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Abstract. This paper describes the design of a multiagent system that 
facilitates course-offering decision making for a program in an institution. We 

model course-offering determination for upcoming semesters as a multi-

winner election with exogenous constraints that is a problem of computational 

social choice in multiagent systems, which has rarely been considered. We 

propose a practical and effective approach to solving the problem, which is 
based on Contract-Net Protocol, Single Transferable Voting, and Monotonic 

Concession Protocol. We describe the goal model, agent behavior models, and 

the interaction protocols of the system through using the Gaia role model 

methodology, Tropos strategic actor diagram, Pseudo-code algorithms, and 

Agent Unified Modeling Language sequence diagram. The effectiveness of 

the approach and the implemented system has been showed with the initial 

experimental results.   

Keywords: multiagent systems, agent-oriented software engineering, course-

offering determination, and voting.   

 

1  Introduction 

Course offering determination (COD) can be defined as deciding on what courses of 
an academic program in an institution will be offering for the upcoming one or more 
semesters. There are many factors like the historic data in enrollments, budget and 
staffing constraints, which the university administration needs to take into account in 
order to provide a list of offering courses. A poorly designed course offering schedule 
could lead to a low enrollment to the program, delayed graduation, and unsatisfied 

students. Students in degree programs have various course selection preferences and 
priorities. A department of an academic institution may not be able to offer all courses 
in a program every semester, especially under contemporary fiscal and staffing 
constraints. Some courses could be only arranged every other semester or even less 
frequently. In the current course offering workflow, after a course delivery schedule 
for a new semester becomes available as the registration period is approaching, the 
student can select courses to be taken in the coming semester. The competing or even 
adversarial goals of students and the department as well as the mutability of those 



goals indicate that COD is a complex constraint-satisfaction problem. Effective COD 
permits the efficient assignment of limited resources like faculty, labs, and classrooms 
while satisfying the desires of most students.   

The multiagent system (MAS) approach [1] allows the representation of every 
principal in the system as a single autonomous agent with unique goals and permits 
decision-making based on the preferences of multiple agents [2]. The MAS approach 
is used to solve the COD problem because it has the following characteristics: (1) its 
optimal solution can change during calculation; (2) The relation between a user and 
the scheduling system lasts for a long period of time, which features a high degree of 
repetition, and may count for the possibility of learning by feedback; (3) The course 
scheduling is time consuming; (4) The process of scheduling for course-offering 
involves different parties, e.g. program administrators and students; (5). Program 

administrators consider job markets and the unpredictable nature of preferences 
students, which generate the need in course scheduling to adapt fast and flexibly to 
environmental variables and their changes. 
Since the goals of the students and program administrators are different, therefore 
there are conflicts of interests between them, these conflicts should be resolved in a 
fair cooperative decision making manner. The main question of COD is:  

What course offering determination strategy of a program in an institution 

maximizes the satisfaction of the students and the enrollment of the courses 

within budget? 

In this research, we model the COD problem as a multi-agent constraint resource 

allocation problem and design a mechanism to identify optimal solutions through 
using voting and agent negotiation. The system is expected to solve the problem in 
optimization and flexibility in a fair and rational way, balancing the competing needs 
of academic requirements, economics and student preferences, and considering the 
usability issues for all participants. This paper formally describes the design of the 
system for COD using Agent-Oriented Analysis and Design [3] and Agent-Oriented 
Software Engineering (AOSE)[4].  

This paper is organized as follows. Following a brief survey of relevant published 
research, Section 3 will describe the goal model, scenarios, and interfaces between the 
system and its environment. This is followed by a session (Section 4) detailing the 
system architecture, particularly the various software agents and their roles and 
responsibilities. Section 5 describes with a detailed discussion of the voting and 
negotiating protocols used by the agents in solving the course-offering determination 
problem. Section 6 presents the implementation and initial experimental results. The 
paper ends with the conclusion and future work.  

2   Literature Review 

The majority of Artificial Intelligence applications to education address pedagogical 

tasks related to tutoring and personalized instruction, such as [5-6]. Significantly 

fewer publications are related to the decision-making or administrative tasks in 

education such as school choice [7], academic advising [8], and course timetable 

scheduling [9]. The MAS approach has proven an important and effective framework 

for intelligent educational systems, for example iHelp [10], program planning [11], 



time table scheduling [12], and personalized study planning [13]. To the best 

knowledge of the authors, there is no significant extant work on solving the COD 

problem.  

Voting procedures focus on the aggregation of individuals' preferences to produce 

collective decisions. There are many different voting rules; many of which are defined 

in the survey paper by Brams and Fishburn (2002) [14]. Lang (2007) considered 

voting and aggregation rules in the case where voters’ preferences have a common 

preferential independence structure, and addressed the issue of decomposing a voting 

rule or an aggregation function following a linear order over variables [15]. Conitzer 

(2010) explained voting rules in more detail [16]. Plurality voting is one of the most 

common rules. In this scheme, the alternative with the greatest number of “first place 

votes” wins. Plurality voting does not require that voters provide rankings. This 

feature seems to be an advantage; however, this “elicitation advantage” means that it 

fails to account for relative voter preferences for any alternative other than its top 

choice. Other schemes produce winners that are more sensitive to relative preferences, 

among them are Positional scoring rules, Maxmin fairness, Copeland, Maximin, and 

Bucklin [17]. An obstacle to the widespread use of voting schemes that require full 

rankings is the informational and cognitive burden imposed on voters, and 

concomitant ballot complexity.  

In this paper, we first model COD decision settings, e.g. modeling students as a 

group of self-interested agents, expressing their preferences [18] and then use a group 

decision-making protocol --- voting theory [19] to aggregate the preferences of the 

different participants toward a single joint decision. Single Transferable Vote (STV) is 

a staged procedure [19]. In practice, voters need not be required to rank all candidates. 

It has been shown that STV, in comparison with other voting schemes in actual use, is 

computationally resistant to manipulation [20]. The use of multiple fractional votes 

also provides another advantage – it makes the systems sufficiently computationally 

complex that it is resistant to manipulation [20] in the way that whole vote plurality 

systems might be [21].  

Finally, we show how the negotiation techniques [22] is used to generate a set of 

course offerings for the next term that reflects those preferences, academic 

requirements, and economic necessities to mutual benefit between the department and 

the students.  

COD is a multiagent resource allocation issue [23]. Thus it is needed to devise a 

protocol for it. There are two approaches for it: centralized such as combinatorial 

auctions [24] and distributed, e.g. Contract-Net Protocol (CNP) [25]. We can not 

directly implement COD system using auction-based resource allocation mechanism 

as the winner determination mechanism between auction based resource allocation 

and what we expect in the COD system is different. Auction based resource allocation 

is seeking for the highest price bid to win the resource. The winner is a buyer with the 

highest price bidding. In the COD system, however, the winner is a course (a resource 

from the seller) that has the most preferred enrolment from the students (buyers). CNP 

is mainly for solving the problem of distributing tasks to appropriate agents to execute 

the tasks for efficiency in general. It includes a negotiation protocol for interaction 

between agents like immediate response, direct contracts, request and information 

message, and node available messages. It can be used to form a team through mutual 

selection, exchange information in a structured way to converge on assignments.  In 



this research, we use it as a viable and flexible coordination mechanism for planning 

and enacting the collective course-offering decision making tasks.  

3   Requirement Analysis 

COD is concerned with the optimal assignment of the courses for a specific academic 
semester by program administration to meet the needs of students within budget and 
other resource constraints. Students in degree programs frequently have to balance 
personal career objectives, preferences, and financial and temporal constraints against 
degree requirements, course availability, and course inter-relationships. These and 
other constraints make the COD problem a complex one. The problem is made more 
complex by the fact that the constraints within which course offering determination is 

performed are fluid: students change their goals or are unsuccessful in completing 
prerequisite courses; faculty go on leave or modify research priorities; funding is 
awarded or withdrawn; other programs or institutions reserve or release facilities for 
instructional use. The fundamental business need of the research is for a program to 
identify those courses with sufficient interest to support the economics of offering 
them. To offer an optimal course list, information on learner needs, constraints, and 
preferences must be considered. To facilitate collaboration among learners, it can be 
desirable to allow students to share personal preferences and goals as well as create 
various learning communities/social networks during program study.  

3.1  Goal Model 

Students and program administrators have different goals. From the perspective of the 
student, course selection and planning is important in current educational 
environments. Selection of the ‘right’ course(s) can be a high-risk decision-making 
process because the cumulative effect of a series of choices made on successive 

semesters or quarters may impact their college major selection, their ability to take 
additional course work, their graduation date or even their career direction and future 
employment opportunities. From the perspective of educational providers, effective 
course offering determination permits the efficient assignment of limited resources 
like faculty, laboratories, and classrooms while at the same time satisfying the needs 
and desires of most students. Consequently, there is an inherent tension between the 
needs of the student body and the available resources of the educational provider. Fig. 
1 illustrates the goal model of the system proposed consisting of Students and 
Program Administrator.  The goal of a program student is to “complete a program” 

while the goal of a program administrator is to “determine a course-offering 

schedule”.  The goal “complete a program” is associated with a quality goal 

“study desirable courses and complete a program efficiently”. The goal 

“determine course offering schedule” is associated with “offer courses cost-

effectively.” The goal “complete a program” has the subgoals “select preferred 

courses” and “express preferences.” The goal “determine course offering 

schedule” has the subgoals “aggregate students preferences”, “calculate cost 

and revenue”, and “decide courses to be offered”.   



The competing goals between students and resource providers mean that COD is a 

complex dynamic constraint-optimization problem where the optimal solution can 

change during calculation. Consequently, the use of a multi-agent system that 

continually re-evaluates the current constraint state as reported by constituent agents 

in order to maintain an appropriate solution plan as the environment changes.  

 

 
 

Fig. 1.  The goal model for a course-offering decision support system. 

3.2   Agents 

We designed a MAS system that consists of an administrator (AD) agent, a group of 

student (SA) agents, and a student representative (SR) agent. This correlates with an 

academic program, where a course scheduling process is initiated by having the 

program administrator determine the priority of courses available in the program, 

based on expressed student needs, preferences, and goals. The agents have distinct 

areas of concern and intent, but collectively interact to generate a set of 

recommendations for courses to be offered that will be satisfactory to most students 

while fitting within the operational limitations of the offering program. A SA agent 

has three major responsibilities: (1) representing the student principal’s interest in 

interactions with other agents; (2) generating plans for their principals; and (3) 

generating course selection requests for their principals.  A SR agent is instantiated 

for any identifiable student group with shared interests and resources. Typically, this 

would be one per academic program. The SR agent has the following major 

responsibilities: (1) Managing voting among student agents, ensuring fairness. (2) 

Representing the student body to other agents, particularly the AD agent. The AD 

agent is the representative of the program administrations calculating the needs of the 

academic department as determined by factors such as course delivery policies, 



budget, and resource availability. It is responsible to: (1) Provide executive control 

and oversight for the system; (2) Enforce resource and other course availability 

constraints; (3) Inform other agents of those constraints; (4) Negotiate with the SR 

agent to provide an optimal set of course offering recommendations to the offering 

academic program.   

3.3  Scenarios 

Within this system, for each semester, before the course registration starts, the 

program administrator of the department delegates the task of initial selection to 

his/her AD agent, which performs this task using course dependency graphs, past 

offerings, and departmental obligations.  

The AD agent collects requirement information from the program administrator, 

which determines a set of required courses for the next term as well as the proposed 

budget for course delivery in the next term. At the same time, each SA agent generates 

a study plan based on the program study preferences of the student, identifies "ready-

to-take" courses of the student, and captures course selection preferences of the 

student. Once all SA agents complete the actions mentioned above, they send their 

votes to the SR agent. And then the SR agent aggregates the votes and generates the 

set of all ranked preference ordering over courses as a group decision.   

Once the AD agent has this information, it initiates a one-to-one agent negotiation 

with the SR agent. The negotiation then proceeds iteratively between the two agents, 

the AD agent attempting to maximize the course enrolments and minimize delivery 

overhead, and to maximize staff efficiency of the offering, and the SR agent 

attempting to maximize the availability of courses desired or needed by students to 

complete their programs.  

4   Architectural Design 

In the current model, there are three roles coming into play in COD system –SA 
agents, SR agent, and AD agent. As shown in the Table 1 below, the main activities of 
SA Agent is to present students’ interest, generate a study plan, and select course they 
want for vote. They read the interests from the students and select courses based on 

the student’s interest and offering course list. The sequence of activities of SA agent is 

the more than one time of repeat on PresentInterest, GeneratePlan, 

CourseSelection, GenerateVotes, and CalculateDisutilitySA. The constraint on 

these actions is the number of selected course must be less than or equal the total 
number of interest presented courses.    

Please note that unlike obligations in normative framework refer to the 

consequence of some action, responsibilities in Gaia methodology [3] we use in this 

paper is one of attributes of a role and they determine functionality of an agent. 

Responsibilities include liveness properties and safety properties. In order to realize 

responsibilities, a role has a set of permissions. In Gaia, resources are thought of as 

relating to the information or knowledge the agent has. That is, in order to carry out a 

role, an agent will typically be able to ‘access’, ‘modify’ or ‘generate’ certain 

information. This specification defines two types of permissions for SA agent: read, 



change, and generate.  It says that the agent carrying out the role has permission to 

access the value Presentinterests, and has permission to both change (read and 

modify) the value CourseSelection. Also, the role is the producer of Plan, Votes, and 

Disutility.  

Table 1: SA Agent role model. 

Role Schema SA Agent 

Description SA Agent represents the student principal’s interest, generates plans, 

and requests course selection for their principals. 

Protocols & 

Activities 
PresentInterest, GeneratePlan, CourseSelection 
CalculateDisutilitySA(), GenerateVotes() 

Permissions Reads   Presentinterests  // all interested courses presented 

GeneratePlan  // retrieve info from the student study plan 

Changes  CourseSelection  //select courses from the list 

GenerateVotes()  // generate vote count on the course 

CalculateDisutilitySA()   // Calculate the SA agent Disutility 

Responsibilities Liveness: SA Agent = (PresentInterest.GeneratePlan.CourseSelection.  

Safety: GenerateVotes.  CalculateDisutilitySA)+ 

Number_of_SelectedCourse <= Number_of_InterestPresente.  

 
The role schemas of AD agent and SR agent are similar to the SA agent role 

model.  

 

 
 

Fig. 2. A Tropos goal diagram for SA agent, SR agent, & AD agent. 

Three actors are identified: SA agent, SR agent, and AD agent. Fig. 2 illustrates a 

Tropos (http://www.troposproject.org/) goal diagram for three types of agents in the 



system proposed. Two dependencies are modeled as goal dependencies: Aggregate 
preferences and Decide an course offering schedule. In a goal dependency, one 

actor depends on another actor for achieving a goal. Four dependencies are modeled 

as resource dependencies: vote, decided courses, ranked courses, and decided courses. 

The goals of the three types of agents are decomposed into some subgoals. Soft goals 

like Maximize a student’s satisfaction, Better curriculum quality are considered, 

which may contribute to the achievement of a goal or prevent its achievement. The 

soft goals are represented as clouds in the figure.  

5   Detailed Design 

In order to design and implement a system that provides support for COD, there are a 
number of critical pieces that must be assembled into an integrated whole: (1) An 
effective way of collecting and representing student preferences with regard to their 
current and future studies as well as their plans following graduation; (2) A means of 
modeling relationships and interdependencies amongst courses, programs of study and 

learning objectives; (3) An efficient and fair means for balancing the competing 
desires and needs of students; and (4) A fair means of apportioning the available 
faculty, facility and funding resources of the program, faculty or school providing 
education. 

5.1  Preference Models of Student Agent  

Our initial investigation was through interviews and anecdotal discussions with 
current students and staff members. We had strong indications that the desirability of a 
particular course was not independent of other course’s availability. It appeared that 
course selection preferences are more properly thought of as conditional preferences 

[18]. Furthermore, there were a variety of ways and degrees of complexity that 
individual students might express the way in which they determine which courses they 
want to take in the upcoming term. We identified three distinct models of how 
students described their preferences with regard to course offerings, which we have 
termed: precedence, grouping, and progression [25].  
Precedence.  The first model, precedence, simply referenced a most-preferred course, 
a next-most preferred, and etc. However, after a comparatively short list of courses, 
the students lapse into a don’t-care state along the lines of “if none of those are offered, 

then it doesn’t matter”. This sort of preference model is common in cases where the 
student only plans on taking one or a very few courses.  

A SA agent generates precedence by using the degrees of desirability of the 
courses in his/her study plan prior to the voting process [8]. To do this, the SA agent 
determines the list of all courses in the program that that student can legally and 
preferably take, Cready, which consist of all incomplete courses of the student for which 
all pre-requisites have been completed.  

The SA agent receives a list of courses from the AD agent that will not be offered, 
Cnot_to_offer. The SA agent receives a list of courses that will already be recommended 

from the AD agent, Crecommended. These are similarly removed from the “legal” course 
set –but are treated as though they will be offered for purposes of other decisions.   



Thus, the SA agent automatically generates Cprecedence by removing Cnot_to_offer and 
Crecommened: Cprecedence = Cready - Cnot_to_offer - Crecommended and then the elements in Cprecedence 
are ranked by the degrees of desirability and shown in the precedence interface so that 

the student can modify them if wish. It is represented as 

Cprededence = {(Ci, wi): w1 ≥ w2 ≥ ... ≥ wn, ci ∈ C}. 

here, 
n
ccc  ...

21
. Here C is the set of all courses in the system. Integer n is 

the number of all elements in Cprecedence.  

Grouping. This model was more common amongst students planning on taking 

several courses. With it, students express their desires in terms of sets - a group of 

courses is desired en masse, and if not all courses are available, and then the 

remainder are less desirable. Grouping = }1,{ liCG
i

≤≤⊂ (l ≥ 0). We use an array to 

represent the grouping preference: Agrouping = { (gij)nxn: gij = 1, if ci and cj are in the 

same group, otherwise 0; gii = 0}.  

Progressions. Finally, there is the case of those students that plan their program 

progressions sequentially – their desire is to complete some set of courses, then 

progress to another set, etc, which we have termed the progression model. This sort of 

preference closely approximates the way in which academic departments model 

academic progression and is common in the case where students are in a full-time 

degree program or wish to systematically complete a program. This progression model 

is also most similar to that expressed in the CP-net [18].  

We use a directed acyclic graph (DAG), P = (C, A), to represent the progression 

model. Set C represents all courses in the program. Set A consists of arcs. An arc e = 

(c1, c2) is considered to be directed from c1 to c2; c2 is called the head and c1 is called 

the tail of the arc; c2 is said to be a direct successor of c1, and c1 is said to be a direct 

predecessor of c2. If a path made up of one or more successive arcs leads from c1 to 

c2, then c2 is said to be a successor of c1, and c1 is said to be a predecessor of c2.   

For implementation, we use an array to represent P: 

Aprogression =(𝑝!")!×!.  pij =1, if (ci, cj) ∈ A, otherwise pij = 0. 

Let 𝑇taken= (t1, t2, ..., tn) represent the status of the courses about whether or not the 

student has completed.   ti = 0 means that ci has not been taken while ti = 1means 

that ci has been taken and completed by the student. Then𝑇taken ∈Aprogression represents 

the readiness of the courses in terms of the progression preference of the student. That 

is, if 𝑟! ≜ 𝑡!×𝑝!"
!

!!! ≥ 1  then cj is ready to take according to student's 

progression preference.  

5.2  Generating Fractional Votes by Student Agents 

Based on the preferences expressed by the principal on one or more of our preference 
models, the SA agent automatically generates a set of fractional votes for each round 

of an election. From the precedence set, the highest ranked course that can be 
preferably and legally taken is added. From the grouping interface, all courses from 
groups in which all member courses can legally be taken are added to the list.   

From the progression interface, all legal courses that are either in the first block of 
a progression or whose predecessor block contains only courses that have already 
been taken are added to the list. Each of the courses on the list then gets a relative 
fraction of the agent’s single vote for that round, with repeat courses getting a 



proportionately higher portion of the vote. The vote is recalculated for each round, and 
can be affected by the results of previous votes.   

For the sake of illustration, let’s consider a real case. Suppose 𝐶 = {𝑐!}!
!". Let us 

assume that a student has previously completed c1 and c2. According to curriculum 
checking, could legally take c3, c4, c5, not including c7. For the coming semester, the 
student expressed the following preference: Precedence: {(c3, .88), (c4, .56), (c5, .55)}; 

Grouping: {c3, c4}, {c5, c7, c9}; Progression: {c1} → {c2} → {c3, c7}. From the 
precedence expressed, c3 would be added with a weight 0.88, c4 with a weight 0.56, c5 
with a weight 0.55 to that student’s vote list. From the groups identified, c3 and c4 
would be added to the vote list, as the first group can be fulfilled. However, no entries 
from the second group would be added, as c7 is not legal (in this case, the status of c9 
is irrelevant). Finally, from the progression, c3 would be added to the vote list, 
however c7 would not be added until it is legal later. Each of the courses on the list 

then gets a relative fraction of the agent’s single vote for that round, with repeat 
courses getting a proportionately higher portion of the vote. The total vote set for our 

fictitious student is thus: {(c3, 1), (c3, 1), (c4, 1), (c3, .88), (c4, .56), (c5, .55)}. Let vi 

represent the fractional vote on course ci. The student’s vote is then rationalized into 
the votes as follows: v3 = (1+1+0.88)/(1+1+1+0.88+0.56+0.55) = 0.58; c4 = 0.31, c5 = 

0.11. The algorithm for generating fractional votes is listed as follows: 
 

ALGORITHM: Generate Fractional Votes 
input:   C, Cprecedence , Agrouping  Aprogression   

𝑇taken= (t1, t2, ..., tn), course completion status vector 

𝑅= (r1, r2, ..., rn), course progression readiness vector  
Returns: V = {vi: 1 ≤ i ≤ n} 
begin 
generate Cprecedence; 
retrieve Agrouping and Aprogression 
  for  i = 1 to n do // consider "Precedence Model" 

 if ci in Cprecedence then  vi ← wi ; end if 
  end for  
  for i = 1 to n do  // consider "Grouping model" 
       if not(ci in Cprecedence) then  

         for j = 1 to n do  gij ← 0; gji ← 0; end for  
  for i = 1 to n do 
         for j = 1 to n do 

     if gij = 1 then vi ← vi +1; end if 
      end for   end for 
  for  j = 1 to n do// consider "Progression Model" 

       for i = 1 to n do  rj ← ti∙pij + rj;  end for 

       if (tj = 0) and (tj = 1) then vj ← vj + 1 end if;   
end for 
end 

5.3  Interaction Protocols 



We use an Agent Unified Modeling Language (AUML) (www.auml.org) sequence 
diagram (see Fig. 3) to depict the interaction protocols for coordination, voting, and 
agent negotiation. 

Determining Negotiable Courses: First, AD agent starts the process by sending a 

message to the administrator once the registration period is approaching to acquire the 

must-to-offer list C0, the must-no-to-offer list C-1, and maximum number of courses 

that can be offered n0. The administrator determines them through using the past 
experience, the course dependency, and the department obligations.  

At the same time, the students then will develop their study plans according to the 
initial course lists, study preferences, ready-to-take courses, and course selection 

preferences.  

The AD agent determines a list of negotiable courses 𝐶" as the first proposal. And 

then AD agent will send 𝐶" = 𝐶!/𝐶!! to all SA agents. And then the student agents 

will notify all students to register courses from the initial course offering list Cf ß 𝐶".  

The AD agent computes the initial disutility UAD based on the registration. It 

means the difference between the actual operating cost Cost and the targeted budget 

Costideal, and determine a list of negotiable courses 𝐶! = 𝐶/(𝐶! ⊔ 𝐶!!). 
Voting: SR agent uses CNP to work with all SA agents to coordinate the voting and 

election process. The study plan of each student is passed to his/her SA agent and is 
used to generate precedence relation and be combined with other preferences to be 
turned into a fractional vote to their SR agent. SR agent aggregates the fractional votes 
from all SA agents and generates a set of all ranked preference ordering over the 

course set 𝐶!  , denoted as STV-k, through using an algorithm based on STV [19] and 

the number of the slots to fill, i.e. 𝑘 = 𝑛! − |𝐶
!|. And then it sends the to AD agent. 

This allows the protocol to converge more rapidly on an acceptable solution by 
initially jumping by several courses before dropping down ultimately to one course at 
a time for the final negotiations. It also allows us to use STV more optimally, as its 
value is more readily apparent in elections where several candidates will be elected. 

AD agent sends STV-k to the administrator. 
Based on a monotonic concession protocol (MCP) [22], a negotiation protocol 

between AD agent and SR agent to determine an optimal offering course list is 

developed.  

For each round of agent negotiation r, AD agent proposes δA (the first round its 

value is C”  ⊔ Φ ) with its utility UAD(δA, r) while SR agent proposes δS = C”  ⊔ 

STV-k’ and computes disutility USR (δA, r) and USR (δS, r). The algorithm for 
computing USR is listed in Appendix A. 

SR agent determines if USR (δA, r) < USR (δS, r), which means that for SR agent 
offering more courses will not decrease the dissatisfaction of the students and thus 
does not need to add more courses. The negotiation ends. Otherwise, AD concedes 
and selects the first course in STV-k, c, and adds c to the new proposal δA, the course 

offering Cf list is updated. And then the student agents will notify the students to 

register courses from the current course offering δA. It is worthy to mention that for 

AD agent, due to the fact that we can not compute UAD(δS, r) without knowing the 
registration, we can not check if UAD(δA, r) > UAD(δS, r) to apply standard MCP. Our 
approach is that if there is a need to increase some courses, we select the first course 
in STV-k and add it to new proposal δA and get the enrollments for the courses. 



The AD agent computes the initial utility UAD(δA, r) based on the registration and 

the budget, and updates ranked negotiable courses STV-k with STV-k /{c}. The 

negotiation goes to the next round. For each round of the agent negotiation, AD agent 
needs to check if STK-k is empty, or UAD(δA, r) still meets a satisfied predicate ADsat. 

ADsat = (UAD <= ∆UAD). ∆UAD is a pre-set threshold. If ADsat is true, the AD agent is 
satisfied with the current offering. Also, SR agent checks a satisfied predicate, SRsat 
which indicates whether the aggregate disutility is less than the permitted variance 
SRsat = (USR <= ∆USR). ∆USR is a pre-set threshold. If SRsat is true, the SR agent is 
satisfied with the current offering.  

 

 
 

Fig. 3. AUML sequence diagram for interaction protocol of the negotiation.  



If Asat is true and the SR agent has indicated that the last round satisfied it, the 
negotiation is concluded and the AD agent records the final offering list and sends it 
to the SA agents. If the Asat is false, the negotiation will always continue. If the AD 

agent is satisfied, but the SR agent is unsatisfied, the negotiation will continue until 
the count of courses in a proposal reaches zero. In this way, the negotiation converges 
fairly rapidly to a set that is near the budgeted amount for the department, while trying 
to add courses most likely to fit into the plans of the majority of students.  

6  Implementation 

To evaluate the proposed approach, a prototype was implemented with JADE 
(http://jade.tilab.com) and Jason (http://jason.sourceforge.net/wp/), which allows 
simulating different scenarios by varying several parameters, such as the course 
number of the program, the divergence of preferences for course selection, or the 
must-offer courses due to emergence cases. We simulated a collection of master 
program students consisting of from 30 to 90 MSc in Information Systems students of 
Athabasca University in Canada. Fig. 4 shows a screen shot of entering student course 

selection preferences. Fig. 5 is an example of voting result generated from one of the 
experiments.  

 

	  

	  

Fig. 4. a screen shot of student course selection preferences. 

Given that a course set c
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to be offered in a semester in the program, the 

actual cost to be paid for the course offering is calculated as follows:  
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, where b is the base salary for one 

course to be paid to the instructor for the course, e.g., b = $5000; r is the amount of 
money to pay to the instructor for one student minus the course fee, e.g. r = $500; hi is 



the number of the students who will take course ci for 1≤i ≤nc, and Cideal =$75,000.; nc 
= 30, 50, 90; C0 = {c501, c503, c504, c601, c695}; C-1 = {c602, c604, c617, c636   c637, c682}; ∆UAD 
= $100; ∆USR = 3.  

In Round 1: C1 = C0 U{c602, c605, c607, c610, c648, c660, c667, c689, c691}. Getting hi, 
UAD(C1) = $11500.0. In Round 2: c691 is chosen in this round, with a voting result of 
60. Getting h691= 64 since it is the first course chosen, and many students have it as 
their first pick due to it being on many plans and not having many prerequisites. 
UAD(C1)= $15000.0. Comparing Cideal, the Administrator is still not satisfied with 

required courses. The SR agent is also unsatisfied with course offering as SR Weight: 
10.31. After Round 3 and Round 4, in Round 5, the required 9 courses are: c691, c605, 
c648, and c667. c689 is chosen in this round, with a result of 2.0. UAD = $48,000. So the 
AD agent is still unsatisfied with the list. The SR agent is now satisfied with course 
offering. The SR agent’s weight is 0.86. Negotiation concluded with a list: C1 = C0 U 
{c691, c605, c648, c667}. The size limit of a class is not considered. 

 

 
 

Fig. 5. An example of voting result generated. 

7  Conclusions 

We have presented the design of a multiagent system for course-offering 
determination. It includes models of agent goals and behaviors, and protocols of 

agent-based coordination in dynamic decision making of individual students and the 
group decision-making of program administrators. One of the contributions of this 
paper is the novelty of the problem domain of determining a group of course offerings 
in educational institutions. The work can stimulate discussion of alternative points of 
view for how to solve the problem and lead to further discoveries. The second 
contribution of this research is the multi-agent system architecture proposed and the 
algorithm for the reasoning capability of the student agent, preference elicitation and 
inference algorithm. Finally, there is significant value to the mechanism design — the 
administrative agent’s coordination capability to recommend suitable course offerings 

to departments in academic terms; in which multiple student preferences are 
aggregated using STV for the aggregation of multiple student preferences, the course 
budget of the department, and the derived cost of the courses offered. Each student’s 



preferences are translated into fractional votes that inform a negotiation process 
bounded by academic and resource constraints. The future work includes more testing 

and deploying the system to turn it into a practical application. We will study multi-

winner election problem with exogenous constraints in other application domains. 
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Appendix A 

 
ALGORITHM CalculateDisutilitySA(Coffer ,USA) 
input: Coffer;  //current offering list 
        Cstudent;//course set that the student plans to take 
in the upcoming term in the precedence preference model.  
variables:  
output: USA 

USA ← 0;  
for each course c in Cstudent 

if c ∈ Coffer then 

USA ← USA + 0; // The smaller is the value R, the 
happier is the student. 

else  USA ← USA + 1; end if   
return USA; 
 

ALGORITHM CalcuateDisutilitySR(l1, l2, USA) // Calculate USR 

– Collective Disutility of SR agent. 
input:  {USAi } 

variables:  𝑥 : arithmetic mean; the average of USA.    

σ : standard deviation of the reported USAi. l1, l2 : weights 

for 𝑥 , and σ used to tune the contribution of each 

component. l1 + l2 =1. Initially, they both are set to 
0.5, which can be optimized through a machine-learning 
algorithm like the genetic algorithm.  
for each SAi   CalculateDisutilitySA(Coffer, USAi)   end for  
𝑥 ← the average value of USAi; 

σ ← The deviation sigma σ;  

USR ← l1𝑥 + l2σ; 
return USA ;    


