
Designing a Hardware in the Loop Wireless
Digital Channel Emulator for Software Defined

Radio

Janarbek Matai, Pingfan Meng, Lingjuan Wu, Brad Weals, and Ryan Kastner

Department of Computer Science and Engineering,

University of California, San Diego

Toyon Research Corporation

December 11

FPT’2012

Motivation

Problem

Wireless system testing and verification Difficult

Current wireless system testing methods

Field testing Expensive, time consuming and
difficult to repeat

Simulation  limited by fidelity, excessive run time

2

Wireless Channel Emulator (WCE)
 Fills the gap left between simulation and field testing
 Repeatability, high-fidelity, and the opportunity to test complete

radio
 Software implementation is not feasible due to amount of

computation for large network

Background

Hardware in the Loop Wireless
Channel Emulator (WCE)

 Hardware in the loop (HWIL) Wireless Channel

Emulator (WCE) implementation on an FPGA platform
is purposed using High-Level Synthesis Tool.

3

Top level concept of WCE

FPGA

Background

Scenario

 The signal takes multiple paths each with a different Path delay
and Path gain

4

36,000 km

Background

Each path has different

delay and gain

Conceptual Multipath Channel
Modeling in FPGA

5

 Each channel composed of multiple summed paths

 Delay, path gain, fading, and Doppler modeled in each path

 In this work, we focus on implementing a single channel emulator
with multi path

Background

Single Channel Emulator Model

6

Single channel emulator model

 si: Previous n+1 input complex samples

 so: Complex sample output at present time

 w(t): Dynamically changing set of weights (gain and delay)

6

i

n

i
itt twsiso)(

0






















iiiii

N

i

iiii

ji

KN

ji

rtapsigainsitapsrgainsiso

itapsigainsrtapsrgains

weight

_*__*__

_*__*_so_r

*tapline= taps

delayline = tapline

0

i

,

0,

iji

indexij

Complex sample calculation (channel function)

Path delays

Path gains

channelFunction

Background

Block Diagram of WCE

SampleOut

pathDelays

pathVelocities

indexStart weight

X

tapline

X

taps X

SampleIn

ChannelFunction

gains

CarrierFreq,…

Signal

generator

FIR (Filter)

Interpolate cordic

Doppler

X

pathGains

 Target performance
 pathDelays and ChannelFunction: 30 Mhz
 pathGains: 40kHZ

Hardware Design

High Level Synthesis

 High Level Synthesis

 Creates an RTL implementation
from C level source code

 Why use HLS ?

 A good digital WCE has to handle
wide range of dynamically changing
parameters such as Doppler effect,
fast fading, and multipath

 HLS provides easy design space
exploration with different
parameters

E.g., varying number of paths in
a channel

Script with
Constraints

………………
 ………………

VHDL
Verilog

System C

HLS

Constraints/
Directives

……………
…

……………
…

C, C++,
SystemC

RTL Synthesis

Courtesy to Xilinx

Hardware Design

Process of WCE design with HLS

1. Baseline design

 Synthesizable C code

2. Restructured design

 Manually optimizing C code for HW

3. Bit accurate design

 Bit-width optimization

4. Pipelining, Unrolling and Partitioning (PUP)

 Parallelizing computation

 9

Hardware Design

1. Baseline design

Main goal:
Synthesizable

 Things to be done
Matlab  Initial C
Initial C  Optimized C
Remove dependencies
Remove dynamic memory…

1

10

100

1000

10000

100000

1000000

10000000

Matlab (ns) C Initial (ns) C Optimized
(ns)

Baseline (ns)

N
s

(L
o

g
Sc

al
e

)

Performances

PathDelays PathGains

-1000X

-29X
-106X

-156X
-18X -13X

Hardware Design

SW HW

1. Baseline - Results

11

Baseline

PathDelays: 3180X slower than target (30 Mhz)

PathGains: 17X slower than target (40 kHz)

Hardware Design

2. Restructured Design

 Two goals:

To optimize the code itself without using any HLS
pragmas

To write a “C code” targeting the architecture

 E.g.,

Loop merging

Expression balancing

Loop unrolling

…

12

Hardware Design

2. Restructured Design - Example

 Loop merging

13

for (int p = 0;p<N; p++){

 for (int i = 0;i<SIZE; i++){

 for (int j = 0;j<SIZE2; j++){

 FIRinputs[p][i][j] = …

 }

 }

 }

for (int p= 0;p<N; p++){

 for (int i = 0;i<SIZE; i++){

 FIRinputs[p][i][0] = …

 FIRinputs[p][i][1] = …

 }

 }

for (int p = 0; p<N; p++){

 for(int i=0;i<SIZE; i++){

 t1=t1+js[i]*FIRin[p][i][0];}

 for(int i=0;i<SIZE; i++){

 t2=t1+js[i]*FIRin[p][i][1];}

 }

for (int p = 0; p<N; p++){

 for(int i=0;i<SIZE; i++){

 t1=t1+js[i]*FIRin[p][i][0];

 t2=t1+js[i]*FIRin[p][i][1];

 }

…

 }

t1=t1+js[i]*FIRin[p][i][0];

t2=t1+js[i]*FIRin[p][i][1];

t1_1=js[i]*FIRin[p][i][0];

t1=t1+t1_1;

t2_1=js [i]*FIRin[p][i][1];

t2=t2+t2_1;

 Expression balancing

 Loop unrolling

41250 29730

50215 41250

29730 20785

 Clock cycle reduction of pathGains module

Hardware Design

14

2. Restructured Design – Results

 Restructured design vs. Target

PathDelays: 523X slower than target (30 Mhz)

PathGains: 7X slower than target (40 kHz)

ChannelFunction: 229X slower than target (30 Mhz)

Hardware Design

3. Bit accurate design

 By default, HLS C/C++ have standard types
 E.g., char (8-bit), int (32-bit),..

 Minimizing bit widths will result in smaller & faster
hardware
 E.g., ap_fixed and ap_int

 Bit accurate design of PathGains module
 55 types are set to use fixed point type

Hardware Design

3. Bit accurate design - Results

Bit accurate design vs. Target

PathDelays: 47X slower than target (30 Mhz)

PathGains: 3X slower than target (40 kHz)

ChannelFunction: 133X slower than target (30 Mhz)

Hardware Design

4. Pipelining and Partitioning

On top of bit accurate design, PUP is applied

Pipeline

Improves throughput

Default: Target initiation interval(II) of 1
II=2,II=3,…

Partition

BRAMs limit pipelining  Partition large
BRAMs into smaller BRAMS or into registers

17

Hardware Design

4. Pipelining and Partitioning - Example

 pathDelays
Optimizations: Partition: 5 BRAM, Pipeline: II=1
DSP48: 1930 (57%),
 FF: 424786 (85%),
 LUT: 5634230 (651%)
 Throughput: 47X than bit accurate design

 pathGains
 Optimizations: Partition: 12 BRAM of 42, Pipeline/Unroll
 DSP48E: 4786 (82%),
 FF: 2039934421 (68%),
 LUT: 2212138893 (75%)
 Throughput: 15X than bit accurate design

18

Hardware Design

4. Pipelining and Partitioning -Results

19

Hardware Design

Bit accurate design vs. Target

PathDelays 0.6X slower than target (30 Mhz)

PathGains 0.2X slower than target (40 kHz)

ChannelFunction 1.1X slower than target (30 Mhz)

Final Results

20

1

8

64

512

4096

32768

262144

PathDelays PathGains ChannelFunction

N
S

(l
o

g
sc

al
e

)

Baseline (ns) Restructured (ns) Bit-width (ns) PUP (ns) SW Optimized (ns)

47X

-1.5X

-106X

-17X

-13X
-5X

-2X

6.4X -4.8X
-2X

42X

Design Space Exploration

DSE of WCE for Different Number of Paths

 HLS allows easy DSE of WCE for different parameters
E.g., number of paths 1,2,3,4,5

21

0

500

1000

1500

2000

2500

3000

1 2 3 4 5

N
u

m
b

e
r

o
f

Sl
ic

e
s

Number of paths

PathDelays_slices PathGains_slices ChannelFunction_slices

Design Space Exploration

Results for Five Paths

Slices LUT FF DSP48E BRAM

PathDelays 584 1843 411 30 0

PathGains 2783 8756 7044 53 30

ChannelFunction 1131 3469 1798 40 0

22

Clock
Cycles

Clock Period (ns)/ Frequency Latency(ns)/Throughput

PathDelays 4 5.394 /184 Mhz 21 / 47 Mhz

PathGains 501 9.97 / 100 Mhz 4994 /0.2 Mhz

ChannelFunction 6 6.62 /151 Mhz 37 /26 Mhz

Resource (xc6vlx240t)

Performance

Results

Design Effort

23

Design Days spend Tasks

Baseline 25.9% (28 hours) Understanding the code
Converting matlab to C++,
Removing library dependency,
Writing HLS synthesizable code

Restructured code 22.2% (24 hours) Manually loop merging,
Expression balancing,
Loop unrolling

Bit Accurate Design 29.6% (32 hours) Calculation of 57 fixed point type
widths (pathGains: 36, PathDelays:19,
ChannelFunction: 2)

Optimized Design 7.4% (8 hours) Optimizing using directives

Collecting
Results/DSE/Present
ing

14.8% (16 hours) DSE, Collecting results, Presenting

Total ~108 hours

Conclusion

 Designed single channel wireless emulator using HLS tool.

HLS provides easy parameterization of WCE design.

 We plan to extend this work to multiple channel emulator
and make end-to-end system

 Lessons Learned

Achieving target performance and area depends

Writing a “C Code” targeting architecture is essential

Application and code size

2 optimization pragmas (pipeline, partition out of
33) + Restructured code+ Bit Width  Target goal

24

