
Designing a Call Center with Impatient
Customers

O. Garnett∗ A. Mandelbaum∗† M. Reiman ‡

March 26, 2002

ABSTRACT. The most common model to support workforce management of telephone call
centers is theM/M/N/B model, in particular its special casesM/M/N (Erlang C, which models
out busy-signals) and M/M/N/N (Erlang B, disallowing waiting). All of these models lack a
central prevalent feature, namely that impatient customers might decide to leave (abandon)
before their service begins.

In this paper we analyze the simplest abandonment model, in which customers’ patience is

exponentially distributed and the system’s waiting capacity is unlimited (M/M/N +M). Such

a model is both rich and analyzable enough to provide information that is practically important

for call center managers. We first outline a method for exact analysis of theM/M/N+M model,

that while numerically tractable is not very insightful. We then proceed with an asymptotic

analysis of the M/M/N + M model, in a regime that is appropriate for large call centers

(many agents, high efficiency, high service level). Guided by the asymptotic behavior, we derive

approximations for performance measures and propose “rules of thumb” for the design of large

call centers. We thus add support to the growing acknowledgment that insights from diffusion

approximations are directly applicable to management practice.
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1 Introduction and Summary

During recent decades there has been explosive growth in the number of companies that

provide services via the telephone, and also in the variety of telephone services provided.

A central challenge in designing and managing any service operation is to achieve a bal-

ance between operational efficiency and service quality, and in telephone services this

challenge is often pushed to the extreme: a large call center serves thousands of calls

per day, each of which demands a response within seconds. Analytical models provide

guidance regarding the sought-after balance.

Figure 1: Schematic Representation of a Telephone Call Center
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Modeling a Call Center. A simplified representation of call center flows is given in

Figure 1. Incoming calls form a single queue to wait for service from one of N statistically

identical agents. K+N telephone trunks are connected to an Automatic Call Distributor

(ACD) that manages the queue, connects customers to available agents, and archives op-

erational data. Customers arriving when all trunks are occupied encounter a busy signal.

Such customers might try again later (“retrial”) or give up (“lost demand”). Customers

who succeed in getting through at a time when all agents are busy (that is, when there

are at least N but fewer than K +N customers within the call center), are placed in the

queue. If waiting customers run out of patience before their service begins, they hang up

(“abandon”). After abandoning, customers might try calling again later.
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In basic models of call centers it is commonly assumed that the only parameters un-

der the system manager’s control are the number of trunks available (K + N) and the

number of agents (N). In most contexts the cost of trunk lines is trivial compared to per-

sonnel costs, so in this paper we focus on staffing decisions (N), assuming that K =∞ for

modelling purposes. Thus busy signals are absent in the models to be considered, though,

we would like to emphasize that in no way do we advocate here the practice of uncon-

ditional “no-busy-signal”. Indeed, a tradeoff between busy signals and abandonment, in

the spirit of [5], is a worthwhile direction for future research.

The classical M/M/N queueing model, also called the Erlang-C model, is obtained by

further assuming Poisson arrivals, exponentially distributed service times and no aban-

donment. It is the model most often used in call center analysis, but it has one glaring

defect: call abandonment is not a negligible or minor aspect of call center operations.

This issue is broadly addressed in §2.

The Square Root Rule for Safety Staffing. In this paper we consider the M/M/N

model with abandonment added. In order to summarize the central findings, it will be

useful to first review an important principle regarding capacity choice in the absence of

abandonment. Let R = λ/µ denote the (average) offered load, where λ is the average

call arrival rate and 1/µ is the mean call duration. (R is measured in units of service

duration per unit of time.) The principle is as follows: for moderate to large values of R

(or equivalently moderate to large λ, since we are assuming that µ is a fixed parameter

of the call center), the appropriate staffing level is

N = R + β
√
R, (1)

where β is a positive constant that depends on the desired level of service. Of course, in

practice the value of N derived from this formula must be rounded to an integer.

The second term on the right side of (1) may be described as the excess capacity needed,

beyond nominal requirements (the first term), in order to achieve the target service level

in the face of stochastic variability. Equation (1) shows that the required excess capacity

grows less than proportionately with the load of calls to be handled. This phenomenon

is aptly described as statistical economies of scale.

The square root formula (1) was derived and discussed by Ward Whitt in [38], but as

he explained there, similar design rules had been advanced by a number of other authors
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during the 1970’s and 1980’s. (We refer the reader to [5] for a historical perspective.)

Whitt’s treatment of this subject was based primarily, but not exclusively, on his pio-

neering work with Shlomo Halfin [19] regarding diffusion approximations for many-server

queues. To be more specific, the foundation of Whitt’s argument is the following: if one

considers a variety of systems with different moderate to large values of R, and if the

number of agents N is chosen according to (1) in each case, then the quality of service

will be approximately the same in each system. The measure of service quality underlying

this statement is the steady-state probability that a caller must wait in the queue before

service. This probability is commonly referred to as the Erlang-C formula, hereafter ab-

breviated as P{W > 0}. Halfin and Whitt [19] provided a formula for computing β in

terms of the target value for P{W > 0}.

The Square Root Rule with Abandonment. Enriching the M/M/N model to in-

clude abandonment, we assume the following: there is associated with each arriving caller

an exponentially distributed random variable that quantifies the individual’s patience; if

a caller’s waiting time in the queue grows to equal his or her patience, then the call is

abandoned. (In the interest of tractability, we assume that customers who abandon do

not retry.) The patience variables characterizing different callers are independent and

identically distributed with mean θ−1, and they are independent of all other model ele-

ments as well; the positive quantity θ will be referred to as either the abandonment rate

or the impatience parameter, depending on context. For this model we use the notation

M/M/N +M , as introduced by Baccelli and Hebuterne [2], and we propose to refer to it

as Erlang-A (A for Abandonment, and for the fact that it interpolates between Erlang-C

and Erlang-B, the latter being M/M/N/N).

It will be shown in this paper that the square root rule (1) remains valid in the model

with abandonment for moderate to large R. Of course, the formula for β is different

in our context: β now depends on both the abandonment rate θ and the target value

for P{W > 0}, and in our setting β may be negative, even when a small probability of

waiting is specified. That is, to achieve a given target value for P{W > 0}, it may be

sufficient to take N smaller than the offered load R.

Furthermore, the appropriate value for β in formula (1) is monotonically decreasing in θ

for fixed P{W > 0}. That is, a higher abandonment rate reduces the amount of capacity

one needs to achieve a given “service level”. This fact may be surprising initially, but the

following makes it obvious: temporarily denoting by Q the steady-state number of callers

3



Table 1: System Performance in Three Staffing Regimes

Regime Staffing Level Performance Characteristics

Rationalized N = R + β
√
R P{W > 0} → α(β) and P{Ab} → 0

Quality-driven N = R + εR, ε > 0 P{W > 0} → 0 and P{Ab} → 0

Efficiency-driven N = R− εR, ε > 0 P{W > 0} → 1 and P{Ab} → ε

in the system, we have P{W > 0} = P{Q ≥ N}, and Q decreases stochastically as one

increases θ. Of course, P{W > 0} is not the only measure one could use to quantify the

notion of “service level” or “service quality”, but the discussion immediately below shows

that performance according to other obvious measures is uniformly excellent when R is

not small and the square root rule is used for staffing.

Three Staffing Regimes. Another fundamental measures of service quality is the

steady-state probability that an arrival will abandon before getting service, hereafter

abbreviated as P{Ab}. Table 1 summarizes the behavior of P{W > 0} and P{Ab} in

three limiting regimes studied later in the paper, each of which represents a different phi-

losophy with regard to the design of a call center. (The limit referred to here is R→∞.)

The “rationalized regime” is that where the square root rule (1) is used to determine sys-

tem capacity: a formula will be derived for the limiting P{W > 0}, denoted by α(β) in

Table 1 (the formula appears below Table 4 in §5), and it will be shown that P{Ab} → 0

as R → ∞, regardless of how β is chosen. The “quality-driven” regime is that where

capacity exceeds nominal requirements by a fixed percentage: it will be shown that both

P{W > 0} and P{Ab} vanish as R → ∞. Finally, in the “efficiency-driven” regime,

capacity falls short of nominal requirements by a fixed percentage: it will be shown that

virtually all arrivals wait in this case, but P{Ab} is simply equal to the capacity shortfall,

expressed as a fraction of the offered load.

Another interesting performance measure is the steady-state average waiting time be-

fore either service begins or the caller abandons, hereafter abbreviated E[W ]. One has

the useful identify θ · E[W ] = P{Ab}, so results cited for P{Ab} in Table 1 translate

immediately into results for E[W ]. Even in the “efficiency-driven” staffing regime where

virtually all callers wait, both P{Ab} and E[W ] remain small if the capacity shortfall is
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small.

Actually, the results proved later about the three staffing regimes are both more refined

and more extensive than the summary provided in Table 1, but this summary communi-

cates the most important findings for purposes of system design. Based on this analysis,

we conclude that the rationalized regime is appropriate in most settings: by choosing the

constant β appropriately, a system manager using the square root rule (1) can achieve a

rational balance between efficiency and service quality, unless one of those two concerns

utterly dominates the other. Determination of β, based on economic considerations via

(asymptotic) optimization, is an important topic under current research. (See [5] for

M/M/N dimensioning analysis).

The results reported in Table 1 support the following important, if unsurprising, conclu-

sion: with impatient customers and a moderate to large call volume, system performance

is relatively robust; any staffing level close to the nominal requirement R produces “good”

service. Callers who refuse to wait indefinitely impose smaller externalities on later ar-

rivals than do patient callers, and generally speaking, they make the system designer’s

job easier.

Contributions to System Modeling. From a mathematical standpoint, the classi-

cal M/M/N model is fundamentally changed when one incorporates the phenomenon

of abandonment. For example, the model with abandonment is stable for all parameter

combinations, whereas the classical model achieves statistical equilibrium if and only if

R < N . Also, as we show by numerical examples, the models with and without abandon-

ment tend to give very different performance estimates in the parameter regime of primary

interest, even when the abandonment rate θ is small. Because the M/M/N model is so

commonly used for quick-and-dirty performance analysis, these effects of adding aban-

donment are thoroughly discussed and illustrated in the paper (see §2).

Denoting by Q(t) the number of callers present in the system at time t, either wait-

ing or being served, we focus on the stochastic process Q = {Q(t), t ≥ 0}. This process is
central in call centers, as will now be explained. First, it is a visible cue for management

and agents and its realtime value often displayed for everyone to see. Moreover, in call

centers that provide toll free services, Q is proportional to the cost of incoming calls.

However, the customer’s point of view is represented by the waiting time - either potential

(i.e. the time he would wait in queue for his service to commence if his patience was
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infinite) or actual. Indeed, in §3 we introduce a method for calculating a wide variety of

performance measures that involve the potential and actual waiting times. An important

outcome of our analysis, as shown in Theorem 3 below, is that potential waiting time and

queue length are deterministically related in heavy traffic.

Given the various assumptions laid out earlier, Q is a birth-and-death process, and so

its steady-state distribution can be written out in an “explicit” formula. However, that

formula is complicated enough to cause difficulties both in numerical evaluation and in

qualitative understanding. After some brief remarks about numerical evaluation of “ex-

act” formulas for steady-state performance measures, most of this paper deals with ap-

proximations in the “heavy traffic” regime, where R is large and R/N is near 1. That

is, we develop approximations for call centers having moderate to large number of agents

and high agent utilization.

Rather than developing approximations only for steady-state quantities, we show that

a properly scaled version of the stochastic process Q is well approximated by a certain

diffusion process in the heavy traffic regime. This analysis parallels the diffusion approxi-

mation developed by Halfin And Whitt for many-server models without abandonment; it

helps to explain the steady-state approximations that spawn the square root formula (1),

and gives a more complete understanding of system behavior in the heavy traffic regime.

Related Research. As attributed in the sequel, some of our results are motivated

or based on previous work by Palm [31, 32, 33], Riordan [35], Baccelli and Hebuterne [2],

and especially Halfin and Whitt [19], and Fleming, Stolyar and Simon [15]. Indeed, both

[19] (which was discussed earlier in this section) and [15] focus on heavy traffic analysis

of M/M/N and M/M/N + M systems respectively. In [15] a diffusion approximation

of the queue process is derived leading to approximations for the fraction of customers

abandoning and other performance measures.

A general overview of models with abandonment appears in Boxma and de Waal [6],

with a review of relevant literature. There have been attempts to analyze more complex

models, of which we mention a few: Ancker and Gafarian [1] analyze queues with aban-

donment, multiple heterogeneous agents and finite capacity, through their steady state

equations and they derive the waiting time density. Sze [37] compares different approx-

imations for an M/PH/N + PH model (PH stands for Phase Type distribution) with

retrials, priorities, and non-stationary arrivals. The results are verified by simulation.
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In Harris, Hoffman and Saunders [20] and Hoffman and Harris [21] the basic model is

M/M/N , with the addition of abandonment, retrials, and a variety of service disciplines.

Assuming a heavily loaded call center, and using some approximations, they arrive at a

system of steady state equations that can be solved numerically. In two recent papers

by Brandt and Brandt [7, 8], M/M/N +G models with state dependent arrivals are an-

alyzed. Applications include systems with an integrated voice-mail-server and cases in

which idle agents initiate outbound calls. Finally, fluid and diffusion approximations, for

time-dependent models with abandonment and retrials, are described in Mandelbaum,

Massey, Reiman and Rider [25] and Mandelbaum, Massey, Reiman, Rider and Stolyar

[26], both of which are based on Mandelbaum, Massey and Reiman [24].

Overall Contribution and Contents. The contributions of the present paper, in

our opinion, are both theoretical and practical, but even more so the bridging of the two.

Specifically:

• Extending the fundamental findings of Halfin and Whitt [19] to accommodate aban-

donment (for example, Theorems 4 and 2, Table 4) and waiting times (Theorem 3).

• Revisiting the classical Erlang [13, 14] and Palm [32] results, and adapting them to

the environment of the modern call center (§3 and §5.1, §5.2).

• Adding support to the growing acknowledgment that insights from diffusion approx-

imations are directly applicable to management practice (§5.2, §5.3, Appendix A).

• Prepare the necessary ground for an economic analysis of abandonment, following

[5].

The rest of the paper is organized as follows: In §2 we provide further motivation as to

the relevance of our results and the M/M/N+M model in general, to the management of

modern call centers. In §3 we outline a method for exact calculations of a wide variety of

performance measures. Then in §4 we focus on heavy traffic limit theorems, which lead to

some implementations discussed in §5. The paper also has three appendixes: Appendix A

displays graphs showing the (excellent) quality of a number of approximations derived in

§5; Appendix B includes computational details of the method outlined in §3; Appendix C

contains proofs of Theorems 1-4 with an extended version of Theorem 2.
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2 The Significance of Abandonment in Practice and

Modelling

A major drawback of models that ignore abandonment is that they either distort or fail to

provide information which is important to call center managers. When trying to manage

a large call center in heavy traffic, one must consider the effect of abandoning customers

on service level. It is not enough to consider waiting times or busy signals, especially since

abandonment statistics constitute the only ACD data that unveils customers’ perception

of service quality.

According to the “Help Desk and Customer Support Practices Report, 1997” [18], more

than 40% of call centers set a target for fraction of abandonment, but in most cases this

target is not achieved. Moreover, the lack of understanding of the abandonment phe-

nomenon and the scarcity of models that acknowledge it, has lead practitioners to ignore

it altogether. (For example, this lead [11] to conclude that abandonment is “not a good

indicator of call center performance”.) This can cause either under- or over-staffing: On

the one hand, if service level is measured only for those customers who reach service,

the result is unjustly optimistic - the immediate effect of an abandonment is less delay

for those further back in line, as well as for future arrivals. This would lead to under-

staffing. On the other hand, using workforce management tools that ignore abandonment

would result in over-staffing as actually fewer agents are needed in order to meet most

abandonment-ignorant service goals.

The significance of abandonment can be seen in simple numerical examples. Figure 2

shows graphs of the fraction of customers queueing according to theM/M/N andM/M/N+

M models. It is clear that these graphs convey a rather different picture of what is hap-

pening in the system they depict, in particular, in the range of 40 to 50 agents.

Table 2 displays some results from an M/M/N model and a corresponding M/M/N +M

model with only 3% abandonment. There is a significant difference in the distributions of

waiting time and queue length - in particular, the average wait and queue length are both

strikingly shorter when abandonment is taken into account. It is important to realize that

such good performance is not achieved if the arrival rate to the M/M/N system decreases

by 3% (for example, the “Average speed of answer” in such case is approximately 9 sec-

onds). We note, however, that the performance of systems in such heavy traffic is very

sensitive to the staffing level - adding 3 or 4 agents to the model without abandonment
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Figure 2: Fraction queueing - M(48)/M(1)/N (a) vs. M(48)/M(1)/N +M(0.5) (b)

35 40 45 50 55 60 65 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no. of agents (N)

fr
ac

tio
n 

qu
eu

ei
ng

a

b

would result in performance similar to that displayed for the model with abandonment

(the horizontal distance between the graphs in Figure 2 shows this “margin”). Nonethe-

less, since personnel costs are the major expense of call centers (prevalent estimates run

at about 60-70% of total cost), even a 6%-8% reduction in personnel is significant.

Both Figure 2 and Table 2 clearly indicate that it is possible, while operating in heavy

traffic, to simultaneously achieve high efficiency (agent utilization near 100%) and good

service (low, but non-negligible abandonment rate and waiting time). This is a direct

outcome of economies of scale, as demonstrated in the next example.

The following is a possible scenario in which our staffing rules can be used (this scenario is

revisited later in §5.3): A given call center with N agents, service rate µ and arrival rate

λ (the offered load R = λ/µ), has “service grade” β (high values of β correspond to high

service levels). There is a forecast of a higher arrival rate λ̂ (R̂ = λ̂/µ) during a forthcom-

ing holiday. The call center’s manager wishes to maintain the present service level at the

call center during the holiday, and hence needs to decide on an increase in the number of

agents N̂ = N̂(β) for the holiday shifts. To this end, the manager must first determine

the operational regime of the call center, representing the desired balance between quality
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Table 2: Comparing results for models with/without abandonment
50 agents, 48 calls per min., 1 min. average service time, 2 min. average patience

(The values below were calculated, and can be verified, using the “iProfiler” tool available
at www.4callcenters.com. This analysis tool is based on parts of the present work - in
particular §3 and Appendix B.)

M/M/N M/M/N +M

Fraction abandoning – 3.1%

Average speed of answer 20.8 sec 3.6 sec

Waiting time’s 90-th percentile 58.1 sec 12.5 sec

Average queue length 17 3

Agents’ utilization 96% 93%

and efficiency. Our rules then provide N̂(β). For example, in the rationalized regime,

our recommended staffing level is N̂(β) = dR̂ + β
√

R̂e, where β = (N − R)/
√
R. More-

over, our analysis actually yields explicit approximations for a wide range of performance

measures (see §5.2). Specifically, the fraction of customers delayed in queue is expected

to remain unchanged, while the fraction of customers abandoning, as well as the average

waiting time, will decrease by a factor of
√

N/N̂ , thus exhibiting economies of scale.

One might question the practical value of the above staffing rules since they are based

on limits for large systems operating in heavy traffic. In this regard, Figures 4-8 in Ap-

pendix A indicate that our results can be safely applied to call centers with as few as

30 or even 20 highly utilized agents. Moreover, analysis of data from moderate to large

call centers shows that indeed both high efficiency and service quality are achieved as the

centers operate in the “rationalized” regime with −0.5 ≤ β ≤ 1. This is demonstrated

by the scatter plots in Figure 3 below. The plots display real data from two call centers,

collected in half-hour intervals during a single working day (discarding the opening and

closing hours in which the traffic is not “heavy”). Both traffic volumes and staffing levels

varied at these call centers throughout the day (left plot: from 350 to 900 calls per hour,

35 to 90 agents; right plot: 1400-3100 calls per hour, 125-250 agents).
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Figure 3: β as a service grade for large call centers - correlation with abandonment

Each dot plotted represents data of a half-hour interval: The x-coordinate was
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√
R, where R and N are averages over the half-

hours, and the y-coordinate is the fraction abandoning during that half-hour.
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3 Calculating Performance Measures

Here we present a useful format for expressing performance measures for an M/M/N+M

model in steady state. Details about the calculations of these expressions appear in Ap-

pendix B, covering also models with finite capacity (M/M/N/B+M). Due to the under-

lying birth-death structure, such calculations are almost (but not quite, due to numerical

issues) trivial. Nevertheless, it is natural and important to present them for practical

completeness, as well as a lead to our approximations.

Our calculation of performance measures is based on the assumption that the system

has reached its steady state. Although the arrival rate to many call centers is time vary-

ing (according to the time of day, day of the week, holidays, seasonal effects, etc.), and

other parameters such as the number of agents on the shift may be subject to change,

it is assumed that throughout short time intervals (e.g an hour) such changes are small

enough to disregard, and are “slow” relative to the speed at which the system reaches its

new (e.g hourly) steady state. This latter assumption can be safely applied to call centers

at which the service rate is significantly higher than the rate of such time variations (e.g

hourly variations vs. average service time of few minutes).

We are interested in a “typical” customer, arriving at the system in steady state (for

a discussion on the rigorous meaning of “typical” see Appendix B). Let V be the cus-
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tomer’s potential waiting time, X be his patience, and let W be the actual waiting time

(W = V ∧X).

Many performance measures that are of interest to call center managers can be expressed

as expectations of simple functions of V and X. A representative list appears in Table 3.

Here we make use of indicator functions of the form 1(a,b](t) that are defined by

1(a,b](t) =











1 a < t ≤ b

0 otherwise
.

Table 3: Performance measures of the form E[f(V,X)]

f(v, x) E[f(V,X)]

1(x,∞)(v) P{Ab}
1(t,∞)(v ∧ x) P{W > t}

1(t,∞)(v ∧ x)1(x,∞)(v) P{W > t;Ab}
(v ∧ x)1(x,∞)(v) E[W ;Ab]

(v ∧ x)1(t,∞)(v ∧ x)1(x,∞)(v) E[W ;W > t;Ab]

g(v ∧ x) E[g(W )]

Some important performance measures cannot be expressed directly by the method pro-

posed, but only as quotients of performance measures of the type E[f(V,X)]. For example,

the fraction of customers abandoning out of those having to wait in queue is an important

measure, yet some experienced managers of call centers tend to discard customers who

were not willing to wait even a short period of time t. In such a case one uses

P{Ab | W > t} = P{V ∧X > t ; V > X}
P{V ∧X > t} =

E[1(t,∞)(V ∧X)1(X,∞)(V )]

E[1(t,∞)(V ∧X)]
.

4 Operational Regimes and Diffusion Approximations

A central outcome of the present paper is approximations of performance measures that

yield insight as to their dependence on the model’s parameters. From our theoretical

results, which are also supported by prevailing practice, it follows that moderate to large
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telephone call centers are capable of delivering high service-level while also operating

under high utilization. This justifies our focus on approximations through heavy traffic

limits, as N → ∞ (this is equivalent to R → ∞, since we will be assuming N/R → 1).

To this end a subscript N will now be added to our notation to indicate the processes

and parameters of the N -th system (i.e associated with an M/M/N +M model).

Motivated by the work of [19] we use two performance measures - the fraction of cus-

tomers abandoning (PN{Ab}), and the fraction delayed in queue (PN{W > 0}) - as

guidelines for choosing appropriate operational regimes. Most telephone call centers try

to avoid a high percentage of abandonment, without overstaffing. This usually translates

into operating with a non-negligible fraction of customers having to queue, and a small

fraction of abandonment.

We now characterize the dependence of the model’s parameters on N . Primarily, we

are interested in a sequence in which λN → ∞ as N → ∞ and µN ≡ µ, which corre-

sponds to scaling up the staffing level (N) to accommodate the increasing load (λN) while

maintaining a service rate (µ) that does not vary with staffing level or load. Furthermore

we restrict our current discussion to the case limN→∞ θN = θ , 0 < θ <∞, although our

results, as reported in Appendix C, include the regimes θ = 0 (extreme patience) and

θ =∞ (extreme impatience) as well.

We first introduce the notion of traffic intensity defined by ρN = λN
Nµ

. The results of

Theorems 1 and 2 below, together with the guidelines stated above, lead us to focus on

the following regime:

lim
N→∞

√
N(1− ρN) = β , −∞ < β <∞ .

The discussion later in §5.3, formalized by Theorem 4, strongly supports our contention

that this is indeed the regime of interest for moderate to large call centers.

Following are Theorems 1 and 2, with a discussion about the derivation of the stated

regimes from their results. Proofs of these theorems, and other selected results quoted

throughout the paper, appear in Appendix C.

Theorem 1 Assume that limN→∞ ρN = ρ∞, for some 0 ≤ ρ∞ < ∞. Then the limiting

13



behavior of the fraction of abandoning customers is given by

lim
N→∞

PN{Ab} =











0 0 ≤ ρ∞ ≤ 1

1− 1
ρ∞

ρ∞ > 1
.

Based on this result, it seems clear that from the point of view of abandonment there

is no reason to operate with ρ∞ < 1: ρ∞ = 1 already yields a vanishing abandonment

probability. On the other hand when ρ∞ À 1, the limiting abandonment probability is

higher than usually desired. Moreover, from the point of view of the agents’ utilization

(i.e. the fraction of time they spend answering calls, given by λN (1−PN{Ab})
Nµ

) the maximum

limiting utilization is already achieved with ρ∞ = 1. Thus, ρ∞ = 1 arises as a special

balance point between the call center’s efficiency and service quality.

The restriction to ρ∞ = 1 is consistent with the work of Halfin and Whitt [19] who

analyze the M/M/N model, and find that interesting limiting behavior occurs when

ρN ∼ 1 − β/
√
N , 0 < β < ∞ (“interesting” in the sense that only then is the limiting

behavior of the fraction of customers having to wait in queue non-degenerate). Since an

M/M/N +M model with very patient customers is “close” to an M/M/N model (sup-

ported by Theorem 2∗ appearing in Appendix C - an extension of Theorem 2 below), we

also restrict ourselves to the case of limN→∞
√
N(1− ρN) = β , but here −∞ < β <∞.

(As already mentioned, [19] covers only β > 0, since otherwise there is no steady state.)

Theorem 2 below states diffusion approximations for the process Q = {Q(t), t ≥ 0}. We

consider the sequence of stochastic processes {qN} which is obtained from {QN} through
centering and rescaling, namely

qN(t) =
QN(t)−N√

N
.

Centering around N gives rise to a process whose absolute value is either the queue-length

(qN ≥ 0) or the number of idle servers (qN ≤ 0). The rescaling factor
√
N emerges as the

appropriate order of magnitude, that gives rise to a non-trivial continuous limiting pro-

cess q. The latter will be used to approximate our original birth-death processes {QN},
via QN

d≈ N + q
√
N , thus offering approximations for both transient (QN(t), t > 0) and

steady state (QN(∞)) behavior.

The mathematical details of the theorem are not a prerequisite for following its con-

sequences, which are explained immediately after the theorem and its corresponding re-

marks.
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Theorem 2 Assume that

lim
N→∞

√
N(1− ρN) = β , −∞ < β <∞ ,

lim
N→∞

θN = θ , 0 < θ <∞ .

If qN(0)
d−→ q(0) then qN

d−→ q, where q is the unique solution of the following stochastic

differential equation


























dq(t) = f(q)dt+
√
2µ db(t)

f(x) =











−µ(β + x) x ≤ 0

−(µβ + θx) x > 0

(Here b denotes a standard Brownian Motion, and XN
d−→ X denotes the “weak conver-

gence” or “convergence in distribution” of a sequence {XN} to X.)

Remarks:

1. This limit was conjectured (with a slightly different centering) by Fleming, Stolyar

and Simon [15], and a proof was given for the weak limit of the stationary distribu-

tions (i.e. q(∞) ). An extended version of this theorem, including diffusion limits

for the cases θ = 0 and θ =∞ appears in Appendix C.

2. The limiting process stated in this theorem is qualitatively characterized by a combi-

nation of two Ornstein-Uhlenbeck processes (q ≤ 0, q > 0) with different restraining

forces.

So far we have dealt with diffusion limits of the queue length process Q. However, as

displayed in Table 3, many performance measures involve the potential waiting time V .

Now, the distribution of V coincides (see Appendix B) with the stationary distribution of

the process ν(t) - the virtual waiting time at time t (i.e. the time spent waiting in queue

by a hypothetical infinitely-patient customer arriving at time t). We shall thus focus on

approximating the stationary distribution of ν(t), denoted ν(∞).

A simple relationship between the diffusion limits of the queue length process and the

virtual waiting time process can be motivated heuristically as follows: If there are idle

agents, the virtual waiting time is 0; otherwise the number of waiting customers is ≈ q
√
N

(in view of Theorem 2). How long does it take for a customer to pass through this queue?

Customers will be leaving at a rate of Nµ (through service) + o(N) (abandonment; in-

deed, the abandonment rate of customers in front of our tagged customer is no greater

15



than θq
√
N). Dividing the queue length by the rate that customers are leaving it yields

the virtual waiting time, which is therefore ≈
[

q√
Nµ

]+

.

Formally such an approximation is derived through Theorem 3 that follows. Here we

use the common notation for the standard normal density and distribution functions (φ

and Φ respectively)

φ(x) =
1√
2π

e−x
2/2 , Φ(x) =

∫ x

−∞
φ(y)dy ,

as well as the hazard rate defined by

h(x) = φ(x)/[1− Φ(x)] = φ(x)/Φ(−x) .

Proof of this theorem is based on a useful result by Puhalskii [34] that links diffusion

approximations for ν and Q.

Theorem 3 Let v =
[

q
µ

]+
, where q solves the stochastic differential equation stated in

Theorem 2. Then:

1.
√
NνN(t)

d−→ v(t) , 0 ≤ t ≤ ∞ , where both νN(∞) and v(∞) are limits in

distribution, as t→∞, of νN(t) and v(t) respectively.

2. v(∞) has the distribution function Fv given by:

1− Fv(x) =















w(−β,
√

µ/θ) , x = 0

w(−β,
√

µ/θ) · h(β
√
µ/θ)

Ψ(β
√
µ/θ,
√
µθx)

, x > 0
.

Here

w(x, y) =

[

1 +
h(−xy)
yh(x)

]−1
, Ψ(x, y) =

φ(x)

1− Φ(x+ y)
.

Since
√
NνN(∞)

d−→ v(∞), the approximation we use is

V
d
= νN(∞)

d≈ v(∞)/
√
N ,

which translates into FV (x) ≈ Fv(
√
Nx).
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5 Implementation

In §3 and §4 we have reported a variety of results concerning the M/M/N +M model.

Since we advocate this model as a substitute for theM/M/N model commonly used in call

center analysis, it makes sense to shed some light on how to apply and interpret our results.

The context of the discussion will be that of managing a moderate to large call center in

heavy traffic (“heavy” such that the abandonment phenomenon is not negligible). First

we briefly address the issue of estimating the values of the model’s parameters. Then we

suggest which performance measures should be used by call center managers to define the

service level. Finally we discuss the use of our approximation results and derive “staffing

rules”.

5.1 Estimating the Parameters

In order to use the model and the results introduced, it is necessary to determine the

values of the various parameters. The number of agents on shift is fully controlled by the

call center’s manager. Arrival and service rates are usually estimated from historical ACD

data. As discussed in §3 for time varying arrival rates, small time intervals are selected,

in which the arrival rate is approximately constant.

The main difficulty is to estimate the abandonment rate (θ) or equivalently, the aver-

age patience (1/θ). The difficulty arises from the fact that the direct data we can collect

is censored - we can only measure the patience of customers who abandon the system be-

fore their service began. For the customers receiving service we only have a lower bound

for their patience - the amount of time they spent waiting in queue. There are statistical

methods to deal with such censored samples. While we shall not discuss these methods

here, interested readers are referred to the Appendix in [39] for a survey and further sta-

tistical references. Another, more basic problem for estimating θ, is that in most cases

the ACD data only contains averages, as opposed to call-by-call measurements (see [29]

for call-by-call data analysis). To this end we suggest a method for estimating the average

patience that is based on the following balance equation:

θ · E[#waiting in queue] = λP{Ab} . (2)

This equation describes the steady state balance between the rate customers abandon

the queue (left hand side) and the rate abandoning customers (i.e - customers who will

eventually abandon) enter the system.

Through Little’s theorem (λ · E[W ] = E[#waiting in queue]), we obtain an alternative

17



equation

θ · E[W ] = P{Ab} . (3)

The average wait in queue and fraction of customers abandoning are fairly standard ACD

data outputs, thus providing the means for estimating θ. We note, however, that (2) and

(3) are known to hold exactly only under exponentially distributed patience. (See [39] for

a discussion of (3) and generalizations).

5.2 Approximations

As we have stated earlier, the abandonment phenomenon is extremely important to a call

center’s manager. Nevertheless, this does not imply that the only performance measure

of interest is the fraction of customers abandoning the queue. There are many addi-

tional important performance measures, and it is necessary to select the few that best

reflect the service level at the call center, and can serve as service goals and service grades.

Approximations can be used to overcome computational difficulties arising when attempt-

ing exact evaluation of performance measures, but they can also reveal how performance

measures depend on the model’s parameters. Such an understanding is necessary when

trying to derive simple rules of thumb (see §5.3 below).

Combining the approximation for the stationary virtual waiting time (Theorem 3) with

the general representation of performance measures in §3 enables us to derive approxima-

tions for many performance measures. These approximations should be most accurate in

the case of a large call center operating in heavy traffic, with negligible blocking. (The

accuracy of some of these approximations is demonstrated in Appendix A.)

Example: Assume a performance measure which can be expressed as E[g(W )] for some

function g. Recall that W ≡ X ∧ V , and that X and V are independent, therefore,

E[g(W )] =
∫ ∞

0

∫ ∞

0
g(x ∧ v)θe−θxdFV (v) dx ≈ E[g(0)]

(

1− w(−β,
√

µ/θ)
)

+
∫ ∞

0

∫ ∞

0
g(x ∧ v)θe−θx

√

Nµθ · w(−β,
√

µ/θ) ·Ψ(
√

Nµθv + β
√

µ/θ,−
√

Nµθv) dv dx .

Following are the resulting approximations for several performance measures:

P{W > 0} ≈ w(−β,
√

µ/θ)

P{Ab|W > 0} ≈ 1− h(β
√
µ/θ)

h(β
√
µ/θ+
√
θ/(Nµ))

18



P{Ab} ≈
[

1− h(β
√
µ/θ)

h(β
√
µ/θ+
√
θ/(Nµ))

]

· w(−β,
√

µ/θ)

E[W ] ≈
[

1− h(β
√
µ/θ)

h(β
√
µ/θ+
√
θ/(Nµ))

]

· w(−β,
√

µ/θ) · 1
θ

E[#busy agents] ≈ λ
µ
−
[

1− h(β
√
µ/θ)

h(β
√
µ/θ+
√
θ/(Nµ))

]

· w(−β,
√

µ/θ) · λ
µ

E[#waiting in queue] ≈
[

1− h(β
√
µ/θ)

h(β
√
µ/θ+
√
θ/(Nµ))

]

· w(−β,
√

µ/θ) · λ
θ

P{W > t} ≈ w(−β,
√

µ/θ) · h(β
√
µ/θ)

Ψ(β
√
µ/θ,
√
Nµθt)

· e−θt , t ≥ 0

P{Ab|W > t} ≈ 1− Ψ(β
√
µ/θ,
√
Nµθt)

Ψ(β
√
µ/θ+
√
θ/(Nµ),

√
Nµθt)

· eθt , t ≥ 0

Remarks:

1. Along the same lines, we have developed further useful approximations, notably for

E[W |W > t] and E[W |Served]. These have been omitted due to excessive “bulk”.

2. Some of the approximations above can also be derived via the diffusion limit of

the queue length process (Theorem 2). Note, however, that the approximating

expressions thus arrived at are not identical, but they coincide as N → ∞. For

example, considering the fraction of customers abandoning, we have on the one

hand

P{Ab} = E[1(X,∞)(V )] =
∫ ∞

0

∫ t

0
θe−θxdxdFV (t) ≈

∫ ∞

0

(

1− e−θt/
√
N
)

dFv(t) ,

and on the other hand (using (2))

P{Ab} = θ

λ
E[#waiting in queue] ≈

∫ ∞

0

θt
√
N

λ
dFq(t)

(

≈
∫ ∞

0

θt
√
N

λ
dFv(t)

)

.

5.3 Staffing Rules

It is important for a call center’s manager to be able to anticipate the impact of changes

on the service level. Examples of such a change are an increase in the call arrival rate due

to a marketing campaign, or a change in the number of agents on shift.

Most expressions for performance measures derived using the M/M/N + M model are

quite complex. Even the approximations in §5.2 tend to be too complex to enable an

understanding of how the values of the parameters affect the performance measure. It is

desirable, therefore, to derive simple “rules of thumb” to support decision making.
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We have the following result, analogous to the result by Halfin and Whitt [19] that

concerns M/M/N queues.

Theorem 4 Assume that θN ≡ θ, 0 < θ <∞. Then

lim
N→∞

√
N(1− ρN) = β , −∞ < β <∞ ,

if and only if

lim
N→∞

PN{W > 0} = α , 0 < α < 1 ,

if and only if

lim
N→∞

√
NPN{Ab} = ∆ , 0 < ∆ <∞ ,

in which case

α = w(−β,
√

µ/θ)

∆ = [
√

θ/µ · h(β
√

µ/θ)− β] · α .

(Here w and h are as in Theorem 3 above).

Remark:

This result holds at the “extremes” as well, namely

β = −∞ iff α = 1 iff ∆ =∞ and β =∞ iff α = 0 iff ∆ = 0 .

We deduce from the above results that also for M/M/N +M queues the “interesting”

(as explained in §4) limiting behavior is when ρN ∼ 1− β/
√
N , but here (in contrast to

[19]) β is not restricted to be positive.

In light of Theorem 4 and Theorem 1, we introduce in the following table three regimes of

operation, with three matching staffing rules (this is a slightly extended version of Table

1 from §1)

Remarks:

1. The staffing level for the rationalized regime is derived directly from ρN ∼ 1 −
β/
√
N , −∞ < β <∞ (see sections 1 and 2 in Whitt [38] for a detailed discussion).

The “extremes” of Theorem 4 only set bounds for the staffing levels. Any staffing

level such as N = dλ± ε · λae with ε > 0 , 1 ≥ a > 0.5 is adequate (+ε for quality-

driven, −ε for efficiency-driven). However, we suggest taking a = 1, with which there

is a clear differentiation between slightly underloaded call centers (quality-driven),

slightly overloaded call centers (efficiency-driven), and the “critically” loaded call

centers (rationalized).
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Table 4: Staffing Rules for Three Operational Regimes

Regime Staffing level Guidelines

Rationalized N = dR + β
√
Re P{W > 0} → α(β) and P{Ab} ∼ ∆(β)√

N

Quality-driven N = dR + εRe, ε > 0 P{W > 0} → 0 and P{Ab} = o(1/
√
N)

Efficiency-driven N = dR− εRe, ε > 0 P{W > 0} → 1 and P{Ab} → ε

Note that

α(β) = w(−β,
√

µ/θ) , ∆(β) = [
√

θ/µ · h(β
√

µ/θ)− β] · α(β) .

2. The “guidelines” above follow directly from Theorem 4, except for the fraction

abandoning (P{Ab}) in the efficiency-driven regime which involves Theorem 1.

Following the result of Theorem 4, and continuing in the spirit of Whitt [38], we suggest

β (or ε) as a “service grade”. The main significance of this grade is for comparing two

systems, in particular in the case of a single system before and after an expected change.

Once a manager has decided which of the three regimes of operation is suitable for her

call center, she can determine the service grade and use the appropriate staffing rule.

Moreover, analysis of empirical data (Figure 3 is representative) shows that, in practice,

the value of β lies in the range of −0.5 < β < 1 .

We conclude by revisiting the scenario from §2: Suppose a given call center operates

in the “rationalized” regime with N agents, service rate µ and arrival rate λ. The service

level is quantified by a service grade β. There is a forecast of a higher arrival rate λ̂

during a holiday. The call center’s manager wishes to maintain the service level at the

call center, and needs to decide how many agents to have on shift (N̂). Based on the

appropriate staffing rule β ≈
√

µ
λ
N
(

1− λ
Nµ

)

, we get N̂ = d λ̂
µ
+ β

√

λ̂
µ
e . Moreover, the

anticipated holiday performance is:

1. Fraction waiting: P{W > 0} ≈ α(β) (as in the original system).

2. Fraction abandoning: P{Ab} ≈ ∆(β)/
√

N̂ (decrease by a factor of
√

N̂/N).
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Appendix A:

Accuracy of the Approximations

The approximations derived in §5.3 are based on heavy traffic limit theorems in which the

number of agents and call volume are taken to infinity. It is therefore of practical interest

to see how accurate these approximations are when applied to call centers that are not

extraordinarily large.

In the following figures (4-8) we plot approximations (‘+’ signs) for a number of

performance measures vs. exact values (solid line) based on the analysis of an M/M/N +

M model (see Appendix A). All cases assume a call volume of 50 calls per minute, each

call requiring an average handling time of 1 minute. Staffing levels range from 20 to

80 agents (implying traffic intensities from 0.625 up to 2.5 !). Three different values of

average patience are considered:

• Graph a : 10 minutes (very patient)

• Graph b : 1 minute (moderately patient)

• Graph c : 6 seconds (very impatient)

The main conclusion from this display is that in most cases these approximations are

excellent (for any practical use) even in the case of a medium sized call center handling

moderate traffic intensities. Some additional, specific remarks are stated hereafter.

Remarks:

1. Figure 5 shows only a single graph (b) since the graphs (both exact and approximate)

of the other two cases (a and c) practically coincide with it. This is easy to explain

from our theoretical results. By Theorem 1, to leading order the abandonment

probability with ρ > 1 does not depend on θ. Although the abandonment probability

with ρ ≤ 1 is more sensitive to θ (the leading order term is zero), the differences do

not show up due to the scale of the graph.

2. In Figure 7 the exact-value graphs for cases ‘b’ and ‘c’ were not calculated for

all values up to 80 agents, due to numerical difficulties in obtaining these values.

Specifically, since we use P{Ab|W > t} = P{Ab;W>t}
P{W>t} , then when P{W > t} becomes

extremely small (see Figure 6) one encounters precision difficulties. To overcome

such problems, the exact-value graph for case ‘c’ was produced using simulations.

This graph is limited to 50 agents since as the number of agents increases, the event
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in which a call waits in queue for more than 10 seconds becomes extremely rare,

thus requiring very long simulations.

The difficulties we encountered here provide a good example of the benefits of having

approximations for such performance measures. Indeed, the approximation in not

as accurate as the others, but the values it provides are useful and capture exact

behavior.

3. Note that the scale in Figure 8 is of log-type (log10), for benefit of the clarity of

display. The upper range of the graphs (a, b and c) in this case is 550, 55 and 5

seconds respectively.
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Figure 4: Approximating P{Wait > 0}
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Figure 5: Approximating P{Abandon}
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Figure 6: Approximating P{Wait > 10 secs}
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Figure 7: Approximating P{Abandon|Wait > 10 secs}
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Figure 8: Approximating E[Wait|Served]
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Appendix B:

Calculating E[f(V, X)] in an M/M/N/B + M Model

To calculate E[f(V,X)], we start with the following decomposition:

E[f(V,X)] = E[f(V,X) · 1(0,∞)(V )] + E[f(V,X) · 1{0}(V )]

= E[f(V,X) · 1(0,∞)(V )] + E[f(0, X)] · (πB +
N−1
∑

k=0

πk) . (4)

Here we use π to denote the stationary distribution of the queue-length process Q(t),

namely

lim
t→∞

P{Q(t) = n} = πn , n = 0, 1, 2, . . . B .

A general expression for these probabilities is given by

πk =























(λ/µ)k

k!
π0 , 0 ≤ k ≤ N

k
∏

j=N+1

(

λ

Nµ+ (j −N)θ

)

(λ/µ)N

N !
π0 , N < k ≤ B

where

π0 =





N
∑

k=0

(λ/µ)k

k!
+

B
∑

k=N+1

k
∏

j=N+1

(

λ

Nµ+ (j −N)θ

)

(λ/µ)N

N !





−1

.

Remark:

For a blocked customer (i.e the queue was full upon his arrival) the convention V = 0 is

introduced.

For all functions f which seem of interest in our case, E[f(0, X)] evaluates to 0 or 1.

Therefore we proceed to calculate the first expression. We present three different meth-

ods for performing this calculation, each with its own virtues and drawbacks.

Our calculations require the distribution function of V . Recall that V is the po-

tential waiting time of a typical customer. What is meant by a “typical” customer?

Consider the sequence {wn, n ∈ IN}, where wn is the potential waiting time of the n-th

customer. Let Fw be the stationary distribution of this sequence. Quoting from Baccelli

and Hebuterne [2], Fw is also the stationary distribution of the process ν(t) - the virtual

waiting time at time t (i.e. the time spent waiting in queue of a hypothetical infinitely-

patient customer arriving at time t). Therefore a typical customer’s potential waiting

time, V , has distribution function Fw.
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Similarly we are interested in Vn, which is a random variable whose distribution is

that of V given n customers in queue upon arrival, and all agents busy, n = 0, 1, . . . ; Vn

has distribution function Fn.

The distribution of V is not given beforehand, and is derived through analysis of

the model. On the other hand, Vn can be expressed as the sum of n + 1 independent

exponential random variables with parameters Nµ, Nµ + θ, . . . , Nµ + nθ, the i-th of

these representing the period of time the customer spent in the i-th place in queue, before

advancing to the (i−1)-th (due to end of service or abandonment from the queue in front

of him).

Method A: Conditioning on the number of customers in the queue upon arrival, and

substituting the explicit expression given by Riordan [35] (equation (83) on page 111) for

F̄n(t) = 1− Fn(t), we have

E[f(V,X)1(0,∞)(V )] = cπN
B−N−1
∑

k=0

(−1)k (λ/θ)k

k!
I(k)

B−N−1
∑

n=k

(λ/θ)n−k

(n− k)!
, (5)

where

I(k) = θ2c
∫ ∞

0

∫ ∞

0
f(t, x)e−(c+k)θte−θxdtdx and c = Nµ/θ

Calculating the values of I(k) is usually a simple task. The main drawback of this

method are the alternating signs in the first sum, which cause it to be numerically unsta-

ble. Therefore we present the next method, which avoids this problem.

Method B: Starting similarly to Method A, and using the relation

n
∑

k=0

(

n

k

)

(−e−θt)k =
(

1− e−θt
)n

to eliminate one sum, we arrive at

E[f(V,X)1(0,∞)(V )] = θ2cπN
B−N−1
∑

n=0

(λ/θ)n

n!
J(n) , (6)

where

J(n) =
∫ ∞

0

∫ ∞

0
f(t, x)e−(x+ct)θ

(

1− e−θt
)n
dxdt . (7)

Here calculating the values of J(n) tends to be more costly since the integrals must usually

be solved numerically.

These methods lose some of their attractiveness when dealing with infinite buffers

(B =∞). Then sums appearing in both methods become infinite, and must be truncated
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at some point for implementation (the alternating signs in Method A can be problematic

in the aspect of truncation too). Since this case forces us to consider the issue of precision

tolerance, we present the third method, which is a straightforward numerical integration.

Method C: Following through Riordan [35], and solving the more general case of any

buffer size B, we arrive at the function f+V , where
f+

V

P{V >0} is a density function, given by

f+V (t) = NµπN

[

1− γ(B −N, λ
θ
(1− e−θt))

Γ(B −N)

]

· exp
{

λ

θ
(1− e−θt)−Nµt

}

, t > 0 . (8)

Here Γ and γ denote the gamma and incomplete gamma functions respectively, defined

by

Γ(x) =
∫ ∞

0
tx−1 exp(−t)dt and γ(x, y) =

∫ y

0
tx−1 exp(−t)dt , y > 0 .

Now we are left with the evaluation of the double integral

E[f(V,X) · 1(0,∞)(V )] =
∫ ∞

0

∫ ∞

0
f(t, x)θe−xθf+V (t)dxdt . (9)

The integral with respect to x is usually solved analytically and rather easily (depending

on f), leaving us to perform one numerical integration (with respect to t).

Some additional remarks concerning the infinite buffer case:

Remarks:

1. When the system’s buffer is unlimited, solving the stationary distribution equations

involves an infinite sum. A solution is given by Palm [32], expressing the station-

ary distribution as a function of the easily calculated blocking probability in an

M/M/N/N system (denoted here P{Bl}), with the same arrival and service rates:

πn =































P{Bl}
1 + (A( λ

Nµ
, Nµ

θ
)− 1)P{Bl}

· N !

n!
(

λ
µ

)N−n , n < N

P{Bl}
1 + (A( λ

Nµ
, Nµ

θ
)− 1)P{Bl}

·
(

λ
θ

)n−N

(

Nµ
θ

+ 1
)

· · ·
(

Nµ
θ

+ (n−N)
) , n ≥ N

where

A(x, y) =
yexy

(xy)y
· γ(y, xy) .

2. For B =∞ the density function f+V given here becomes a special case of the result

by Baccelli and Hebuterne [2] for an M/M/N +G model with patience distribution

F , namely:

f+V (t) = NµπN exp
{

λ
∫ t

0
(1− F (u))du−Nµt

}

, t > 0 .
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Appendix C:

Outlines of Proofs

Following are outlines for the proofs of Theorems 1-4.

Proof of Theorem 1:

We first point out an intuitive approach for the overloaded case (ρ∞ > 1), based on

the fact that in systems with many agents it is possible to achieve very high utilization:

Indeed, in an M/M/N +M model the utilization is given by the rate at which “work”

reaches the agents (λN(1 − PN{Ab})) divided by the maximum rate at which it can be

processed (Nµ). Thus when N →∞, assuming that the utilization is ≈ 1, we obtain the

result.

We now proceed with the rigorous proof, based on bounding the sequence {PN{Ab}} from
above and below, with the two bounds converging to the desired limit.

We begin with the lower bound, which is more intuitive. The utilization of agents in

an M/M/N +M queue in steady state must be less than 1, therefore,

λN(1− PN{Ab}) < Nµ ,

from which we obtain

lim inf
N→∞

PN{Ab} ≥ 1− 1

ρ∞
.

Before turning to the upper bound, we note two monotonicity properties of PN{Ab}
that are proved in [3]:

(i) With N, θ, and µ fixed, PN{Ab} is increasing in λ (or ρ)

(ii) With N,µ, and λ fixed, PN{Ab} is increasing in θ.

Now we deal with the upper bound. Note that PN{Bl}, the probability of blocking in

an M(λN)/M(µ)/N/N queue, is the limit of PN{Ab} as θ →∞ in the M(λN)/M(µ)/N+

M(θN) queue. Thus, by (ii) above, PN{Ab} ≤ PN{Bl} for any θN with 0 < θN <∞.

If λN = Nµρ∞, with 1 < ρ∞ <∞, it was shown by Jagerman [23] (p.538), that

PN{Bl} ∼
[

ρ∞
ρ∞ − 1

− ρ∞
(ρ∞ − 1)3

1

N
+

2ρ2∞ + ρ∞
(ρ∞ − 1)5

1

N2

]−1
(10)

We deal with λN = Nµ · ρ∞ + o(N) as follows. Choose 0 < ε < ρ∞ − 1, and define

λ+N = Nµ · (ρ∞ + ε) , λ−N = Nµ · (ρ∞ − ε) . Hence we have (through Jagerman’s result

and monotonicity)

ρ∞ − ε− 1

ρ∞ − ε
≤ lim inf

N→∞
PN{Bl} ≤ lim sup

N→∞
PN{Bl} ≤

ρ∞ + ε− 1

ρ∞ + ε
,
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and taking ε ↓ 0 yields

lim sup
N→∞

PN{Ab} ≤ lim
N→∞

PN{Bl} = 1− 1

ρ∞

for ρ∞ > 1.

We complete the proof for ρ∞ ≤ 1 using (i) above: Since PN{Ab} with ρ∞ ≤ 1 must

be smaller than with ρ∞ = 1 + ε for any ε > 0 we have that for ρ∞ ≤ 1

lim supPN{Ab} ≤ lim
ε↓0

(

1− 1

1 + ε

)

= 0 .

Following is an extended version of Theorem 2 that includes diffusion limits for the cases

θ = 0 and θ =∞.

Theorem 2∗:

Assume that

lim
N→∞

√
N(1− ρN) = β , −∞ < β <∞ ,

lim
N→∞

θN = θ , 0 ≤ θ ≤ ∞ .

If qN(0)
d−→ q(0) then qN

d−→ q, where q is the unique solution of a stochastic differential

equation, according to the following regimes

θ = 0 :



























dq(t) = f(q)dt+
√
2µ db(t)

f(x) =











−µ(β + x) x ≤ 0

−µβ x > 0

0 < θ <∞ :



























dq(t) = f(q)dt+
√
2µ db(t)

f(x) =











−µ(β + x) x ≤ 0

−(µβ + θx) x > 0

θ =∞ :











dq(t) = −µ(β + q(t))dt+
√
2µ db(t)− dY (t)

q ≤ 0 ; Y (0) = 0 , Y non−decreasing , ∫∞0 q dY = 0

Proof of Theorem 2∗, part 1:

We will deal with each of the three cases (corresponding to the value of θ) separately.

When θ = 0 and 0 < θ < ∞ Stone’s criteria ([36]) hold, hence the limiting process is

easily found through the convergence of the infinitesimal expectation and variance. The

θ =∞ case is more difficult since the state space “shrinks”.
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We omit discussion of uniqueness and refer readers to Dupuis and Ishii [12] and Mandel-

baum and Pats [27] .

θ = 0: Here the abandonment rate converges to 0. As N grows, the abandonment be-

comes less significant, and indeed the limiting process is identical to the heavy traffic limit

of a sequence of M/M/N queues ([19]). The proof in this case is almost identical to that

in Halfin and Whitt [19], by using Stone’s criteria (see proof of Theorem 2 in [19]): The

state space of the rescaled process qN becomes dense in IR as N →∞; The infinitesimal

expectation (µN) and variance (σ2N) are given by

µN(x) =











− bN+
√
Nxcµ√
N

+ λN√
N
, x ≤ 0

−Nµ+b
√
NxcθN√
N

+ λN√
N
, x > 0

σ2N(x) =











bN+
√
Nxcµ

N
+ λN

N
, x ≤ 0

Nµ+b
√
NxcθN

N
+ λN

N
, x > 0

converging, as N →∞

lim
N→∞

µN(x) =











−µ(β + x) , x ≤ 0

−µβ , x > 0

lim
N→∞

σ2N(x) = 2µ .

0 < θ <∞ : This case appears in Fleming, Stolyar and Simon [15] as a conjecture without

a proof, with slightly different centering. It can be proved either as in the case θ = 0 or

using [15].

θ =∞ : Here the proof is more complex. Stone’s criteria does not hold since the state

space of the limiting process shrinks to (−∞, 0], exhibiting reflection at the origin. We

circumvent this difficulty as follows:

Let XN = QN − N , and define two complementary and disjoint subsets of IR+, corre-

sponding to the times XN spent in (−∞, 0] or in (0,∞). Thus via time changes we obtain

(from XN) two processes, each “existing” in a different part of IR.

We then show that the process “existing” in (−∞, 0] converges to the proposed limit.

This is achieved using the procedure introduced in Mandelbaum and Pats [27]. Now

since the process XN makes alternating excursions to (−∞, 0] (“negative” excursions)

and (0,∞) (“positive” excursions), by showing that the duration of the “negative” excur-

sions is of order Ω(1/
√
N) and that of the “positive” excursions is o(1/

√
N) we conclude
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that the time spent by XN in (0,∞) becomes “negligible” as N →∞. The proof is then

completed using an Inverse Random Time Change theorem (see Appendix in Nguyen [30]).

Proof of Theorem 2∗, part 2:

Proof of the interchangeable limits is done through specific calculation of both cases,

namely the stationary distribution of the diffusion limits (right hand side, “Rhs” below)

and the weak limit of the stationary distributions (“Lhs”). Here too we deal separately

with the three cases corresponding to the value of θ.

Rhs: First we find the stationary distribution of the diffusion limits. This is accomplished

using results by Browne and Whitt [9] (section 18.3). They provide a simple procedure

for calculating the density function (f(x)) of the stationary distribution for diffusion pro-

cesses that have piecewise continuous parameters; reflecting boundary points, if finite, or

inaccessible, if infinite. Following their procedure we obtain:

θ = 0 : f(x) =











α(β) · β · φ(x+β)
φ(β)

, x ≤ 0

α(β) · β exp(−xβ) , x > 0

0 < θ <∞ : f(x) =















√

θ/µ · h(β
√

µ/θ) · w(−β,
√

µ/θ) · φ(x+β)
φ(β)

, x ≤ 0
√

θ/µ · h(β
√

µ/θ) · w(−β,
√

µ/θ) · φ(x
√
θ/µ+β

√
µ/θ)

φ(β
√
µ/θ)

, x > 0

θ =∞ : f(x) =











φ(x+β)
Φ(β)

, x ≤ 0

0 , x > 0

Remark:

When θ = 0 a stationary distribution exists only for positive values of β.

Lhs: Now we find the weak limit (if it exists) of the sequence of stationary distribu-

tions {qN(∞), N = 1, 2, . . .}. Note that these distributions always exist because θN > 0.

Our discussion is in terms of the sequence of cumulative distribution functions, denoted

{FN}, converging to F .

We deal separately with the intervals x ≤ 0 (corresponding to QN(∞) ≤ N in the original

system) and x > 0. Given x ≤ 0 there is no queue and therefore no abandonment. Hence

the conditional distribution (denoted F+) is identical to that emerging from a sequence
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of M/M/N/N queues, namely

F+(x) =











Φ(x+β)
Φ(β)

, x < 0

1 , x ≥ 0

This leaves us with determining F on x > 0.

For the 0 < θ < ∞ case we quote the result by Fleming, Stolyar and Simon [15], with a

slight adjustment since their rescaling is

q̄N =
QN − λN√

λN
.

This difference only amounts to a “shift” of the distribution:

qN(∞) =
QN(∞)−N√

N
=

√

λN
N

[

QN(∞)− λN√
λN

+
λN −N√

λN

]

d−→ q̄(∞)− β .

Therefore the density of q(∞) is obtained by “shifting” the density of q̄(∞) by β, which

yields

f(x) =















√

θ/µ · h(β
√

µ/θ) · w(−β,
√

µ/θ) · φ(x+β)
φ(β)

, x ≤ 0
√

θ/µ · h(β
√

µ/θ) · w(−β,
√

µ/θ) · φ(x
√
θ/µ+β

√
µ/θ)

φ(β
√
µ/θ)

, x > 0

Now we use this result as an upper and lower bound for the θ = 0 and θ = ∞ cases

respectively.

When θ = 0 we must assume β > 0, otherwise the sequence is not tight. Denoting

F̂N = P{qN(∞) ≤ x|qN(∞) > 0} , we now find the limit of this sequence, by “sandwich-

ing” it between two converging sequences with a common limit. The “lower” sequence

(bounding from below) is of conditional stationary distributions corresponding to a se-

quence of M/M/N queues, denoted {F−
N }. According to Halfin and Whitt [19] this

sequence has a limit

F−(x) =











0 , x < 0

1− e−βx , x ≥ 0

As stated above, the “upper” sequence corresponds to a sequence of M/M/N+M queues

with 0 < θ <∞, and is denoted {F̄N}. Here we have that

F̄ (x) =
Φ(x

√

θ/µ+ β
√

µ/θ)− Φ(β
√

µ/θ)

1− Φ(β
√

µ/θ)
= 1−

h(β
√

µ/θ)φ(x
√

θ/µ+ β
√

µ/θ)

h(x
√

θ/µ+ β
√

µ/θ)φ(β
√

µ/θ)
.
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By taking θ ↓ 0 and relying on the asymptotic behavior of h(t) as t→∞, we get

lim
θ→0

F̄ (x) = 1− lim
θ→0

x
√

θ/µ+ β
√

µ/θ

β
√

µ/θ
e−(x

2 θ
µ
+2xβ)/2 = 1− e−βx .

This has completed the “sandwich”. These results, put together, yield the density function

for this case

f(x) =











α(β) · β · φ(x+β)
φ(β)

, x ≤ 0

α(β) · β exp(−xβ) , x > 0

Finally, by taking θ → ∞ in the 0 < θ < ∞ case we get that for θ = ∞ all the mass of

the distribution is concentrated in x ≤ 0, and F ≡ F+. Therefore, for this case we have

f(x) =











φ(x+β)
Φ(β)

, x ≤ 0

0 , x > 0

Proof of Theorem 3:

We start out by showing that
√
NνN

d−→
[

q
µ

]+
, a result that relies on a corollary by

Puhalskii [34] dealing with first passage times. Most of the notation we use here follows

the example in [34] (pp. 951-954), replacing the superscript n with subscript N for the

parameters and processes corresponding to a model with N agents. Hence we have:

QN = {QN(t), t ≥ 0} , AN = {AN(t), t ≥ 0} , DN = {DN(t), t ≥ 0} ,

as the queue, arrival and departure processes, respectively.

Let wN(t) be the virtual waiting time at t:

wN(t) = inf{s ≥ 0 : DN(s+ t) ≥ QN(0) + AN(t)− (N − 1)} .

We define rescaled processes

XN(t) =
1

N
DN(t) , YN(t) =

1

N
AN(t) , KN(t) =

1

N
QN(t) ,

and an additional process Z3N characterized via wN(t) = (Z3N(t)− t)+ , or equivalently

Z3N(t) = inf{s ≥ 0 : XN(s) ≥ YN(t) +KN(0)− (1− 1/N)} .

Now introduce

X(t) = µt (X ′(t) = µ) , Y (t) = µt , K(0) = 1 ,

36



and a first passage time

Z3(t) = inf{s ≥ 0 : X(s) ≥ Y (t)} ,

noting that Z3(t) ≡ t .

Finally, let

U3(t) = q(0)− µβt+
√
µb(t)− q(t) ,

V 3(t) = −µβt+√µb(t) + q(0) .

From here, applying [34] and the result of Theorem 2∗ for the 0 < θ <∞ case we get

√
N(Z3N − t)

d−→ q(t)

µ
,

which yields, through continuous mapping

√
NwN(t) =

√
N(Z3N(t)− t)+

d−→
[

q(t)

µ

]+

,

completing the proof.

Part 1 follows immediately from Theorem 2∗ (0 < θ < ∞ case) where the parameters of

the diffusion process q are provided, and the density of q(∞) is given (in the proof above).

Part 2: Note that qN has a stationary distribution and let qN(0) have this distribution.

Hence, for all 0 ≤ t ≤ ∞, qN(t) has this distribution. Therefore, νN(t) also has the same

distribution, for all 0 ≤ t ≤ ∞. Now using the opening result the proof is complete.

Proof of Theorem 4:

The directions going from the center (−∞ < β <∞) outward are by-products of Lemmas

1 and 2 below, as are the explicit expressions for α and ∆. The remaining directions are

dealt with by taking β up to ∞ and down to −∞, using the known asymptotic behavior

of h(t) : h(t) ∼ t , t→∞.

β →∞:

An increase in β represents a decrease in congestion, and therefore α (and ∆) decreases

too. ∆ is found by upper bounding the fraction abandoning with the fraction blocked in

an M/M/N/N queue. Hence as β →∞

α ≤ lim
β→∞

w(−β,
√

µ/θ) = lim
β→∞

√

µ/θh(−β)
h(β

√

µ/θ) +
√

µ/θh(−β)
= 0 ,

∆ ≤ lim
β→∞

lim
N→∞

√
NPN{Ab} ≤ lim

β→∞
lim
N→∞

√
NPN{Bl} = lim

β→∞
h(−β) = 0 .
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β ↓ −∞:

Here we use the reverse argument, bounding from below:

α ≥ lim
β→−∞

w(−β,
√

µ/θ) = lim
β→−∞

√

µ/θh(−β)
h(β

√

µ/θ) +
√

µ/θh(−β)
= 1 ,

∆ ≥ lim
β→−∞

[
√

θ/µ · h(β
√

µ/θ)− β] · α =∞ .

Lemma 1

lim
N→∞

PN{W > 0} =



























α(β) , θ = 0

w(−β,
√

µ/θ) , 0 < θ <∞
0 , θ =∞

Proof:

Calculating directly, we have

lim
N→∞

PN{W > 0} = lim
N→∞

P{QN(∞) > N} = P{q(∞) > 0} .

Hence, this result is arrived at through simple integration of the densities found in part 2

of the proof of Theorem 2∗.

Lemma 2 Assume 0 < θ <∞ then

lim
N→∞

√
NPN{Ab} = [

√

θ/µ · h(β
√

µ/θ)− β] · w(−β,
√

µ/θ)

Proof:

First we express PN{Ab} as a function of PN{W > 0} and PN{Bl}, whose asymptotic

behavior is known ([23] and Lemma 1).

In §5.1 we give the balance equation PN{Ab} = θ · E[W ], which can be rewritten as

PN{Ab} = θ · E[W |W > 0]PN{W > 0} .

Inserting Riordan’s [35] expression for the conditional expectation we get

PN{Ab} =
(

1− 1/ρN +
(λN/θ)

Nµ/θ−1e−λN/θ

γ(Nµ/θ, λN/θ)

)

PN{W > 0} .
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Through Palm’s [32] representation we obtain after a few simple manipulations

PN{Ab} =
(

1− 1/ρN +
PN{Bl}/ρN

PN{Bl}/πN − 1 + PN{Bl}

)

PN{W > 0} .

Finally, using the connection between πN and PN{Bl} we get

PN{Ab} =
(

1− 1/ρN +
PN{Bl}/ρN

(1− PN{Bl})/(1− PN{W > 0})− 1 + PN{Bl}

)

PN{W > 0} .

Now multiplying by
√
N and taking N →∞

lim
N→∞

√
NPN{Ab} =



−β +
h(−β)(1− w(−β,

√

µ/θ))

w(−β,
√

µ/θ)



w(−β,
√

µ/θ) ,

which completes the proof since h(x)(1− w(x, y)) = 1
y
h(−xy)w(x, y) .
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