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Abstract

Long short-term memory (LSTM) models based on specialized deep neural network-based architecture have emerged 
as an important model for forecasting time-series. However, the literature does not provide clear guidelines for design 
choices, which a�ect forecasting performance. Such choices include the need for pre-processing techniques such as 
deseasonalization, ordering of the input data, network size, batch size, and forecasting horizon. We detail this in the 
context of short-term forecasting of global horizontal irradiance, an accepted proxy for solar energy. Particularly, short-
term forecasting is critical because the cloud conditions change at a sub-hourly having large impacts on incident solar 
radiation. We conduct an empirical investigation based on data from three solar stations from two climatic zones of 
India over two seasons. From an application perspective, it may be noted that despite the thrust given to solar energy 
generation in India, the literature contains few instances of robust studies across climatic zones and seasons. The model 
thus obtained subsequently outperformed three recent benchmark methods based on random forest, recurrent neural 
network, and LSTM, respectively, in terms of forecasting accuracy. Our �ndings underscore the importance of consider-
ing the temporal order of the data, lack of any discernible bene�t from data pre-processing, the e�ect of making the 
LSTM model stateful. It is also found that the number of nodes in an LSTM network, as well as batch size, is in�uenced 
by the variability of the input data.
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1 Introduction

Solar radiation is one of the most important components 
of alternative sources of energy [32, 37]. Accurate predic-
tion of solar radiation is essential for several tasks like plan-
ning power generation, matching peak demand, estimat-
ing surplus or even to make purchases [12]. Generation 
of solar power has signi�cant variability because of its 
strong dependence on atmospheric conditions [31, 33, 
47]. In the context of India, energy demand has been con-
tinuously on the rise because of the rapid development 

and expansion of urban areas. India is among the top �ve 
counties in terms of solar energy potential with the avail-
ability of su�cient solar hot-spots. Hence, research on 
solar energy is quite critical for India [40].

Most solar energy forecasting has been done using 
Numerical Weather Prediction (NWP) [4] models, also 
referred to as physical models in the literature. Statistical 
models like Auto-Regressive Integrated Moving Average 
(ARIMA), Generalized Autoregressive Conditional Heter-
oskedasticity (GARCH), etc., and machine learning models 
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like Support Vector Regression (SVR), Arti�cial Neural Net-
work (ANN), etc., have also been used for prediction.

Currently, machine learning models have emerged 
as state-of-the-art solar forecasting models for one to 
few hours ahead of forecasting [47]. Presently, many of 
the studies report superior performance exhibited by 
deep learning models as compared to machine learning 
models for classi�cation, regression, and time series fore-
casting [3]. As noted by LeCun et al. [25] in their seminal 
paper, that deep learning models were doing better than 
machine learning models in many application domains 
because of their superior capability of learning complex 
patterns from the raw data. LSTM is a deep learning-based 
model specially designed to handle sequence data. Some 
of the advantages of the LSTM are it can handle nonlin-
earity in data well [24], and it can memorize long tempo-
ral relationships in data, etc. Over the years, LSTM-based 
models have shown their e�cacy across various applica-
tion domains like language models [9, 46], speech [49], 
weather forecasting [45], tra�c forecasting [52], etc.

While LSTM models are considered state-of-the-art for 
forecasting in diverse application domains like anomaly 
detection [10], text classi�cation [6], malware classi�ca-
tion [20], the issue of representing the time-series does 
not seem to have a clear approach. Either the time-series 
data is represented in a (a) Supervised setup, where the 
previous time steps are considered to be independent of 
each other and are treated as separate features, or in a (b) 
Non-Supervised setup, where the ordering and time steps 
are given importance. Suppose we have a time-series of 
length n given by X

1
 , X

2
 , X

3
,..., X

n
 . A sequence, X

1
 , X

2
 , X

3
,..., 

X
n
 is converted into the following representation, {[X
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]}, assuming a window of size four. The observations are 

separated by a comma and are enclosed by curly braces. 
Each observation consists of two parts, the input features 
and the output both enclosed by square brackets. It is to 
be noted, rather than using all the observations in a single 
go, it can be broken into windows as shown earlier. While 
�nding the parameters of the network often rather than 
using all the windows, a subset of the windows is used. 
These subsets are called batches. In a Non-Supervised 
setup, there is a choice to maintain the temporal order 
in three ways a) Within the same window, b) Within the 
batch, and c) Between batches. In paper, [14] and [50], the 
authors have treated the input features as independent 
of time.

Another important design issue is data pre-processing 
such as identi�cation and removal of trend and seasonal-
ity. It is observed that some authors have made their data 
stationary before any model �tting [3, 13, 44], whereas 
some have not pre-processed the data [38].

Hence, there is a general disagreement between design 
choices for an LSTM, such as preserving the temporal order 
of the data and the need for pre-processing. Apart from the 
above-mentioned two design issues, it is also perceived that 
a few other issues like the batch size, the prediction horizon, 
adjustments for inherent input data variability can impact 
model performance. In this paper, we consider the design 
questions enlisted below.

• Whether LSTM bene�ts from pre-processing steps such 
as seasonality removal.

• Whether to set up the problem as a Supervised or Non-
Supervised problem and in the latter case, whether it is 
necessary to consider dependency among batches.

• How does the forecasting performance of an LSTM 
change with the increase in the prediction horizon, espe-
cially in context to the season?

• What is the e�ect of variability in input data on model 
complexity?

In this paper, we have attempted to investigate the above-
listed questions systematically in the context of short-term 
intra-day forecasting of GHI using LSTM. The major contribu-
tions of this paper are enlisted as follows.

• An empirical study has been conducted for three solar 
stations, two seasons, and two climatic zones in India. 
It may be noted that such a study is quite rare in India, 
despite its rich solar energy potential.

• The design questions enlisted have been empirically 
evaluated, and important recommendations like con-
sidering the temporal order of the data (Non-Supervised 
setup), no pre-processing, and preserving dependency 
between batches have been made.

• It has been established that the forecasting performance 
is dependent on batch size and variability of the input 
data.

• It has also been demonstrated that the number of nodes 
required by the LSTM network increases with an increase 
in the variability of the input data.

• The model obtained using these recommendations pro-
duces superior forecasting performance applying RF, 
RNN, and LSTM, respectively.

The rest of the paper is organized as follows. In Sect. 2, we 
have performed a detailed literature review of machine 
learning and deep learning for solar energy forecasting. 
The research e�orts have been also categorized in terms of 
the length of the forecasting horizon. In Sect. 3, we have 
provided a brief outline of the LSTM architecture. In Sect. 4, 
we have discussed the materials and methods employed 
in setting up the experiment. In Sect. 5, the results of the 
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forecasting models are presented along with a critical analy-
sis. The paper concludes with a discussion in Sect. 6.

2  Related work

In this section, a brief overview of current research for the 
prediction of GHI has been presented. It may be noted that 
the approach of building physical models for estimating 
GHI using classical equations [27] has not been included in 
the scope of the furnished review. There is also a conscious 
e�ort to include studies conducted in India. In Fig. 1, the 
research papers or articles have been categorized in terms 
of the type of the forecasting model, prediction on di�er-
ent lengths of forecast horizons, and the number of input 
variables of the model.

2.1  Statistical and machine learning models

Yang et al. [51] have analyzed three approaches for one 
hour ahead solar irradiation forecasting based on the 
exponential smoothing technique (ETS) applied to cloud 
cover. Kashyap et al. [21] have proposed a model based on 
ANN to forecast GHI for a one-hour horizon. Feng et al. [11] 
have developed a one hour ahead GHI forecasting model 
using SVM classifier, with 9.75% nRMSE. Reikard et  al. 
[42] have used their forecasting model for several hori-
zons ranging from 15 minutes to three hours. They have 
reported that for a 15-minute horizon, the persistence 
model and regression model outperformed the frequency 
domain model. For a 45 minute horizon, the performance 
of the above three models was close. At the one-hour 

horizon, ARIMA achieved better accuracy when applied to 
the Clear Sky Index. For a two-hour horizon, the frequency 
domain model performed better than others. Finally, for 
a three-hour horizon, the performances of the frequency-
domain approach and ARIMA were similar. Alfadda et al. 
[2] have shown that a multi-layer perceptron (MLP) works 
better as compared to SVR, k-nearest neighbors (kNN), and 
decision tree regression for one hour ahead irradiation 
forecasting. Fouilloy et al. [13] have proposed a bagged 
regression tree and RF-based models to predict hourly GHI 
for 6 hours. Perveen et al. [35] have proposed an adaptive 
neural fuzzy inference system (ANFIS)-based multivariate 
solar power forecasting model for di�erent sky conditions 
for India. Benali et al. [5] demonstrated that RF performs 
best for predicting GHI, beam normal irradiation (BNI), and 
di�use horizontal irradiation (DHI) for six hours ahead. Per-
veen et al. [34] have designed an ANFIS-based multivari-
ate short-term solar power forecasting model for complex 
climatic conditions for India. Rana et al. [39] have designed 
�ve minutes to three hours ahead univariate solar pho-
tovoltaic power forecasting model based on a unique 
re-sampling technique and have combined multiple RF 
models predictions for individual steps to design a single 
robust multi-steps ahead prediction model.

• It can be observed that in most of the studies [2, 5, 11, 
13, 21, 34, 39, 42], the authors have reported short-term 
forecasting models.

• Both univariate models [5, 13, 39, 42, 51], and multi-
variate models [2, 21, 34, 35] have been used for solar 
energy forecasting.

• Up to 2015, the use of statistical-based approaches [42, 
51] was more.

Fig. 1  Classi�cation of solar 
forecasting models based on 
(a) Type of time-series forecast-
ing model (b) Type of forecast-
ing window (c) Number of 
independent variables
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• Ensemble-based approaches like RF models were being 
deployed, and they reported better results than con-
temporary models [5, 13, 39].

2.2  Deep learning-based models

Ahmad et al. [3] showed the efficacy of deep recurrent 
neural network-based models over other benchmark 
models when applied to solar energy data in Canada. 
Qing et al. [38] have achieved better results using LSTM 
as compared to neural networks using backpropagation. 
Caballero et al. [7] have designed a forecasting model 
using LSTM to forecast solar irradiation for the window 
of five minutes. Mukherjee et al. [28] have proposed an 
LSTM-based multivariate solar forecasting model for 
Kharagpur, India. Caldas et al. [8] have designed a hybrid 
forecasting model by considering solar energy data and 
sky images to predict for one to ten minutes ahead. 
Nikitidou et al. [29] have designed a 15–240 mins ahead 
model for forecasting cloudiness. Ryu et al. [43] have 
reported a forecasting model to forecast 5 to 20 mins 
ahead of using a convolutional neural network (CNN)-
based model on total sky images and lagged value of 
GHI. Abdel et al. [1] have proposed a univariate photo-
voltaic power forecasting model for hourly data based 
on an LSTM-RNN while experimenting with five differ-
ent model architectures. Li et al. [26] have reported that 
RNN-based solar power forecasting model has outper-
formed the persistence method, backpropagation neural 
network (BPNN), radial basis function (RBF) neural net-
work, SVM, and LSTM. Huang et al. [18] have proposed an 
hourly LSTM-MLP-based GHI forecasting model. Kumari 
et  al. [23] have designed an hourly GHI forecasting 
model using an ensemble approach. The extreme gra-
dient boosting forest (XGBF) and deep neural networks 
(DNN) used as the base learners. Ridge regression is used 
to combine the predictions.

• It can be observed that the research has been con-
ducted for both short-term forecasting [7, 8, 42, 43], 
and very short-term forecasting [1, 11, 18, 23, 26, 29, 
48].

• From 2017 to 2020, in many of the studies [1, 3, 7, 
26, 29], the univariate forecasting models have been 
employed. It is also observed that LSTM models have 
been increasingly used for solar energy forecasting.

It can be observed that the literature for India is limited 
even though the country has rich solar potential. Most 
available papers [8, 18, 26, 28, 29, 43] consider prediction 
at a coarse time resolution or are limited to one geo-
graphical region or a particular solar power plant.

We have compared the performance of our proposed 
method with three recent methods for solar power fore-
casting. These include the RF and RNN of [39] and [26] 
and the LSTM developed by [1].

• In paper [39], the authors have used the same algo-
rithm repetitively for multi-step prediction and have 
tuned model hyperparameters such as the number of 
trees and splits using Grid Search with 10-fold cross-
validation.

• In paper [1], the authors have used a speci�c LSTM 
architecture for univariate solar power forecasting.

• In paper [26], the authors have reported RNN for inter 
and intra-day prediction.

3  Deep learning sequence model and LSTM

Feed forward neural network (FNN) is the most common 
type of deep learning architecture. It has demonstrated 
remarkable performance across application domains over 
traditional machine learning problems. However, one of 
the limitations of FNNs is their inability to handle sequence 
data like text, video, time-series, etc. The RNN with a mem-
ory component, where the current output is a function of 
current input as well as a previous step can handle this 
issue. Though RNN achieved reasonable success, one of 
the weaknesses later exposed was its inability to remem-
ber long-range dependency because of the vanishing gra-
dient problems [16].

LSTM was proposed by Hochreiter and Schmidhuber 
[17] and can address vanishing and exploding gradients 
[16, 36]. LSTM is specially designed to memorize very long-
term temporal dependencies through memory cells con-
taining several types of gates. Apart from that, LSTM can 
learn nonlinearity. Hereby, using a schematic diagram in 
Fig. 2, the detailed architecture of a speci�c memory cell 
of LSTM is shown. The mathematical equations associated 
with di�erent gates of the LSTM cell are discussed with the 
description of the gates.

Suppose at time t the current input is x
t
 and the previ-

ous hidden state is ht−1 , then the current hidden state ht 
and the current cell state c

t
 are computed as follows:

• Forget gate(ft) = �(wf [ht−1, xt] + bf ) : Depending on the 
current input x

t
 and previous hidden layer output ht−1 , 

based on a sigmoid layer, forget gate produces either 
0 or 1. If 1, memory information is retained, else dis-
carded.

• Input gate(it) = �(wi[ht−1, xt] + bi) : Input gate helps to 
decide on new information to be added to the current 
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cell state based on new candidate values provided by 
ĉ
t
.

• Cell state(ct) = tanh(wc[ht−1, xt] + bc) : The new cell state 
c
t
 depends on the previous cell state c

t−1
 and ct−1 ∗ ft is 

the fraction of the old cell state that will be discarded 
with the help of forget gate, while new information will 
be added through ĉ

t
∗ i

t
 . The summation of these two 

simultaneous updates is the current cell state.
• Output gate(ot) = �(wo[ht−1, xt] + bo ): Long-term state 

output is determined based on a sigmoid activation 
function.

• Hidden state(ht) = ot ∗ tanh(ct) : Finally, the result of the 
output gate is multiplied with the cell state through 
tanh to compute the value of the current hidden state.

Here, wf  , wi
 , w

c
 , and w

o
 are weight matrices. bf  , bi , bc , and 

bo are the biases for individual gates. � indicates a sigmoid 
activation function. * stands for element wise multiplica-
tion, and + implies element wise addition.

• The LSTM model is trained by selecting a continuous 
portion or window from the input data. Instead of tak-
ing all such windows for training, often it is broken into 
batches.

• If the batches are considered independent of each 
other, then such a model is called a stateless model. 
While if batch to batch dependency is taken into 
account, then it is called a stateful model.

• Typically, when dealing with the sequence data, the 
hidden layer nodes are the LSTM cells. In Fig. 3, a simple 
schematic diagram of a deep neural network is shown, 
whereas a basic building block in the hidden layers, 
the LSTM cells are used. The inputs and the outputs 
are denoted as [ I

1
 , I
2
 , I
3
 , ..., I

n
 ], and [ O

1
,..., O

n
 ], respectively.

• Like traditional neural network, gradient descent, and 
back-propagation are used to learn the parameters of 
the network. Some of the state-of-the-art optimizers 
are ADAM, RMSProp, Stochastic Gradient Descent, etc.

4  Materials and methods

This section has �ve subsections. In the �rst subsection, 
the source of the data, the extraction process, time-period, 
etc., have been outlined. In the second subsection, the 
pre-processing steps are described brie�y. It is needed 
to understand how the design issue of pre-processing is 
investigated in this paper. In the third subsection, how the 

Fig. 2  https://colah.github.io/
posts/2015-08-Understanding-
LSTM [30] Single memory cell 
architecture of LSTM

Fig. 3  A neural network based 
on LSTM cels
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design issue of temporal order (Supervised versus Non-
Supervised) is set up for the experiment is elaborated. In 
the fourth subsection, the proposed LSTM-based architec-
tures are discussed in detail. Finally, in the �fth subsection, 
for the evaluation of the forecasting model, di�erent error 
metrics are furnished.

4.1  Data collection

Indian Ministry of New and Renewable Energy (MNRE) 
in 2011 has initiated extensive solar and meteorological 
monitoring under the Solar Radiation Resource Assess-
ment (SRRA) project [22]. Indian climate is made up of 
four seasons namely Summer, Monsoon (rainy) season, 
Post-Monsoon, and Winter by the Indian Meteorological 
Department (IMD).

We have used the application programming interface 
(API) provided by the Center for Wind Energy Technology 
(C-WET) to crawl raw solar irradiation data for SRRA sta-
tions across India. In this paper, data for 2016 were used for 

two climatic zones (Hot and Dry and Hot and Humid), and 
three stations located at Chennai (Tamil Nadu), Howrah 
(West Bengal), and Ajmer (Rajasthan). Table 1 describes 
the details of the solar stations, date range, number of data 
elements, etc. For each of the stations, we have chosen a 
month each from the rainy and winter seasons. Typically, 
the rainy season is known for its high variability in GHI 
compared to winter.

In Fig.  4, the distribution and variability of GHI are 
illustrated for each station-season combination. The plot 
shows that the variability of GHI is higher for Howrah and 
Ajmer in the rainy season, whereas it is relatively lesser for 
the other cases. The box-plots also con�rm the absence 
of any outliers. The data for Howrah in the rainy season 
are observed to be having maximum skew compared to 
other stations.

Table 1  Description of the data

City Month Season  Period of data Number of 
samples

Latitude Longitude Climatic zone

Chennai December Winter 01/12/2016 to 31/12/2016 44640 12.96N 80.22E Hot and humid

Howrah December Winter 01/12/2016 to 31/12/2016 44640 22.55N 88.31E Hot and humid

Ajmer January Winter 01/01/2016 to 31/01/2016 44640 26.40N 74.66E Hot and dry

Chennai November Rainy 01/11/2016 to 30/11/2016 43200 12.96N 80.22E Hot and humid

Howrah August Rainy 01/08/2016 to 31/08/2016 44640 22.55N 88.31E Hot and humid

Ajmer August Rainy 01/08/2016 to 31/08/2016 44640 26.40N 74.66E Hot and dry

Fig. 4  Box plot of GHI ( W∕m2 ) 
across of solar power station
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4.2  Data pre-processing

In the pre-processing, �rstly, the night hours are removed 
[19].

• As per standard practice for short-term solar forecast-
ing, the resolution of GHI is converted from one minute 
into 5 mins [39, 41].

• For each day, we have �ltered the GHI between 7 AM 
to 7 PM. After removing the night hours, we have com-
bined all days in a month to construct a single time-
series.

• The GHI values have been normalized to lie in [0, 1] 
using Eq. 1.

In Eq. 1, GHI
t
 is the GHI at time-step t, GHI

min
 is the mini-

mum value of the population, GHI
max

 is the maximum 
value of the population, and ĜHI

t
 is the normalized value 

of GHI at time-step t.
In some papers [44, 52], the authors have removed the 

non-stationary part of the series before fitting the data 
into a deep learning model like LSTM. Our data display 
daily seasonality. Hence, we have deseasonalized it using 
the following algorithm.

(1)ĜHI
t
=

GHI
t
− GHI

min

GHI
max

− GHI
min

• Thus, from the ith observation, we have subtracted the 
(i − 144)th observation to remove day-wise seasonal-
ity and then appended it sequentially. Here, GHI

s
 is the 

�nal series.
• The raw time-series and the pre-processed time-series 

are used as input to the LSTM network and compared.

4.3  Supervised or non-supervised learning

In this section, we have outlined the experimental setup 
needed to investigate the design issue of whether to pre-
serve the temporal dependency (Non-Supervised) or not 
(Supervised).

For LSTM, the preparation of data is di�erent than for 
traditional machine learning algorithms. The data should 
be formatted as a three-dimensional array, where the 
three dimensions are the size of the batch, number of 
time-steps (Window Size), and number of input features. In 
Fig. 5, the array is pictorially presented. The input features 
are denoted as Feature

1
 , Feature

2
 , Feature

3
,..., and Feature

n
 . 

The time-steps are represented as T
1
 , T

2
 , T

3
,..., and T

m
.

• In the Supervised setup, the array size is taken as (72, 1, 
30).

• In the Non-Supervised setup, the array size is taken as 
(72, 30, 1).

4.4  LSTM architectures

In this subsection, the details of LSTM networks are 
discussed.

• We have used a sequential model from the Keras 
Library [15] to design four sequentially arranged lay-
ers including, an input layer, two LSTM hidden layers, 
and one output layer.

Fig. 5  A schematic diagram of 
a 3D array for LSTM
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• At each LSTM layer, the weights have been initialized 
with random weights using a normal distribution.

• We have stored the best forecasting model using the 
technique Callbacks provided by Keras. The last layer is 
a Dense layer with 20 nodes, where a forecasting win-
dow of 1 hour 40 minutes has been used.

• The hyper-parameters settings are presented in 
Table 2. We have used Adam as the optimizer with 
a learning rate set to 0.01. Hyper-parameters like 
the number of epochs, number of layers, batch size, 
learning rate, and the number of nodes in each hid-
den layer has been optimized using the Random 
Search approach with 5-fold cross-validation with 
three repetitions of the process.

• Tanh activation has been used for each hidden layer.
• At the time of prediction, we have considered differ-

ent specifications of a batch size such as 1, 9, 18, 36, 
and 72 to find the optimal choice.

• The stateful parameter is set to True and False alterna-
tively to investigate the effect of preserving depend-
ency between batches.

The stateful LSTM has been referred to as DSS-LSTM and 
stateless LSTM as DSSL-LSTM for subsequent discussions.

4.5  Evaluation of forecasting model

We have used three evaluation metrics namely root 
mean square error (RMSE), normalized root mean square 
error (nRMSE), and Explained Variance Score. The follow-
ing equations are used for calculating the evaluating 
metrics.

In Eq. 2, GHI
t
 is the tth actual value and the corresponding 

predicted value is ĜHI
t
 . nRMSE can be a good measure of 

forecasting error when we want to forecast for multiple 
data-sets. It is de�ned as follows.

(2)RMSE =

�

∑n

i=1
(GHI

t
− ĜHI

t
)2

n

In Eqs. 3 and 4, � is the standard deviation of the actual val-
ues of GHI. Explained Variance Score is given in the below 
equation.

5  Results

This section has six subsections. In the �rst subsection, 
the performance of DSS-LSTM is evaluated on the raw 
and pre-processed time-series. In the second subsection, 
we have investigated whether to set up the time-series 
prediction problem as Supervised or Non-Supervised. In 
the third subsection, the e�ect of batch size is examined 
on the forecasting performance of DSS-LSTM. In the fourth 
subsection, the performance of DSS-LSTM is analyzed with 
di�erent choices of prediction horizons. In the �fth subsec-
tion, the forecasting performance of DSS-LSTM is analyzed 
with the station-season speci�c variability of GHI. Finally, in 
the sixth subsection, the overall forecasting performance 
of DSS-LSTM is compared with the benchmark models.

5.1  Importance of data pre‑processing

Table 3 gives the overall forecasting accuracy in terms of 
nRMSE and the Explained Variance Score. It is observed 

(3)nRMSE =

RMSE

�

(4)nRMSE(%) =
RMSE

�

× 100

(5)Explained Variance Score =
Var{GHI − ĜHI}

Var{GHI}

Table 2  Hyper-parameters to optimize

 Models Hyper-parameter Value

Number of hidden layers 1, 2, 3

Nodes in hidden layers 25, 50, 75 , 100, 125, 150

DSS-LSTM/
DSSL-LSTM

Learning rate 0.1, 0.01, 0.001

Batch size 1, 9, 18, 36, 72

Epoch 25, 50, 100, 200

Table 3  Comparison of stateful LSTM on raw and deseasonalized 
data

Name of the 
station

DSS-LSTM (Raw Data) DSS-LSTM (Pre-
processed Data)

nRMSE Explained_Vari-
ance_Score (%)

nRMSE Explained 
Variance 
Score (%)

Chennai-Decem-
ber

0.023 99.84 0.529 77.21

Howrah-Decem-
ber

0.021 99.92 0.670 75.15

Ajmer-January 0.027 99.88 0.235 97.11

Chennai-Novem-
ber

0.021 99.86 0.125 79.28

Howrah-August 0.021 99.83 0.078 99.81

Ajmer-August 0.022 99.82% 0.102 99.76%
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that DSS-LSTM has a better nRMSE score if it is dealing 
with raw time-series. It is found that with raw data and 
under all climatic conditions, DSS-LSTM better captures 
data variability. For data-sets corresponding to Howrah-
Winter, Chennai-Rainy, and Chennai-Winter, the model is 
capable of explaining 20-24% more variability in terms of 
Explained Variance Score as compared to when the data 
are pre-processed.

5.2  Supervised or non-supervised?

Here, we have presented the comparison between SVR 
(Supervised), Stateless LSTM (Non-Supervised within 
a batch), and Stateful LSTM (Non-Supervised across 
batches).

Figure 6 compares the RMSE scores for 20 steps ahead 
prediction of GHI. We have observed that,

Fig. 6  RMSE for 20 steps ahead prediction of GHI ( W∕m2)
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• For all climatic zones, the performance of DSS-LSTM is 
more stable.

• SVR produced notably higher RMSE scores.
• In the rainy season, when the variability of GHI is high, 

DSS-LSTM has outperformed other models.
• For both climatic zones, LSTM (stateful) outperformed 

LSTM (stateless).

In Table  4, we have observed that, for all climatic 
zones, the Non-Supervised approach outperformed the 
Supervised approach. Figure 7 shows forecasted GHI for 
the test set. For all climatic conditions, the DSS-LSTM 

Fig. 7  Forecasting of GHI ( W∕m2)

Table 4  Comparison of DSS-LSTM with DSSL-LSTM and SVR on 
overall nRMSE-Score

Name of the Station Supervised Non-Supervised

SVR DSSL-LSTM DSS-LSTM

Chennai-Winter 0.148 0.056 0.023

Howrah-Winter 0.183 0.075 0.021

Ajmer-Winter 0.155 0.088 0.027

Chennai-Rainy 0.170 0.043 0.021

Howrah-Rainy 0.289 0.149 0.021

Ajmer-Rainy 0.223 0.081 0.022
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has outperformed other models. In all the cases, SVR has 
produced the worst predictions.

5.3  Effect of batch size

The test set has been split using alternative batch sizes of 
1, 9, 18, 36, and 72. Table 5 compares the corresponding 
nRMSEs. Compared to a batch size of 9, 18, and 36, a batch 
size of 72 has produced approximately 28.64%, 25.50%, 
and 24.47% better nRMSE.

As illustrated in Fig. 8,

• For Chennai-Winter, Howrah-Winter, Ajmer-Winter, and 
Chennai-Rainy having the lower variability of GHI, as we 

increase batch size, the nRMSE increases and we get 
the best nRMSE for a batch size of 72.

• However, in the case of Howrah-Rainy and Ajmer-Rainy 
having higher variability in GHI, the nRMSE increases as 
we increase batch size, but saturates for a batch size of 
36.

Hence, the above discussion suggests that in the case of 
solar forecasting, for stations with high variability of GHI, 
smaller batch size is recommended for LSTM. However, 
for stations with lower variability of GHI, a bigger batch 
size will give better forecasting performance.

5.4  Prediction horizon

Table 6 shows nRMSE scores for alternative prediction 
horizons, and we have observed that the best results are 
obtained for 20 steps ahead prediction. The network struc-
ture of 20 steps used to forecast other forecasting hori-
zons as well, such as 25 (2 hours 5 minutes) and 30 steps (2 
hours 30 minutes). Increasing the prediction horizon from 
20 to 25 and 20 to 30 increases the nRMSE by 16.72% and 
31.88%, respectively. It may, however, be noted that for 
the rainy season during which GHI is more variable, the 
e�ect of increasing the prediction horizon on forecasting 
accuracy is larger.

Table 5  Comparison of di�erent batch size on nRMSE score

Name of the Station Batch size

 (1)  (9)  (18) (36) (72)

Chennai-Winter 0.029 0.025 0.025 0.030 0.023

Howrah-Winter 0.029 0.029 0.029 0.029 0.021

Ajmer-Winter 0.034 0.034 0.034 0.034 0.027

Chennai-Rainy 0.039 0.033 0.031 0.032 0.021

Howrah-Rainy 0.033 0.026 0.025 0.021 0.021

Ajmer-Rainy 0.033 0.026 0.025 0.022 0.022

Fig. 8  Batch size is compared 
in terms of forecasting perfor-
mance (nRMSE)

Table 6  Performance of 
stateful LSTM for di�erent 
prediction horizons

Name of the Station nRMSE score

(20 steps) (25 steps) (% of increase)  (30 steps) (% of increase)

Chennai-Winter 0.023 0.026 13.04 0.027 17.39

Howrah-Winter 0.021 0.022 4.76 0.022 4.76

Ajmer-Winter 0.027 0.029 7.40 0.032 18.51

Chennai-Rainy 0.021 0.026 23.80 0.029 38.09

Howrah-Rainy 0.021 0.027 28.57 0.037 76.19

Ajmer-Rainy 0.022 0.027 22.72 0.030 36.36
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5.5  Input variability vs Network complexity

Here, the complexity of the DSS-LSTM models measured 
in terms of the number of hidden layer nodes is analyzed 
in context to variability in GHI. Out of the six input condi-
tions Howrah-Rainy and Ajmer-Rainy exhibit maximum 
variability in terms of GHI. To perform this analysis, we 
have increased the number of hidden layers from 25 to 
150, with a step size of 25.

As illustrated in Table 7 and Fig. 9,

• The example cases of Chennai-Winter, Howrah-Winter, 
Ajmer-Winter, and Chennai-Rainy having the lower 
input variability need �fty nodes for optimal perfor-
mance measured in terms of nRMSE.

• However, for example, cases of Howrah-Rainy and 
Ajmer-Rainy having higher variability in GHI need hun-
dred nodes for giving optimal performance measured 
in terms of nRMSE.

This supports the existing knowledge that higher variabil-
ity in solar data needs more model parameters or nodes to 
achieve an adequate forecasting performance.

Table 7  Network complexity of 
DSS-LSTM is compared against 
the station wise variability of 
GHI ( W∕m2)

The bold notations are used to depict the minimum nRMSE scores for an optimal number of nodes in 
the hidden layers of the network (Network complexity)

Name of the Station nRMSE for di�erent hidden nodes Optimal nodes Variability of 
GHI ( W∕m2)

25 50 75 100  125 150

Chennai-Winter 0.028 0.023 0.024 0.026 0.026 0.028 50 48.26

Howrah-Winter 0.032 0.021 0.023 0.023 0.025 0.027 50 45.16

Ajmer-Winter 0.035  0.027 0.028 0.029 0.031 0.032 50 47.64

Chennai-Rainy 0.028 0.021 0.022 0.023 0.024 0.025 50 51.88

Howrah-Rainy 0.026 0.024 0.022 0.021 0.023 0.025 100 80.21

Ajmer-Rainy 0.031 0.026 0.023 0.022 0.022 0.024 100 78.32

Fig. 9  Network complexity is 
compared in terms of forecast-
ing performance (nRMSE)

Table 8  Comparison of DSS-
LSTM with current approaches 
on overall nRMSE-Score ( W∕m2

)

Name of the station Abdel et al. [1] Li et al. [26] Rana et al. [39] DSS-LSTM∗̂

Chennai-Winter 0.027 0.024 0.130 0.023

Howrah-Winter 0.026 0.063 0.157  0.021

Ajmer-Winter 0.057 0.068 0.057 0.027

Chennai-Rainy 0.086 0.039 0.121 0.021

Howrah-Rainy 0.102 0.198 0.166 0.021

Ajmer-Rainy 0.111 0.171 0.131 0.022

Overall nRMSE 0.068 0.099 0.127 0.022

Mean Rank 2.416 3.083 3.500 1.000
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5.6  Comparison to other prediction approaches

In Table 8, the overall prediction performance of DSS-LSTM 
has been compared to the prediction performance of the 
methods suggested by Rana et al. [39], Abdel et al. [1], and 
Li et al. [26]. It has been observed that DSS-LSTM has pro-
duced a lower nRMSE score for all of the station-season 
combinations. For all data-sets, Abdel et al. [1], Li et al. [26], 
and Rana et al. [39] produced higher nRMSE compared to 
DSS-LSTM. Also, DSS-LSTM has achieved lowest mean rank 
compared to others.

In paper [13], it has been observed that for forecasting 
solar irradiation 1–6 h ahead, locations with less variabil-
ity of solar irradiation, ARIMA, and MLP performed better 
with nRMSE score varying from 18.35% to 33.69% and from 
18.26% to 33.84%. On the other side, the locations with 
high variability of solar irradiation, Bagged Regression Tree, 
and RF have performed better with nRMSE scores varying 
from 28.80% to 47.52% and from 28.76% to 48.34%. In 
paper [11], the authors have reported with overall 9.75% 
of nRMSE score. In our work, DSS-LSTM has achieved 2.25% 
of nRMSE. Therefore, the result shows that DSS-LSTM pro-
duces better or very competitive results over the papers 
[11, 13] with a substantially lower value of nRMSE.

6  Conclusion

A stable short-term forecasting model for solar energy gen-
eration is critical as there is a lot of variance due to the sub-
hourly cloud phenomenon. The proposed LSTM network 
model is designed to be part of a grid integration software 
platform that produces 25 and 30 steps ahead reliable fore-
casts for grid operators and other stakeholders to use in 
the energy management system. In our current work, we 
have performed an empirical investigation based on data 
from three solar stations from two climatic zones of India 
over two seasons for intra-hour short-term solar forecasting 
using the LSTM network. Some of our key recommenda-
tions for a better LSTM design from our study are as follows:

• Pre-processing Using raw data in the case of solar fore-
casting, LSTM has been able to capture the average 
variability in predictions by 99% in terms of Explained 
Variability Score. In comparison, the average variabil-
ity explained by LSTM applied to pre-processed data 
is 88%. Thus, we do not need to pre-process data to 
remove seasonality.

• Supervised or Non-Supervised LSTM has performed 
better when we have preserved the order of the input 
data. Further to that, stateful LSTMs have produced 
better performance compared to the stateless LSTM.

• Batch Size It has been observed that the nRMSE 
decreases as we increase the batch size for stations 
with low variability in GHI, whereas, for the two sta-
tions where variability is high, the nRMSE decreases 
then saturates at a batch size of 36.

• E�ect of prediction horizon For winter data, 25 and 30 
steps ahead prediction leads to nRMSE increase by 
8.40% and 13.55% as compared to 20 steps ahead 
prediction for the DSS-LSTM. For the rainy season, the 
nRMSE of DSS-LSTM has correspondingly increased by 
25.03% and 50.21%.

• Input data variability and model complexity It has been 
observed that input data variability and model com-
plexity are associated. Howrah-Rainy, Ajmer-Rainy need 
twice the number of nodes compared with the other 
four station-season combinations because of the vari-
ability in GHI.

• Comparison to existing methods DSS-LSTM has outper-
formed Rana et al. [39], Abdel et al. [1], and Li et al. [26] 
by 52.20%, 15.83%, and 36.09% as measured by nRMSE. 
This model is also better in terms of mean rank.

For identifying a better design of LSTM networks, this work 
can be extended by including more input variables, includ-
ing solar stations from other climatic zones.
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