partments can be generated for any given cell. �ere is 

an interesting aspect in the use of nanoparticle based 

method that is generic in nature. Hence, the method can 

be applied to wild-type and diseased cell-type (for exam-

ple cancer cell) for plasma membrane and endosomal 

compartmental isolation. By using the nanoparticle based 

subcellular compartmental isolation; one could poten-

tially generate a complete and comprehensive plasma 

membrane or endosome or lysosome proteomics, gly-

comics and lipidomics for any cell type. By the generated 

subcellular omics, nanobiotechnology can serve as a use-

ful tool to build omics datasets for cancer biology using 

Fig. 9 Strategy towards endosomal isolation
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the bottom-up pyramid approach. Using the bottom-up 

pyramid approach in omics analysis, subcellular omics 

datasets (including genomics, proteomics, lipidomics and 

glycomics) can be compiled together and compared with 

the whole cell omics analysis. �is approach can also be 

used to generate several omics datasets in cancer biology 

that can enable the researchers to revisit the subcellular 

omics in order to understand the biological significance 

and functional relevance. For all such omics analysis stud-

ies, it is necessary to have an efficient, robust and high 

precision technology for subcellular compartmental iso-

lation. �e technology also needs optimization and fine 

tuning depending on its applicability with host cell sys-

tem. Using different nanobiotechnology tools for subcel-

lular compartmental isolation, several high-throughput 

functional omics dataset like fluxomics, metabolomics, 

interactomics and localizomics can be generated. Using 

all these datasets, comprehensive Phenome and subcellu-

lar omics are generated that can by analyzed using nano-

technology for data storage studies. Further dataset thus 

gets larger for different diseases such as cancer, diabetes, 

infectious diseases, ageing related diseases, and neurode-

generative diseases. �ese dataset and nanotechnology 

based analytics can be used in drug development, pre-

clinical studies, patent analytics, and other applications. 

As a future perspective, the use of nanoparticle as nano-

biotechnology tool is all set to be a game changer in the 

generation of Datasets for systems biology.
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