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Abstract. This paper studies the logic of a dyadic modal operator for
being obliged to meet a condition ρ before a condition δ becomes true.
Starting from basic intuitions we arrive at a simple semantics for dead-
line obligations in terms of branching time models. We show that this
notion of deadline obligation can be characterized in the branching time
logic CTL. The defined operator obeys intuitive logic properties, like
monotony w.r.t. ρ and anti-monotony w.r.t. δ, and avoids some counter-
intuitive properties like agglomeration w.r.t ρ and ‘weak agglomeration’
w.r.t. δ. However, obligations of this type are implied by the actual
achievement of ρ before the deadline. We argue that this problem is
caused by the fact that we model the obligation only from the point of
view of its violation conditions. We show that the property might be
eliminated by considering success conditions also.

1 Introduction

This paper studies the logic of a dyadic modal operator, denoted O(ρ ≤ δ), for
being obliged to meet a condition ρ before a condition δ becomes true. To satisfy
the obligation, it suffices to satisfy the condition ρ only once, at a time of ones
choosing, as long as it is before (or, ultimately, at) the point where the condition
δ occurs for the first time. We refer to the operator O(ρ ≤ δ) as a ‘deontic
deadline’ operator. We do not claim that all deadlines have a deontic aspect. For
instance, in the field of ‘scheduling’ [6], deadlines are hard constraints that have
to be satisfied under all circumstances. However, in more realistic situations,
where agents may choose to violate deadlines imposed on them by other agents,
it is much harder to deny the deontic aspect1.

Conceptually, deontic deadlines are interactions between two dimensions: a
deontic (normative) dimension and a temporal dimension. So, to study deadlines,
it makes sense to take a standard temporal logic, say LTL [8], and a standard
deontic logic, say SDL [15], and combine the two in one system. This type of
approach is for instance taken in [2]. However, this gives us a complex language
that is hard to handle, both conceptually and computationally. Conceptually,
1 If deadlines are not due to commitments towards other agents, but the result of per-

sonal decisions based on personal desires, it is more adequate to talk about ‘deadline
intentions’.



we have to keep in mind that we can express that the normative content of the
deontic operators can be temporal (e.g, being obliged to be polite always), but
also that obligations can have some (non-)dynamical behavior over time (e.g.,
always being obliged to be polite). It is easy to mix up these essentially different
assertions. The same kind of confusion threatens the study of deadlines. Is a
deadline (1) an obligation at a certain point in time to achieve something before a
certain point in time, or (2) is a deadline an obligation to achieve something, that
persists in time until a deadline is reached, or (3) is it both? In natural language
it is actually quite hard to be more precise about this distinction. Therefore, for
now, we rely on in informal understanding of the branching time temporal logic
CTL [3, 8, 4], and the standard deontic logic SDL [15], to discuss the distinction
using formulas. The CTL-operators E and A are an existential and a universal
quantifier respectively, ranging over possible future courses (branches) of time.
The CTL-operators ϕUψ (strong Until, i.e., ψ will occur, and ϕ holds up until
then), ϕUwψ (weak Until, i.e., if ψ will occur, then ϕ holds up until then), Xϕ
(ϕ holds neXt), Gϕ (ϕ holds Globally in the future), and Fϕ (at some point
in the Future ϕ), are linear time operators ranging over moments of individual
future courses of time (from now one simply called ‘possible futures’). From SDL
we use the operator O, for obligation.

The first of the above three concepts corresponds with the formula O(¬E(¬ρUδ)),
which says ‘it is obliged that on no possible future ρ is avoided up until δ becomes
true’. Alternatively we could write F (E(¬ρUδ)), which says ‘it is forbidden that
on some possible future ρ is avoided up until δ becomes true’. The second of the
above notions corresponds with the formula A(OρUwδ), which says ‘the obliga-
tion to achieve ρ persists until δ, and if δ does not occur, it persists forever’.
However, we think it is intuitive that obligations are not only discharged by the
deadline condition, but also by the realization of the condition that is obliged.
So, we assume that the obligation is preserved until the deadline or the point of
its achievement: A(OρUw(ρ ∨ δ)) (see also [2]). The third alternative, where we
have a deadline obligation that itself (the obligation to achieve something before
a certain point in time) is preserved until it is achieved or until the deadline is
met, is then characterized by the formula A(O(¬E(¬ρUδ))Uw(ρ ∨ δ)).

We are interested in deadlines that correspond to the third point (and for-
mula) above. However, the above discussion makes it clear that designing a
logic of deontic deadlines is not a trivial matter. In particular it is easy to get
confused by the distinction between the temporal content of norms and the
temporal dynamics of norms. Therefore, we will make an assumption that will
enable us to reduce the conceptual complexity, and also give a semantics using
violation constants in a standard temporal language. Our assumption is that the
second aspect of deadlines discussed above, is a general property of our logic.
This means that our logic concerns the reasoning of an agent who considers
the logical implications of deadline obligations that can only be discharged by
complying before the deadline, or by failing to meet the deadline. So, it is as-
sumed that agents do not get new obligations, or are explicitly discharged of
some of their obligations, when time evolves. In yet other words: there are no



explicit ‘deontic updates’. This implies that if in a next state the deadline nor
the achievement is realized, the deadline obligation persists. This background
assumption of the theory should appear as a theorem of our logic. Thus, we
should have that Oi(ρ ≤ δ) → X(¬(ρ ∨ δ) → Oi(ρ ≤ δ)). Or, more precise:
Oi(ρ ≤ δ) → A(Oi(ρ ≤ δ)Uw(ρ ∨ δ)).

The above discussed assumption makes it possible to study deadlines in a
standard temporal logic extended with violation predicates for violations of in-
dividual agents. In this paper we choose for the branching time temporal logic
CTL, because of its nice properties (P-complete complexity of the model check-
ing problem for CTL, versus PSCAPE-complete complexity for LTL [14]), and
its popularity in agent theory [13]. The idea of expressing the semantics of deon-
tic deadlines by characterizing violation conditions in CTL supplemented with
violation constants, was first explored in [7].

The general idea is that a violation condition holds at exactly those moments
where the agent violates a deontic deadline. This enables us to reason about
violations explicitly, and about what to do if they occur, which is a distinctive
feature of deontic reasoning. We model the deadlines themselves as propositions.
This seems a reasonable choice given that we do not want to model a deadline
in a logic of explicit time (real time). Our view is more abstract, and a deadline
is simply a condition true at some point in time. This abstract view contributes
to the relevance of the present research for other logical systems. For instance,
Rao and Georgeffs commitment strategies [12] are actually a sort of deadlines:
an agent commits to an intention until the action is performed or believed not
be feasible any longer.

2 Preliminaries: CTL

A well-formed formula ϕ of the temporal language LCTL is defined by:

ϕ,ψ, . . . := p | ¬ϕ | ϕ ∧ ψ | E(ϕUψ) | A(ϕUψ)

where ϕ,ψ represent arbitrary well-formed formulas, and where the p are
elements from an infinite set of propositional symbols P. The standard propo-
sitional abbreviations are assumed. Additionally the following abbreviations are
applied:

EXϕ ≡def E(⊥Uϕ) AXϕ ≡def ¬EX¬ϕ
EFϕ ≡def E(>Uϕ) AGϕ ≡def ¬EF¬ϕ
AFϕ ≡def A(>Uϕ) EGϕ ≡def ¬AF¬ϕ
A(ϕUwψ) ≡def ¬E(¬ψU¬ϕ) E(ϕUwψ) ≡def ¬A(¬ψU¬ϕ)

The CTL-operators have the following informal meanings:



E(ϕUψ) : there is a future for which eventually ψ will hold,
while ϕ holds until then

E(ϕUwψ) : there is a future such that, if eventually ψ will hold,
then ϕ holds until then, or forever otherwise

A(ϕUψ) : for all possible futures eventually ψ will hold,
while ϕ holds until then

A(ϕUwψ) : for all possible futures, if eventually ψ will hold,
then ϕ holds until then, or forever otherwise

EXϕ : there is a next moment for which ϕ will hold
AXϕ : at any next moment ϕ will hold
EFϕ : for some future, eventually ϕ will hold
AGϕ : for all possible futures ϕ will be preserved
AFϕ : for all futures, eventually ϕ will hold
EGϕ : there is a future that preserves ϕ

A CTL model M = (S,R, π), consists of a non-empty set S of states, an
accessibility relationR, and an interpretation function π for propositional atoms.
A full path σ in M is a sequence σ = s0, s1, s2, . . . such that for every i ≥ 0, si

is an element of S and siRsi+1, and if σ is finite with sn its final situation, then
there is no situation sn+1 in S such that snRsn+1. We say that a full path starts
at s if and only if s0 = s. We denote the state si of a full path σ = s0, s1, s2, . . .
in M by σi.

Validity M, s |= ϕ, of a CTL-formula ϕ in a world s of a modal action model
M is defined as (propositional symbols are interpreted as usual):

M, s |= E(ϕUψ) ⇔ ∃σ in M with σ0 = s, and ∃n such that:
(1) M, σn |= ψ and
(2) ∀i with 0 ≤ i ≤ n it holds that M, σi |= ϕ

M, s |= A(ϕUψ) ⇔ ∀σ in M such that σ0 = s it holds that ∃n such that
(1) M, σn |= ψ and
(2) ∀i with 0 ≤ i ≤ n it holds that M, σi |= ϕ

Validity on a CTL model M is defined as validity in all worlds of the model.
If ϕ is valid on a CTL model M, we say that M is a model for ϕ. General
validity of a formula ϕ is defined as validity on all CTL models. The logic CTL
is the set of all general validities of LCTL over the class of CTL models.

3 A dyadic deontic deadline operator

We extend the language LCTL by extending the set of propositional atoms with
an infinite set of violation constants of the form V iol(a), where a ∈ A, and
A, an infinite set of agent identifiers. Note that this extends the language only
minimally. furthermore, the formal interpretation of atoms V iol(a) is treated like
that of all other atomic propositions. So, we can view the set of propositional



constants of the form V iol(a) also as a subset of P: an infinite subset of ‘special
purpose’ propositions for the application of CTL to the normative context.

Let M be CTL model, s a state, and σ a full path starting at s. A straight-
forward modal semantics for the operators OV

a (ρ ≤ δ), where the V is only a
label to emphasize that this operator is defined in terms of V iolations, is then
defined as follows:

M, s |= OV
a (ρ ≤ δ) ⇔ ∀σ with σ0 = s,∀j :

if
M, σj |= δ and ∀0 ≤ i ≤ j : M, σi |= ¬ρ
then
M, σj |= V iol(a)

This says: if at some future point the deadline occurs, and until then the
result has not yet been achieved, then we have a violation at that point. This
semantic definition is equivalent to the following definition as a reduction to
CTL:

OV
a (ρ ≤ δ) ≡def ¬E(¬ρU(δ ∧ ¬V iol(a)))

This formula simply ‘negates’ the situation that should be excluded when
a deontic deadline is in force. In natural language this negative situation is: ‘δ
becomes true at a certain point, the achievement has not been met until then,
and there is no violation at δ’. Therefore this CTL formula exactly characterizes
the truth condition for the above defined deontic deadline operator: the semantic
conditions are true is some state if and only if the the CTL formula is true in
that state.

4 Logic Properties

What logic properties of the operator OV
a (ρ ≤ δ) does this bring us? First of

all we get monotonicity with respect to ρ (other terminology: validity of the
operator is closed under weakening of ρ)2. Monotonicity says that we have as
validities3:

|= OV
a ((ρ ∧ χ) ≤ δ) → OV

a (ρ ≤ δ)

|= OV
a (ρ ≤ δ) → OV

a ((ρ ∨ χ) ≤ δ)

This is perfectly in accordance with intuition: if ρ is made logically weaker,
it is easier to satisfy. So, if the stronger condition has to be accomplished before
2 All verifications are left to the reader.
3 To express the property we call ‘monotonicity’ it suffices to give just one of these the-

orems, because they can be derived from each other using only the rules of uniform
substitution and substitution by logical equivalents. However, to check the intuitive-
ness of monotony, especially for deontic operators, it is wise to consider both these
‘appearances’ of monotony.



δ occurs, then certainly also the weaker condition has to be accomplished before
δ occurs.

A property we do not have is agglomeration with respect to ρ, i.e.:

6|= OV
a (ρ ≤ δ) ∧OV

a (χ ≤ δ) → OV
a ((ρ ∧ χ) ≤ δ)

This shows that OV
a (ρ ≤ δ), is monotonic with respect to ρ, but is not a

normal modal operator with respect to ρ. So, it is a strictly monotonic modal
operator with respect to ρ. Exactly this same logic behavior is known from
intentions [5]: an intention for p and an intention for q do not necessarily give
an intention for p ∧ q, because we may intend p for another point in the future
then the point for which we intend q. That the behavior of deadline obligations
is similar to that of future directed intentions is not unlikely, given the intuition
that intentions can be seen as a kind of obligations to oneself. A consequence of
the absence of agglomeration is that it is consistent to have OV

a (p ≤ δ)∧OV
a (¬p ≤

δ). Consistency of obligations of the form Op and O¬p is heavily debated in
deontic logic. Here we have consistency simply because we are free to choose our
time of compliance, as long as it is before the deadline.

Also we get that the operator is anti-monotonic with respect to δ (other
terminology: validity of the operator is closed under strengthening of δ):

|= OV
a (ρ ≤ δ) → OV

a (ρ ≤ (δ ∧ γ))

|= OV
a (ρ ≤ (δ ∨ γ)) → OV

a (ρ ≤ δ)

This is perfectly in accordance with intuition: if δ is made logically stronger,
it is harder to satisfy, and if ρ already has to be accomplished before the weaker
condition occurs, it will certainly have to be accomplished before the stronger
condition occurs.

A property we do not have for OV
a (ρ ≤ δ) is ‘weak-agglomeration’ with

respect to ρ, i.e.:

6|= OV
a (ρ ≤ δ) ∧OV

a (ρ ≤ γ) → OV
a (ρ ≤ (δ ∨ γ))

This means that the deontic deadline operator OV
a (ρ ≤ δ), is strictly anti-

monotonic with respect to δ. If it would also obey weak agglomeration, it would
have been a window operator [1, 11], which means that it it would have been
a normal modal operator with respect to ¬δ [10, 9]. However, the operator is
strictly anti-monotonic. This is intuitive. Weak agglomeration should not hold,
because having to achieve something before tomorrow and having to achieve the
same thing before the end of the day does not imply that I have the choice to
do it before tomorrow or before the end of the day: it simply gives me no other
choice than to do it before the end of the day.

The combination of monotony for ρ and anti-monotony for δ gives us the
following transitivity property for the deontic deadline operator OV

a (ρ ≤ δ) 4:
4 Taking advantage of the definability in CTL, it can be shown that we actually obey

a stronger version of this property: |= OV
a (ρ ≤ δ) ∧ AG(δ → χ) ∧ OV

a (χ ≤ γ) →
OV

a (ρ ≤ γ)



|= OV
a (ρ ≤ δ) ∧OV

a (δ ≤ γ) → OV
a (ρ ≤ γ)

Also this property is intuitive: if an agent is obliged to brush his teeth before
going to bed, and take a medicine before he brushes his teeth, then he is certainly
obliged to take has medicine before going to bed.

Clearly, the deadline operator should not be symmetric. Indeed we have:

6|= OV
a (ρ ≤ δ) → OV

a (δ ≤ ρ)

Another property we do obey is reflexivity:

|= OV
a (γ ≤ γ)

This is exactly the reason why we use the symbol ‘≤’ and not the symbol ‘<’,
in the denotation for the operator. If we achieve the obliged condition at the point
of the deadline, we are still in time. In particular, if the deadline condition itself
coincides with the condition we are obliged to achieve, whatever this condition
is, we are always ‘just in time’ to meet the deadline. However, some would say
that it is counter-intuitive to actually always be obliged to achieve any γ up and
until γ.

We argue that the situation is comparable to the axiom O> of standard
deontic logic. The common denominator of these properties is that they concern
an obligation for something that actually can never be violated. The point is
that although it seems strange that our logic validates obligations for things
that cannot be violated, it is not harmful either. No agent will ever let his
decision making be influenced by obligations for things that are true inevitably
and always. In other words, such obligations are void.

Let us now consider the related issue of having a tautology or contradiction
as deadline, or as a condition to achieve. We first consider the case where ρ
equals >. We have that:

|= OV
a (> ≤ δ)

This is related to the monotony with respect to ρ; we can weaken ρ up until it
coincides with >. This situation is similar to standard deontic logic’s O>, which
we already discussed.

Just like we can weaken ρ up until >, we can strengthen δ up until ⊥ (from
the anti-monotony with respect to δ).

|= OV
a (ρ ≤ ⊥)

Clearly, ⊥ is a condition that will be never met. So, an obligation to perform
something before the (absent) point that ⊥, can never be violated. We can
postpone the obligation forever, without ever falling pray to a violation. In our
view, such obligations are void. Therefore, also this case is similar to standard
deontic logic’s O>.



Another issues is the case where ρ equals ⊥ or δ equals >. These conditions
deserve extra attention. First we discuss the case where ρ equals ⊥. This concerns
the question whether something general holds for obligations for conditions that
under no circumstance can be achieved. One view is that obligations of the form
Oa(⊥ ≤ δ) are impossible or inconsistent. After all, it seems reasonable to take
the position that one can never be obliged to achieve the impossible. This view
would demand that we validate ¬OV

a (⊥ ≤ δ), which is similar to standard deontic
logic’s D-axiom ¬O⊥. However, it is clear that we do not validate ¬OV

a (⊥ ≤ δ).
In our semantics, this would mean that we validate EF (δ ∧ ¬V iol(a)), which
directly contradicts our intuitions: it is not the case that any condition δ will be
met eventually. But this does not answer the question whether we should obey
¬OV

a (⊥ ≤ δ). We belief we should not. Note first that our setting is weaker than
that of standard deontic logic. In particular, since we do not have agglomeration,
we can satisfy OV

a (p ≤ δ)∧OV
a (¬p ≤ δ). This simply says that before δ, we have

to satisfy p at some point, and we have to satisfy ¬p at some point. That this
cannot be the same point does not exclude the conjunction. However, this does
not yet explain we can also satisfy OV

a (⊥ ≤ δ). This is because this is no ordinary
obligation but a deadline obligation. As we already discussed, we can have that
the deadline itself is a condition that can never occur. And we argued that for
that situation, the obligation is trivially met. But then we can also satisfy the
formula OV

a (⊥ ≤ δ) by choosing ⊥ for δ. We get OV
a (⊥ ≤ ⊥), which is is not

only satisfiable, but also valid. So, obligations of the form OV
a (⊥ ≤ δ) are not

inconsistent; in particular they can be met if δ never occurs. Intuitively: an agent
can consistently meet up to the obligation to do something impossible before δ
just in case that δ will never occur. Analogously, we can discuss the case where
δ equals >. Now the agent is obliged to achieve ρ now. In our semantics this is
possible. Therefore OV

a (ρ ≤ >) is satisfiable. Similar to the above case, we may
even choose ρ to be > to get the valid formula OV

a (> ≤ >), which says: an agent
is obliged to obey a tautology now.

However, from the above discussion, it follows that there is a deadline obli-
gation that really should be inconsistent: OV

a (⊥ ≤ >): agents cannot achieve
the impossible now, since, by definition, the present state is not an impossibility.
And indeed, we have the following property:

|= ¬OV
a (⊥ ≤ >)

There is one property of the logic we did not discuss yet, namely, the back-
ground assumption mentioned in the introduction. Indeed, we satisfy

|= Oi(ρ ≤ δ) → A(Oi(ρ ≤ δ)Uw(ρ ∨ δ))

To see that this holds, it is easiest to fall back on the semantics of the
operator. The semantics says that on futures (branches of time) where δ occurs
at some point t, while until then ρ has not been done once, there is a violation
at t. Now, if we follow such a branch for some time-steps in the future, and we
do not meet a δ, nor do we meet a ρ, then, the deadline conditions do still apply:



still it holds that if δ will occur later on, we get a violation if we do not meet a
ρ until then. But, if we do meet ρ or δ, the conditions are no longer guaranteed.

5 A counter-intuitive logic property

The operator defined in the previous section obeys intuitive properties. However,
there is a property, or more precise, a class of properties which are satisfied by it,
but whose intuitiveness is disputable. These possibly counter-intuitive properties
are caused by the definition of a deadline from the viewpoint of its violation
conditions only. The idea behind the definition was ‘give an exact temporal
characterization of the conditions under which the deadline is violated ’. This
idea is correct as long as we are interested in the temporal conditions implied
by a deontic deadline. But what about the temporal conditions that give rise
to a deontic deadline? It turns out that here something might be missing. For
instance, we have the following property:

|= ρ → OV
a (ρ ≤ δ)

It says that the deadline obligations of the previous section are implied by
the actual achievement of ρ in the current state. And, this property is only an
instance of a more general, stronger property that holds for the deontic deadline
operator of the previous section. The obligation is valid in any state where it is
sure that the deadline will be met. In particular:

|= ¬E(¬ρUδ) → OV
a (ρ ≤ δ)

This is easy to verify, by substituting the CTL characterization of the dead-
line obligation: ¬E(¬ρUδ) → ¬E(¬ρU(δ ∧ ¬V iol(a))). This must hold, since, if
¬E(¬ρU(δ∧¬V iol(a))) is anti-monotonic with respect to δ, then also ¬E(¬ρUδ)
is. So, by strengthening δ to δ ∧ ¬V iol(a) we preserve truth.

Now the question rises whether we cannot defend intuitiveness of this prop-
erty in the same way as we defended intuitiveness of, for instance |= OV

a (γ ≤ γ)
and |= OV

a (> ≤ δ) and |= OV
a (ρ ≤ ⊥). We might argue that if ρ is unavoidable,

in particular, if it is true now, then the deadline OV
a (ρ ≤ δ) is void, because it

concerns an achievement that is met anyway.
However, we consider the issue whether or not ρ → OV

a (ρ ≤ δ) to be slightly
different from, for instance, the issue whether or not OV

a (> ≤ δ). Whereas the
second obligation is void because the obligation concerns a tautology, i.e., some-
thing that is considered to be true inevitably and always, the first obligation
results from a condition that can be considered to be only occasionally true.
Therefore, we would like to have a mechanism that enables us to avoid this
property while retaining the good properties.

6 A solution

We argue that this problem is caused by the fact that we model the obliga-
tion only from the point of view of its violation conditions. We show that the



undesired property is eliminated by considering success conditions also. The so-
lution we arrive at, preserves the good properties. First we investigate how we
can define a deadline operator OS

a (ρ ≤ δ) using success conditions (proposi-
tional ‘ideality’ constants) only. We show that if we look at the operator from
this more positive angle, we arrive at similar logic properties. However, also this
approach has a (quite obvious) counter-intuitive consequence. We show that to
eliminate all counter-intuitive properties we have to combine both failure and
success conditions.

We extend the language LCTL with an infinite set of ideality constants of
the form Idl(a), where a ∈ A, and A, the infinite set of agent identifiers.

Let M be CTL model, s a state, and σ a full path starting at s. We can
now define a success condition based semantics for a deontic deadline operator
OS

a (ρ ≤ δ), where the S stands for Success, as follows:

M, s |= OS
a (ρ ≤ δ) ⇔ ∀σ with σ0 = s, ∀j :

if
M, σj |= δ
then
∃0 ≤ i ≤ j : M, σi |= ρ ∧ Idl(a)

This says: for all possible futures it holds that if at some point the deadline
occurs, then until then, there has at least been one ideal state where ρ has been
achieved. This semantic definition is equivalent to the following definition as a
reduction to CTL:

OS
a (ρ ≤ δ) ≡def ¬E(¬(ρ ∧ Idl(a))Uδ)

Note that due to its form, this definition also obeys all the logic properties
discussed in the previous section. To be more precise, also the operator OS

a (ρ ≤ δ)
is a monotonic operator with respect to ρ, and an anti-monotonic operator with
respect to δ. And, in addition, it does not obey the counter-intuitive ρ → OS

a (ρ ≤
δ), because now it requires the presence of an ideal state to have an obligation
of the form OS

a (ρ ≤ δ). To be more precise, we have that:

6|= ¬E(¬ρUδ) → OS
a (ρ ≤ δ)

This follows, because, as we argued in the previous section, the construct
¬E(¬ρUδ), is not closed under agglomeration with respect to ρ, which implies
that it is certainly not anti-monotonic (closed under strengthening) with respect
to ρ. So ρ cannot be strengthened to ρ ∧ Idl(a) while preserving truth.

However, obviously, also with this operator something is wrong. We have
that:

|= OS
a (ρ ≤ δ) → ¬E(¬ρUδ)

That is, deadline obligations OS
a (ρ ≤ δ) cannot be violated; success is guar-

anteed. Before giving the remedy, let us first explain why the above property is
valid. Again this follows from the properties we discussed in the previous section.



In particular, the construction ¬E(¬(ρ∧ Idl(a)Uδ) is monotonic with respect to
ρ ∧ Idl(a), so weakening ρ ∧ Idl(a) to ρ, does not destroy truth.

Now how can we combine the intuitions from the two definitions so far, to
arrive at a deadline operator that excludes all counterintuitive properties? We
will not give a the semantic truth-conditions of this third and final operator
we define, and leave it to a characterization as a CTL formula (the semantic
truth-conditions can easily be obtained by combining the conditions for the two
defined operators):

Oa(ρ ≤ δ) ≡def ¬E(¬(ρ ∧ Idl(a))U(δ ∧ ¬V iol(a))

First of all, it is clear that this operator preserves the good properties. Due
to its form we have monotonicity with respect to ρ, anti-monotonicity with
respect to δ, etc. But we also avoid the counter-intuitive property ¬E(¬ρUδ) →
Oa(ρ ≤ δ), because we have strengthened ρ to ρ ∧ Idl(a). And we avoid the
counter-intuitive Oa(ρ ≤ δ) → ¬E(¬ρUδ), because we have strengthened δ to
δ ∧ ¬V iol(a) (which means that δ is weaker than δ ∧ ¬V iol(a)). Informally, the
formula says that there is a deadline obligation only if there is a violation if the
achievement is not met at the deadline, or there is success if the achievement is
accomplished before the deadline.

7 Discussion and conclusion

In this paper we discussed intuitions concerning the notion of ‘being obliged to
obey a condition ρ before a condition δ occurs’. We made an assumption that
enabled us to study this notion in the logic CTL, minimally extend with a set
of violation constants. We defined a dyadic modal operator for the mentioned
notion, and showed that it obeys several intuitive properties. Finally, to prevent
the operator from obeying some counter-intuitive property also, we proposed to
consider success conditions.

It would be interesting to test the logic, using a CTL-theorem prover. How-
ever, to our knowledge, there is still not such a prover available. The apparent
absence of such a prover is quite surprising, given the popularity of CTL as a tem-
poral specification language, and the relatively good computational complexity
of the logic.

We thank Leendert van der Torre, Joris Hulstijn, Mehdi Dastani and Henry
Prakken for lively and illuminating discussions on this subject.
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