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Objectives and Challenges

Design Objectives
� a regular-expression scanner and pattern compiler, supporting

1. large sets of string and regular expression patterns (~10K)

2. multiple active pattern contexts

3. high scan rates (~20 Gbit/s)

4. parallel scans, multi-session support (millions of active sessions)

5. incremental and dynamic updates

Design Challenges
� efficient use of available memory capacity and bandwidth

– compact data structure

– minimize number of memory accesses to process each input character

– optimize cache hit rate

� exploit limited amount of parallelism to obtain small session state

� fast compilation times
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� Pattern-scanner designs (SW, HW) are typically based on deterministic 
(DFA) or non-deterministic finite automata (NFA)

� Pros/cons:

� Many published designs/solutions involve a DFA-based scan operation 
in combination with techniques to optimize storage-efficiency, targeting

– compact executable representations of given DFAs

– optimization of the DFAs themselves

� Differentiating factor from related work: techniques applied in RegX
enable a deterministic scan throughput that is independent of the input 
characteristics, when executing out of dedicated memory (caches)

– important for dealing with Denial of Service (DoS) attacks

RegX Architecture Overview

+-storage complexity

-+processing complexity

NFADFA
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RegX Architecture Overview

� Sample regular expression: (a|b)*ab

Non-Deterministic Finite

Automaton (NFA)

Deterministic Finite

Automaton (DFA)

� NFA: several possible next states can exist for given state and input

� DFA: at most one possible next state exists for each state and input
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RegX Architecture Overview – State Explosion

� Certain combinations of regular-expression patterns can cause a
“state-explosion” when mapped on a single DFA

� Example:

ab.*cd
ef[^\n]*gh
k.lm

�DFA with 48 states,
242 transition rules
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RegX Architecture Overview – State Explosion

� Certain combinations of regular-expression patterns can cause a
“state-explosion” when mapped on a single DFA

� Example:

ab.*cd
ef[^\n]*gh
k..lm

�DFA with 96 states,
508 transitions
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RegX Architecture Overview – State Explosion

� Certain combinations of regular-expression patterns can cause a
“state-explosion” when mapped on a single DFA

� Example:

ab.*cd
ef[^\n]*gh
k...lm

�DFA with 192 states,
1038 transitions
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RegX Architecture Overview – State Explosion

� Certain combinations of regular-expression patterns can cause a
“state-explosion” when mapped on a single DFA

� Example:

ab.*cd
ef[^\n]*gh
k.{n}lm

169383072k.......lm

84581536k......lm

4218768k.....lm

2098384k....lm

1038192k...lm

50896k..lm

24248k.lm

#transitions#statespattern
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RegX Architecture Overview – B-FSM

input characters

B-FSM

results

input characters

B-FSM
� Programmable state machine in HW

� Deterministic rate of one transition per clock cycle @ > 2 GHz 

� Storage grows approximately linearly with #transitions

� compact executable representation of given DFAs
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RegX Architecture Overview – Parallel B-FSMs

B-FSM
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input characters

B-FSM
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B-FSM
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B-FSM
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results

input characters

Parallel B-FSMs
� Enables “NFA-like” storage optimization: multiple parallel states/transitions

� Intelligent distribution of patterns over B-FSMs by compiler

– separate combinations of patterns that cause “state explosions”

� Trade-offs: additional computation costs and memory accesses,
larger session state
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RegX Architecture Overview – Parallel B-FSMs

� Example:

ab.*cd
ef[^\n]*gh
k.lm

�DFA with 48 states,
242 transition rules
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RegX Architecture Overview – Parallel B-FSMs

� Example:

ab.*cd
ef[^\n]*gh
k.lm

�3 DFAs with 17 states,
34 transition rules

DFA 1 DFA 2 DFA 3
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RegX Architecture Overview – Local Result Processor

instructions

B-FSM
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B-FSM
1

B-FSM
2

B-FSM
3

instructions
results

Local Result Processor (LRP)
� Storage reduction by off-loading problematic “NFA-states” from B-FSMs

– split individual problematic patterns into simpler parts

– LRP checks if parts are detected in the right order, distance, etc.

� LRP provides additional features

� Trade-offs: instructions consume storage, larger session state
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RegX Architecture Overview – Local Result Processor

� Example:

ab.*cd
ef[^\n]*gh
k.lm

�DFA with 48 states,
242 transition rules
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RegX Architecture Overview – Local Result Processor

� Example:

ab.*cd
ef[^\n]*gh
k.lm

�DFA with 13 states,
12 transition rules,
7 instructions

� DFA detects 7 simple patterns:
ab, cd, ef, \n, gh, k, lm

� LRP checks if patterns are found in the right order
– cd after ab [bit b7]
– gh after ef with no \n in between [bit b6]

Register



© 2012 IBM Corporation17 MICRO 45

RegX Architecture Overview – Lane
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Lane
� Minimum set of resources allocated for scanning an input stream

� Physical lane implements multiple logical lanes

– time-interleaved processing of multiple input streams

� Can sustain maximum scan rate of one input character per cycle
when the B-FSMs process out of transition-rule caches without
requiring back-pressure and independent of input characteristics



© 2012 IBM Corporation18 MICRO 45

AE

RegX Architecture Overview – Data & Algorithmic Engines
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Data Engine
� Enqueues and schedules scan commands

� Fetches and transmits input data streams

� Controls storage and retrieval of scan state, writing of scan results

Algorithmic Engine
� Scan lanes
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RegX Architecture Overview – Processor Bus
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Processor Bus Interface
� Threads running on general-purpose core initiate scan by sending

a scan command to RegX which includes pointers to

– input data

– compiled pattern set (context)

– output buffer for storing scan results
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Challenges
� High access latency to main memory (e.g., 400 cycles)

� performance targets require high L1 cache hit rate (>99%)

� Single-cycle access to L1 rule cache required to realize
maximum lane scan rate of one input character per cycle

� limits number of tags and associativity that can be supported

� required to achieve high single-stream scan rates

� HW-managed caches do not provide good performance for large target 
workloads: e.g., two-way set associativity results in a large amount of 
cache trashing for multiple active pattern contexts

Main

Memory
PBus

Compiled data structures
Scanner session state
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Memory Hierarchy

L1 Transition-Rule Cache
1. Locked area

– managed in SW by Upload Manager (UM)

– tagless: exposed to B-FSMs as addressable memory area

– almost fully associative

2. Temporary area

– 2-way set-associative cache managed in HW

– caches non-locked transitions upon miss in locked area

Address translation
� Transitions to locked states are translated to refer directly to

physical location in locked area 

Upload Manager
� Selection and placement of the most frequently used memory 

lines (includes B-FSM hash function “adaptation”)

� Driven by a statistical profile of transition access patterns, 
produced by dedicated HW counters embedded within RegX

Locked

Area

Temp.

Area

L1 Rule
Cache
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Local Result Processor
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Features
� LRP handles eight instructions in parallel in each cycle

� B-FSM can dispatch two instructions per cycle

– default instructions are triggered by selected character values

– regular instructions are triggered by the detection of (sub)patterns in 
the input stream – these are attached to transitions in the DFA

� LRP can sustain peak scan rate when all B-FSMs execute out of the 
rule caches without requiring a back-pressure mechanism
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Local Result Processor

Instructions
� Instructions operate on general-purpose and offset registers

– examples: set, reset, load immediate, count, shift

– conditions: selected byte is equal, has all/at least one set bit in common

� Match instructions report detected pattern information to application

– efficient support for transfer of GPR content for post-processing in SW
(SW Result Processor – SRP)

command 0 command 1

Command
Decode 0

General
Purpose
Register

File
(GPRF)

Command
Decode 1

Command
Decode 7

….

command 7….

Match Reporting

….

Command
Decode 0

Command
Decode 1

Command
Decode 7

Command
Decode 0

Command
Decode 1

Match Reporting

Command
Decode 7

Command
Decode 0

Command
Decode 1

General

Purpose

Register

File

Match Reporting

Command
Decode 7

Command
Decode 0

Command
Decode 1

Match Reporting

Command
Decode 7

Command
Decode 1

Match Reporting

Command
Decode 7

Command

Decode 0

Command

Decode 1

Match Reporting

Command

Decode 7



© 2012 IBM Corporation25 MICRO 45

Local Result Processor

0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0

GPR

Shift mask

Reset mask

Set mask

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00 00 0 00 0 0 001 1 1 10 0 00 0 000 0 1001 1

0 0

� Multiple instructions can operate in parallel on the same register

– enables efficient allocation of bits to individual patterns

� Priority order when instructions operate on the same bits

– set, reset, shift, increment (decreasing priority)
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Local Result Processor – Self-Running Instructions

1415 12 011

self-running mode flag

self-running instruction tag

GPR

Autonomously Self-Running Instructions
� Self-running instructions enable the execution of selected operations

(shift, count) for every input character in certain states

– allows efficient measuring/testing of distance and length conditions

� Activated by setting self-running mode flag in GPR

– instruction tag defines operation (normal GPR bits in regular mode)

� Single load operation can (de)activate and configure self-running 
instruction, and store initial (shift register/counter) contents

� Regular (conditional) instructions can manipulate and test GPR contents

� Concept allows flexible and dynamic allocation of register resources
as variable-width counters and shift registers
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Local Result Processor – Self-Running Instructions

12-bit counter1111b24-bit shift1011b

8-bit counter1110b18-bit shift1010b

36-bit shift1101b12-bit shift1001b

30-bit shift1101b6-bit shift1000b

nop0xxxb

instructionbits
15-12

instructionbits
15-12

1415 12 011

self-running mode flag

self-running instruction tag

GPR
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Local Result Processor – Self-Running Instructions

Shift

Shift

insert ‘0’

ShiftShift 6
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insert ‘0’
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insert ‘0’

Shift 18

Shift 24

insert ‘0’

Shift

insert ‘0’
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Shift 36

insert ‘0’

ShiftShift 12

ShiftShift 12

ShiftShift 24

ShiftShift 24 ShiftShift 12

ShiftShift 12

Shift

GPR [n] GPR [n+1] GPR [n+2]
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Local Result Processor – Self-Running Instructions

0 0 1 0 0 0 0abckkalmlmdef

0 0 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 1 0

abckkalmlmdef

abckkalmlmdef

abckkalmlmdef

0 0 0 0 0 1 1abckkalmlmdef

self-running shift registerinput trace

0 0 0 0 0 0 1abckkalmlmdef

0 0 0 0 0 0 0abckkalmlmdef

Example
� pattern k..lm
‒ k triggers set
‒ lm triggers test set

set

test

test
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Compiler

Pattern Compiler
� Converts pattern sets into DFAs

– pattern splitting, LRP instruction generation and register allocation

� lane count selection

– distribution of patterns over lanes and B-FSM engines

– mapping of patterns on DFAs, attachment of LRP instructions

B-FSM Compiler
� Converts DFAs into executable B-FSM data structures

– construction of linked hash table structures

– state encoding and instruction integration

– optimizations to obtain high compression

Incremental and dynamic pattern updates
� the architecture supports incremental updates of the pattern set

� internal scanner data structures can be updated dynamically without 
interrupting the ongoing scan operations



© 2012 IBM Corporation31 MICRO 45

Compiler

Example
� Storage reduction by exploiting lanes and LRP for publicly available 

“Application Layer Packet Classifier for Linux” (http://l7-filter.sourceforge.net/)
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IBM PowerENTM

Source: Johnson et al., “A wire-speed powerTM processor:
2.3GHz 45nm SOI with 16 cores and 64 threads,” ISSCC 2010.
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IBM PowerENTM
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RegX accelerator
� Implementation

– area: 15.4 mm2

– clocked at 2.3 GHz (1.15 GHz)

� Lanes

– 4 physical (16 B-FSMs)

– 8 logical (32 logical B-FSMs)

� Memory

– 32 KB rule cache per B-FSM

– 512 KB rule cache in total

– LRP register file: 8 x 16 bit, 128 bits total

� Peak scan rates (data structure fits entirely in rule caches)

– lane: one byte/cycle = 18.4 Gbit/s

– stream: one byte/2 cycles = 9.2 Gbit/s

– theoretical peak rate for 4 lanes: 73.6 Gbit/s
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HW Measured Performance – Single Context / String Patterns
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HW Measured Performance – Single Context / Regex Patterns
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HW Measured Performance – Multiple Contexts

0.0%

0.5%

1.0%

1.5%

2.0%

0 1000 2000 3000 4000 5000 6000 7000 8000

Patterns

R
u

le
 M

is
s 

R
at

e

0

10

20

30

40

50

0 1000 2000 3000 4000 5000 6000 7000 8000

Total Patterns

G
b

it
/s

String

Regex



© 2012 IBM Corporation37 MICRO 45

Conclusions

RegX accelerator
� An architecture, implementation, compiler and upload manager were 

designed to realize scan rates in the range of 15-40 Gbit/s for typical 
intrusion detection workloads

� Novel (micro-)architectural features

– Local Result Processor design supporting eight instructions fully in 
parallel and the concept of self-running instructions

– transition-rule caches, including address translation and cache line 
placement by a SW application exploiting hardware based profiling

– physical/logical lane concept involving a time-interleaved processing of 
multiple data streams by B-FSMs and LRPs, sustaining the maximum 
scan rate when processing out of the rule caches, without requiring a 
back-pressure mechanism and independently of input characteristics

Future work
� RegX is part of our research towards more general-purpose accelerators

� this project has shown us that basic building blocks of such an accelerator
are feasible at clock frequencies beyond 2 GHz
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Backup
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