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Abstract—Current processor designs have a critical operating
point that sets a hard limit on voltage scaling. Any scaling
beyond the critical voltage results in exceeding the maximum
allowable error rate, i.e., there are more timing errors than
can be effectively and gainfully detected or corrected by an
error-tolerance mechanism. This limits the effectiveness of voltage
scaling as a knob for reliability/power tradeoffs.

In this paper, we present power-aware slack redistribution, a
novel design-level approach to allow voltage/reliability tradeoffs
in processors. Techniques based on power-aware slack redistribu-
tion reapportion timing slack of the frequently-occurring, near-
critical timing paths of a processor in a power- and area-efficient
manner, such that we increase the range of voltages over which
the incidence of operational (timing) errors is acceptable. This
results in soft architectures - designs that fail gracefully, allowing
us to perform reliability/power tradeoffs by reducing voltage up
to the point that produces maximum allowable errors for our
application. The goal of our optimization is to minimize the
voltage at which a soft architecture encounters the maximum
allowable error rate, thus maximizing the range over which
voltage scaling is possible and minimizing power consumption
for a given error rate. Our experiments demonstrate 23% power
savings over the baseline design at an error rate of 1%. Observed
power reductions are 29%, 29%, 19%, and 20% for error rates
of 2%, 4%, 8%, and 16% respectively. Benefits are higher in
the face of error recovery using Razor. Area overhead of our
techniques is up to 2.7%.

I. INTRODUCTION

Traditionally, processors have been designed to always
operate correctly, even when subjected to a worst-case com-
bination of non-idealities. Conservative guardbands (in terms
of voltage margins, for example) are incorporated into design
constraints to ensure correct behavior in all possible scenarios.
However, designing for a conservative operating point incurs
considerable overhead, in terms of power and performance [5].
Overheads are worse for technologies with increased varia-
tions [26].

Several better-than-worst-case (BTWC) design
approaches [1] have been recently proposed that allow
tradeoffs between reliability and power/performance. Such
approaches provide power/performance benefits by targeting
average-case conditions, while an error detection/correction
mechanism deals with errors in the worst-case. Razor [5],
for example, is a well-known circuit-level technique to detect
and correct timing errors due to frequency, temperature,
and voltage variations. Razor detects timing violations by
supplementing critical flip-flops with shadow latches. A
shadow latch strobes the output of a logic stage at a fixed

delay after the main flip-flop; if a timing violation occurs, the
main flip-flop and shadow latch will have different values,
signaling the need for correction. Correction involves recovery
using the correct value(s) stored in the shadow latch(es).
Similarly, system-level techniques such as Algorithmic Noise
Tolerance [12] have proved effective in overcoming timing
errors in specific domains. Such techniques allow timing
errors due to frequency/voltage overscaling to propagate
to the system or the application. The applications have
algorithmic and/or cognitive noise tolerance and, therefore,
perform application-level error correction. Application- or
system-level error detection and correction is also assumed
for recently proposed probabilistic SOCs [3] and stochastic
processor architectures [33], [34] which are also classes of
BTWC designs.

The effectiveness of BTWC techniques is limited, however,
for high performance general-purpose microprocessors. This
is because current general-purpose processor designs appear
to have a critical operating point (see Figure 1) that sets a
hard limit on voltage scaling [19]. The Critical Operating Point
(COP) hypothesis [19], in the context of voltage scaling, states
the following about large CMOS circuits (e.g., general-purpose
microprocessors):

There exists a critical operating voltage Vc for a fixed
ambient temperature T , such that

• Any voltage below Vc causes massive errors
• Any voltage above Vc causes no voltage-induced

timing errors
• In practice, Vc is not a single point, but is

confined to an extremely narrow range for a
given ambient temperature, Tc

The hypothesis is based on the fact that a large number of
timing paths in modern CMOS circuits are almost as long
as the critical path. (In chip implementation, this is called
the “wall of (critical) slack” in signoff timing reports.) This
implies that timing errors, when they occur, are massive.
The Critical Operating Point (COP) hypothesis suggests that
any scaling beyond the critical voltage (voltage overscaling)
will result in exceeding the maximum allowable error rate,
rendering an error-tolerance mechanism ineffective. In other
words, overscaling will lead to more timing errors than can
be corrected by the error-tolerance mechanism.

While the experiments in [19] provided the basis for the
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Fig. 1. Traditional designs exhibit a critical operating point. Scaling
beyond this point results in catastrophic failure. (Critical Operating Point
Hypothesis [19])

COP hypothesis, we confirm the critical operating point hy-
pothesis in this paper for several modules of the OpenSPARC
T1 processor [27]. The existence of critical operating point
behavior for modern processors limits the potential of voltage
scaling as a knob for reliability vs. power tradeoffs, particu-
larly those based on BTWC techniques.

The goal of this paper is to increase the effectiveness
of BTWC designs for general-purpose microprocessors. We
propose, power-aware slack redistribution, a novel design-
level approach to allow voltage/reliability tradeoffs in proces-
sors. Techniques based on power-aware slack redistribution
reapportion timing slack of the frequently occurring, near-
critical paths in a processor design in a power- and area-
efficient manner, so as to increase the range of voltages over
which an error-tolerance mechanism encounters an acceptable
number of timing errors. The end result is a soft architecture,
i.e., a design that fails gracefully, allowing us to perform
reliability-power tradeoffs by reducing voltage down to a
point that produces the maximum allowable error rate that is
appropriate for our application. This translates to significant
processor power savings with a small degradation in appli-
cation performance. The main contributions of our work are
summarized as follows.

• We confirm through sampling that modules of the Sun
OpenSPARC T1 processor indeed demonstrate critical
operating point behavior in the face of voltage scaling,
even when extra timing slack has been garnered by
running synthesis, placement and routing (SP&R) with
tighter timing constraints than needed (Section III). We
quantify the opportunity cost (in terms of potential power
savings) due to the critical operating point behavior.

• We investigate power-aware slack redistribution, a novel
approach to produce soft architectures, i.e., processor
designs that fail gracefully, instead of catastrophically
(Section IV). We also formulate the power-aware slack
redistribution problem as a design optimization problem
that allows more meaningful voltage-reliability tradeoffs
(Section III).

• We propose post-layout cell sizing (followed by incre-

mental placement and routing) as a technique for power-
aware slack redistribution (Section IV-A). To the best of
our knowledge, this is the first application of cell sizing
to BTWC-driven slack redistribution.

• We show that power-aware slack redistribution techniques
can extend the range over which voltage scaling is pos-
sible and reduce power consumption for a given error
rate. Our experiments demonstrate 23% power savings
over the baseline design at an error rate of 1%. Observed
power reductions are 29%, 29%, 19%, and 20% for error
rates of 2%, 4%, 8%, and 16% respectively (Section VI).
Benefits are higher in the face of error recovery using
Razor. Area overhead of our techniques is up to 2.7%.

• We show that power-aware slack redistribution can even
result in increased throughput for a given voltage (Sec-
tion VI-B). Benefits are due to reduced overhead of error
recovery.

• Finally, we show that smoothening the critical wall
through slack redistribution is more efficient than pushing
the critical wall through tightly constrained SP&R. Bene-
fits are both in terms of power and througput (Section VI).

The rest of our paper is organized as follows. Section II
discusses related work. Section III formulates the optimiza-
tion problem to be solved by our techniques to produce
soft architectural designs that degrade gracefully in face of
voltage scaling. Section IV presents details of our power-aware
slack redistribution techniques. Section V discusses additional
methodological details of this research. Section VI presents
analysis and results, including a quantification of potential
processor power savings. Section VII concludes.

II. RELATED WORK

A. Better-than-worst-case Designs

A number of better-than-worst case (BTWC) designs have
been proposed in the past that save power by eliminating
guardbands. For example, Razor [5] and ANT-based de-
signs [12] allow BTWC operation by tolerating errors at the
circuit and algorithm-level, respectively. Their benefits in the
context of voltage scaling are limited, however, by the error
rate at a given voltage and the corresponding error recovery
overheads of the techniques.

Another class of BTWC designs uses “canary” circuits to
detect when arrival at the critical point is imminent, thus
revealing the extent of safe scaling. Delay line speed detec-
tors [4] work by propagating a signal transition down a path
that is slightly longer than the critical path of a circuit. Scaling
is allowed to proceed until the point where the transition no
longer reaches the end of the delay line before the clock
period expires. While this circuit enables scaling, no scaling
is allowed past the critical path delay plus a safety margin.

Another similar circuit technique uses multiple latches
which strobe a signal in close succession to locate the critical
operating point of a design. The third latch of a triple-latch
monitor [14] is always assumed to capture the correct value,
while the first two latches indicate how close the current



operating point is to the critical point. Again, the effectiveness
of the technique in the context of general-purpose processor
designs will be limited by the critical operating point behavior
of the processor.

B. Design-level Optimizations for Timing Speculation

Design-level optimizations have recently been proposed [7]
to improve throughput of timing speculation architectures. The
idea is to identify and optimize the most frequently-exercised
dynamic paths in a design at the expense of the majority
of the static paths, which are allowed to suffer infrequent
timing errors. EVAL [18] is a technique that trades error rate
for processor frequency by shifting, tilting, or reshaping the
path delay distributions of the various functional units. As an
application of EVAL, the BlueShift technique [7] identifies
timing paths that are most-often violated and optimizes them
using on-demand selective biasing and path constraint tuning.
On-demand selective biasing (OSB) involves adding slack to
the most frequently violated paths by forward body biasing
some of their gates. Path constraint tuning (PCT) involves
adding slack to paths by applying strong timing constraints
on them.

There are four major differences between our work and
the BlueShift work. First, the optimization problem being
solved is different. The goal of the BlueShift work is to
maximize the frequency for a given error rate, while the goal
of this work is to minimize voltage for a given error rate.
Second, our sensitivity functions are different. While BlueShift
optimizations are agnostic of voltage-dependence of delay
for various timing paths, our work involves optimizing paths
/ cells according to different functions, including switching
activity, amount of negative slack, and response of path delay
to voltage scaling. As the results in Section VI show, using
the BlueShift sensitivity functions to minimize power may
not be very effective. Third, our optimization techniques are
different. While BlueShift uses OSB and PCT, we use cell
sizing. Section VI compares the PCT method against our
technique (cell sizing) and shows the limited effectiveness of
PCT for power optimizations.

Fourth and finally, there is a significant difference between
the optimization flow of our approach and the BlueShift
approach. BlueShift uses repetitive gate level simulations to
get path profiles after making iterative improvements. This
may be impractical with large, modern SOC designs, as the
number of post-sizing, layout, extraction simulation steps is
often limited by runtime constraints. In contrast, our approach
needs only one simulation of the gate-level netlist to obtain
switching information for use in optimization. Moreover, this
simulation does not need delay information (SDF). This ex-
pedites runtime.

C. Cell Sizing

In our work, we use post-layout cell resizing (or cell
swapping) as a technique for redistributing timing slack in
a design to create a gradual slack distribution. Previous works
have typically proposed cell sizing or swapping as a technique

Error Rate (%)
Module 1.0V 0.9V 0.8V 0.7V 0.6V 0.5V
lsu dctl 0.00 0.23 8.60 29.46 45.13 54.90

lsu qctl1 0.00 5.94 10.85 16.99 16.56 37.53
lsu stb ctl 0.00 0.08 0.65 5.19 11.79 22.38

sparc exu div 0.00 0.15 0.23 0.35 0.49 1.10
sparc exu ecl 0.00 3.31 10.97 87.08 88.93 73.03
sparc ifu dec 0.00 0.08 0.87 7.09 15.22 20.48

sparc ifu errdp 0.00 0.00 0.00 0.00 0.00 9.21
sparc ifu fcl 0.00 10.56 22.25 50.04 55.06 56.95

spu ctl 0.00 0.00 0.00 1.30 2.96 35.53
tlu mmu ctl 0.00 0.01 0.02 0.06 0.14 0.19

TABLE I
TIMING VIOLATIONS IN VARIOUS T1 MODULES AT DIFFERENT INPUT

VOLTAGES

for power or area recovery, subject to maintaining a target
clock frequency. For example, in the context of leakage power
reduction, previous works [6], [20], [8], [9], [10], [13] seek
to minimize the (leakage-weighted) positive timing slack for
non-critical cell instances (cell instances on non timing-critical
paths) such that maximum leakage reduction is obtained
without degrading overall circuit performance. Perhaps the
closest work is by Ghosh et al [32] who also explored cell
sizing for power. Unlike Ghosh’s paper, our objective is to
reduce error rate with minimum cell swaps. Also, we provide
a method to find frequently exercised paths in general design
cases – toggle information of cells from pre-simulation.

To the best of our knowledge, ours is the first work to
use cell sizing for switching activity-aware ‘gradual slack’
redistribution in the BTWC context.

III. THE DESIGN OPTIMIZATION PROBLEM

Before we detail the need and design-level techniques for
power-aware slack redistribution, we discuss how present pro-
cessor designs are limited in their ability to allow voltage vs.
reliability tradeoffs. We then formally state the corresponding
optimization problem.

Table I shows how timing errors increase for ten selected
modules of the OpenSPARC T1 processor [27] when volt-
age is decreased (methodological details are in Section V).
Overwhelmingly, the modules demonstrate critical operating
point behavior, i.e., for each module, the error rate increases
dramatically when the voltage is scaled beyond a certain crit-
ical voltage value, and there is only a small range of voltages
where the error rate is low. Some modules, like tlu mmu ctl,
have more timing slack than others before reaching the critical
point, and Table I does not cover a wide enough range of
voltages to demonstrate the critical module behavior.

Table I also shows that after a certain voltage, the error
rates may exceed a given target error threshold. A target
threshold may represent the maximum allowable error rate
for a given error tolerance mechanism. For example, an error
rate of up to 1% may be allowable for traditional Razor-
based designs [5], while maximum allowable error rates may
be higher for algorithmic noise tolerance (ANT) techniques.
If Razor is to be used for error recovery in the lsu qctl1
module, for example, voltage cannot be scaled below 1.0V.
Also, since modules follow a critical operating point behavior
rather than a gradual degradation in reliability, switching to



an error recovery technique that can tolerate 2% errors is not
possible for lsu qctl1. This effect is even more pronounced for
modules like sparc ifu fcl, where the increase in error rate is
even more drastic.

The goal of our design optimization, therefore, is to si-
multaneously minimize the voltages at which each given
maximum allowable error rate is observed, thus maximizing
the range over which voltage scaling is possible. Formally, the
optimization problem can be stated as follows.

Given: a set of error rates e1,e2, · · · ,en (ei < ei+1,1 < i < n).

Find: Minimize Vi,k, where Vi,k is the voltage at which the
error rate is no more than ei for design k.

Subject to: (1) For all i and k, Vi,k ≥V(i+1),k; (2) ∃ K, s.t., for
all i and k, Vi,K ≤Vi,k where K is the optimized design.

The above formulation results in designs that allow volt-
age/reliability tradeoffs up to a point where the error rate is
en. Design K is the optimal design.

Note that the above optimization can be performed in two
different ways: (1) reduce the voltage value at which a module
exhibits critical operating point behavior, or (2) optimize the
module to eliminate the critical operating point behavior (i.e.,
there is now a gradual degradation in module reliability).
In this paper, we focus on the latter, for the following two
reasons. First, a soft architecture with a gradual degradation
in reliability with voltage scaling would allow us to perform
reliability/power tradeoffs by reducing voltage down to a point
that produces maximum allowable errors for a given error
tolerance mechanism, i.e., maximum number of timing errors
than can be effectively and gainfully corrected by a given
error-tolerance mechanism. This will allow us to maximize the
power savings for a given error tolerance mechanism. Second,
a soft architecture allows one to use a different error toler-
ance mechanism at different voltages, allowing deeper voltage
scaling, since an appropriate mechanism can be selected based
on observed error rate. Figure 2 demonstrates the goal of the
optimization problem.
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Fig. 2. The goal of the gradual slack optimization is to transform a
slack distribution with critical wall behavior into one with a gradual failure
characteristic.

We propose to solve this optimization problem based on
power-aware slack redistribution, which is discussed in detail
in the next section.
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Fig. 3. Traditional design flow for high performance designs results in a
critical operating point, with the slack of all paths bunched around the critical
point. Scaling past the critical point results in a massive onset of timing
violations.

IV. POWER-AWARE SLACK DISTRIBUTION FOR

POWER/RELIABILITY TRADEOFFS

To understand the critical operating point behavior shown in
Table I that our processor modules demonstrate, we generated
the timing slack distributions for the various timing paths
for these modules. Figure 3 shows the distribution for one
of the processor modules we studied (sparc ifu fcl). As the
figure shows, timing slack for the vast majority of paths of the
design is close to that of the critical path. We observed the
same behavior for other modules as well. This explains their
critical operating point behavior – since path slack is bunched
together for the majority of paths, scaling voltage past the
critical path results in a massive onset of timing violations.
The critical operating point of these individual modules causes
the processor to show the same behavior.

The hypothesis of this work is that a power-aware redis-
tribution of timing slack for a processor design can allow
for better optimization of power efficiency at different error
rates. If the onset of timing violations is made gradual, rather
than the traditional wall, the range over which processor
voltage scaling is possible (given error rate constraints) can
be extended (see Figure 2), affording increased power savings
for higher allowable error rates. In the following section, we
present a technique that performs cell swapping to redistribute
slack, producing a gradual, power-aware slack distribution for
the timing paths of a processor.

A. Power-aware Slack Redistribution Using Cell Swap Method

Our slack distribution optimizer, implemented in C++, per-
forms cell swapping with Synopsys PrimeTime vB-2008.12-
SP2 [29], using a Tcl socket interface. The optimization
algorithm alters the timing slack distribution of a processor
design to make the distribution more gradual.

In the traditional processor design methodology, all negative
slack paths identified in static timing analysis must be opti-
mized. In our approach, however, we focus our optimization on
the frequently exercised paths with a negative timing slack at
a target voltage, to minimize error rates in the face of voltage
overscaling. This selective optimization targets benefits in both
the performance and power of the design.



Specifically, our algorithm finds a target voltage correspond-
ing to a specific error rate, and optimizes the frequently exer-
cised paths intensively. In order to minimize power consump-
tion after scaling the operating voltage, our slack optimizer
must improve error rates while minimizing cell swaps. If we
set an overly aggressive operating voltage point and optimize
all negative slack paths at the target point, the optimizer
can perform unnecessary swaps so that power consumption
increases excessively.

To eliminate these unnecessary cell swaps, the target voltage
for the slack optimizer must be selected correctly. In our
approach, the slack optimizer finds a target voltage after
estimating error rates at each operating voltage. At the initially
selected voltage, the optimizer performs cell swaps to improve
timing slack. After timing optimization at the initially selected
voltage, the target voltage is scaled to the new lower voltage
until the target error rate is reached. This heuristic optimizes
paths and scales the voltage iteratively. With this approach, we
can avoid excessive cell swaps while improving error rates.

For the appropriate voltage selection, the slack optimizer
needs to forecast error rates without functional simulations.
To estimate the error rates, we use toggle information for the
data pins of flip-flops that have negative slack. The toggle
information consists of two kinds of toggles – those from
negative slack paths and those from positive slack paths. In
the error rate calculation, only the toggles of negative slack
paths should be considered. More details on our methodology
for error rate estimation can be found in [35].

After finding a target voltage, the slack optimization al-
gorithm collects negative slack paths by tracing backward
from flip-flop cells using a depth–first search (DFS) algorithm.
Collected paths are optimized, with priority given to frequently
exercised paths. Our algorithm swaps cells in the paths with
other library cells that have the same functionality. However,
it cannot restore a previously swapped cell in order to recover
to a previous configuration. Therefore, prioritizing the order
of optimization is crucial. The priority is decided according
to the switching activity of a path, defined as the minimum
toggle rate of all cells in the path.

Cell swapping is performed on all cells in a path. If a cell
has already been touched during optimization, the optimizer
skips this cell. After performing a swap, the optimizer checks
the timing slack of the path and rejects any move that makes
the slack worse. If the path slack is improved, the optimizer
checks the timing of connected fan-in and fan-out cells which
have been touched previously in the optimization. Path in-
formation and initial slack are known for these cells, so we
can check whether their slack is improved or degraded by the
move. When there is no timing degradation in the connected
neighboring cells, the cell change is finally accepted.

The cell swapping algorithm is iterated several times on a
path until the path slack becomes positive or no further swaps
are made. After finishing the target path optimization, affected
cells are marked to prohibit further changes during optimiza-
tion of other paths. The optimization is then performed on the
next path in prioritized order. In this paper, the target voltage

is scaled repeatedly by 0.01V until the error rate exceeds a
target error rate. Then, the algorithm optimizes critical paths
at the target voltage. If the power consumption is not reduced
after the voltage scaling, the latest swaps are restored, and the
optimizer is terminated.

We can also reduce leakage power by using the cell swap-
ping method. This power reduction stage can be added at
the end of the previous slack optimization. This procedure
is the opposite of the previous slack optimizing algorithm. In
the slack optimization, we choose cells in highly exercised,
negative slack paths, and perform cell swapping to reduce
delay. In the power reduction procedure, however, the cells
in rarely exercised paths are chosen and swapped to reduce
the power consumption while leaving error rate unaffected.
Figure 4 shows the complete optimization process. More
details can be found in [35].

Note that the slack redistribution technique described above
considers voltage-dependence of delay. This creates timing
paths with fewer timing errors at a given voltage. Since
this optimization is performed throughout the processor, the
processor itself will show reduced error rate at a given input
voltage.

Note also that the above optimization is replacing cells on
selected paths with faster but larger cells, so the new design
may be larger. We believe, and the results in Section VI
confirm, that the number of cells that need to be replaced
with larger cells is small (as only a few paths are interesting),
and therefore, there are net power savings for a given error
rate at reduced voltages.

Finally, note that optimization is performed only on fre-
quently occurring, near-critical paths. Since, a vast majority of
timing paths are left untouched, we expect the area overhead
of our technique to be small (Section VI confirms that the
overhead is no more than 2.7%).

B. Tightly Constrained SP&R

Another potential approach for creating a gradual slack
distribution is to perform traditional SP&R with an aggressive
timing constraint. In this case, some paths will not meet
the timing constraint, and the resulting slack distribution will
be more gradual. Our baseline SP&R targets a frequency of
0.8 GHz. For the tightly constrained SP&R, we use a target
frequency of 1.2 GHz and use the resulting design as a point
of comparison for our gradual slack designs.

C. BlueShift PCT

We also compare our power-aware slack redistribution strat-
egy against a BlueShift-like strategy for optimizing timing
paths. BlueShift [7], as discussed in Section II, focuses on
frequency overscaling for increased throughput benefits over
traditional processor designs. It chooses paths to optimize
based on the frequency of timing violations encountered
during simulation. It iteratively optimizes the paths with the
most timing violations until error rate targets are achieved.

We implement a BlueShift-like CAD flow as a point of
comparison for our techniques. Our BlueShift implementation
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chooses paths to optimize based on the highest product of
switching activity and negative slack. These paths will incur
the most timing violations in the face of voltage scaling.
For the selected paths, we specify tighter constraints using
the set max delay command during P&R in Cadence SoC
Encounter. We add the list to the Synopsys Design Constraints
(SDC) file and apply 10%, 25%, 50% and 100% SDC itera-
tively.

V. METHODOLOGY

The goal of the paper is to show that power-aware slack
redistribution can break the critical wall of a processor and
create gracefully degrading processor designs that can operate
at a much lower voltages before reaching the threshold error
rate.

Our methodology for showing the above has two parts – a
design-level methodology to characterize how timing error rate
changes with voltage and an architecture-level methodology to
estimate processor power and performance when the proposed
design-level techniques are applied.

A. Design-level Methodology

Figure 5 shows our methodology flow diagram for the
proposed slack optimizer. The optimizer selects paths for
optimization based on switching activity and timing slack
under voltage scaling. In order to find the frequently exercised
paths, we use the switching activity interchange format (SAIF)
file, which describes toggling frequency of each net and cell
in the gate-level netlist. We perform gate-level simulation to
produce a value change dump (VCD) file and convert the
VCD to SAIF using Synopsys PrimeTime-Px [29]. To find
timing slack and power values at the specific voltages, we
prepare Synopsys Liberty (.lib) files for each voltage point –
from 1.00V to 0.50V in 0.01V increments – using Cadence
SignalStorm TSI61 [30].

We use the OpenSPARC T1 processor [27] to test our
optimization framework and to gather switching information to
be used by the optimizer. T1 is a chip multithreaded processor
from Sun consisting of eight CPU cores where each core is 4-
way multithreaded. The processor implements Sun’s SPARC
V9 instruction set. Since full system, gate-level simulation of
this complex design would require an unreasonable amount of
time, we instead sample modules from throughout the T1 for
use in testing. We select modules used by a related work [7] to
allow for more accurate comparisons. We also select additional
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Fig. 5. CAD flow incorporating the slack optimizer to create a design with
a gradual slack distribution.

modules from different regions of the processor to obtain a
more representative characterization of the processor.

Table II describes the selected modules and provides charac-
terization in terms of cell count, area, and worst case negative
slack for two design points implemented for different target
frequencies. The slack optimizer targets frequently exercised
paths for the first group of designs, which are implemented
with a moderate clock frequency (0.8 GHz). The second group
of designs, implemented for an aggressive clock frequency (1.2
GHz) are used as a comparison point against designs optimized
for gradual slack. Note that the maximum range of critical
delay difference between any two modules is 0.17ns, and the
average deviation from the timing target is 0.068ns. This shows
that the design is balanced with roughly equal critical timing
paths.

For the selected modules, we perform gate-level simulation
using test vectors gathered from full system, RTL simulation of
a benchmark test set (details in Section V-A). Before gathering
test vectors in the RTL simulation, we fast-forward each
benchmark 1 billion instructions using Simics [16] Niagara.
Simics is a full-system simulator used to run unmodified
production binaries on the target hardware at high-performance
speeds. Simics Niagara simulates the T1 processor. After fast-
forwarding in Simics, the architectural state is transferred to
the OpenSPARC RTL using the CMU Transplant tool [17]. The
Transplant tool provides the capability for simulating portions
of full-system workloads on the OpenSPARC RTL. The key
idea is to “transplant architectural register and memory state
from full-system functional simulators such as Simics to the
RTL model. This process allows RTL simulation for workloads
such as operating systems and databases that are otherwise



TABLE II
TIMING AND AREA CHARACTERISTICS OF TARGET MODULES.

Module Stage # of F/Fs Description SP&R with 0.8 GHz target SP&R with 1.2 GHz target
Cell count Area(um2) WNS(ns) Cell count Area(um2) WNS(ns)

lsu dctl MEM 672 L1 Dcache Control 4537 13850 0.067 4766 16387 -0.357
lsu qctl1 MEM 372 LDST Queue Control 2485 7964 0.082 2740 9454 -0.230

lsu stb ctl MEM 115 ST Buffer Control 854 2453 0.136 989 3443 -0.127
sparc exu div EX 544 Integer Division 4809 14189 0.000 5135 16601 -0.384
sparc exu ecl EX 351 Execution Unit Control Logic 2302 7089 0.103 2553 8703 -0.072
sparc ifu dec FD 42 Instruction Decode 802 1737 0.183 892 2526 -0.048

sparc ifu errdp FD 589 Error Datapath 4184 12972 0.145 4768 14497 -0.279
sparc ifu fcl FD 280 L1 Icache and PC Control 2431 6457 0.113 2759 8719 -0.128

spu ctl SPU 430 Stream Processing Unit Control 3341 9853 0.102 3481 11662 -0.111
tlu mmu ctl MEM 262 MMU Control 1701 5113 0.117 1788 6271 -0.286

too slow to simulate or require resources (e.g., I/O) that are
not modeled in RTL.” [17] In our workflow, the architectural
transplant allows us to quickly seek to an interesting point in
an application and transfer the state of the processor to the
RTL simulator for more detailed simulation and test vector
capture.

Switching activity gathered from gate-level simulation,
along with design information such as timing slack and
library cell characterization, are fed to the Slack Optimizer
by Synopsys PrimeTime (PT) through a Tcl Socket interface.
In order to obtain the timing slack and switching activity of
critical paths, the optimizer accesses PT continuously during
the optimization process. After optimization, the modified
design is implemented using the Engineering Change Order
(ECO) layout function of Cadence SoC Encounter v7.1 [31].

Module designs are implemented with the 65GP library
(65nm) using the traditional ASIC flow – synthesis with
Synopsys Design Compiler vY-2006.06-SP5 [28] and layout
with Cadence SoC Encounter. In order to capture the voltage
scaling effect on circuit behavior, we generate Synopsys Lib-
erty libraries at several operating voltage levels. To expedite
library characterization, we implement our testcases using a
restricted library of 63 commonly used cells (62 combinational
cells and 1 sequential cell). Reducing the library to essential,
commonly used cells reduces the runtime of the optimizer
and ensures compliance with the library characterization tool
– Cadence SignalStorm TSI61.

We optimize module implementations in Table II (0.8 GHz)
with the slack optimizer and check the error rate through
gate-level simulation. Error rate is estimated by counting
the timing failure cycles encountered during simulation. For
precise estimation, we use a SCAN-like test, wherein the test
vectors specify the value of each primary input and internal
flip-flop for each cycle. This prevents erroneous signals from
propagating to other registers and resulting in pessimistic error
rates. In order to emulate the SCAN test, we connect all
register output ports to the primary input ports, allowing full
control of module state.

Note that while the goal of our design-level methodology is
fidelity of results. the above methodology uses pessimistic STA
and real P&R results making it relatively robust to process

variation. Estimating the extent of robustness is a subject of
future work.

B. Architecture-level Methodology

We use SMTSIM [21] integrated with Wattch [22] to
simulate a processor whose parameters are in Table III. The
simulator reports performance and power numbers at different
voltages. All our evaluations are done using benchmarks in Ta-
ble IV. These benchmarks were chosen to maximize diversity.
We base our out-of-order processor microarchitecture model
on the MIPS R10000 [23].

To get a processor-wide error rate at a given frequency and
voltage, we first add up the error rates from all the OpenSPARC
modules in Table II and then scale up the sum based on
area such that it includes all modules that we believe can
be optimized. The error rate of a module that has not been
characterized is assumed to vary linearly with area. This is
the same methodology as used in [7]. We believe that all
modules can be optimized using our techniques other than
array structures like registers and caches where all timing
paths are equally likely to be exercised. Such modules are
assumed to run, for a given voltage, at the highest frequency
that produces no timing errors (870 MHz). Once the processor-
wide error rate is calculated, we can use our simulator to
estimate the throughput and power impact of errors for a given
error recovery overhead.

We use a similar methodology to get processor-wide power
numbers. To get a dynamic power estimate, we scale the
dynamic power numbers reported by Wattch for the opti-
mizable components by the ratio of total module power for
an optimization technique over total module power for the
baseline design, as reported by Synopsys PrimeTime. For the
non-optimizable components, the Wattch numbers are scaled
based on the maximum frequency that these components can
run at without producing timing errors. For static power esti-
mation, we use the ratio of dynamic and static module power
for an optimization technique, as reported by PrimeTime, to
determine static power for a given dynamic power determined
using the above methodology.

When calculating processor power consumption with Razor
error recovery in place, we scale the flip-flop power reported



by PrimeTime to account for the increased power consumption
of Razor flip-flops. Razor flip-flops consume higher power
during normal operation and also introduce a power overhead
when recovering from an error. We use the processor error rate,
as formulated above, in conjunction with the rates of power
consumption during normal operation and error recovery [5]
to calculate the power overhead of Razor and determine total
processor power consumption.

All our application simulations are done for 1 billion cycles
after fast-forwarding to a Simpoint [24].

Property Value

L1 Icache 16KB, 4-way, 1 cyc
L1 Dcache 16KB, 4-way, 1 cyc
L2 2MB, 8 way, 8 cyc
Execution 2-way OO
RegFile 72 (int), 72 (FP)
Branch Predictor gshare (8K entries)
Memory Access 315 cyc

TABLE III
PROCESSOR SPECIFICATIONS.

VI. ANALYSIS AND RESULTS

In this section, we present the results of our study, demon-
strating that power-aware slack redistribution can extend the
range of allowable voltage scaling, resulting in significant
power benefits for a given error rate. We first demonstrate the
benefits for individual processor modules. Then, we demon-
strate processor-wide benefits and characterize the effect of
power-aware slack redistribution on performance.

A. Voltage/Reliability Tradeoffs for Processor Modules

In these experiments, we use 10 submodules of the
OpenSPARC T1 processor [27] to test our optimization frame-
work. We estimate error rates through gate-level simulations
with different voltage libraries. Power consumption is also
calculated for each operating voltage. We run experiments
for four implementation cases at an operating frequency of
0.87GHz. This is the highest frequency at which no module
produces timing errors.

1) Traditional P&R with a loose clock frequency target
(0.8GHz)

2) Traditional P&R with a tight clock frequency target
(1.2GHz)

3) BlueShift PCT [7]
4) Slack optimizer

Our slack optimizer includes the power reduction post-
processing stage.

Figure 6 compares the power consumptions of the vari-
ous design techniques at several target error rates (0.25%,
0.5%, 1%, 2%, 4%, 8% and 16%). Different error recovery
mechanisms have different overheads of recovery. Thus, each
mechanism can gainfully tolerate a different level of errors.
One of the benefits of gradual slack designs is that they
minimize the incidence of maximum acceptable error rates

over a range of voltages, allowing for tradeoffs between
power and error rate based on what is acceptable for a given
application and recovery technique.

Although one proposed benefit of slack redistribution is
power efficiency, path slack optimization can also incur costs
in terms of power, due to cell resizing. We observed an average
area overhead of 20.3% for tightly constrained P&R, 6.5% for
BlueShift, and 2.7% for the slack optimizer (the power reduc-
tion process changes cells with smaller one, but there is no area
reduction since we used ECO P&R to conserve the timing).
Techniques like tightly constrained P&R and BlueShift do not
consider the power implications of their optimizations and in
many cases the power overhead of optimization outweighs the
power benefit of voltage scaling, as evidenced in Figure 6.
Power-aware slack redistribution, on the other hand, does well
to reduce power consumption at the target error rates for the
diverse set of processor modules, in spite of the slight area
overhead (2.7%). In fact, only 5% cells were swapped, on
average.

B. Processor-wide Voltage/Reliability Tradeoffs

We now examine the effectiveness of our slack redistribution
techniques for a full processor design. Figure 7 illustrates how
timing violations and power consumption vary with voltage
for processors designed from the ground up, using the design
methodologies described in Section IV.

The top graph in Figure 7 demonstrates the benefits of
gradual slack design in extending the range of voltage scaling
by reducing the error rate for a given voltage. While the
power-aware slack redistribution techniques show substantial
reductions in error rate, they do not always produce the
lowest error rate for a given voltage. However, techniques
with comparable error rates have much higher power and area
overheads, as demonstrated by the bottom graph in Figure 7.
Note that the power graph (the top graph) does not assume
any error recovery overhead, so some designs have more
errors than others, as evidenced in the error graph (the bottom
graph).

The extended voltage scaling afforded by gradual slack
designs allows for power reductions at a given target error rate.
Figures 8 and 9 show processor power consumption at dif-
ferent error rates, demonstrating the potential of power-aware
slack redistribution to significantly reduce power consumption.
The power-aware techniques result in a superior design for two
reasons.

• The slack optimizer extends the range of voltage scaling
by reshaping the slack distribution of the optimized
modules. This translates into more power savings for the
same error rate when compared to the other techniques,
since slack optimized designs can be operated at lower
voltages while achieving the same error rate.

• The slack optimizer makes cost-effective optimizations.
Power savings due to aggressive voltage scaling afforded
by the slack optimizer outweigh the power overhead of
slack optimization. This is not surprising since the area
overhead of our techniques is limited to 2.7%. This also



Benchmark Description Benchmark Description
ammp Computational Chemistry mcf Combinatorial Optimization
applu Parabolic / Elliptic Partial Differential Equations mgrid Multi-grid Solver: 3D Potential Field

art Image Recognition / Neural Networks parser Word Processing
bzip2 Compression swim Shallow Water Modeling
crafty Game Playing: Chess twolf Place and Route Simulator
eon Computer Visualization vortex-2 Object-oriented Database

equake Seismic Wave Propagation Simulation vpr FPGA Circuit Placement and Routing
wupwise Physics/ Quantum Chromodynamics

TABLE IV
BENCHMARKS.

2.00E-04

2.50E-04

3.00E-04

3.50E-04

0.25% 0.50% 1% 2% 4% 8% 16%

Power(W)

Error Rate (%)

lsu_dctl 
0.8 GHz

1.2 GHz

BlueShift

Slack Optimizer

2.00E-04

2.50E-04

3.00E-04

3.50E-04

0.25% 0.50% 1% 2% 4% 8% 16%

Power(W)

Error Rate (%)

lsu_dctl 
0.8 GHz

1.2 GHz

BlueShift

Slack Optimizer

1.20E-04

1.60E-04

2.00E-04

2.40E-04

0.25% 0.50% 1% 2% 4% 8% 16%

Power(W)

Error Rate (%)

lsu_qctl1  
0.8 GHz

1.2 GHz

BlueShift

Slack Optimizer

1.20E-04

1.60E-04

2.00E-04

2.40E-04

0.25% 0.50% 1% 2% 4% 8% 16%

Power(W)

Error Rate (%)

lsu_qctl1  
0.8 GHz

1.2 GHz

BlueShift

Slack Optimizer

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

0.25% 0.50% 1% 2% 4% 8% 16%

Power(W)

Error Rate (%)

lsu_stb_ctl  
0.8 GHz

1.2 GHz

BlueShift

Slack Optimizer

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

0.25% 0.50% 1% 2% 4% 8% 16%

Power(W)

Error Rate (%)

lsu_stb_ctl  
0.8 GHz

1.2 GHz

BlueShift

Slack Optimizer

1.50E-04

2.00E-04

2.50E-04

3.00E-04

Power(W) sparc_exu_div   
0.8 GHz

1.2 GHz

BlueShift

Slack Optimizer

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

0.25% 0.50% 1% 2% 4% 8% 16%

Power(W)

Error Rate (%)

sparc_exu_div   
0.8 GHz

1.2 GHz

BlueShift

Slack Optimizer

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

0.25% 0.50% 1% 2% 4% 8% 16%

Power(W)

Error Rate (%)

sparc_exu_ecl   
0.8 GHz

1.2 GHz

BlueShift

Slack Optimizer

1.50E-05

2.00E-05

2.50E-05

3.00E-05

3.50E-05

0.25% 0.50% 1% 2% 4% 8% 16%

Power(W)

Error Rate (%)

sparc_ifu_dec   
0.8 GHz

1.2 GHz

BlueShift

Slack Optimizer

1.50E-05

2.00E-05

2.50E-05

3.00E-05

3.50E-05

0.25% 0.50% 1% 2% 4% 8% 16%

Power(W)

Error Rate (%)

sparc_ifu_dec   
0.8 GHz

1.2 GHz

BlueShift

Slack Optimizer

1.00E-04

1.10E-04

1.20E-04

0.25% 0.50% 1% 2% 4% 8% 16%

Power(W)

Error Rate (%)

sparc_ifu_errdp   
0.8 GHz

1.2 GHz

BlueShift

Slack Optimizer

1.00E-04

1.10E-04

1.20E-04

0.25% 0.50% 1% 2% 4% 8% 16%

Power(W)

Error Rate (%)

sparc_ifu_errdp   
0.8 GHz

1.2 GHz

BlueShift

Slack Optimizer

1.00E-04

1.50E-04

2.00E-04

2.50E-04

0.25% 0.50% 1% 2% 4% 8% 16%

Power(W)

Error Rate (%)

sparc_ifu_fcl   
0.8 GHz

1.2 GHz

BlueShift

Slack Optimizer

1.00E-04

1.50E-04

2.00E-04

2.50E-04

0.25% 0.50% 1% 2% 4% 8% 16%

Power(W)

Error Rate (%)

sparc_ifu_fcl   
0.8 GHz

1.2 GHz

BlueShift

Slack Optimizer
1.00E-04

1.40E-04

1.80E-04

Power(W) spu_ctl 
0.8 GHz

1.2 GHz

BlueShift

Slack Optimizer

6.00E-05

1.00E-04

1.40E-04

1.80E-04

0.25% 0.50% 1% 2% 4% 8% 16%

Power(W)

Error Rate (%)

spu_ctl 
0.8 GHz

1.2 GHz

BlueShift

Slack Optimizer

4.50E-05

4.70E-05

4.90E-05

5.10E-05

0.25% 0.50% 1% 2% 4% 8% 16%

Power(W)

Error Rate (%)

tlu_mmu_ctl   
0.8 GHz

1.2 GHz

BlueShift

Slack Optimizer

Fig. 6. Power consumption of each design technique at various target error rates (operating frequency is 0.87 GHz).

explains why some techniques that achieve lower error
rates than the power-aware slack optimizer for some
voltages still consume more power for a given error rate.

Note that the benefits are smaller relative to BlueShift for
a small number of very low non-zero error rates, due to the
aggressiveness of the BlueShift technique. However, power-
aware slack optimization creates a gradual slack distribution,
whereas BlueShift optimizes target paths heavily at the ex-
pense of other timing paths in the design. After 0.9V, the error
rate of the BlueShift design shoots up, while the error rate of
the slack optimized design continues to increase gradually,
causing the two curves to diverge on the power vs. error rate
plane

While the power graph in Figure 7 shows the effect of

voltage scaling on processor power consumption as well as
the relative ordering of techniques in terms of their power
overhead, it does not assume any error recovery overhead.
Figure 10 shows how processor power consumption varies
with voltage scaling when Razor is used to detect and correct
errors. This graph incorporates power overheads due to the in-
creased power consumption of Razor flip-flops during normal
operation and the power overhead of recovery incurred when
Razor detects and corrects an error.

Figure 10 demonstrates that power-aware slack redistribu-
tion achieves the lowest power of any technique and extends
the range over which voltage scaling and Razor correction
are feasible. Note that in the baseline design (P&R with a
frequency target of 0.8GHz), minimum power with Razor
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Fig. 7. Gradual slack designs have fewer errors than traditional processor
designs as voltage is scaled down (operating frequency is 0.87 GHz). Although
the power-aware slack redistribution techniques do not always result in the
fewest timing violations for a particular voltage (top), techniques that have
comparable error rates also have much higher power overheads (bottom).
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Fig. 8. The power-aware slack redistribution techniques result in the lowest
power consumption over the entire range of error rates. Power reductions
can be attributed to efficient error elimination strategies that enable extended
voltage scaling without adding significant area and power overhead.
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Fig. 9. Power vs. error rate for error rates less than 2%. The slack
optimizer has lower power than BlueShift for an error rate of 0% because
the power-aware slack redistribution algorithm results in a design with less
area overhead than the BlueShift approach. For high voltages (very low error
rates), BlueShift results in a slightly lower error rates than the slack optimizer,
since it optimizes cells more aggressively. At higher error rates, the slack
optimizer performs better due to gradual slack distribution.

7.00

9.00

11.00

13.00

15.00

17.00
Processor Power Consumption with Razor Correction

Traditional -
0.8GHz

Traditional -
1.2GHz

BlueShift

Slack Optimizer

Po
w

er
 C

on
su

m
pt

io
n 

(W
)

7.00

9.00

11.00

13.00

15.00

17.00

0.750.800.850.900.951.00
Voltage (V)

Processor Power Consumption with Razor Correction

Traditional -
0.8GHz

Traditional -
1.2GHz

BlueShift

Slack Optimizer

Po
w

er
 C

on
su

m
pt

io
n 

(W
)

Fig. 10. When Razor is used to detect and correct timing errors, power
increases due to increased power consumption in Razor flip-flops as well
as the power costs associated with error detection and correction. Even so,
power-aware slack redistribution minimizes power consumption in the face of
errors by reducing timing violations that trigger error recoveries in an area-
and power-efficient manner.

(11.4W) is achieved at 0.87V. For the slack optimizer, the over-
head of error recovery is reduced due to reduced number of
timing violations. So, the minimum power (9.0W) is achieved
only at 0.77V. This represents an additional reduction in total
power of 21% and a total power reduction of 35% with respect
to the baseline design. Note that slack optimization results in
the minimum power design over the entire range of voltages,
even at near-nominal voltages, where the error rate is low.

Sub-critical voltage operation also incurs a performance
penalty when error recovery is considered. Although through-
put does not suffer directly, since frequency is not scaled
down along with voltage, each error recovery technique has
an associated performance overhead represented by the time
it takes to correct an error and restore normal operation. For
Razor, this overhead is about 5 cycles from error detection to
error correction. Figure 11 shows the average effect of error
recovery overhead on processor throughput for our workload
of SPEC benchmarks as voltage is scaled down on each pro-
cessor design. The results show that the slack redistribution-
based techniques often have higher throughput than their
traditional counterparts. This is due to smaller aggregate error
recovery overhead in most voltage ranges. Even in the voltage
ranges where throughput degradation is higher than tightly
constrained SP&R, there is a power efficiency win due to the
reasons described above.

VII. SUMMARY AND CONCLUSION

In this paper, we proposed power-aware slack redistribution,
a novel approach to enable extended voltage/reliability trade-
offs in processors. Our techniques reapportion timing slack
in a power- and area-efficient manner, such that we increase
the range of voltages over which the incidence of operational
(timing) errors is acceptable. This results in soft architectures,
i.e., designs that fail gracefully, allowing us to perform relia-
bility/power tradeoffs by reducing voltage down to the point
that produces maximum allowable errors for our application
without inducing catastrophic failure. We demonstrated the
benefits of such designs in terms of power efficiency and
extended range of voltage scaling before encountering a target
error rate. Our experiments demonstrate 23% power savings
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Fig. 11. The reduced error recovery overheads afforded by gradual slack
designs result in throughput gains over the baseline design. Throughput
degradation for the baseline design spikes due to a massive onset of errors. For
gradual slack designs, throughput degradation increases gradually as voltage
is scaled down.

over the baseline design at an error rate of 1%. Observed
power reductions are 29%, 29%, 19%, and 20% for error rates
of 2%, 4%, 8%, and 16% respectively. Benefits are higher in
the face of error recovery using Razor. Area overhead of our
techniques is up to 2.7%.
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