
Designing a Practical Access Point Association
Protocol

Fengyuan Xu∗, Chiu C. Tan∗, Qun Li∗, Guanhua Yan†, and Jie Wu‡
∗College of William and Mary, VA

†Los Alamos National Laboratory, NM
‡Temple University, PA

∗{fxu,cct,liqun}cs.wm.edu,†ghyan@lanl.gov,‡jiewu@temple.edu

Abstract—In a Wireless Local Area Network (WLAN), the
Access Point (AP) selection of a client heavily influences the
performance of its own and others. Through theoretical analysis,
we reveal that previously proposed association protocols are not
effective in maximizing the minimal throughput among all clients.
Accordingly, we propose an online AP association strategy that
not only achieves a minimal throughput (among all clients) that
is provably close to the optimum, but also works effectively in
practice with a reasonable computational overhead. The asso-
ciation protocol applying this strategy is implemented on the
commercial hardware and compatible with legacy APs without
any modification. We demonstrate its feasibility and performance
through real experiments.

I. I NTRODUCTION

Wireless networks are increasingly used to provide ubiq-
uitous Internet access. A crucial determinant of quality of
service in wireless networks is the problem of access point
(AP) selection in the distributed manner. A user selecting an
inappropriate AP will experience bad service, or even hurt other
users’ throughputs. The current technique of AP selection is for
the user to selfishly pick the AP with the strongest signal, or
RSSI value. The intuition is that factors like multipath effect
and path loss which reduce throughput will have a smaller effect
when the user is communicating with an AP with a larger RSSI.

This simple strategy might fail when there is a large number
of users crowded together. Consider the case when we have two
APs on orthogonal channels, one with much stronger signal
strength than the other, and a collection of users. All the users
will simply pick the same AP (with the largest RSSI), so that
the actual throughput of each user is very small because of
channel contention between users. Based on this observation,
alternative criteria such as selecting the AP which yields the
largest throughput have been suggested.

However, it is unclear how well thisselfish strategy will
perform when every user attempts to connect to the AP which
is able to maximize their own throughput. Unlike an AP’s
RSSI value measured by a user which is not affected by
additional users associating with that AP, the AP’s throughput
will change as more users join in. Therefore, a user selecting
an AP based on throughput may have to switch APs constantly,
hence lowering overall performance.

In practice, we believe a good performance is to achieve the
maximized minimal throughput for all clients. Using this simple

but reasonable metric, we seek to design a practical distributed
protocol for AP association. We theoretically analyze the worst-
case performance of the selfish strategy, and introduce an online
algorithm that achieves a better worst-case performance. Incom-
ing user employing this algorithm determines an irrevocable
association, only making use of the load information on the
nearby APs, in order to minimize theLp norm of the loads
on all APs at the moment. Based on our online algorithm,
we have implemented an association protocol for commodity
hardware driver at the client side. This protocol works well
with current legacy 802.11 APs. Using a combination of real
experiments and extensive simulation, we demonstrate thatour
online association protocol performs better than the RSSI-based
and selfish AP selection.

Our main contributions are:

• We have designed a distributed online algorithm for AP
association based on theLp norm of the loads on APs in
proximity, and demonstrated theoretically its performance
compared with selfish strategy.

• A light-weight method is introduced to estimate one user’s
throughput on the target AP without association, reducing
the implementation overhead.

• We demonstrate our protocol’s practicability using real
experiments, as well as provide extensive simulations for
large scale networks.

• Our solution is practical and does not require any modifi-
cation on APs, making our technique applicable to existing
wireless networks.

II. RELATED WORK

AP association plays an important role in improving wireless
performance [1]–[10]. Work by [11] demonstrated why the use
of signal-to-noise ratios in selecting APs is not appropriate.
Both [11] and [12] considered techniques to allow the client
to estimate the AP workload before connecting, while [13]
considered the use of available bandwidth in AP selection. A
more holistic solution encompassing factors such as the number
of connected clients and mean RSSI was proposed in [14].

The selfish behavior of users in a congestion game has been
studied theoretically. A special case where each user’s decision
is a singleton set is considered in [15], while [16] describes a
class of congestion game where the payoff function associated



with each resource is user specific. The convergences under
different load balancing scenarios are provided in [17]. Inthis
work we model the decentralized AP selection with selfish
users as an extension of the weighted singleton congestion
game in which the weight of a user varies as the associated
AP changes. Other modelings of the wireless infrastructure
selection include [18] and [19], targeting at different scenarios
and goals. The major distinction of our work is that we design
and implement on the commercial chipset an online greedy AP
selection protocol in the distributed manner. The performance
is supported by theoretical proof and demonstrated both in real
experiments and simulations.

Compared with decentralized methods, work by [20] and [21]
uses the idea that better AP association decisions can be
obtained by relying on a global view of the entire WLAN, or an
extra centralized controller. AP side system is modified in [21]
to aggregate workload information and provide association
control according to it. In [20], a more complicated central
scheme for AP association is discussed.

There are also other papers discussing how to multiplex
multiple APs. In [22], it created multiple virtual interfaces
based on one single wireless card, and made them communicate
with associated APs like simultaneously. The paper [23] built
a multi-interface association mechanism to distribute a client’s
data traffic on multiple accessible APs in a scenario where the
backhaul link is the bandwidth bottleneck.

III. M OTIVATION

We consider an IEEE 802.11 infrastructure network [24], in
which there arem APs andn stationary clients or users. Given
no central controller and local information, All the clients are
allowed to freely choose an AP within the transmission range
to associate with. The goal of this paper isto maximize the
minimum throughput over all clients.

The AP association protocol currently employed in IEEE
802.11 networks lets a client associate with the AP that gives
the strongest signal. We term this the Best-RSSI strategy.
However, the Received Signal Strength Indication (RSSI) may
not be a good indicator of throughput changes. To illustrate, we
present a simple case study on certain stationary wireless LAN
client under an environment where there are a lot of interference
and congestion randomly generated by co-existed others sharing
the same AP with this client. Figure 1 records during a time
interval the associated AP’s RSSI measured at this client side
and the MAC layer throughput samplings. Through this paper,
we consider the MAC layer throughput if no specification.

It is easy to observe that the relatively stable state of the
RSSI does not reflect the relatively intensive fluctuation ofthe
sampled throughput. Thus, RSSI is not suitable and accurate
enough to evaluate an AP’s performance. It is possible to end
up with a situation in which all clients connect to a single
AP. In this case, the competitive ratio∗, in terms of average

∗competitive ratio is the performance ratio, with respect to some metric,
between worst outcome of certain association protocol and the optimal strategy
case.

client throughput, can be as bad as1/m. Whenm is large, this
plummeting performance becomes unacceptable.
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Fig. 1: RSSI versus throughput. The sample index increases along with time

IV. SELFISH USERSTRATEGY

One natural alternative to solving the above problem, with
respect to our goal, is to let the clients behave myopically by
applying in decentralized AP selection thebest-replypolicy.
Explicitly, it means that every user keeps moving to associate
with the AP that could offer it the best throughputuntil no user
can gain higher throughput by unilaterally deviating from its
current decision (Nash Equilibrium).

To simplify the analysis for selfish users, we make two
assumptions in this section. In the next section, we will
use a more realistic assumptions. First, we assume that the
interference between the communications of two APs is not
considered, i.e., the nearby APs operate on orthogonal channels.
Second, the association procedure of a user is considered asan
atomic operation, so only one user perform association at a
time. The time at which a user makes a decision to change
APs is marked as adecision step. However, we do not require
users to follow a certain decision order, which means in each
decision step the user who is picking a new AP could be any
one. Under these assumptions, we will show that such selfish
user game always converges to a Nash Equilibrium with non-
optimal performance. More complicated scenarios even cannot
grantee the existence of the Equilibrium state [16], [17].

We denote byUa the set of users connecting with APa.
So let na = |Ua| represent the cardinality of this set. We
designate bystu the percentage of service time the useru
gains from associated AP, andTu corresponds to the throughput
of u. And for any useru and AP a, we useRua to denote
the transmission rateunder the situation onlyu is associating
with a. Rua varies even for the same user. For the rest of this
section, unless otherwise specified, the transmission raterefers
to the effective transmission rate, which considers the overhead
caused by retransmissions, random backoff and so on.

To examine the performance of this protocol, we consider
two aspects: convergence and competitive ratio. The compet-
itive ratio here is equivalent to theprice of anarchy† using

†the ratio of the worst-case social cost among all Nash Equilibria over the
optimal cost



minimum user throughput as social cost. The following subsec-
tions show first whether the selfish user protocol will eventually
stabilize and how fast the protocol will achieve convergence in
general, and after that give the competitive ratio of the protocol.

A. Convergence of the Selfish Strategy

In this subsection, we will show how to model this selfish
throughput strategy as a special case of the weighted congestion
game, where the weight of a user varies as the associated AP
set, which is singleton, changes. This game is proved to be
converged with not ideal speed by leveraging the technique
similar to [17]. We start with a lemma to characterize the
throughput calculation.

Lemma 1:All the users on an APa have the same through-
put Ta

Ta =
1∑

i∈Ua

1
Ria

(1)

Proof: Owing to Carrier-Sense Multiple Access with Col-
lision Avoidance(CSMA/CA) protocol, all the users associated
to the same AP, no matter what their transmission rates are,
have a fair chance to seize the channel for packet transmission.

Therefore, given the same packet sizez, any useru connect-
ing to APa with a transmission rateRua is assigned a portion
of service time froma:

stu =
z

Rua∑
i∈Ua

z
Ria

=
1

Rua∑
i∈Ua

1
Ria

(2)

It is obvious that every user on the same AP has throughput:

Ta = Tu = stu × Rua =
1∑

i∈Ua

1
Ria

(3)

Given the Lemma 1 and assumptions we made, the selfish
AP selection can be modeled as an extension of the congestion
game. For sake of clarity and consistence in terminology, we
describe this model in the wireless LAN scenario. Consider
a setM of APs, each having a load function depending on
the total weight of the users associated (Definition 1), and a
set U of users, each of whom only can choose one AP from
a permissible subset ofM (in the absence of a coordinating
authority). The weight of a useri on AP j is defined asLij =

1
Rij

. Accordingly, maximizing the minimum throughput over
all clients is equivalent to minimizing the maximum load over
all APs.

Definition 1: The load of an APa, La, is

La =
∑

i∈Ua

Lia =
∑

i∈Ua

1

Ria

For the convergence proof, we introduce a sorted vector
(in ascending order) of all users’ throughput as the potential
function. According toLemma 1, we can simplify this vector
to a new one

−→
T by usingTa above to represent respectively

the current throughput of every user associated with APa (for
∀ a ∈ M , whereM is the set of all APs). Put differently,

given a useri associated with APa, its throughput is replaced
with Ta in the

−→
T .

The following defines thelexicographic orderon different
vectors (

−→
T ).

Definition 2: One vector
−→
T defined above is called lexico-

graphically larger than the other one
−→
T ′ if

−→
T ’s first unequal

element is larger than its corresponding position index onein
−→
T ′, where both vectors are in ascending order.

Definition 3: In
−→
T , Ta(s) denotes the throughputTa at the

decision steps.
We show the convergence of the protocol by identifying a po-

tential function and showing that this potential strictly increases
after each step. Consider the vector

−→
T , in an ascending order

of all users’ throughput.
Theorem 1:

−→
T lexicographically increases when a useri

moves from APj to k for better throughput.
Proof: Based on the assumption that interference is not

considered in this section, we know this migration only in-
fluences two components of

−→
T : one corresponding to the

throughput for APj that useri just left, while the other corre-
sponds to the APk that i has joined. Other components remain
unchanged. Suppose this is thes + 1-th decision step. Because
user i moves for a higher throughput,Tk(s + 1) > Tj(s);
and because APj has one less client, its throughput increases:
Tj(s+1) > Tj(s). In a word, ifTj(s) is thepth component in
−→
T at steps, Tj(s + 1) and Tk(s + 1) reside at two positions
whose indexes are no smaller thanpth (at the right side ofpth

position includingp).
Assume in

−→
T at steps, (m − q)th (recall m is the number

of APs) is the first position in which the value is larger than
the one in positionp, i.e., there areq throughput larger than
Tj(s) in

−→
T . Note that only if no throughput is equal toTj(s)

in
−→
T at steps, m − q = p. After steps + 1, this numberq

increases by 1 for the reason mentioned above (Tj moves to
the right). Thus, the(m − q − 1)th position becomes the first
position that holds different values for steps and steps + 1

in
−→
T . Obviously, according to the definition of lexicographical

order, the vector
−→
T at steps + 1 is larger.

Since we have shown that users’ migration always increases
the potential -

−→
T , this gives us an upper bound (Theorem 2)

on the convergence time in general.
Theorem 2:Without specifying the concrete underlying con-

figuration, this network (m APs andn clients) reaches the
equilibrium in at mostmn steps.

Proof: It is equal to the number of different sorted vec-
tors, which is bounded by the number of network topology
snapshots. In other words, after performing at mostmn steps,
this potential function

−→
T will come to a state at which it will

not be larger any more. This means that no matter which user
has the chance to make a decision at the next step, it will stay
on its current AP from its selfish point of view.

B. Competitive Ratio

In the following, we obtain the competitive ratio with respect
to the minimal throughput over all clients in the selfish protocol.



We still assume that the number of APs ism and the number
of clients (or users) isn. We also assume that, among all
users, the maximal available transmission rate isRmax and the
minimal available transmission rate isRmin. For convenience,
we define the load a client imposes to an AP as the reciprocal
of the transmission rate of a client when connecting to an AP.
Therefore, we defineLmax = 1

Rmin
, andLmin = 1

Rmax
.

In a Nash Equilibrium of the selfish strategy, suppose the
most loaded AP isk, which has a loadLS , i.e., Lk. Since this
selfish user game reaches the equilibrium, any client connecting
to AP k is not willing to move to any other APj. That is,
L

S ≤ Lmax +Lj for ∀j ∈ {a|a ∈ M&a 6= k}. Thus,LS ·m ≤
Lmax · (m − 1) +

∑m
j=1 Lj ≤ Lmax · (m − 1) + Lmax · n

∴ L
S ≤

Lmax · (n + m − 1)

m

Then in the optimal strategy, the maximal load over all the APs
is L

O ≥ n·Lmin

m In sum, the price of anarchy is

L
S

LO
≤

n + m − 1

n
·

Lmax

Lmin

In summary, the selfish user protocol has a high convergence
time and a poor performance when the number of APs is large
and the ratio between the maximal and minimal rates is large.

V. ONLINE ALGORITHM

We have shown that both the Best-RSSI and selfish user
protocols perform poorly under certain scenarios. In this sec-
tion, we introduce our practical online association strategy.
Our online algorithm considers merely communication load
including interference and congestion, which provides a more
realistic model.

The protocol is simple without assuming a complex interac-
tion among clients and APs. We merely assume that, when a
new client joins the network, it can measure the loads (recall the
Definition 1) of all APs within its hearing range. If the client
does not affect an AP, or does so with negligible influence,
it does not need to know the load on that AP. For example,
if a client is far away from an AP, the interaction between
them or the influence would be marginal and the client will
not consider the information on that AP when it makes its
AP association decision. We will show by implementation in
section VI that this assumption can be approximately achieved
through a practical and low-overhead measurement method. We
do not even assume how the loads will be changed when a client
joins – although we do assume the load on each AP will be
non-decreasing when a client joins.

In the following, we examine several scenarios to show the
ramifications of our assumptions and demonstrate how much
our assumptions conform to the reality.

• Interference with APs: When clienti joins the network,
it might interfere with the transmission and reception on
several APs. We denote the loads imposed on APj after
i makes its association decision asLij . Note thatj may
not be the AP that clienti associates with.

• Interference with clients: When client i joins the net-
work, it might interfere with another clientk. Even though
i may not directly interfere with the AP (say APj) thatk is
associated with (possibly due to being out of transmission
range), the interference ofi on k’s communication may
change the load on APj. If the load on APj is visible
to client i, this scenario is amenable to our analysis;
otherwise, we will ignore the load imposed by this indirect
influence because the load change due to this rippling
effect is marginal.

• Myopic network configuration : When a clienti joins the
network, it may not see all the APs because of the limited
communication range. If the client does not see an AP, we
assume the load change on that AP owing to the joining
of client i is negligible. Furthermore, in this case, client
i will not be able to associate with that AP because there
is no usable bidirectional link between the client and the
AP.

In summary, we study a more practical and complicated
wireless LAN model here than the one used in the previous
section. The weight (communication load) a user adds on the
associated AP might vary as the local network configuration
changes or new incoming clients appear.

The online AP selection algorithm runs as follows. When
a new client appears (in online fashion), it will make an
irrevocable association with one of the visible AP so that the
Lp norm of the loads on all the APs within its transmission
range, after its join, will be minimized at the moment. Since
the client is unable to affect the other APs that are not in its
hearing range, this algorithm will minimize theLp norm of all
the APs’ loads in the system(Lp

1 + L
p
2 + · · ·+ L

p
m)1/p in each

new association event. Then we have
Theorem 3:The online protocol gives ar ≤ 1

21/p−1
-

competitive ratio if the protocol is to minimize theLp norm of
the loads.

Theorem 3 is proven in Appendix using the main idea of [25].
From theorem 3, we derive that

Theorem 4:The online protocol is ae log m competitive
protocol for minimizing the maximal load (or 1

e log m , w.r.t.
maximizing the minimal throughput).

Proof: Let the heaviest load among all APs running our
protocol be Lm and the heaviest load among all APs in
the optimal minimizing heaviest load protocol beL

∗
m. Thus,

m1/p
L
∗
m = (m · L

∗p
m )1/p ≥ (

∑
j L

∗p
j )

1

p ≥ 1
r (

∑
j L

p
nj)

1

p ≥
1
r (Lp

m)1/p = 1
r Lm. In other words, theLp norm protocol

is a rm1/p-competitive online algorithm for minimizing the
heaviest load on all APs.rm1/p ≤ m1/p

21/p−1
≤ m1/p p

ln2
. When

p = lnm, m1/p p
ln2

reaches its minimum value,e log m, in the
positive real number domainR+. Thus, we chooseLlnm norm,
and the competitive ratio, correspondingly, ise log m.

Instead of being related to the number of APs and the ratio
between the maximal and minimal rates, the competitive ratio
of this protocol is linear to the logarithm of the number of APs,
an almost constant competitive ratio for a small number of APs,
which is deemed very promising since a constant competitive



ratio algorithm usually gives a very good practical performance.
Furthermore, this algorithm has the advantage of computa-

tional simplicity and feasibility for practical implementation.
The expected performance bound, for each client joined, is
ensured just by the local network information at the moment it
was coming as a new client. It is not necessary to reconsider its
decision once a new association event occurs. In other words,
our online algorithm takes exactlyn steps to finish. In the next
section, we demonstrate that this algorithm can be employed
as a practical and light-weighted association protocol foroff-
the-shelf wireless LAN adapters.

VI. PROTOCOL IMPLEMENTATION FOR ONLINE

ALGORITHM

We implement aforementioned online algorithm on the pop-
ular commercial wireless LAN adapter by taking advantage
of the legacy standard 802.11 protocol. The implementation
is shown using the Click Modular Router toolkit [26]. The
association functionality of the MadWifi driver v0.9.4 [27]is
directly taken over by our module. It does not require any
change at the AP side, so our implementation can be used in
any open 802.11 networks or networks the client is able to
access.

We consider the scenario that wireless link is the bottleneck
of a communication connection. The discussion of other cases
is out of scope of this paper. Thus, the workload of an AP
is reflected by the wireless traffic on air for this AP. Here
we monitor the uplink stream traffic, ignoring the downstream,
because accuracy improvement of throughput measurement is
small compared with the extra complexity in the implemen-
tation experience of [23]. Every channel is considered to be
interference-free with others, as this type of interference is
ignorable compared to interference inside the channel. Thus,
the computation of theLp norm of the AP’s workload can be
reduced to per-channel based computation, while the compari-
son is still among all channels.

In order to realize our online algorithm in the driver, an
efficient implementation is required to measure every AP’s load
on the same channel when a clienti joins a candidate APj ‡.
A natural way to obtain this information is to let the clienti
perform an association operation withj, and generate traffic on
j while at the same time capturing an uplink data stream for
each AP by passive listening. The packet retransmission and
duplication does not count. However, the association process
consumes a lot of time, especially for encrypted wireless
networks. When the set of association candidates is not small,
the user is not able to bear waiting so long. Nevertheless,
sending data packets without association will lead to rejection
from the object AP because of the IEEE 802.11 standard. Thus,
we find a more light-weight way to obtain the equivalent load
information without association. Currently 802.11 standards
require an AP to respond toprobe requests, even if the request
is sent by a station not associated with the AP§. We leverage

‡Assumei always has some communication demand after association
§It is done automatically by the firmware, transparent to the upper layers

this to create a packet type to replace the real data packet inthe
MAC layer. The intuition is to generate modified probe request
traffic to the object APj, similar to the data traffic, to estimate
other APs’ loads as if the clienti is associating withj. The
detail modifications of the probe request packet are made as
follows.

• We make the probe request uni-cast, forcing the target AP
to return an ACK upon receiving the packet. This behavior
is similar to a station transmitting data packets to an AP.
And this process is important as well for calculating the
throughput.

• We change the subtype flag in the packet header to prevent
the AP from returning a probe response, in order not to
introduce unnecessary traffic to the network.

• The packet size, transmission rate, and inter-arrival timeof
modified probe requests are packet-wisely customizable by
the user, which is able to provide more accurate throughput
information for specific estimation based on upper-layer
applications. This feature is implemented in the probing
generator module. Its performance is shown in the next
section.

We also implement an AP filter to make the candidate AP
list programmable. The user can select a preferred channel,
network, and minimal RSSI threshold to customize the list.
Only qualified APs will be considered for estimation to reduce
overhead.

The implemented protocol is described as pseudo code
(Algorithm 1). A list of candidate APs is determined in the
first place for estimation according to the beacons. In the
list, the candidates from the same channeli group as a set
Ci. For each target APj in Ci, the user injects a probing
traffic, which consists of modified probe request packets, to
the AP j, while measuring all members’ loads. After these
measurements, the user can calculate theLp norm loads for all
members within this channel set,(

∑
k∈Ci

L
p
k)1/p, wherep is the

natural logarithm of the number of APs. ThisLp norm value,
influenced by association with the target AP, will be compared
with the current best candidate AP among all channels. The
comparison strategy applied in the best candidate updating
stage is controlled through two programmable parameters. The
first one is the norm-difference thresholdTnd, and the second
one is RSSI-difference thresholdTrd. If the norm for the
target AP are at leastTnd smaller than the norm for the
current best AP, the target AP will be the best candidate AP
instead of current one. Otherwise, the algorithm continuesto
check whether this norm is just smaller than the current best
candidate’s, as well as whether the target AP’s RSSI is at least
Trd more than the best candidate’s. If so, the target AP will
be the best; for all other cases, we keep the current best AP
without updating. The user treats every member of a channel
set as the target member respectively, and repeats this process
for each channel set. After the evaluation of all candidate APs,
the user will associate with the final best candidate AP.



Algorithm 1 Protocol Description
Discovers all available APs
Applies the filter on discovered APs
Puts all filtered APs into candidate list
for eachCi do

for each APj in Ci do
Generates a probing traffic toj
Estimates the new load of each AP withinCi

Calculates theLp norm change
Updates the best candidate AP according toTnd andTrd

end for
end for
Associates with the best candidate AP

VII. E VALUATION

We verify the feasibility of our online algorithm and demon-
strate the performance of our protocol implementation in this
section. Each client is powered by a 1.66GHz CPU with 1 GB
RAM, running on Linux kernel 2.26.24. A D-Link WNA-2330
with Atheros 5312 chipset wireless card is used.

A. Application Aware Probing
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Fig. 2: Upper-layer application stream emulations.

Since our modified probing stream, used to emulate the real
data stream, is programmable in terms of the packet size, inter-
arrival time, and transmission rate, it is easy to generate specific
streams to mimic the data stream of a certain application. Thus,
the client is able to find out the ”best” association AP with
respect to the application it wants to use. Figure 2 demonstrates
how similar our probing can be to the secure copy (SCP) and
VoIP protocols, respectively. The SCP protocol used is the
Unix scp command line program. SCP transfers a single file
from a laptop to a remote desktop on the Internet through a
commercial AP on the channel 6 with RSSI -58. The packet
size of the probe emulating SCP is 1500 bytes, and the inter-
arrival time is presented at the right of Figure 2. On the left
side of Figure 2, we choose Skype as the VoIP application to
set up a communication between two laptops through the same
commercial AP on the channel 1 with RSSI -33. The probing
packet used in this experiment is 200 bytes on average. For both
experiments, we first brought up our driver module to create

virtual interfaces in the kernel for all upper-layer applications.
Then a script was executed to associate with the target AP in
each experiment. After association and IP assignment, we ran
the application and our probing generator to generate the traffic,
respectively. The traffic traces are captured by Wireshark for
cumulative distribution function (CDF) calculation of theinter-
arrival time. In these two experiments, the transmission rate for
all streams is fixed at 36Mbps.

B. Measurement Accuracy

The APs’ load information needed in our protocol is de-
rived by monitoring the wireless channels. Although it is not
necessary for monitoring to capture all packets on the air,
a relatively accurate measurement can help to make a better
association decision. Thus we conducted a series of experiments
to investigate the capture missing, which is the main factorto
cause the measurement error of the load. In this paper, we are
focusing on the Atheros 5212 chipset, while other chipsets can
be easily studied like this as well. We set up two laptops with
a distance of 10 feet between them. One is the target laptop,
which is used to generate a data stream for measurement. The
other laptop acts as the monitor to estimate the data throughput
from the target laptop. To make our experiment comprehensive,
we use different transmission rates when transmitting the data
streams. The rates used are 1Mbps, 2Mbps, 5.5Mbps, 11Mbps,
18Mbps, 36Mbps, and 54Mbps. We also use different inter-
packet times of 5ms, 10ms, 15ms, and 20ms at each rate,
respectively. The packet size in all trials is 1000 bytes, and
every trial last 5 seconds for data stream generating and
capturing. The experiment results are shown in Figure 3. The
x axis presents the captured packet number in each trial at the
monitor laptop side, while they axis presents the number of
transmitted packets counted at the target laptop side. It isclear
that if there is no error, all points (star or circle) should fall
on the green dash liney = x. Based on these experimental
results (excluding the six outliers), we are able to calculate the
best linear fitting by using the Least Square method, which
is shown as the red line,y = 0.8806 × x. 0.8806 is used for
estimation calibration with respect to the Atheros 5212 chipset,
i.e., estimation = measurement

0.8806
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Fig. 3: Calibration Experiments for Atheros 5212 chipset



TABLE I: Comparison Experiment Settings
APs

ID Model Channel
AP-1 LinkSys WRT54G CH 11
AP-2 D-Link DI-713P CH 11
AP3 LinkSys WRT54G CH 1

Clients
ID Adapter Pkt payload Inter-pkt Transmission

(byte) time(ms) rate(Mbps)
STA-1 internal 1000 5 2
STA-2 internal 1000 5 11
STA-3 external 1000 5 11
STA-4 external 1000 5 11

C. Comparison Experiment

We conduct an experiment to compare our association
method with other practical ones, the Best-throughput and Best-
RSSI strategies. Best-throughput here is one special case of
the selfish strategy, of which the convergence speed can be
bad. It means every client will make an irrevocable association
decision to maximize its own throughput. In the experiment,
there are three APs consisting of anextended service set(ESS)
and four wireless LAN clients. Two of the APs (AP-1 and
AP-3), whose process capabilities are relatively strongerthan
the thirds , are set in channels 1 and 11, respectively, and the
third one (AP-2) is set in channel 11 as well. Three of the four
clients, STA-1, STA-2 and STA-4, are put close to each other.
Detailed settings are shown in Table I.

The experiment includes four trials. In each trial, clients
came to join the ESS one by one by using the same association
strategy. It is reasonable because that, in real world, the time to
perform the association operation is statistically much smaller
than the inter-arrival time between new users, so the possibility
that two clients will want to join the ESS at the same time
is low. After joining, the client will generate traffic using
the configuration in table I to the associated AP. A trial was
repeated three times, one for each association strategy.

The minimum client throughput for each strategy in the
four trials are presented in Figure 4. Our algorithm performs
better than the other two because it can balance the APs’
workloads and reduce the interference among all wireless
nodes. The performance of the Best-throughput is unstable,and
it also indicates that the selfish strategy cannot compete with
ours under similar overhead costs. Meanwhile the Best-RSSI
strategy often makes all clients associate with the same AP.

D. Overhead

All three protocols mentioned above need an AP discovery
phase. However, Best-RSSI does not have any other overhead,
whereas Best-throughput and our protocol need extra time to
evaluate every discovered AP. For each channel, our protocol
spends a fixed amount of extra time, 500ms, on passive
listening, compared with the Best-throughput one. Nevertheless,
the Best-throughput protocol requires real de-association and
re-association operations, including the IP assignment, before
every measurement. These operations consume a lot of time,
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Fig. 4: Comparison Experiment Results

from 3 sec to 8 sec. When the AP number grows, the Best-
throughput protocol spends much more time than ours. There-
fore, the overhead of the selfish protocol, which is equivalent
to multiple runs of the Best-throughput protocol, is even worse.
Thus, our protocol is the most efficient one.

VIII. S IMULATION RESULT

We use simulations to evaluate our association protocol on
a larger scale with more wireless nodes and various con-
figurations. We use NS2 version 2.33 as our simulator. The
multiple channel feature is patched into the NS2 wireless
portion following the instructions of [28]. The MAC layer type
is 802.11, while the radio propagation model is two-ray-ground.
Ad-Hoc routing protocol is disabled since we are focusing
on the infrastructure type of wireless LAN. The RTS/CTS
mechanism is also disabled. The data traffic for users is a UDP
stream with a packet size of 1000 bytes and average inter-
arrival time of 1 ms. The transmission rate is set to 11 Mbps.
The selected channels include 1, 4, 5, 6 , and 11 for covering
the orthogonal and adjacent channel cases. The throughput
measurements are between the wireless nodes.

We implement the following three practical association pro-
tocols for comparison.

1) Online. This is our proposed online algorithm. It is
implemented as described in Algorithm 1.

2) Selfish. The behavior ofSelfishis defined in section IV.
For the same reason that the convergence speed of selfish
strategy can be very bad, we demonstratively run the
protocol for 5 rounds. In the first round, the clients come
to join the wireless LAN one by one. Each client will
associate with every AP to measure the UDP throughput
and pick the one who is able to offer the highest value. In
each of the next four rounds, every client will repeat the
above process to adjust its association based on current
wireless LAN association topology. Finally, every client
will keep its association with the AP it picks in the last
round.

3) Ideal. This is the globally optimal association solution
in terms of maximizing the minimum throughput over
all clients. Ideal is obtained by enumerating all possible
association topologies, given a specific scenario setting



only including the location and channel assignment in-
formation. In the real world, it is not practical because
of its complexity.

Every experiment conducted below consists of many trials.
Each trial has its own scenario configuration. The configu-
ration provides the locations of all wireless nodes and the
APs’ channels. Both of these two information are randomly
generated. Every throughput measurement, no matter whether
it is for a data stream or probing stream, takes 3 seconds in the
simulation.

The first simulation is to study the competitive ratio of
online compared withideal from the perspective of empirical
experiments. The experimental value of the competitive ratio is
a good indicator of the performance gap on average between the
online and ideal. The statistically stable performance is also a
concerned issue to the users in the real world. This experiment
randomly picked 50 scenarios for testing. For every scenario,
the competitive ratio in terms of the minimal client throughput,
shown in Figure 5, is calculated based on the test result of
online and ideal. The theoretical upper bound is also provided
for comparison. The simulation results shows that about 86
percent of competitive ratio is above 0.47, and70% are quit
stable, just around 0.5. The worse competitive ratio among
these 50 trials is 0.313, while the theoretical upper bound,
computed from 1

e log m , is 0.232.
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Fig. 5: Competitive ratio results, w.r.t. minimal client throughput,for 5 clients and 3 APs
within 20 × 20. The simulation repeated 50 times with different configurations.
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Fig. 6: Simulation result for 10 clients and 3 APs within30×30. The simulation repeated
30 times. Each bar is the representative of minimum throughput difference for each trial.
The results are sorted in ascending order

Next, we conducted a scale-up comparison simulation be-
tween online and selfish, which includes three experiments
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Fig. 7: Simulation result for 20 clients and 6 APs within90×90. The simulation repeated
30 times. Each bar is the representative of minimum throughput difference for each trial.
The results are sorted in ascending order
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Fig. 8: Simulation result for 30 clients and 9 APs within150 × 150. The simulation
repeated 30 times. Each bar is the representative of minimum throughput difference for
each trial. The results are sorted in ascending order

to show the performance in large scale deployments. In the
first experiment, there are 10 clients and 3 APs within a
rectangle of30 × 30; the second one has 20 clients and 6
APs located in a rectangle of90 × 90; 30 clients and 9 APs
are involved in the third experiment within a rectangle of
150×150. Each experiment ran 30 trials. For each trial scenario,
both our strategy and the selfish strategy were applied for the
association processes of all clients on this setting, respectively.
After finishing all users’ association processes, we measured the
UDP traffic throughput for every client and found the minimum,
Tonline for onlineandTselfish for theselfishstrategy. Then the
minimal client throughput difference, shown in Figures 6, 7,
and 8, is calculated by usingdiff = Tonline −Tselfish. These
figures show that, even through the selfish protocol is allowed
to consume more time, our strategy is more often to perform
better in terms of maximizing the minimum client throughput.

In the online strategy, since every client only needs to run
our association once, the following clients in the future will not
affect the behaviors of current associated clients. Meanwhile,
for the selfishprotocol, the unexpected new clients can easily
break the current equilibrium into an unstable state, whichwill
interrupt the usage of users. Thus, theonline is more practical
and less-intrusive. From the figures, it is shown that ours can,
despite not knowing who will come to join the network, reduce
the performance downgrade for the client who has the minimum
throughput.



IX. CONCLUSION

In this paper, we consider the problem of AP association in
WLAN. We present a theoretical analysis of the performance
of two commonly used AP selection protocols, and propose an
online algorithm with a provable good competitive ratio. The
association protocol based on this algorithm is implemented
on the real testbed in a light-weight way. We evaluated our
scheme using a combination of implementation on commodity
hardware and extensive simulation. We demonstrate that it is
promising that by combining our theoretical understandingand
real system implementation experience, a new, practical, and
better AP association protocol is possible.
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APPENDIX

The proof of Theorem 3
Proof: Suppose client1, 2, 3, · · · , i, i+1, · · · , n join the network

sequentially. Consider the situation when clienti is joining the
network. Our protocol shows that clienti will associate with APh.
Now let the load on APj after client i associates with APh be
Lij in our protocol (whereh may not bej). In the optimal solution,
however, clienti may associate with APk. Now at this point, if client
i associates with APk instead ofh, the load on any AP will not
decrease, but increase with a value (sayδik).

L
∗
j is the load on APj in the optimal solution for minimizing the

Lp norm.
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(4) is true because in this step clienti tries to minimize theLp

norm. (5) is true because(x + δ)p − xp is increasing withx when
p > 1 andδ > 0.
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where (6) is due to (5); (7) is due to the fact that
Pk

i=1
((x + δi)

p −

xp) ≤ (x +
Pk

i=1
δi)

p − xp for p > 1, x > 0, andδi > 0; (8) is due
to Minkowski Inequality. Then
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p . We then have2rp ≤ (r + 1)p

andr ≤ 1
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.

Thus, our protocol is ar ≤ 1

21/p−1
-competitive online algorithm

to minimize theLp norm.


