””le"“

Designing a Programmable Wire-Speed
Regular-Expression Matching Accelerator

Jan van Lunteren, Christoph Hagleitner, Timothy Heil, Giora Biran,
Uzi Shvadron, Kubilay Atasu

MICRO 45 © 2012 IBM Corporation

© N o O &~ w b

. Objectives and Challenges

RegX Architecture Overview
Memory Hierarchy

Local Results Processor
Compiler

IBM PowerEN™

Hardware-Measured Performance

. Conclusions

MICRO 45

© 2012 IBM Corporation

Design Objectives
» aregular-expression scanner and pattern compiler, supporting

1. large sets of string and regular expression patterns (~10K)
multiple active pattern contexts
high scan rates (~20 Gbit/s)
parallel scans, multi-session support (millions of active sessions)
incremental and dynamic updates

ok~ W

Design Challenges

= efficient use of available memory capacity and bandwidth
— compact data structure
— minimize number of memory accesses to process each input character
— optimize cache hit rate

= exploit limited amount of parallelism to obtain small session state

= fast compilation times

3 MICRO 45 © 2012 IBM Corporation

Pattern-scanner designs (SW, HW) are typically based on deterministic
(DFA) or non-deterministic finite automata (NFA)

DFA | NFA

Pros/cons: processing complexity -

storage complexity -

Many published designs/solutions involve a DFA-based scan operation
in combination with techniques to optimize storage-efficiency, targeting

— compact executable representations of given DFAs
— optimization of the DFAs themselves

Differentiating factor from related work: techniques applied in RegX
enable a deterministic scan throughput that is independent of the input
characteristics, when executing out of dedicated memory (caches)

— important for dealing with Denial of Service (DoS) attacks

MICRO 45 © 2012 IBM Corporation

= Sample regular expression: (a| b) *ab

Non-Deterministic Finite Deterministic Finite
Automaton (NFA) Automaton (DFA)

= NFA: several possible next states can exist for given state and input
= DFA: at most one possible next state exists for each state and input

5 MICRO 45 © 2012 IBM Corporation

= Certain combinations of regular-expression patterns can cause a
“state-explosion” when mapped on a single DFA

= Example:

ab. *cd
ef [*\ n] *gh
k.l m

=» DFA with 48 states,
242 transition rules

6 MICRO 45 © 2012 IBM Corporation

RegX Architecture Overview — State Explosion ==

= Certain combinations of regular-expression patterns can cause a
“state-explosion” when mapped on a single DFA

= Example: e—
ef[Mn]*gh T TN 7

> DFA with 96 states, |
508 transitions g ST TSN

B e S e K S s | g
e e e e e e e

7 MICRO 45 © 2012 IBM Corporation

= Certain combinations of regular-expression patterns can cause a
“state-explosion” when mapped on a single DFA

= Example: 1 —

ab. *cd 7 ' %
ef [M n] * gh e

=> DFA with 192 states,
1038 transitions p————

8 MICRO 45 © 2012 IBM Corporation

= Certain combinations of regular-expression patterns can cause a

“state-explosion” when mapped on a single DFA

= Example:

ab. *cd
ef [*\ n] *gh
K.{n}I m

pattern #states | #transitions
K.l m 48 242
K..lm 96 508
K...Im 192 1038
K....lm 384 2098
K..... | m 768 4218
K...... | m 1536 8458
K....... | m 3072 16938

MICRO 45

© 2012 IBM Corporation

input characters

l

B-FSM

1

results

B-FSM

= Programmable state machine in HW

= Deterministic rate of one transition per clock cycle @ > 2 GHz
» Storage grows approximately linearly with #transitions

=>» compact executable representation of given DFAs

10 MICRO 45 © 2012 IBM Corporation

input characters

B-FSM| [B-FSM| [B-FSM| [B-FSM
0 1 2 3

A

results

Parallel B-FSMs
= Enables “NFA-like” storage optimization: multiple parallel states/transitions
= |Intelligent distribution of patterns over B-FSMs by compiler

— separate combinations of patterns that cause “state explosions”

» Trade-offs: additional computation costs and memory accesses,
larger session state

11 MICRO 45 © 2012 IBM Corporation

RegX Architecture Overview — Parallel B-FSMs

= Example:

ab. *cd
ef ["\ n] *gh
k.l m -

=» DFA with 48 states,
242 transition rules

12 MICRO 45 © 2012 IBM Corporation

RegX Architecture Overview — Parallel B-FSMs

= Example:

ab. *cd
ef ["\ n] *gh
k.l m

=» 3 DFAs with 17 states,
34 transition rules

13 MICRO 45 © 2012 IBM Corporation

input characters

B-FSM| [B-FSM| [B-FSM| [B-FSM
0 1 2 3

results « LRP

A

instructions

Local Result Processor (LRP)

= Storage reduction by off-loading problematic “NFA-states” from B-FSMs
— split individual problematic patterns into simpler parts
— LRP checks if parts are detected in the right order, distance, etc.

= LRP provides additional features

» Trade-offs: instructions consume storage, larger session state

14 MICRO 45 © 2012 IBM Corporation

RegX Architecture Overview — Local Result Processor

= Example:

ab. *cd
ef ["\ n] *gh
k.l m -

=» DFA with 48 states,
242 transition rules

15 MICRO 45 © 2012 IBM Corporation

Example: Register @
ab. *cd

k

‘n

ef[/\\ n]*gh ‘ c /elg\l set b3 \reset b6
K.I'm
() (8 () (9 @ ORO
= DFA with 13 states, b f m

16

set b7 Tmfh set b6 R?H:r() test b0

12 transition rules,

/7 instructions @ @

DFA detects 7 simple patterns:
ab, cd, ef, \n, gh, k, I m

LRP checks if patterns are found in the right order
— cd after ab [bit b7]

— gh after ef with no \ n in between [bit b6]

MICRO 45

© 2012 IBM Corporation

lane

oy
15 input characters
1 N
‘_3 A 4 A 4 A 4 v
°| [B-FsM| [B-FsM| [B-FSM] [B-FSM
0 1 2 3
results < LRP |« : .
Instructions

Lane
= Minimum set of resources allocated for scanning an input stream
= Physical lane implements multiple logical lanes

— time-interleaved processing of multiple input streams

= Can sustain maximum scan rate of one input character per cycle
when the B-FSMs process out of transition-rule caches without
requiring back-pressure and independent of input characteristics

17 MICRO 45 © 2012 IBM Corporation

—_————— — — — — — — — . — — — o — — [e — — i — — — — — — — — — ——— ——— — —— — — — —

Data Engine
» Enqueues and schedules scan commands
» Fetches and transmits input data streams

= Controls storage and retrieval of scan state, writing of scan results

Algorithmic Engine

= Scan lanes

18

MICRO 45

~ NIAE 4 physical/8 logical lanes
8 command units [\ =
| @]
Data Fetch| |Search| !l |5 input characters

Q Unit Unit | == K

A A O A 4 A 4 \ 4 \ 4
£ I B-FSM| [B-FSM] [B-FSM| [B-FSM
=T ;; o |l 1+ Jl2][3
7| Command ! 1| LRP |k
o | Queue UM i instructions

Handler ii

© 2012 IBM Corporation

|
P |

I
P Memory
Processor Controller RegX

A A

A 4 A 4

PBus

A

\ 4

External
Chip
Interface

Processor Bus Interface

» Threads running on general-purpose core initiate scan by sending

19

a scan command to RegX which includes pointers to
— Input data

— compiled pattern set (context)
— output buffer for storing scan results

MICRO 45

© 2012 IBM Corporation

—_————_——_——_—_e—_e—_e—_e—_e—_—_—_e—_e—_—_—_—_—_—_ P —_—_E—_E—_Ee—_E—E—_E e, ———— e —

'DE IIAE 4 physical/8 logical lanes

|
| 8 command units || = :
' | © |
I Data Fetch| |Search I = input characters |
: H @ Unit Unit | = | & !
Maln PBUS I 8 vy 'y I O . 4 4 L 4 v |
Memor b ! B-FSM| |B-FSM| |B-FSM| |[B-FSM| |
y 2T g 0 1 2 3 |
| LILILIL]
! § Command | Ii LRP |, | \ i
: || Queue UM | i |[REG instructions / VI
Compiled data structures | < 1 Handler | I /l \\ |
Scanner session state | —— =~~~ =)0 ——— Ll
I \
)
I \
/// N\
7 [BFsMm|
/ \
, rTj \
| |= =
<| [<]| /
Ve [
o] o]/
\ /
~__7
L1 Rule
Caches

20 MICRO 45 © 2012 IBM Corporation

—_————_——_——_—_e—_e—_e—_e—_e—_—_—_e—_e—_—_—_—_—_—_ P —_—_E—_E—_Ee—_E—E—_E e, ———— e —

'DE ~ IAE 4 physical/8 logical lanes
8 command units !\

' :

i e I

I Data Fetch[|Search| ! = input characters |

- 9 Unit Unit | 7= | & |

Maln PBUS ! 8 7§ vy I O . 4 2 L 2 ¥ I

Memor b | B-FSM| [B-FSM| [B-FSM| |B-FSM| |

y =T | 0 1 2 3 |

! § Command | l: LRP |, l \Ilf !

: || Queue UM | 1 instructions / \l

Compiled data structures | 1 Handler | ! / if (B

Scanner sessionstate \ —____________—————— W\ o [— L
I \

Challenges g

. . N\

= High access latency to main memory (e.g., 400 cycles) // \

|

B-FSM
=> performance targets require high L1 cache hit rate (>99%) l’ l_Ll \

= Single-cycle access to L1 rule cache required to realize \\ % %
maximum lane scan rate of one input character per cycle el e |,/

=» limits number of tags and associativity that can be supported L\1 ‘Ra;

=>» required to achieve high single-stream scan rates Caches

= HW-managed caches do not provide good performance for large target
workloads: e.g., two-way set associativity results in a large amount of
cache trashing for multiple active pattern contexts

21 MICRO 45 © 2012 IBM Corporation

L1 Transition-Rule Cache
1. Locked area
— managed in SW by Upload Manager (UM)
— tagless: exposed to B-FSMs as addressable memory area
— almost fully associative
2. Temporary area
— 2-way set-associative cache managed in HW
— caches non-locked transitions upon miss in locked area

Address translation

» Transitions to locked states are translated to refer directly to
physical location in locked area

Upload Manager

= Selection and placement of the most frequently used memory
lines (includes B-FSM hash function “adaptation”)

= Driven by a statistical profile of transition access patterns,
produced by dedicated HW counters embedded within RegX

22 MICRO 45

Locked
Area

Temp.
Area

L1 Rule
Cache

© 2012 IBM Corporation

[—— — — — — — — — — — — — — — — e e e

AE 4 physical/8 logical lanes

| I
| I
I - !
|2 . |
15 input characters |
]| &8 !
| = \ 4 \ 4 \ 4 \ 4 |
21 [B-FsM| [B-FSM| [B-FSM] [B-FSM| | |
| 0 1 2 3 |
| Lrp :
| instructions i
I

| I
| I

e o e —]

Features

23

LRP handles eight instructions in parallel in each cycle
B-FSM can dispatch two instructions per cycle

— default instructions are triggered by selected character values

— regular instructions are triggered by the detection of (sub)patterns in
the input stream — these are attached to transitions in the DFA

LRP can sustain peak scan rate when all B-FSMs execute out of the

rule caches without requiring a back-pressure mechanism

MICRO 45

© 2012 IBM Corporation

command 0 command 1 === command 7

> Match Reporting

i i
| |
| v } [| General | |
. |Command| |Command| .. |Command Purpose |
' | Decode 0 | | Decode 1 Decode 7 Register | |
| |]] JoTe
| |
| |

Instructions
» |nstructions operate on general-purpose and offset registers

— examples: set, reset, load immediate, count, shift

— conditions: selected byte is equal, has all/at least one set bit in common
= Match instructions report detected pattern information to application

— efficient support for transfer of GPR content for post-processing in SW
(SW Result Processor — SRP)

24 MICRO 45 © 2012 IBM Corporation

Local Result Processor

GPR

Shitmask |0{0/0(0/1|1,1/{0/0(0|1|2/0|/0/0/|0

Resetmask |0/1/0/0/0{0/0/0|/0|0|0(0|0|1

nN
o

Setmask |0/0/1({1/0{0|0|0/2/0/0/0/0(0|1]|1

= Multiple instructions can operate in parallel on the same register
— enables efficient allocation of bits to individual patterns

= Priority order when instructions operate on the same bits
— set, reset, shift, increment (decreasing priority)

25 MICRO 45

© 2012 IBM Corporation

15 14 12 11 0

GPR | |

%_/ (S ~ J
‘ L— self-running instruction tag
» self-running mode flag

Autonomously Self-Running Instructions

= Self-running instructions enable the execution of selected operations
(shift, count) for every input character in certain states

— allows efficient measuring/testing of distance and length conditions
= Activated by setting self-running mode flag in GPR
— instruction tag defines operation (normal GPR bits in regular mode)

= Single load operation can (de)activate and configure self-running
instruction, and store initial (shift register/counter) contents

» Regular (conditional) instructions can manipulate and test GPR contents

=» Concept allows flexible and dynamic allocation of register resources
as variable-width counters and shift registers

26 MICRO 45 © 2012 IBM Corporation

15 14 12 11 0

GPR | |

%_/ (S ~ J
‘ L— self-running instruction tag
» self-running mode flag

bits Instruction bits instruction
15-12 15-12
Oxxxb | nop

1000b | 6-bit shift 1101b | 30-bit shift
1001b | 12-bit shift 1101b | 36-bit shift

1010b | 18-bit shift 1110b | 8-bit counter
1011b | 24-bit shift 1111b | 12-bit counter

27 MICRO 45 © 2012 IBM Corporation

insert ‘0’

Shift 6 N shift
inseit (0
Shift 124 Shift
inseit (0 /\
Shift 18 N shift Shift 12 Shift
insert ‘0’ /\
Shift 24 Y Shift Shift 12 Shift

)

inseit 0’
Shift 30 \‘| Shift Shift 24 Shift Shift 12 Shift
inseit ‘0

)

Shift 36\| Shift Shift 24 Shift Shift 12 Shift

GPR [n] GPR [n+1] GPR [n+2]

MICRO 45 © 2012 IBM Corporation

Example input trace self-running shift register

" patternk. .l m abckkal M ndef |0| |0|1]|0|0|0]|0O
— k triggers set 4 -
— | mtriggers test - —Sel
abckkal m ndef 0 0(12]1(0]0{0
4 _ set
abckkal m ndef 0 O(0O[1[1]1010
* -
abckkal m ndef 0 O(0|10|11]1{0
4 o
abckkal ml ndef 0 O0(0|0|0|1(1
4 - fest
abckkal m ndef 0 0/0(0|0(0]1
4 o
abckkal m ndef 0 0(0|0(0|0|O0

4 o fest

29 MICRO 45 © 2012 IBM Corporation

Pattern Compiler
= Converts pattern sets into DFAs

— pattern splitting, LRP instruction generation and register allocation
» |ane count selection

— distribution of patterns over lanes and B-FSM engines

— mapping of patterns on DFAs, attachment of LRP instructions

B-FSM Compiler

= Converts DFAs into executable B-FSM data structures
— construction of linked hash table structures
— state encoding and instruction integration
— optimizations to obtain high compression

Incremental and dynamic pattern updates

= the architecture supports incremental updates of the pattern set

* internal scanner data structures can be updated dynamically without
interrupting the ongoing scan operations

30 MICRO 45 © 2012 IBM Corporation

1e+07 ¢ T T T T

[w result IprocessorI L
i w/o result processor @
1e+06 | 3
o [
Lu 3
_I 3
-
X ' |
100000 F :
. -
| .
10000 : i e I R
1 2 3 4 5 6 7 8
LANES
Example

= Storage reduction by exploiting lanes and LRP for publicly available
“Application Layer Packet Classifier for Linux” (http:/17-filter.sourceforge.net/)

31 MICRO 45 © 2012 IBM Corporation

Technology

IBM 45nm SOI

Core Frequency

2.3GHz @ 0.97V (Worst Case Process)

Chip size

428 mm2 (including kerf)

Chip Power (4-AT node)
Chip Power (1-AT node)

65W @ 2.0GHz, 0.85V Max Single Chip
20W @ 1.4GHz, 0.77V Min Single Chip

Main Voltage (VDD)

0.7V to 1.1V

Metal Layers

11 Cu (3-1x, 2-1.3x, 3-2x, 1-4x, 2-10x)

Latch Count

3.2M

Transistor Count

1.43B

A2 Cores / Threads

16/ 64

L11 & D Cache

16 x (16KB + 16KB) SRAM

L2 Cache

4 x 2MB eDRAM

Hardware Accelerators

Crypto, Compression, RegX, XML

Intelligent Network
Interfaces

Host Ethernet Adapter/Packet Processor
2 Modes: Endpoint & Network

Memory Bandwidth

2x DDR3 controllers
4 Channels @ 800-1600MHz

System 1/0O Bandwidth

4x 10G Ethernet, 2x PCIl Gen2

Chip-to-Chip Bandwidth

3 Links, 20GB/s per link

Chip Scaling

4 Chip SMP

Package

50mm FCPBGA (4 or 6 layers)

Source: Johnson et al., “A wire-speed power™ processor:
2.3GHz 45nm SOl with 16 cores and 64 threads,” ISSCC 2010.

MICRO 45

A2 A2 A2 A2

4

Vi

L]

I

© 2012 IBM Corporation

IBM PowerEN™

RegX accelerator

= |Implementation
— area: 15.4 mm? DE <
— clocked at 2.3 GHz (1.15 GHz)

= Lanes >
— 4 physical (16 B-FSMs)
— 8 logical (32 logical B-FSMs)

AE

Memory

— 32 KB rule cache per B-FSM
— 512 KB rule cache in total

— LRP reqister file: 8 x 16 bit, 128 bits total

\

» Peak scan rates (data structure fits entirely in rule caches)
— lane: one byte/cycle = 18.4 Gbit/s
— stream: one byte/2 cycles = 9.2 Gbit/s
— theoretical peak rate for 4 lanes: 73.6 Gbit/s

33 MICRO 45 © 2012 IBM Corporation

HW Measured Performance — Single Context / String Patterns

50

40 -

30

Gbit/s

20

10 -

2.0%

1.5%

1.0%

Rule Miss Rate

0.5%

0.0% -

34

—e— 1 Lane
—m=— 2 Lanes
—=—3 Lanes
[|
| 4 Lanes
\ A
0 1000 2000 3000 4000
0 1000 2000 3000 4000
Patterns

MICRO 45

© 2012 IBM Corporation

HW Measured Performance — Single Context / Regex Patterns

35

Rule Miss Rate

—e— 1 Lane
50 -
—m— 2 Lanes
40 H\ —=— 3 Lanes
4 Lanes
= 30
o \
20 \ -
10
0 I I I I
0 500 1000 1500 2000
2.0% -
1.5%
1.0% /.
0.5% -
0.0% — o—o—2 — | ‘
0 500 1000 1500 2000
Patterns

MICRO 45

© 2012 IBM Corporation

HW Measured Performance — Multiple Contexts

—e— String
50 -
—a— Regex
40
O
© 20
10
O I I I I I I I 1
0 1000 2000 3000 4000 5000 6000 7000 8000
Total Patterns
2.0% -
(0D}
Ecr“d 1.5% -
wn
wn
'5 1.0% \
o
& 0.5% -
. o ———o & & & *
O-OO/O [[[[[[[|
0O 1000 2000 3000 4000 5000 6000 7000 8000

36

Patterns

MICRO 45

© 2012 IBM Corporation

RegX accelerator

= An architecture, implementation, compiler and upload manager were
designed to realize scan rates in the range of 15-40 Gbit/s for typical
Intrusion detection workloads

= Novel (micro-)architectural features

— Local Result Processor design supporting eight instructions fully in
parallel and the concept of self-running instructions

— transition-rule caches, including address translation and cache line
placement by a SW application exploiting hardware based profiling

— physical/logical lane concept involving a time-interleaved processing of
multiple data streams by B-FSMs and LRPs, sustaining the maximum
scan rate when processing out of the rule caches, without requiring a
back-pressure mechanism and independently of input characteristics

Future work

= RegX s part of our research towards more general-purpose accelerators

=» this project has shown us that basic building blocks of such an accelerator
are feasible at clock frequencies beyond 2 GHz

37 MICRO 45 © 2012 IBM Corporation

For more information, please contact:

Jan van Lunteren (jvi@zurich.ibm.com)

IBM Research - Zurich
Saumerstrasse 4
CH-8803 Ruschlikon
Switzerland

Phone: +41 44 724 8111
Fax: +41 44 724 8911

38 MICRO 45

© 2012 IBM Corporation

39

Backup

MICRO 45

© 2012 IBM Corporation

Backup

input
| State Reg. [state Character Init.State Reg.
Classifier
| Table Reg. _4 Init. Table Reg.
| MaskReg. £ | curent input clas | Init.Mask Reg.
state value inf
~ 7
Rule Selector
imnpyt
— 2= = = VRl
-~ - -
Address :‘|> Trarl\lfgrlsgrRule Del\];laeL::OITUIe Address
Generator y y Generator
rule 0 | rule 1 | rule 2 def.rule 0 | def.rule 1 | def.rule 2
40 MICRO 45 © 2012 IBM Corporation

