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Abstract—

This paper describes a first attempt to a brain-computer interface
(BCI), created in a research lab and running on expensive
equipment, to consumer grade equipment, allowing one to reach
a much broader audience and raise public awareness of this new
technology. With the BCI, the user can perform a complicated
task through mind control only: playing a tactical video-game.
Reliable control is accomplished by adapting a Steady-State
Visual Evoked Potential (SSVEP) classifier to be robust enough
to cope with the signal quality of the consumer grade electroen-
cephalography (EEG) device used, i.e. the Emotiv EPOC. The
difference in performance of the game running on research grade
EEG equipment versus the Emotiv EPOC is examined. The game
was tested by a broad audience during a public event and was
well received.

- Index Terms—brain-computer interfacing, electroencephalog-
raphy, steady-state visual evoked potentials, Emotiv EPOC,
games.

I. INTRODUCTION

Brain computer interfacing (BCI) has received widespread

attention in recent years since it enables the user to con-

trol his/her environment from his/her brain activity directly,

bypassing the need for speech, gestures, or any other form

of muscular activity. BCIs are currently mostly considered

for augmenting or re-establishing communication and motor

control capabilities of patients suffering from severe brain or

muscular disorders [1]. In addition, they open up alternative

means of human-machine interaction that are also attractive

for healthy users.

Currently, the main application area for BCIs for healthy

users seems to be games. The novelty of this technology

captures the imagination of the players and its limitations can

be turned into a game challenge that a successful player has

to overcome [2]. The industry has picked up on the trend and

several companies now supply cheap electroencephalography

(EEG) products. Systems that achieved a lot of media attention

are those based on the NeuroSky1 device, for instance the

‘Force trainer’2. It allows the player to raise and lower a ball

by linking the strength of the alpha rhythm produced by the

players to the rotational speed of a fan. Mind Flex,3 produced

1http://www.neurosky.com
2http://company.neurosky.com/products/force-trainer
3http://www.mindflexgames.com

by Mattel Inc., which is also based on the NeuroSky device,

takes this concept a step further and adds a turning knob

with which the player can control the position of the fan,

allowing for 2-dimensional control of the ball. The goal is to

guide the ball through an obstacle course. These commercial

systems rely on measuring the user’s alpha activity, as was

first demonstrated in a game by Hjelm and Browall [3] called

Brainball, where two players sit across a table with a ball

in the middle. The game is won when the ball reaches the

opponent, which is accomplished by relaxing. The ball would

roll towards the one with the lowest alpha power.

Many BCI Games are developed by research groups [4],

covering a wide range of paradigms and game play styles,

that are potentially much more exiting than current commer-

cial offerings. These games rely on techniques such as the

detection and classification of the P300 [5], event related

(de)synchronization (ERD/ERS) [6] and steady-state visual

evoked potentials (SSVEP) [7]. These techniques offer precise

control, allowing the user to issue explicit commands such

as turn left and jump. During game play, it is immedi-

ately clear the system is at fault when it misinterprets an

explicit command, as opposed to using measures of relax-

ation/concentration, where the player can be blamed for not

being relaxed/concentrated enough. However, these games are

mostly proofs of concept that rely on expensive research

equipment that require the help of a second person to mount

on the user and that are therefore cumbersome to demonstrate

outside the lab.

In this paper, we try to bridge the gap between the com-

mercial offerings and games developed by research groups, by

creating a BCI that allows the user to operate a complicated,

tactical game by issuing explicit commands, while running

on cheap, consumer grade hardware. The game will rely on

the detection and classification of the users SSVEP response,

which means the user will control the game by focussing

his/her eyes on different parts of the screen. The game is meant

to be enjoyed by a large audience, taking into account the

limitations of the technology, the cost of hard- and software,

the ease of use, and the overall user experience. Foremost,

the user must feel in control of the game. We formulated the

following requirements for the game:

1) The target audience will be healthy users of all ages.



2) The user will be able to control the game entirely with

his/her brain activity. No other input methods should be

required during game play.

3) The system will run robustly on consumer grade elec-

troencephalography (EEG) hardware.

4) The user can monitor the output of the classifier and

modify its parameters in real time.

The game was evaluated in both a lab setting and during

a public event. In the lab setting, the difference in SSVEP

classification performance on the signal of a research grade

EEG system versus the Emotiv EPOC was examined. During

the public event, only the EPOC was used and the game itself

was evaluated.

II. METHODS

The game that was developed is a variant of the ‘tower

defense’ genre. The goal is to protect a tower against waves

of enemies, who shall appear at one or more fixed points in

the game world and walk towards the tower. When an enemy

reaches the tower, the player loses the game. To prevent that,

the user can build a limited amount of defensive structures.

The user needs to decide on the optimal location of these

defenses, based on information about the number of enemies

that will appear at which positions. Because the game should

be suitable for all ages (requirement 1), no violence is being

shown: the enemies are giant red balls, which disappear upon

being hit. A compilation from multiple screenshots is shown

in figure 1, explaining the various elements of the game.

To control the game, the user needs some method to make a

selection on the screen. Requirement 2 states that this should

be possible by analyzing the user’s brain activity alone. At the

beginning of the level, the user makes a selection from several

predefined locations to build defensive structures. When the

user is satisfied with the layout, he/she can select the ‘done’

button, which will unleash the enemies. From that point on, the

user loses control until either all enemies have been defeated,

or an enemy reaches the tower and the user loses the game.

An undo option is also available, which will undo the last

build command, enabling the user to correct mistakes made

by either himself or the system.

Three levels were designed. The first level is used while

explaining the game mechanics to the user and is simply

a straight line with the tower at one end and the enemies

appearing at the other. The user cannot make strategical

mistakes in this level. The other two levels require the user to

think about where to place the defensives, making them harder

and more interesting at the same time.

A. Hardware and software

The three EEG systems available for consumers on the

market today that we are aware of, are the MindSet and

MindWave, produced by NeuroSky,4 and the EPOC, produced

by Emotiv.5 As the SSVEP is generated in the visual cortex,

4http://www.neurosky.com
5http://www.emotiv.com

we chose the EPOC, as it provides 14 channels, versus the

one channel offered by both the MindSet and the MindWave,

located on the forehead. The EPOC uses electrodes, dampened

with a salt water solution, which in our experience can be

set up in roughly 3 minutes by the user himself. This is a

clear advantage over systems meant for research, which use

gel electrodes and require a second person to set up, taking

about 10 minutes.

To determine the difference in signal quality between the

EPOC and a typical research system, we performed all exper-

iments with the EPOC and with active Ag/AgCl electrodes of

the ActiCap system, developed by Brain Products, amplified

by a prototype of an ultra low-power 8-channel wireless

amplifier, developed by imec6.

For the project, only software tools that are available

free of charge were used. The graphics and game logic

are build using Unity3D,7 a professional game engine, used

by many of the smaller game companies. Both free and

a commercial versions are available, with the commercial

version offering more advanced capabilities. In this project,

the free version was used. For signal recording and processing,

Python8 was used in combination with the NumPy and SciPy

packages9, that are used for general numeric computation, and

the GolemML/PsychicML packages10, that specialize in EEG

analysis.

B. SSVEP Stimulation

Most currently available consumer systems for measuring

brain activity use electroencephalography (EEG), where elec-

trodes are placed on the scalp to record electrical activity

caused by the firing of large groups of neurons.

One of the EEG potentials which can be robustly classified

is the Steady State Visual Evoked Potential (SSVEP). When

the user is focused on a visual stimulus that flickers at a

sufficiently high rate (f ≥ 6 Hz.) The individual transient

visual responses overlap, resulting in a steady state signal,

observable mostly in the occipital area [8]. When examining

the Fourier transform of the signal, an increased amplitude

can be seen at the same frequency as the stimulus and it’s

harmonics (2f , 3f , . . . )

Many SSVEP-based systems allow the user to make a

selection by presenting multiple stimuli that flicker at different

frequencies [9]. The system detects the frequency of the

SSVEP response and by that means at which stimulus the

user is looking.

For our game, we decided to use a different method. Only

one stimulus is presented at the bottom-left corner of the

screen, flickering at a fixed frequency. The system detects

whether the user is looking at the stimulus or not. The selection

options are highlighted one by one, for 2 seconds each. When

6Interuniversity Microelectronics Centre (IMEC), http://www.imec.be
7http://www.unity3d.com
8http://www.python.net
9http://www.scipy.org
10http://code.google.com/p/golemml, http://code.google.com/p/psychicml,

developed by the BCI@HMI group at the University of Twente.
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Fig. 1. Compilation from multiple screenshots showing all the elements of the game world and the interface.

the desired option is highlighted, the player looks at the

flickering stimulus. When the system detects the presence of a

SSVEP response, the currently highlighted option is selected.

The stimulus is a square with a width and height of

approximately 10. The color of the stimulus was modulated

by mapping a sine wave with a frequency of 12.8Hz to

grayscale values, where 0 means completely black and 1

means completely white. A small red dot is shown in the

middle of the stimulus, which users indicated helps to keep

the eyes focussed.

To determine the optimal frequency for the stimulus, a

small experiment was performed, where 4 subjects were shown

a SSVEP stimulus, of which the frequency was increased

from 6Hz to 30Hz. Results showed that all subjects had

a good SSVEP response between 10–20Hz. For the game,

the stimulus was fixed at 12.8Hz, as it lies in the range

of reliably detectable frequencies and avoids rounding errors

when recording with one of the devices (the EPOC, see section

II-A), which has a samplerate of 128Hz, resulting in a SSVEP

signal with a period of exactly 10 samples (see section II-C).

To obtain some data to determine optimal threshold for the

SSVEP detection algorithm (section II-C) and to determine its

performance, a short calibration is performed at the beginning

of the game. The user looks at the center of the screen where a

fixation cross is shown for 5 seconds, followed by 10 seconds

of a 12.8Hz SSVEP stimulus (width and height 5), 10 seconds

fixation cross, 10 seconds SSVEP stimulus and, finally, 10

seconds fixation cross.

C. SSVEP detection algorithm

To robustly detect the presence of a SSVEP signal, we

adapted an approach by An Luo and Thomas Sullivan [10]

called Stimulus-Locked Inter-trace Correlation (SLIC), which

determines the presence of a SSVEP signal in the time domain,

as opposed to traditional classifiers that work in the frequency

domain [9]. See figure 2 for a visualization of the process

outlined below.

The recorded EEG signal is bandpass filtered between 2-

45 Hz using a fourth-order Butterworth filter and decomposed

in independent components using the JADE algorithm [11].

The Independent Component (IC) decomposition matrix is

determined using the calibration data and thereafter kept fixed

during game play.

All of the resulting ICs are divided in windows of a user

defined length lw seconds with a fixed overlap of 0.5 seconds.

Each window is split into non-overlapping segments of length

ls = r/f samples, where r is the sample rate of the signal

and f is the frequency of the SSVEP stimulus. For example,

for a signal sampled at r = 128 Hz, a window with length

1.0 seconds and a stimulus frequency f = 12.8 Hz, we have

a segment length of ls = 128/12.8 = 10 samples, which

means splitting the window in ⌊lw/ls⌋ = ⌊128 · 1.0/10⌋ =

12 segments containing the following samples: [1–10], [11–

20], . . . When the start and end positions of the segments do



windowsegment

Fig. 2. Detection of a 12.8 Hz SSVEP signal, recorded by the IMEC device. Left: A one second window, subdivided into 12 segments and a remaining,
incomplete segment which is discarded. The signal shown is not from a single electrode, but is one of the ICs resulting from the ICA step. Center: All
extracted segments from the recording shown in the left panel. The mean is plotted as a thick line. Right: Segments extracted from a window where no
SSVEP stimulus was shown, with the mean plotted as a thick line. Note that the correlation between the trials and the mean is much lower than those shown
in the center plot.

not correspond to an exact number of samples as would for

example be the case when using the IMEC device, which has

a sampling rate of 1000Hz, the start positions are rounded

to the nearest-integer value and the segment length is floored

to the nearest-integer value. A sample rate of 1000 means a

segment length of 78.125, resulting in segments containing the

following samples: [1–78], [79–156], . . .

The splitting operation as described above yields an array

W with a dimensionality of #windows × #ICs × #segments

× #samples, iterated by i, j, k and l respectively. From this

array, matrix R is constructed, which, for each window, and

each IC, contains the likelihood of a SSVEP signal being

present. To determine R, the correlation coefficients between

each segment and the average of all segments is calculated.

The obtained correlation coefficients are themselves averaged

to yield a single value between -1 and 1, which is normalized

to [0–1]. From matrix R, vector r, containing a single value

for each window, is calculated by taking the maximum of each

row of R:

Rij = 0.5 + 0.5 ·mean
k

corr
l

(

Wijkl,mean
m

Wijml

)

, (1)

ri = max
j

Rij . (2)

The final step is to threshold the vector r using two threshold

values th and tl. To determine these, the data collected during

the calibration period were analyzed:

th = min

(

mean s,
mean s+max f

2

)

, (3)

tl = max

(

mean f ,
mean f + th

2

)

. (4)

Where s denotes the values of r during which the SSVEP

stimulus was shown and f denotes the values of r where the

subject was looking at a fixation cross. The thresholded version

of r, denoted r′, then becomes:

r
′

i =















0 if i = 0,
1 if i > 0 and ri > th and r

′

i−1
= 0,

0 if i > 0 and ri < tl and r
′

i−1
= 1,

r
′

i−1
otherwise.

(5)

Where i iterates over each value of r.

III. RESULTS

To determine the performance of the detection algorithm,

it was run on the calibration data. Eight users (aged 23–34,

mean 26.75, std. 4.26, two female and six male) completed the

calibration period with both the imec and the EPOC devices,

before playing the game. The detected SSVEP periods were

compared with the actual periods during which the SSVEP

stimulus was shown (figure 3). For this offline analysis, the

data were split into two parts, with the ICA and calculation of

the threshold values being performed on the first part, and then

applied to the second part, and vice versa. The percentage of

correctly classified windows was used as a metric to compare

the system using gel electrodes (the imec device) and the

consumer grade system using salt water electrodes (the EPOC

from Emotiv). The window size was increased from 0.5s

(containing only 6 periods of the 12.8Hz stimulus) up to 2.5s.

The windows are overlapping, with a window step of 0.5s.

The accuracy of the classifier increases with the window

size, up to a certain point (±1.5s), after which the latency

induced by the windowing operation counters the increase of

classifier precision. From 1.5s onwards, the imec device stops

performing significantly better than the EPOC as determined

by a two-tailed Wilcoxon signed rank test with testing criteria

of w ≤ 4, p ≥ 0.05. For the game, window sizes of 1.0s for

the imec device and 1.5s for the EPOC were chosen as a good

tradeoff between speed and accuracy.

Note that, during the game, each option is highlighted for 2s,

a duration which corresponds to 10–15 windows, depending

on the device used. Only one of them has to be classified as

containing SSVEP in order to make the selection. The shown

accuracy in the figure is therefore only useful to compare
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Fig. 3. Left: detection during calibration period using the EPOC device on a subject with average performance. Shown are the vector r along with the
threshold values th and tl. Below are the detected periods of SSVEP activity along with the periods where the SSVEP stimulus was actually shown. The
detector was trained on the first part and applied to the second part, and vise versa. In this configuration, a window size of 1.5s was used and 85% of the
windows were correctly classified. Right: performance of the detection algorithm for different window sizes during the calibration period (window step was
fixed at 0.5s). Shown is the accuracy (% windows correctly classified), averaged across 8 subjects, which all performed the calibration with both the imec
and EPOC device. The p-values of a Wilcoxon signed rank test between the two devices is plotted at the bottom.

the performance of the two devices, but does not say much

about the actual performance during the game. The in-game

performance is considerably harder to quantify, as the user

compensates for delays, and given that the thresholds can be

tweaked. In this study, 7 users achieved proper control over the

selection process and were able to complete all three levels.

One user did not achieve control with any of the devices.

A. Evaluation during public event

During the I-Brain & Senses event (18–19 March 2011,

Ghent, Belgium), the game was tested in challenging condi-

tions. Our booth stood in a noisy room, surrounded by wireless

equipment. The users would wear the EPOC headset and play

the game for a few minutes, talking to friends and moving

around. In total, 25 users (ages 9–44, mean 22.88, std. 9.42,

13 male, 10 female) played the game with the EPOC device

and filled in questionnaires afterwards.

Out of the 25 users, 9 easily achieved control, 13 found it

challenging but achieved control and 3 users did not achieve

any control at all. Upon being asked whether they found

the game fun, 13 indicated ‘yes’ and 12 indicated ‘not so

much’. In the lab setting, the subjects would take some time

to familiarize themselves with the selection method of looking

at the SSVEP stimulus at exactly the right time. This and the

complex game rules turned out to take too long to explain for

an event during which users can only spend a few minutes

with the game.

False positives in the detection are more frustrating than

false negatives, since a false positive will make an unwanted

selection, requiring use of the undo option, where a false

negative will fail to make a selection, requiring the user to wait

until after all other options are highlighted. A false positive

on the done button is disastrous, as it cannot be undone and

usually causes the user to fail the level. The user has some

control over this by modifying the threshold values, which

decreases the false positive rate at the expense of more false

negatives.

Users quickly learned to compensate for the delay between

looking at the stimulus and the formation of a detectable

SSVEP signal, by anticipating which option will be high-

lighted next. Because they were able to monitor the detection

process, and could instantly see the result of their actions, this

was perceived as an enjoyable part of the game. Several users

indicated that after a while, fixating on a SSVEP stimulus

becomes tiring and will eventually become unpleasant.

IV. CONCLUSIONS

Below, each requirement of the game will be discussed

briefly:

1) The target audience will be healthy users of all ages.

The game was tested on a wide age range (9–44) and

while certainly not everyone enjoyed it, it did not depend

on age. Children could grasp the game rules just as well

as adults.

2) The user will be able to control the game entirely with

his/her brain activity. No other input methods should

be required during game play. The selection scheme

allowed to the users to play the game without any

conventional controls. Users mostly held their hands in

their laps. The exception was the configuration interface,

which uses a traditional GUI, but is not part of the game

play.

3) The system will run robustly on consumer grade

electroencephalography (EEG) hardware. In a lab

setting, all users but one achieved control with both

the imec device, which uses 8 active gel electrodes and



is comparable to other EEG systems researchers use,

and the consumer grade EPOC device, which uses 14

electrodes dampened with a salt water solution. There

exists a large inter-subject variance in the ability to

measure a clear SSVEP response. The ability to control

the game depends more on the user, than the device

that was used. During a public event where the EPOC

device was used, 36% achieved good control, 52% found

it challenging, 12% achieved no control.

4) The user can monitor the output of the classifier

and modify its parameters in real time. The detection

algorithm runs in real time in the background, which

output was visible on the screen at all times. This

allowed the users to judge the effect of their actions

and compensate for the latency between looking at

the stimulus and the formation of a detectable SSVEP

signal. When too many false positives were produced,

the assistant tuned the threshold values in real time,

using the buttons at the bottom of the screen (see figure

1). The effect could immediately be seen on the classifier

output.

In summary, we have developed a game that runs success-

fully on consumer grade hardware, allowing us to take it out

of the lab more easily and present it during a public event.

The feedback one receives during these events is different

from the feedback during lab sessions, because the users only

have a few minutes with the system and are easily bored

or distracted. One of the major things we learned is that

currently, the rules of the challenging, tactical game play take

too long to explain for quick demonstrations. Even when the

system could robustly classify the SSVEP response of the

user, some users did not feel in control, because they did

not fully understand the game rules. This could be overcome

by gradually introducing new rules over time, instead of

presenting the complete array of options all at once.

We have shown that SSVEPs can be detected robustly on

the Emotiv EPOC, opening the way to commercial BCI games

controlled by brain activity only. In the future, the other

paradigms mentioned in the introduction, namely detection and

classification of the the P300 potential and ERD/ERS, might

be feasible with the EPOC as well, allowing for even more

possibilities for new types of games.
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