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Motivation 

Problem 

Wireless system testing and verification Difficult 

Current wireless system testing methods 

Field testing Expensive, time consuming and 
difficult to repeat 

Simulation  limited by fidelity, excessive run time  
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Wireless Channel Emulator (WCE) 
 Fills the gap left between simulation and field testing 
 Repeatability, high-fidelity, and the opportunity to test complete 

radio  
 Software implementation is not feasible due to amount of 

computation for large network 
 

Background 



Hardware in the Loop Wireless  
Channel Emulator (WCE) 

 
 Hardware in the loop (HWIL) Wireless Channel 

Emulator (WCE) implementation on an FPGA platform 
is purposed using High-Level Synthesis Tool.  
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Top level concept of WCE 

FPGA 

Background 



Scenario 

 The signal takes multiple paths each with a different Path delay 
and Path gain 
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36,000 km 

Background 

Each path has different 

delay and gain 



Conceptual Multipath Channel 
Modeling in FPGA 
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 Each channel composed of multiple summed paths 

 Delay, path gain, fading, and Doppler modeled in each path 

 In this work, we focus on implementing a single channel emulator 
with multi path 

 

 

 

Background 



Single Channel Emulator Model 
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Single channel emulator model 

 
 si: Previous n+1 input complex samples 

 so: Complex sample output at present time 

 w(t): Dynamically changing set of weights (gain and delay) 
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Complex sample calculation (channel function) 

Path delays 

Path gains 

channelFunction 
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Block Diagram of WCE 

SampleOut 
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 Target performance 
 pathDelays and ChannelFunction: 30 Mhz 
 pathGains: 40kHZ 

Hardware Design 



High Level Synthesis 

 High Level Synthesis 

 Creates an RTL implementation 
from C level source code 

 Why use HLS ? 

 A good digital WCE has to handle 
wide range of dynamically changing 
parameters such as Doppler effect, 
fast fading, and multipath 

 HLS provides easy design space 
exploration with different 
parameters 

E.g., varying number of paths in 
a channel 

Script with 
Constraints 

……………… 
 ……………… 

 

 

VHDL 
Verilog 

System C 

 

HLS 

Constraints/ 
Directives 

……………
… 
 

……………
… 
 

 

C, C++, 
SystemC 

 

RTL Synthesis 

Courtesy to Xilinx  

Hardware Design 



Process of WCE design with HLS 

1. Baseline design 

 Synthesizable C code 

2. Restructured design 

 Manually optimizing C code for HW  

3. Bit accurate design 

 Bit-width optimization 

4. Pipelining, Unrolling and Partitioning (PUP) 

 Parallelizing computation 
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Hardware Design 



1. Baseline design 

Main goal: 
Synthesizable 
 

 Things to be done 
Matlab  Initial C 
Initial C  Optimized C 
Remove dependencies 
Remove dynamic memory… 
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1. Baseline - Results 
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Baseline 

PathDelays: 3180X slower than target (30 Mhz)  

PathGains: 17X slower than target (40 kHz) 

Hardware Design 



2. Restructured Design  

 Two goals:  

To optimize the code itself without using any HLS 
pragmas 

To write a “C code” targeting the architecture 

 E.g.,  

Loop merging 

Expression balancing 

Loop unrolling  

… 
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Hardware Design 



2. Restructured Design  - Example 

 Loop merging 
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for (int p = 0;p<N; p++){ 

       for (int i = 0;i<SIZE; i++){ 

            for (int j = 0;j<SIZE2; j++){  

            FIRinputs[p][i][j]  = … 

            } 

        } 

  } 

for (int p= 0;p<N; p++){ 

   for (int i = 0;i<SIZE; i++){ 

      FIRinputs[p][i][0]  = … 

      FIRinputs[p][i][1]  = …             

   } 

 } 

for (int p = 0; p<N; p++){  

     for(int i=0;i<SIZE; i++){ 

       t1=t1+js[i]*FIRin[p][i][0];} 

 

    for(int i=0;i<SIZE; i++){ 

       t2=t1+js[i]*FIRin[p][i][1];} 

  } 

for (int p = 0; p<N; p++){  

     for(int i=0;i<SIZE; i++){ 

       t1=t1+js[i]*FIRin[p][i][0]; 

        t2=t1+js[i]*FIRin[p][i][1]; 

     } 

… 

  } 

t1=t1+js[i]*FIRin[p][i][0]; 

t2=t1+js[i]*FIRin[p][i][1]; 

t1_1=js[i]*FIRin[p][i][0]; 

t1=t1+t1_1; 

t2_1=js [i]*FIRin[p][i][1]; 

t2=t2+t2_1; 

 Expression balancing 

 Loop unrolling 

41250 29730 

50215 41250 

29730 20785 

 Clock cycle reduction of pathGains module 

Hardware Design 
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2. Restructured Design – Results  

 Restructured design vs. Target 

PathDelays: 523X slower than target (30 Mhz)  

PathGains: 7X slower than target (40 kHz)  

ChannelFunction: 229X slower than target (30 Mhz)  

Hardware Design 



3. Bit accurate design 

 By default, HLS C/C++ have standard types 
 E.g., char (8-bit), int (32-bit),.. 

 Minimizing bit widths will result in smaller & faster 
hardware 
 E.g., ap_fixed and ap_int 

 Bit accurate design of PathGains module 
 55 types are set to use fixed point type 

 

 

Hardware Design 



3. Bit accurate design - Results  

Bit accurate design vs. Target 

PathDelays: 47X slower than target (30 Mhz)  

PathGains: 3X slower than target (40 kHz)  

ChannelFunction: 133X slower than target (30 Mhz)  

Hardware Design 



4. Pipelining and Partitioning 

On top of bit accurate design, PUP is applied 

Pipeline 

Improves throughput  

Default: Target initiation interval(II) of 1 
II=2,II=3,… 

Partition 

BRAMs limit pipelining  Partition large 
BRAMs into smaller BRAMS or into registers   
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4. Pipelining and Partitioning - Example 

 pathDelays 
Optimizations: Partition: 5 BRAM, Pipeline: II=1 
DSP48: 1930 (57%),  
 FF: 424786 (85%),  
 LUT: 5634230 (651%) 
 Throughput: 47X than bit accurate design 

 pathGains 
 Optimizations: Partition: 12 BRAM of 42, Pipeline/Unroll 
 DSP48E: 4786 (82%),  
 FF: 2039934421 (68%),  
 LUT: 2212138893 (75%) 
 Throughput: 15X than bit accurate design 
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4. Pipelining and Partitioning -Results 

19 

Hardware Design 

Bit accurate design vs. Target 

PathDelays 0.6X slower than target (30 Mhz)  

PathGains 0.2X slower than  target (40 kHz)  

ChannelFunction 1.1X slower than target (30 Mhz)  



Final Results 
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DSE of WCE for Different Number of Paths 

 HLS allows easy DSE of WCE for different parameters 
E.g., number of paths 1,2,3,4,5 
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Results for Five Paths 

Slices LUT FF DSP48E BRAM 

PathDelays 584 1843 411 30 0 

PathGains 2783 8756 7044 53 30 

ChannelFunction 1131 3469 1798 40 0 
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Clock 
Cycles 

Clock Period (ns)/ Frequency Latency(ns)/Throughput 

PathDelays 4 5.394 /184 Mhz 21 / 47 Mhz 

PathGains 501 9.97 / 100 Mhz 4994 /0.2 Mhz 

ChannelFunction 6 6.62 /151 Mhz 37 /26 Mhz 

Resource (xc6vlx240t) 

Performance 

Results 



Design Effort 

23 

Design Days spend Tasks 

Baseline 25.9% (28 hours) Understanding the code 
Converting matlab to C++,  
Removing library dependency,  
Writing HLS synthesizable code  

Restructured code 22.2% (24 hours) Manually loop merging, 
Expression balancing, 
Loop unrolling 

Bit Accurate Design 29.6% (32 hours) Calculation of 57 fixed point type 
widths (pathGains: 36, PathDelays:19, 
ChannelFunction: 2) 

Optimized Design 7.4% (8 hours) Optimizing using directives 

Collecting 
Results/DSE/Present
ing 

14.8% (16 hours) DSE, Collecting results, Presenting 

Total ~108 hours  



Conclusion 

 Designed single channel wireless emulator using HLS tool. 

HLS provides easy parameterization of WCE design.  

 We plan to extend this work to multiple channel emulator 
and make end-to-end system 

 Lessons Learned 

Achieving target performance and area depends 

Writing a “C Code” targeting architecture is essential 

Application and code size 

2 optimization pragmas (pipeline, partition out of 
33) + Restructured code+ Bit Width   Target goal 
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