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Abstract: The growing availability of high-resolution satellite imagery provides an 

opportunity for identifying road objects. Most studies associated with road detection are 

scene-related and also based on the digital number of each pixel. Because images can 

provide more details (including color, size, shape, and texture), object-based processing is 

more advantageous. Therefore, in this paper, to handle the existing uncertainty of satellite 

image pixel values, using type-2 fuzzy set theory in combination with object-based image 

analysis is proposed. Because the main challenges of the type-2 fuzzy set are parameter 

tuning and extensive computations, a hybrid genetic algorithm (GA) consisting of Pittsburgh 

and cooperative-competitive learning schemes is proposed to address these problems. The 

most prominent feature of our research in this work is to establish a comprehensive  

object-based type-2 fuzzy logic system that enables us to detect roads in high-resolution 

satellite images with no training data. The validation assessment of road detection results 

using the proposed framework for independent images demonstrates the capability and 

efficiency of our method in identifying road objects. For more evaluation, a type-1 fuzzy 

logic system with the same structure as type-2 is tuned. Evaluations show that type-1 fuzzy 

logic system quality in training is very similar to that of the proposed type-2 fuzzy 
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framework. However, in general, its lower accuracy, as inferred by validation assessments, 

makes the type-1 fuzzy logic system significantly different from the proposed type-2. 

Keywords: type-2 fuzzy sets; genetic cooperative-competitive learning; object-based 

image analysis; road detection; satellite imagery 

 

1. Introduction 

The increasing availability of very high resolution (VHR) satellite images provides an opportunity 

to identify urban objects. Roads, as one of the most important civil structures in various areas of 

management, such as urban planning, navigation, and traffic management, are subjects of great 

concern that need to be extracted automatically because human intervention is still required and is 

expensive and time-consuming. To date, various techniques have been reported in the literature for this 

purpose. Most of the reported techniques are primarily pixel-based and sometimes accompanied by 

textural information extracted from rectangular regions, in which structural and conceptual information 

is not properly exploited. To overcome the shortcomings of the pixel-based methods and to reduce the 

semantic gap, region-based algorithms have been developed [1–3]. Also in image processing, we 

usually encounter many uncertainties such as those caused by projecting 3D objects into a 2D image, 

uncertain boundaries, nonhomogeneous regions, poor and non-uniform lighting conditions, non-linearity 

of the imaging system and digitizing analog pictures. To reduce the effects of vagueness in road 

detection in satellite images, Type 1 fuzzy sets (T1 FSs) have been proposed in some of the literature. 

However, T1 FSs cannot completely model all the available uncertainties as their membership 

functions are crisp. On the other hand, Type-2 fuzzy sets (T2 FSs), thanks to their more flexible fuzzy 

membership functions, are much more promising in cases with high uncertainties [4]. 

Hence, in this paper, a new framework is proposed and designed for road detection from VHR 

satellite images that is based on object-based image analysis and a Type-2 fuzzy logic system (T2 

FLS). Because the main challenges for the T2 FSs are parameter tuning and extensive computations, a 

hybrid Genetic Algorithm (GA) consisting of Pittsburgh and cooperative-competitive learning (CCL) 

schemes is proposed to address these problems. This method, as described in Section 4, is 

implemented in five main steps: segmenting images and generating object-based features, finding 

optimum features using the GA and K nearest-neighbor (GA-KNN) strategy, designing T2 FLS and its 

optimization by use of a hybrid GA, and ultimately, enhancing and generalizing validation. The paper 

is organized as follows: Section 2 briefly describes related works. Basic concepts of T2 FLS are 

reviewed in Section 3. Section 4 discusses the proposed framework. Implementation and a general 

evaluation of the results obtained are presented in Section 5. Finally, the conclusions are summarized 

in the last section of this paper. 
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2. Related work 

Mena presented a review of nearly 250 references on road extraction [5]. Starting from seed points, 

linear feature extraction methods that were developed using active contour models, called snakes, were 

presented by Laptev et al. and Gruen et al. [6,7]. Doucette et al. presented an automated road centerline 

extraction method that exploits spectral content from high-resolution multi-spectral images [8].  

The method is based on anti-parallel edge centerline extraction and self-organized road mapping. Zhang 

and Couloigner introduced a wavelet approach for road extraction from high-spatial-resolution remotely 

sensed imagery [9]. Valadanzoej and Mokhtarzadeh extracted roads using artificial neural networks 

that concentrated on evaluating different structures of neural networks, along with different measuring 

units and descriptors [10]. Peng et al. updated outdated road maps by incorporating generic and 

specific prior knowledge into a multi-scale phase field model [11]. Valero et al. detected road networks 

using directional mathematical morphology [12]. Movaghati et al. extracted roads using particle 

filtering (PF) and extended Kalman filtering (EKF). Starting from an initial point, the EKF module is 

responsible for tracing the median axis of a single road segment, whereas the PF module begins 

operating at road intersections [13]. A multi-stage strategy for automatically extracting roads from 

high-resolution multispectral satellite images based on salient features was introduced by Mirnalinee. 

This method incorporates the salient features of roads using a probabilistic support vector machine  

(P-SVM) and dominant singular measure (DSM) [14]. Shao et al. introduced a fast linear feature 

detector for road extraction. Only ridge line (or bright ribbon) extractions that are mostly roads in 

aerial and satellite images are considered in this paper [15]. Shi et al. proposed a method for extracting 

main road centerlines using path openings and closings as well as the support vector machine (SVM) 

classifier from images with a spatial resolution of 6 meters. In the proposed method, roads wider than 

four pixels are considered [16]. A method for accurate road centerline extraction from a classified 

image is proposed by Miao et al. [17]. Also, some new research based on SAR imagery and LIDAR 

system has been done in the last year [18–21]. To overcome the shortcomings of the pixel-based 

methods and to reduce the semantic gap, region-based algorithms have been developed [1–3].  

Region-based classification is known to achieve better results than pixel-based classification in 

processing HSR images [22–24]. A considerable number of studies have compared object-based 

approaches with traditional pixel-based classification methods [25–29]. Many of these studies have 

found that object-based methods typically produce higher classification accuracies than pixel-based 

methods do. A new work is proposed by Huang and Zhang based on SVM and a multi-feature model  

at both pixel and object levels [30,31]. Zarinpanjeh et al. used object-based analysis for road map  

updates [32]. Additionally, Grote et al. developed a method for road network extraction using  

object-based analysis [33]. To reduce the effects of vagueness in road detection from satellite images, 

T1 FSs have been proposed in some literature. Agouris et al. used fuzzy logic for segmentation of an 

image. In this method, brighter pixels are considered more likely to be closer to real road pixels. Then, 

a template-matching algorithm is applied along the user-defined direction to locate the best road 

position [34]. A system for road extraction from IKONOS multispectral imagery based on fuzzy logic 

is proposed by Amini et al. [35]. Hinz and Wiedemann present an approach for self-diagnosis which is 

a part of an existing road extraction system. In their paper, fuzzy set theory is used as theoretical 

framework for knowledge representation for evaluation [36]. Bacher and Mayer extracted areas with 
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parallel edges and homogeneous areas between them as training data. After that, the training areas are 

used for a fuzzy multispectral classification [37,38]. Mohammadzadeh et al. proposed a fuzzy-based 

mean calculation method, which was optimized by a particle swarm optimization. It evaluated best 

mean values for road detection to improve the fuzzy cost function [39]. Singh and Garg proposed a 

weighted membership function-based fuzzy c-means with spatial constraints approach for automated 

road extraction. Initially, spatially fuzzy clustering is used to classify the satellite images. For 

removing non-road segments, four intermediate stages are used to extract the road information [40]. 

Possessing crisp membership functions, T1 FSs are not able to model these uncertainties directly. T2 

FSs, on the other hand, show more prosperous performance as they provide adequately satisfactory 

results in capturing uncertainties [41]. Because GAs are well known and have been widely used as a 

powerful global search technique, a large number of publications explored the use of GAs for 

designing fuzzy systems, so-called GFSs [42]. Different GFSs have been proposed in the literature for 

designing both T1 and T2 fuzzy rule-based systems to avoid the necessity of linguistic knowledge 

from domain experts [43–49]. In the respective literature, four basic genetic learning approaches have 

been used for GFSs:  

- The Pittsburgh approach, in which every chromosome of the population encodes an entire rule 

base and they compete with each other throughout the evolutionary process [50–52]. 

- The Michigan approach, in which each chromosome represents a single rule and the whole 

population forms the rule base [53]. 

- Iterative Rule Learning (IRL) approach, in which each chromosome is indicative of a single rule. 

Furthermore, implementing an iterative search process, a rule generation algorithm adds new 

fuzzy rules to the rule base, one at a time [54–57]. 

- The cooperative-competitive learning (CCL) approach, in which the chromosomes compete and 

cooperate simultaneously [58–61]. This can be understood in two opposite ways: the individuals 

could collaborate for the same purpose and thus construct the solution together, or they could 

compete against each other for the same resources. The use of CCL algorithms is recommended 

when the following issues arise: the search space is huge, the problem may be decomposed into 

subcomponents or different coding schemes are used [62]. 

In this paper, due to the large search space of T2 FLSs, an optimization method for FLS that is a hybrid 

GA consisting of a CCL approach and also containing a Pittsburgh approach is proposed. To ensure the 

compatibility of definitions, a brief review on basic concept of T2 FLS is presented in the section. 

3. Type-2 Fuzzy Logic System (T2 FLS) 

Recently, T2 FLSs have gained popularity in a wide range of applications due to their ability to 

handle higher degrees of uncertainty. The concept of a T2 FS was first introduced by Zadeh as an 

extension of the T1 FS [63]. A subsequent investigation of the properties of T2 FSs and higher types 

was performed by Mizumoto and Tanaka [64,65], and recently, Mendel and John introduced 

completely new terminology to distinguish between T1 and T2 FSs [4]. As mentioned in the field of 

image processing, we usually encounter many uncertainties. Possessing crisp membership functions, 

T1 FSs are not able to model these uncertainties directly. T2 FSs, on the other hand, show higher 
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performance as they provide adequately satisfactory results in capturing uncertainties [41]. A T2 FS set 

is characterized by fuzzy membership function; the membership grade for each element is a fuzzy set 

within the interval [0, 1] as shown in Figure 1. Such sets can be used in situations where there are 

uncertainties about the membership values [66]. Interval-valued T2 fuzzy is a special T2 fuzzy, where 

the upper and lower bounds of membership are crisp and the spread of membership distribution is 

ignored with the assumption that membership values between upper and lower values are uniformly 

distributed or scattered with a membership value of 1. As mentioned above, T2 membership function 

provides additional degrees of freedom in FLSs because their membership functions are themselves 

fuzzy, which can be very useful in situations with many uncertainties. 

 

Figure 1. The mean uncertainty on a Gaussian membership. 

A comprehensive review on the most successful application of T2 FLSs in classification and pattern 

recognition until 2011 has been done by Melin and Castillo [67]. Similarly, to the T1 FLS, a T2 FLS 

includes a fuzzifier, a rule base, fuzzy inference engine, and an output processor, as we can see in 

Figure 2 The output processor includes type-reducer and defuzzifier; it generates a T1 FSs output 

(from the type-reducer) or a number (from the defuzzifier) as described in detail by Karnik and  

Mendel [68–71]. 

 

Figure 2. Basic structure of T2 fuzzy inference system. 
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4. Proposed Method 

The proposed framework for road detection is shown in Figure 3. The proposed method is 

summarized in the steps following the figure. 

 

Figure 3. The proposed framework for road detection. 

4.1. Object-Based Feature Generation 

At first, the input data are to be prepared. Training data sets of satellite images containing a variety 

of objects such as vegetation, water, bare soil, buildings, parking lots and road objects are selected for 

rule generation. As the procedure is object oriented, image segmentation is initially performed for 

image object production. To overcome the shortcomings of pixel-based methods and also to reduce the 

semantic gap in image analysis, region-based algorithms have been developed [1–3]. Segmentation is a 

process in which the input image will be divided into homogeneous and separated regions. These 

homogeneous regions with similar indices, for example gray level, texture, shape, scale, etc., are called 

image objects or image segments. Image segmentation is known as the preliminary stage of object-oriented 

algorithms. It groups some adjacent pixels as image objects and has the highest impact on the success 

of these algorithms. A considerable number of studies have compared object-based approaches to 

traditional pixel-based classification methods [25–29]. Moreover, many of these studies have indicated 

that object-based methods typically produce higher classification accuracies than pixel-based methods. 

In this paper, the multi-resolution segmentation, one of the most powerful segmentation algorithms 

proposed by Baatz and Schäpe for image segmentation and used in considerable literature [72–76], is 

selected for image segmentation. This approach extends regions so as to minimize image object 

heterogeneity. Object heterogeneity is determined by weighted color and shape parameters. Also, 

shape heterogeneity is calculated using compactness and smoothness criteria. The algorithm is 

described in detail in [1]. After image segmentation, different features can be generated from each 

object. The features can be categorized in four key groups: spectral, textural, shape, and combination 

features. In order to generalize the algorithm, the features are to be normalized. All image objects are 
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labeled as a road or non-road class. At this point, the data are prepared to be imported to the GA for 

optimum feature selection. 

4.2. Feature Selection by the GA 

As renowned search and optimization methods, GAs have been successfully applied to a wide range 

of image processing problems, such as image classification [77–79], image segmentation [80], feature 

extraction [81–83] and inverse modeling [84,85]. The GA is a technique that uses genetic evolution as 

a pattern for problem solving. In these algorithms, inputs and fitness functions should be defined 

according to the problem. The possible solutions are known as chromosomes, which consist of a 

number of genes that can take binary or continuous values. Evolution starts from a random set of all 

possible solutions, which is called the primary population. Then, fitness values can be calculated for 

the chromosomes based on the defined fitness function. In our optimization problem at this section, 

each chromosome is a (1 × n) binary vector in which n is the number of all features generated in the 

previous step. The digit “1” in each chromosome vector denotes that the corresponding feature affects 

the classification outcome and vice versa. From there, the next generation is produced based on the 

calculated fitness values using selection, crossover, and mutation operators. The chromosomes with 

higher fitness values have a higher chance to be selected in the next generation production and vice 

versa. Details about GAs can be found in [86]. To find best features in road detection, the chromosome 

solution using KNN algorithm is applied which is very simple, popular and highly efficient for pattern 

recognition. KNN algorithms have been used since 1970 in many applications including data mining, 

statistical estimation, and pattern recognition classification [87–89]. The KNN algorithm contains two 

main steps: first, find k training instances that are closest to the unknown instance; then, select the 

most commonly occurring classification for these k instances. After image classification, the fitness 

function should be designed for each chromosome solution based on the desired object classification. 

In this work, the kappa coefficient measurement is chosen as the fitness function computed from the 

confusion or error matrix [90]. Kappa is known as pessimistic accuracy measure. This property of 

kappa enables it to distinguish two FLS with little difference in classification result. For a completely 

accurate classification, the kappa coefficient would be 1. After KNN classification for each 

chromosome, the kappa coefficient is calculated. The GA procedure is repeated for the improvement 

of fitness values in consecutive generations until a stop criterion is met, such as a fixed number of 

generations, the highest ranking solution’s fitness, population convergence, and so on. 

4.3. Designing and Tuning the FLSs 

The main structure of T2 FLS was described in Section 2. To realize the full potential of the 

optimum features, the space produced by the features will be divided into grids. Due to the extensive 

calculation performed by the T2 FLS, each feature space will be divided by three Gaussian 

membership functions using the Mamdani inference method for the consequent part, as previously 

illustrated. Besides, the Karnik-Mendel (KM) type reducer will be used for the precise output of the T2 

FLS [70]. Mamdani fuzzy inference method is the most commonly seen fuzzy methodology that has 

been successfully applied in fields such as data classification, decision analysis, expert systems, and 
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computer vision. For additional evaluation, a T1 FLS that has exactly the same structure as a T2 FLS 

will be designed and tuned. The FLS parameter optimization procedure is explained in what follows. 

Due to the large search space of T2 FLSs, we proposed an optimization method for FLS that is a 

hybrid GA consisting of a CCL approach and also containing a Pittsburgh approach. Within 

cooperative co-evolution, a solution for the problem to be solved is created through the unification of 

several individuals (sub-solution) that evolve into different populations, while within the competitive 

approach, a candidate sub-solution is evaluated based upon the results that it obtains after a set of 

competitions with several other sub-solutions. The CCL approach has been selected because of its 

ability to search and to efficiently find good fuzzy rules, and the Pittsburgh approach is selected to 

avoid trapping in local optimal solution because of the dependency of the chromosomes in the 

competitive stage. The details of proposed hybrid GA are explained as follows. 

4.3.1. Initial Population Production 

As previously mentioned, a hybrid GA consisting of Pittsburgh and CCL (P-CCL) is proposed for 

tuning the T2 FLS. The initialization step assigns the population values before the evolution process 

begins. At the first N, FLS parameters will be assigned. N denotes the total number of chromosomes in 

each generation. Because the population will be evolved through two independent procedures, the 

initial population must be coded according to the aforementioned coding method: P-CCL. In a 

Pittsburgh coding scheme, a single solution is responsible for the overall performance, with a fitness 

value assigned to that solution according to its performance. The coding scheme is concerned with the 

corresponding parameters of all of the membership functions of all features and consequent parts of all 

fuzzy rules that represent a full solution. In other words, the coding scheme exactly represents a T2 

FLS, as depicted in Figure 4. In our Pittsburgh coding, “n” represents the number of optimum features 

that are the output of the GA-KNN strategy, as described in the previous section. Moreover, “r” 

denotes the number of rules in our FLS. m1, m2 and σ represent the uncertainty boundaries of the mean 

and variance of each membership function, respectively. With regard to the input data, the variance of 

each feature is considered to be a crisp number. y  and y  represent the upper and lower consequent 

values, respectively. It should be noted that “i” and “n” respectively indicate the ith membership 

function of each feature and number of the feature. 

 

Figure 4. The scheme of the Pittsburg evolution coding of a T2 FLS. 

The CCL evolution assumes that each sub-solution in a population represents only a partial solution 

to a problem. The goal of each sub-solution is to form a partial solution that can be combined with 
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other partial solutions in the current population to build an effective full solution. The structure of a 

scheme in the CCL evolution is shown in Figure 5. The coded scheme of a sub-solution is concerned 

with the corresponding parameters of membership functions and consequent part of a fuzzy rule that 

exactly represents a Mamdani fuzzy rule (a sub-solution) as plotted by Figure 6. 

 

Figure 5. Scheme coding of a FLS through the CCL. 

 

Figure 6. Scheme coding of a sub-solution in the proposed T2 FLS CCL. 

4.3.2. Fitness Function 

In the Pittsburgh evolution procedure described previously, a single individual (a solution) is 

responsible for the overall performance. The kappa coefficient measurement is proposed, such as the 

GA-KNN fitness function that was described in the feature selection step. 

The fitness value calculation for each sub-solution in the CCL procedure is described as follows: 
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Step 1: Each pair of input-output is imported to a sub-solution. The rule firing will be calculated (Fi). 

Step 2: The rule output will be calculated via the KM method and will be named YiK, where k 

represents the system output and i denotes the ith input-output training pair. 

Step 3: The convergence measurement of each YiK from the ideal output (YiT) is computed as the 

following: Ci = YiT/YiK or Ci = YiT/YiK. Values less than 1 are accepted. High C values indicate high 

rule performance. 

Step 4: Finally, the efficiency of each rule can be calculated for all of the input-output training pairs 

using the following equation, where “n” is the training pair number: EFi = Σ(Ci × Fi)/n. 

4.3.3. Reproduction, Crossover and Mutation 

In the reproduction step, chromosome strings are copied according to their fitness values by roulette 

wheel selection method, known as one of the most popular reproduction methods. Roulette wheel, 

developed by Holland [86], was selected to avoid trapping in the local maximum. For Pittsburgh 

evolution, reproduction will be performed using a traditional roulette wheel for each FLS. The 

reproduction procedure for CCL will be performed for each sub-population using roulette wheel 

selection so as to opt for good sub-solutions in each sub-population. In other words, each rule in the 

sub-population competes with other rules that are present in the next generation. A full solution will be 

formed after competition and the selected rules will cooperatively form a full solution; however, 

certain inconsistencies will be produced as a consequence of rule dependency. Therefore, to complete 

the cooperation step, the membership function parameters of the rules in a solution will be fixed 

randomly. Some new chromosomes are produced based on the crossover probability of two selected 

chromosomes. In our proposed framework, this operator selects multi-combination points randomly for 

each pair, then the chromosomes combine and produce a new chromosome pair. The mutation operator 

randomly alters each gene with a small probability that is responsible for reintroducing lost gene 

values. Additionally, due to the long string for each chromosome, the mutation operator also enters a 

few new chromosomes. Along with the reproduction step, to complete the cooperative step in CCL 

evolution, inconsistent parameters will be fixed. The process of reproduction, crossover, and mutation 

is repeated until the convergence criterion is met. 

4.4. Rule Reduction 

Some rules may have existed in FLS fire in executing a few training samples; therefore, they could 

not contribute to the learning procedure. Due to this problem, it is understood that the parameters of 

the rules with low mean firing values were not tuned or reliable for testing samples that fire these rules 

with high firing values. Therefore, after the termination of tuning, these rules would be recognized and 

deleted from the FLS. Thus, we had a tuned FLS for both T2 and T1 that could be tested and enhanced 

in the next step. 

4.5. Testing and Enhancement 

In the previous section, the proposed T1 and T2 FLS were tuned using the proposed P-CCL genetic 

algorithm for the training data set. The training data set consists of samples from road and non-road 
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classes. All of the remaining data from the training data set source would be considered a test data set. 

Because the features used in the T2 FLS are restricted due to the tuning limitation, new rules will be 

generated using explorations of additional optimum feature views and histograms and prior knowledge 

of road objects. Additionally, certain efficient conceptual features, such as adjacency features, can be 

defined after the initial classification and can significantly improve the road detection result, which 

cannot be defined in pixel-based algorithms. The rules are generated in the IF-THEN form; moreover, 

for further generalization, as described in the feature generation step, all of the features must be 

normalized. Finally, after establishing the additional rule set, the test data set will be classified  

and evaluated. 

4.6. Validation 

After establishing the final T2 FLS, it must be validated by a validation data set that provides no 

contribution to the tuning rules. Other images are prepared, such as in training/testing data set 

preparation; these images are classified by the proposed road detection procedure, and the results are 

evaluated. For further evaluation, our proposed method is compared to the best results of the T1 FLS 

for both the training/testing and the validation data sets. 

5. Implementation and Analysis 

5.1. Input Data 

In this study, pan-sharpened multi-spectral IKONOS_2 images with a 1-m spatial resolution and  

11-bit radiometric resolution were used. A statistics-based fusion, implemented in the PCI software, 

was used for image pan sharpening [91]. The input data were divided into known groups of 

training/testing and validation data sets. The training/testing data set was used to tune the FLSs. The 

images taken from Hobart in Australia (1857 × 1725 pixels) and Kish Island in Iran (2317 × 1901 pixels), 

shown in Figure 7a,c, were selected for the training/testing data set for their specific object class. The 

validation result is the most important part of each automated algorithm evaluation. Therefore, to 

demonstrate the efficiency of our proposed FLS, other IKONOS images taken from Hamadan (1, 2) 

(1812 × 1282 pixels), (1588 × 1228 pixels), Yazd (1470 × 1228 pixels), Shiraz (1784 × 1353 pixels) in 

Iran, shown in Figure 7b,d,e,f, were selected for validation analysis. 

5.2. Object-Based Feature Selection 

The first step of the proposed procedure is image segmentation, which serves to produce regions as 

meaningfully as possible. A meaningful segmentation precisely represents the boundary of the feature 

of interest (e.g., buildings, roads, trees). Because a road network cannot be segmented into one region, 

to use potential road features such as linearity, connectivity, and homogeneity as well as to avoid 

under- and over-segmentation problems, it is more advantageous to segment, to the greatest extent 

possible, road objects into long regions that are not mixed with other objects in a non-road class.  
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 7. The IKONOS images: (a) Taken from Hobart in Australia; (b) Taken from 

Hamedan in Iran; (c) Taken from Kish Island in Iran; (d) Taken from Yazd in Iran; (e) 

Taken from Hamedan in Iran; (f) Taken from Shiraz in Iran. 
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As mentioned previously, the segmentation algorithm proposed by Baatz and Schäpe [1] 

implemented in eCognition packages is used by knowledge engineers for this step. The segmentation 

parameters were set to 43, 0.5, and 0.3 for the scale parameter, shape, and compactness weight, 

respectively by trial-and-error. The segmentation result of the training data set is shown in Figure 8.  

(a) (b) 

Figure 8. A segmented view of: (a) Hobart; (b) Kish. 

After image segmentation, all of the features in Table 1 were generated for each image object, and 

they were imported into the GA-KNN algorithm. 

Table 1. All of the features that should be generated for each object. 

Spectral Shape Texture Combination 

Mean (for 4 bands:NIR,Red,Green,Blue) Area GLCM homogeneity (for 4 bands in all.dir) Intensity/Density 

Brightness  Asymmetry GLCM contrast (for 4 bands in all.dir) Saturation/Density 

Max. diff Shape index GLCM dissimilarity (for 4 bands in all.dir) Intensity/compactness 

Standard deviation (for 4 bands) Roundness GLCM entropy (for 4 bands in all.dir) Saturation/shape Index 

Ratio (for 4 bands) Rectangular fit GLCM mean (for 4 bands in all.dir) Intensity/Shape Index 

Contrast to neighbor (for 4 bands) width GLCM stddev (for 4 bands in all.dir) Area × Max diff/ Border length 

Std. deviation to neighbor (for 4 bands) Border index GLCM ang. 2nd moment (for 4 bands in all.dir) Ratio Red/Density 

Mean diff. to neighbors (for 4 bands) length  Area × Ratio red/Border length 

Mean diff. to darker neighbors (for 4 bands) Density  Hue/Density 

Mean diff. to brighter neighbors (for 4 bands) Elliptic fit  Hue/Shape Index 

Hue Compactness  Max diff/Density 

Intensity Length/Width  Max diff/Rectangular Fit 

saturation Border length  Max diff/Shape Index 

NDVI   Ratio Red/Rectangular Fit 

NDWI   Ratio Red/Shape Index 

The initial population size of the GA algorithm was set to 600 due to the existence of approximately 

60 genes for each chromosome. Empirically, the crossover and mutation rates were set to 0.66 and 

0.05, respectively. One-hundred road objects and 100 non-road objects were selected as training 



Remote Sens. 2015, 7 8284 

 

samples. In addition, 200 road and 200 non-road objects were selected as test samples for computing 

the kappa coefficient for each chromosome in the GA-KNN. The population convergence criterion was 

selected for evolution termination. This criterion terminates the evolution when the population is 

deemed to have converged. Experiments revealed five or seven nearest neighbors with the same 

features as the optimum ones. For a comprehensive evaluation of the best GA-KNN result, all of the 

remaining objects containing road and non-road objects were regarded as test data and added to the 

previous test data set. The optimum features identified by the GA-KNN strategy are shown in Table 2. 

Table 2. Optimum features found by GA-KNN. 

NDVI Standard deviation Blue Hue Brightness 

NDWI GLCM Homogeneity Blue Ratio Red Saturation/Density 

Description of the optimum features are summarized in the following in Table 3. 

Table 3. Optimum Feature description. 

Feature Description 

Brightness 
Sum of the mean values of the layers containing spectral information divided by their 

quantity computed for an image object. 

Standard deviation Calculated from the layer values of all n pixels forming an image object. 

Hue The hue value of the HSI color space representing the gradation of color. 

Saturation 
The saturation value of the HSI color space representing the intensity of a specific 

hue. Relative purity of color; pure spectrum colors are fully saturated. 

Ratio The ratio of layer k reflects the amount that layer k contributes to the total brightness. 

GLCM Homogeneity It is a measure of the amount of local homogeneity in the image object. 

NDVI ( Re ) / ( Re )NIR d NIR d   

NDWI ( ) / ( )Green NIR Green NIR   

Density The density expressed by the area covered by the image object divided by its radius. 

Due to the advantages of the object-based algorithm, certain structural features, such as area and 

length/width, as well as certain conceptual features, such as borders relative to neighboring objects and 

the mean difference to the neighbors that are definable after a primary classification, were added to the 

GA-KNN optimum features. Independently using these features may affect the road detection result; 

however, combining them with other features can be very helpful, such as human interpretation in road 

detection. Thus, the aforementioned features were added to the GA-KNN optimum features, and they 

were used in the generation of additional enhancement rules. 

5.3. Type 2 FLS Designing and Tuning 

As described in the previous step, eight features were identified by GA as optimum features in road 

detection from IKONOS images. Due to the large number of T2 FLS parameters, calculations and 

hardware limitations, all of the optimum features cannot be used in designing T2 FLS. Experiments 

show that our hardware systems allow for the use of a maximum of four features by selecting three 

Gaussian membership functions for each feature. Results of the constrained GA-KNN by maximum 

four features show that the standard deviation blue, hue, ratio red, saturation/density feature set has 
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greater accuracy than another foursome set. Decreasing the number of membership functions to two 

results in reduced accuracy, and increasing the number results in an increase in the search space and 

complexity. Designing a full T2 FLS that covers the entire features space with three membership 

functions for four features produces 81 rules. For each T2 membership function, two mean parameters 

and one variance parameter are considered, as shown in Figure 1. Experiments show that considering 

the uncertainty in the variance has no effect on the system quality. Regarding the Mamdani inference 

system, two parameters for T2 and one parameter for T1 FLS should be considered for each 

consequent. Therefore, 198 and 105 parameters must be solved for each T2 FLS and T1 FLS tuning, 

respectively, which is coded in the Pittsburgh scheme, as shown in Figure 5; moreover, 11 and  

7 parameters must be solved for each rule as a sub-solution in a CCL scheme, as shown in Figure 5. 

Eighty percent of each generation will be allocated to the Pittsburgh strategy evolution, and owning to 

the rules correlation, 20% of each generation will be allocated to the CCL evolution algorithm. The 

initial population size of the random FLS parameters was set to 1000. Empirically, the Pittsburgh 

crossover, total chromosomes mutation and genes mutation were set to 0.62, 0.003 and 0.04, 

respectively. The CCL evolution reproduction rate and mutation rate received the respective values of 

0.5 and 0.05. Because the main purpose of CCL evolution was to serve as an efficient tool for finding 

the best rules in each generation, the reproduction rate was set higher than it ordinarily is. The 

termination condition was set to 3000 generations, which was selected on account of system memory 

considerations. The data from 600 normalized road and non-road objects equally taken from Kish and 

Hobart IKONOS images were imported into the optimization algorithm as the training data set. These 

two images were chosen to improve the algorithm generalization. As previously mentioned, the kappa 

coefficient measurement was selected for each FLS, both T1 and T2. After the FLS optimization, the 

rules with firing values less than 0.01 were removed from the system. The optimized membership 

functions for both T1 and T2 FLSs are shown in Figure 9. In Figure 9 “mfi” denotes ith membership 

function of each feature. It appears that the T2 membership functions were generated by blurring the 

T1 membership functions, whereas, in reality, the results were yielded by the hybrid GA. Table 4 

shows the accuracy results of the tuned T1 and T2 FLSs. The final results of the training step as 

presented in Table 4 show no significant differences between the two tuned FLSs for training data set. 

Where: Completeness = TP/(TP + FN) and Correctness= TP/(TP + FP) [92,93]. 

Table 4. Tuned FLSs accuracy evaluation for the training data set. 

Accuracy 
T2 FLS T1 FLS 

Road Non Road Road Non Road 

Completeness 0.97 0.9733 0.97 0.9667 

correctness 0.9479 0.9848 0.9357 0.9848 

Kappa 0.9379 0.9282 
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(a) (b) 

Figure 9. Final optimized membership function for input features: (a) T2 optimized 

membership function; (b) T1 optimized membership function; standard deviation blue, 

hue, saturation/density and ratio red respectively in the row. 

5.4. Testing and Enhancement 

At this step, the testing data set must be evaluated using the optimized T2 and T1 FLSs. on account 

of (Hobart and Kish images). The results of the testing data evaluation are presented in Table 5. 

  



Remote Sens. 2015, 7 8287 

 

Table 5. Tuned FLSs accuracy evaluation for testing data set. 

Class  Test Images 
T2 FLS T1 FLS 

Completeness Correctness Kappa Completeness Correctness Kappa 

Road 
Kish 0.8577 0.7926 0.8173 0.8587 0.7526 0.7946 

Hobart 0.8897 0.8036 0.8323 0.8852 0.7773 0.8141 

Non Road 
Kish 0.9920 0.9949 0.8173 0.9899 0.9949 0.7946 

Hobart 0.9839 0.9918 0.8323 0.9812 0.9914 0.8141 

The results show that for the training and testing data set, the T1 and T2 FLS have good potential in 

training and have very similar performance in optimization. As previously described, some new rules 

could be generated by exploring the training/testing data with additional optimum feature views, 

histograms and prior knowledge of the road objects. Additionally, certain efficient conceptual features 

could be defined after the initial classification could significantly improve the road detection result. 

Using prior knowledge and the exploration of the training/testing data sets, most of the vegetated 

cover and water object noises could be removed using the Normalized Difference Vegetation Index 

(NDVI) and the Normalized Difference Water Index (NDWI). Therefore, the basic rules generated 

based on these two known indices were as follows [94,95]: where Ti indicates ith threshold, 

(1) If NDVI > T1, then the class is non-road (vegetation). 

(2) If NDWI > T2, then the class is non-road (water object). 

For more effective use of the NDVI index potentials and to reduce the probability of missing road 

objects with trees as neighbors, combining a linear-shaped feature with the mentioned index is 

suggested. Because an object with a high length/width value is indicated as an elongated object, the 

length/width feature combined with the NDVI is suggested for potential road objects, as outlined by 

the following rule: 

(3) If T3 < NDVI < T1 and if length/width > T4, then the class can be road. 

As is the case with human interpretation, roads can be recognized as homogeneous objects. Thus, a 

rule using the homogeneity blue can be generated and added to the rule set: 

(4) If homogeneity blue < T5, then the class is non-road. 

For further improvement, conceptual features, such as adjacency and connectivity, combined with 

structural features are proposed for removing non-road objects. Considering the connectivity of the 

road network, each road object must be connected to at least one other. Due to certain noises, such as 

shadows, pedestrian lines and bridges, combination of the linearity feature with the connectivity 

condition can be very helpful in removing non-road objects, as expressed by the following rule: 

(5) If object length/width < T4 and the border relative to the road objects = T6, then the object  

is non-road. 

To eliminate the noise ensued from cars and shadows, the following two simple rules were designed: 

(6) If area < T7 (m2) and the border relative to the road objects > T8, then the object is road 

(detecting cars on the road surface). 



Remote Sens. 2015, 7 8288 

 

(7) If the area < T9 (m2) and the border relative to the road objects > T10, and brightness < T11, then 

the object is road (detecting shadows near the road surface). 

As the final rule for detecting missed road objects, a combination of homogeneity, adjacency, 

similarity and linearity is introduced: 

(8) If homogeneity blue > T5 and T12 < mean difference in red to the neighbor road objects < T12 

and length/width > T4, then the object is road. 

Using the training/testing data sets, the generated rules were revised and completed. The final 

parameters for the new rules are listed in the following: 

T1, T11 = 0.1, T2 = 0.25, T3, T6 = 0, T4 = 5, T5 = 0.14, T7 = 30, T8, T10 = 0.6, T9 = 50, T12 = 0.03. 

The final road detection result on the Hobart and Kish IKONOS images using the proposed 

framework for T1 and T2 FLSs results and their human extracted reference images are shown in  

Table 6 and Figure 10, respectively. Figure 10a,b show the referenced detected road from the Hobart 

and Kish IKONOS images. Additionally, Figure 10c,d show our proposed T2 FLS road detection 

result after enhancement for the Hobart and Kish IKONOS images. It should be noted that all roads in 

the suburban area and road wider than ten meters in the urban area would be considered in the 

reference data. By comparing Tables 5 and 6, one can deduce that the rules added to T1 and T2 FLSs 

have improved the road detection results from testing data up to three percent. Besides, as observed in 

the Kish evaluation result, the missed road in T1 is better than the T2 FLS. It should be mentioned that 

due to their higher parameters, T2 FLSs are more probable to be trapped at local optimum points than 

T1 FLSs, given the computing systems at hand and their associated processing limitations. 

(a) (b) 

Figure 10. Cont. 
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(c) (d) 

Figure 10. Training and testing evaluation: (a,b) The referenced road data of Hobart and 

Kish IKONOS image; (c,d) The final result of proposed road detection method from 

Hobart and Kish IKONOS image. 

Table 6. Final evaluation of Hobart and Kish image. 

Class  Test Images 
T2 FLS T1 FLS 

Completeness Correctness Kappa Completeness Correctness Kappa 

Road 
Kish 0.8615 0.8433 0.8454 0.8635 0.8081 0.8273 

Hobart 0.8933 0.8455 0.8581 0.8897 0.8272 0.8457 

Non Road 
Kish 0.9943 0.9950 0.8454 0.9927 0.9951 0.8273 

Hobart 0.9879 0.9921 0.8581 0.9862 0.9918 0.8457 

5.5. Validation 

In this section, the most important part of our proposed framework for road detection from 

IKONOS images that shows its high potential and efficiency in road detection is discussed. As 

explained in the previous sections, a T2 FLS using the Kish and Hobart IKONOS data set are tuned 

through a hybrid genetic strategy (P-CCL). Because the source of the training and testing data set is the 

same, only the accuracy assessment of testing data set is not sufficient and it sounds necessary for the 

generalization and validation assessment to evaluate our framework with some data sets having no 

contribution in the procedure established for road detection. The IKONOS images taken from 

Hamadan (1), yazd, Hamadan (2) and Shiraz and Yazd in Iran are used for the framework validation. 

They are, respectively, shown in Figure 7b,d,e,f. Figure 11 demonstrates portions of the image that 

were segmented using the segmentation parameters introduced in the previous section. The 

segmentation result of the validation set shows that the segmentation parameters for road detection 

have provided satisfactorily acceptable and desirable results; where the roads were segmented as 

elongated and homogeneous regions without over- or under-segmentation problems.  
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(a) (b) 

Figure 11. A segmented view of: (a) Shiraz image; (b) Yazd image. 

After the segmentation step, as described in the previous step, the desired features were extracted 

from each image object and imported to the proposed algorithm. Table 7 shows the road detection 

validation results of the T2 FLS, the efficiency of which will be testified via classification of the 

validation data set by use of the T1 FLS established in the previous section, similar to our method. 

Figures 12a,b and 13a,b show the referenced road data from Shiraz, Yazd and Hamadan 1, 2 

respectively. Based on the obtained results, the T1 FLS for the Shiraz and Yazd cases detects number 

of non-road objects as road objects and results in lower correctness accuracy. Also in the Hamadan 1, 2 

data sets, the missed road objects by T1 FLS are considerable and lead to lower completeness 

accuracy. The proposed T2 FLS, as seen in Table 7, produces steadier results compared to those of  

T1 FLS. 

Table 7. Validation results of optimized T1 and T2 FLSs.  

Class  Validation Images 
T2 FLS T1 FLS 

Completeness Correctness Kappa Completeness Correctness Kappa 

Road 

Shiraz 0.8012 0.6961 0.7201 0.7840 0.5420 0.6018 

Yazd 0.8433 0.6675 0.7138 0.8307 0.4863 0.5589 

Hamadan1 0.7354 0.6801 0.6780 0.6561 0.6589 0.6255 

Hamadan2 0.8084 0.6464 0.6922 0.7218 0.5736 0.6056 

Non 

Road 

Shiraz 0.9683 0.9817 0.7201 0.9400 0.9796 0.6018 

Yazd 0.9543  0.9825 0.7138 0.9046 0.9801 0.5589 

Hamadan1 0.9676 0.9750 0.6780 0.9682 0.9678 0.6255 

Hamadan2 0.9634 0.9838 0.6922 0.9556 0.9765 0.6056 

Table 8 as well as Figures 12 and 13 show the road detection validation results of T1 and T2 FLS 

after enhancement by the rule set for the four mentioned IKONOS Images. Figures 12c,d and 13c,d 

show the results of the framework for Shiraz, Yazd and Hamadan 1,2 IKONOS images, respectively. 

Also, Figures 12e,f and 13e,f show the final results of the T1 FLS method for the respective IKONOS 

images of Shiraz, Yazd and Hamadan 1,2. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 12. (a,b) The referenced road data of Shiraz and Yazd IKONOS images.  

(c,d) The final result of proposed T2 FLS after enhancement. (e,f) The final result of T1 

FLS after enhancement.  
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 13. (a,b) The referenced road data of Hamadan 1,2 IKONOS images.  

(c,d) The final result of the proposed T2 FLS after enhancement. (e,f) The final result of 

T1 FLS after enhancement. 
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Table 8. Validation result of T1 and T2 FLSs after enhancement.  

Class  Validation images 
T2 FLS T1 FLS 

Completeness Correctness Kappa Completeness Correctness Kappa 

Road 

Shiraz 0.8034 0.7455 0.7520 0.7883 0.6167 0.6604 

Yazd 0.8559 0.7043 0.7453 0.8357 0.5309 0.6015 

Hamadan1 0.7406 0.7021 0.6939 0.6587 0.6870 0.6426 

Hamadan2 0.8192 0.6813 0.7206 0.7326 0.6307 0.6490 

Non Road 

Shiraz 0.9751 0.9821 0.7520 0.9556 0.9803 0.6604 

Yazd 0.9609 0.9840 0.7453 0.9197 0.9810 0.6015 

Hamadan1 0.9706 0.9756 0.6939 0.9719 0.9682 0.6426 

Hamadan2 0.9683 0.9848 0.7206 0.9645 0.9776 0.6490 

Comparing Tables 7 and 8 shows that the rule set has more effect on the T1 FLS and the correctness 

accuracy has been improved up to ten percent. Also, the proposed rule set recuperates the T2 FLS up 

to five percent. As observed in the validation images, the selected data are placed in dense urban areas 

and the validation results prove the high performance of our proposed method in road detection. 

Although these results did not completely match the referenced road data ideally and had some 

misses and noise, they can be improved by some morphological operations or by the use of a gap 

detection algorithm in the road centerline extraction step, neither of which is the aim of this research. 

The training and testing evaluations show no important differences between T2 and T1 FLS. 

Additionally, it should be noted that T1 FLS tuning is much easier than for T2 FLS due to lower 

calculation times and optimization parameters (nearly half of T2 FLS parameters); therefore, the 

probability of falling into a local optimum point is less than that of T2 FLS using the available 

calculation systems. However, the validation results of T1 FLS are not comparable to our proposed 

framework. This is one remarkable point for our method. The evaluations show the T1 FLS is very 

sensitive to the training data set, and T2 evaluations demonstrate its high potential for handling 

uncertainty in the validation data set. 

6. Conclusions 

In this research, a new framework was proposed using T2 FS theory in combination with  

object-based image analysis to establish a generalized road detection framework from IKONOS 

images independent of training knowledge. In the field of image processing, we usually encounter 

many uncertainties, such as those caused by projecting a 3D object into a 2D image, uncertain 

boundaries, nonhomogeneous regions, poor and non-uniform lighting conditions and non-linearity of 

the imaging system. An interesting alternative is to employ T2 FSs, which augment fuzzy models with 

expressive power to develop models, which efficiently capture the factor of uncertainty. A classic GA 

scheme is offered to find the most effective features in the road detection procedure and a hybrid GA 

consisting of Pittsburgh and cooperative-competitive learning strategies is proposed and designed for 

T2 FLS parameter optimization. After fixing the T2 FLS parameters, to improve the accuracy, some 

conceptual features were added to the FSs in if-then rule format utilizing prior knowledge and the 

training data set. The Kish and Hobart case study shows the high potential of our proposed procedure 

in T2 FS tuning. The most prominent achievement of our research was seen in the validation 
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evaluation, which shows how successful the proposed framework is for road detection in independent 

IKONOS satellite images. The achievement of 79%, 68% and 70% averaged completeness, correctness 

and kappa accuracies using the optimized T2 FLS, as well the achievement of 80%, 72% and 72.5% 

averaged completeness, correctness and kappa accuracies using the proposed T2 FLS framework after 

enhancement for independent images, demonstrates the capability and efficiency of the method in 

automatically identifying road objects. For more validation, a T1 FLS with the same structure as T2 is 

tuned. Evaluations show that T1 FLS performance in training is very close to the proposed T2 FLS 

framework, but the generalization and validation assessment demonstrate lower accuracy with 

significant differences from the proposed T2 FLS. Due to the large calculation time and extensive 

computations of T2 FLS, using a parallel processor may be very helpful to extend and improve the 

proposed method. Although the results did not completely match the referenced road data ideally and 

had some misses and noise, they can be improved using some morphological operations or by means 

of a gap detection algorithm in the road centerline extraction step. 
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