
© 2012 IBM CorporationMICRO 45

Designing a Programmable Wire-Speed
Regular-Expression Matching Accelerator

Jan van Lunteren, Christoph Hagleitner, Timothy Heil, Giora Biran,
Uzi Shvadron, Kubilay Atasu

© 2012 IBM Corporation2 MICRO 45

1. Objectives and Challenges

2. RegX Architecture Overview

3. Memory Hierarchy

4. Local Results Processor

5. Compiler

6. IBM PowerENTM

7. Hardware-Measured Performance

8. Conclusions

Agenda

© 2012 IBM Corporation3 MICRO 45

Objectives and Challenges

Design Objectives
� a regular-expression scanner and pattern compiler, supporting

1. large sets of string and regular expression patterns (~10K)

2. multiple active pattern contexts

3. high scan rates (~20 Gbit/s)

4. parallel scans, multi-session support (millions of active sessions)

5. incremental and dynamic updates

Design Challenges
� efficient use of available memory capacity and bandwidth

– compact data structure

– minimize number of memory accesses to process each input character

– optimize cache hit rate

� exploit limited amount of parallelism to obtain small session state

� fast compilation times

© 2012 IBM Corporation4 MICRO 45

� Pattern-scanner designs (SW, HW) are typically based on deterministic
(DFA) or non-deterministic finite automata (NFA)

� Pros/cons:

� Many published designs/solutions involve a DFA-based scan operation
in combination with techniques to optimize storage-efficiency, targeting

– compact executable representations of given DFAs

– optimization of the DFAs themselves

� Differentiating factor from related work: techniques applied in RegX
enable a deterministic scan throughput that is independent of the input
characteristics, when executing out of dedicated memory (caches)

– important for dealing with Denial of Service (DoS) attacks

RegX Architecture Overview

+-storage complexity

-+processing complexity

NFADFA

© 2012 IBM Corporation5 MICRO 45

RegX Architecture Overview

� Sample regular expression: (a|b)*ab

Non-Deterministic Finite

Automaton (NFA)

Deterministic Finite

Automaton (DFA)

� NFA: several possible next states can exist for given state and input

� DFA: at most one possible next state exists for each state and input

© 2012 IBM Corporation6 MICRO 45

RegX Architecture Overview – State Explosion

� Certain combinations of regular-expression patterns can cause a
“state-explosion” when mapped on a single DFA

� Example:

ab.*cd
ef[^\n]*gh
k.lm

�DFA with 48 states,
242 transition rules

© 2012 IBM Corporation7 MICRO 45

RegX Architecture Overview – State Explosion

� Certain combinations of regular-expression patterns can cause a
“state-explosion” when mapped on a single DFA

� Example:

ab.*cd
ef[^\n]*gh
k..lm

�DFA with 96 states,
508 transitions

© 2012 IBM Corporation8 MICRO 45

RegX Architecture Overview – State Explosion

� Certain combinations of regular-expression patterns can cause a
“state-explosion” when mapped on a single DFA

� Example:

ab.*cd
ef[^\n]*gh
k...lm

�DFA with 192 states,
1038 transitions

© 2012 IBM Corporation9 MICRO 45

RegX Architecture Overview – State Explosion

� Certain combinations of regular-expression patterns can cause a
“state-explosion” when mapped on a single DFA

� Example:

ab.*cd
ef[^\n]*gh
k.{n}lm

169383072k.......lm

84581536k......lm

4218768k.....lm

2098384k....lm

1038192k...lm

50896k..lm

24248k.lm

#transitions#statespattern

© 2012 IBM Corporation10 MICRO 45

RegX Architecture Overview – B-FSM

input characters

B-FSM

results

input characters

B-FSM
� Programmable state machine in HW

� Deterministic rate of one transition per clock cycle @ > 2 GHz

� Storage grows approximately linearly with #transitions

� compact executable representation of given DFAs

© 2012 IBM Corporation11 MICRO 45

RegX Architecture Overview – Parallel B-FSMs

B-FSM
0

input characters

B-FSM
1

B-FSM
2

B-FSM
3

results

input characters

Parallel B-FSMs
� Enables “NFA-like” storage optimization: multiple parallel states/transitions

� Intelligent distribution of patterns over B-FSMs by compiler

– separate combinations of patterns that cause “state explosions”

� Trade-offs: additional computation costs and memory accesses,
larger session state

© 2012 IBM Corporation12 MICRO 45

RegX Architecture Overview – Parallel B-FSMs

� Example:

ab.*cd
ef[^\n]*gh
k.lm

�DFA with 48 states,
242 transition rules

© 2012 IBM Corporation13 MICRO 45

RegX Architecture Overview – Parallel B-FSMs

� Example:

ab.*cd
ef[^\n]*gh
k.lm

�3 DFAs with 17 states,
34 transition rules

DFA 1 DFA 2 DFA 3

© 2012 IBM Corporation14 MICRO 45

RegX Architecture Overview – Local Result Processor

instructions

B-FSM
0

LRP

input characters

B-FSM
1

B-FSM
2

B-FSM
3

instructions
results

Local Result Processor (LRP)
� Storage reduction by off-loading problematic “NFA-states” from B-FSMs

– split individual problematic patterns into simpler parts

– LRP checks if parts are detected in the right order, distance, etc.

� LRP provides additional features

� Trade-offs: instructions consume storage, larger session state

© 2012 IBM Corporation15 MICRO 45

RegX Architecture Overview – Local Result Processor

� Example:

ab.*cd
ef[^\n]*gh
k.lm

�DFA with 48 states,
242 transition rules

© 2012 IBM Corporation16 MICRO 45

RegX Architecture Overview – Local Result Processor

� Example:

ab.*cd
ef[^\n]*gh
k.lm

�DFA with 13 states,
12 transition rules,
7 instructions

� DFA detects 7 simple patterns:
ab, cd, ef, \n, gh, k, lm

� LRP checks if patterns are found in the right order
– cd after ab [bit b7]
– gh after ef with no \n in between [bit b6]

Register

© 2012 IBM Corporation17 MICRO 45

RegX Architecture Overview – Lane

instructions

B-FSM
0

LRP

input characters

C
la

s
s
if
ie

r

B-FSM
1

B-FSM
2

B-FSM
3

instructions

input characters

lane

results

Lane
� Minimum set of resources allocated for scanning an input stream

� Physical lane implements multiple logical lanes

– time-interleaved processing of multiple input streams

� Can sustain maximum scan rate of one input character per cycle
when the B-FSMs process out of transition-rule caches without
requiring back-pressure and independent of input characteristics

© 2012 IBM Corporation18 MICRO 45

AE

RegX Architecture Overview – Data & Algorithmic Engines

Data Fetch
Unit

Search
Unit

UM
Handler

Command
Queue

8 command units

P
B

u
s
 I
n
te

rf
a
c
e

instructions

B-FSM
0

LRP

input characters

C
la

s
s
if
ie

r

B-FSM
1

B-FSM
2

B-FSM
3

4 physical/8 logical lanesDE

instructions

input characters

Data Engine
� Enqueues and schedules scan commands

� Fetches and transmits input data streams

� Controls storage and retrieval of scan state, writing of scan results

Algorithmic Engine
� Scan lanes

© 2012 IBM Corporation19 MICRO 45

RegX Architecture Overview – Processor Bus

Processor
Processor

PBus

Processor
processorProcessor

Memory

Controller
RegX External

Chip

Interface

Processor
Processor

Processor

Processor
Processor

Processor
Processor

Processor
Processor

Memory

ControllerProcessor
Processor

Processor
Processor

PBus

Memory

ControllerProcessor
Processor

Processor
Processor

External

Chip

Interface
PBus

Memory

Controller

Processor
Processor

Processor
Processor

Processor Bus Interface
� Threads running on general-purpose core initiate scan by sending

a scan command to RegX which includes pointers to

– input data

– compiled pattern set (context)

– output buffer for storing scan results

© 2012 IBM Corporation20 MICRO 45

AE

Data Fetch
Unit

Search
Unit

UM
Handler

Command
Queue

8 command units

P
B

u
s
 I
n
te

rf
a
c
e

instructions

B-FSM
0

B-FSM
0

LRP

input characters

C
la

s
s
if
ie

r

B-FSM
1

B-FSM
1

B-FSM
2

B-FSM
2

B-FSM
3

B-FSM
3

4 physical/8 logical lanesDE

instructions

input characters

REG

Memory Hierarchy

B-FSM

S
R

A
M

S
R

A
M

L1 Rule
Caches

Main

Memory
PBus

Compiled data structures
Scanner session state

© 2012 IBM Corporation21 MICRO 45

AE

Data Fetch
Unit

Search
Unit

UM
Handler

Command
Queue

8 command units

P
B

u
s
 I
n
te

rf
a
c
e

instructions

B-FSM
0

B-FSM
0

LRP

input characters

C
la

s
s
if
ie

r

B-FSM
1

B-FSM
1

B-FSM
2

B-FSM
2

B-FSM
3

B-FSM
3

4 physical/8 logical lanesDE

instructions

input characters

REG

Memory Hierarchy

B-FSM

S
R

A
M

S
R

A
M

L1 Rule
Caches

Challenges
� High access latency to main memory (e.g., 400 cycles)

� performance targets require high L1 cache hit rate (>99%)

� Single-cycle access to L1 rule cache required to realize
maximum lane scan rate of one input character per cycle

� limits number of tags and associativity that can be supported

� required to achieve high single-stream scan rates

� HW-managed caches do not provide good performance for large target
workloads: e.g., two-way set associativity results in a large amount of
cache trashing for multiple active pattern contexts

Main

Memory
PBus

Compiled data structures
Scanner session state

© 2012 IBM Corporation22 MICRO 45

Memory Hierarchy

L1 Transition-Rule Cache
1. Locked area

– managed in SW by Upload Manager (UM)

– tagless: exposed to B-FSMs as addressable memory area

– almost fully associative

2. Temporary area

– 2-way set-associative cache managed in HW

– caches non-locked transitions upon miss in locked area

Address translation
� Transitions to locked states are translated to refer directly to

physical location in locked area

Upload Manager
� Selection and placement of the most frequently used memory

lines (includes B-FSM hash function “adaptation”)

� Driven by a statistical profile of transition access patterns,
produced by dedicated HW counters embedded within RegX

Locked

Area

Temp.

Area

L1 Rule
Cache

© 2012 IBM Corporation23 MICRO 45

Local Result Processor

AE

instructions

B-FSM
0

LRP

input characters

C
la

s
s
if
ie

r

B-FSM
1

B-FSM
2

B-FSM
3

4 physical/8 logical lanes

instructions

input characters

Features
� LRP handles eight instructions in parallel in each cycle

� B-FSM can dispatch two instructions per cycle

– default instructions are triggered by selected character values

– regular instructions are triggered by the detection of (sub)patterns in
the input stream – these are attached to transitions in the DFA

� LRP can sustain peak scan rate when all B-FSMs execute out of the
rule caches without requiring a back-pressure mechanism

© 2012 IBM Corporation24 MICRO 45

Local Result Processor

Instructions
� Instructions operate on general-purpose and offset registers

– examples: set, reset, load immediate, count, shift

– conditions: selected byte is equal, has all/at least one set bit in common

� Match instructions report detected pattern information to application

– efficient support for transfer of GPR content for post-processing in SW
(SW Result Processor – SRP)

command 0 command 1

Command
Decode 0

General
Purpose
Register

File
(GPRF)

Command
Decode 1

Command
Decode 7

….

command 7….

Match Reporting

….

Command
Decode 0

Command
Decode 1

Command
Decode 7

Command
Decode 0

Command
Decode 1

Match Reporting

Command
Decode 7

Command
Decode 0

Command
Decode 1

General

Purpose

Register

File

Match Reporting

Command
Decode 7

Command
Decode 0

Command
Decode 1

Match Reporting

Command
Decode 7

Command
Decode 1

Match Reporting

Command
Decode 7

Command

Decode 0

Command

Decode 1

Match Reporting

Command

Decode 7

© 2012 IBM Corporation25 MICRO 45

Local Result Processor

0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0

GPR

Shift mask

Reset mask

Set mask

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00 00 0 00 0 0 001 1 1 10 0 00 0 000 0 1001 1

0 0

� Multiple instructions can operate in parallel on the same register

– enables efficient allocation of bits to individual patterns

� Priority order when instructions operate on the same bits

– set, reset, shift, increment (decreasing priority)

© 2012 IBM Corporation26 MICRO 45

Local Result Processor – Self-Running Instructions

1415 12 011

self-running mode flag

self-running instruction tag

GPR

Autonomously Self-Running Instructions
� Self-running instructions enable the execution of selected operations

(shift, count) for every input character in certain states

– allows efficient measuring/testing of distance and length conditions

� Activated by setting self-running mode flag in GPR

– instruction tag defines operation (normal GPR bits in regular mode)

� Single load operation can (de)activate and configure self-running
instruction, and store initial (shift register/counter) contents

� Regular (conditional) instructions can manipulate and test GPR contents

� Concept allows flexible and dynamic allocation of register resources
as variable-width counters and shift registers

© 2012 IBM Corporation27 MICRO 45

Local Result Processor – Self-Running Instructions

12-bit counter1111b24-bit shift1011b

8-bit counter1110b18-bit shift1010b

36-bit shift1101b12-bit shift1001b

30-bit shift1101b6-bit shift1000b

nop0xxxb

instructionbits
15-12

instructionbits
15-12

1415 12 011

self-running mode flag

self-running instruction tag

GPR

© 2012 IBM Corporation28 MICRO 45

Local Result Processor – Self-Running Instructions

Shift

Shift

insert ‘0’

ShiftShift 6

Shift 12

insert ‘0’

Shift

insert ‘0’

Shift 18

Shift 24

insert ‘0’

Shift

insert ‘0’

Shift 30

Shift 36

insert ‘0’

ShiftShift 12

ShiftShift 12

ShiftShift 24

ShiftShift 24 ShiftShift 12

ShiftShift 12

Shift

GPR [n] GPR [n+1] GPR [n+2]

© 2012 IBM Corporation29 MICRO 45

Local Result Processor – Self-Running Instructions

0 0 1 0 0 0 0abckkalmlmdef

0 0 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 1 0

abckkalmlmdef

abckkalmlmdef

abckkalmlmdef

0 0 0 0 0 1 1abckkalmlmdef

self-running shift registerinput trace

0 0 0 0 0 0 1abckkalmlmdef

0 0 0 0 0 0 0abckkalmlmdef

Example
� pattern k..lm
‒ k triggers set
‒ lm triggers test set

set

test

test

© 2012 IBM Corporation30 MICRO 45

Compiler

Pattern Compiler
� Converts pattern sets into DFAs

– pattern splitting, LRP instruction generation and register allocation

� lane count selection

– distribution of patterns over lanes and B-FSM engines

– mapping of patterns on DFAs, attachment of LRP instructions

B-FSM Compiler
� Converts DFAs into executable B-FSM data structures

– construction of linked hash table structures

– state encoding and instruction integration

– optimizations to obtain high compression

Incremental and dynamic pattern updates
� the architecture supports incremental updates of the pattern set

� internal scanner data structures can be updated dynamically without
interrupting the ongoing scan operations

© 2012 IBM Corporation31 MICRO 45

Compiler

Example
� Storage reduction by exploiting lanes and LRP for publicly available

“Application Layer Packet Classifier for Linux” (http://l7-filter.sourceforge.net/)

© 2012 IBM Corporation32 MICRO 45

IBM PowerENTM

Source: Johnson et al., “A wire-speed powerTM processor:
2.3GHz 45nm SOI with 16 cores and 64 threads,” ISSCC 2010.

© 2012 IBM Corporation33 MICRO 45

IBM PowerENTM

Lane

B
F

S
M

Data
Engine

Upload
Manager
Interface

DE

AE

Data
Engine

Data
Engine

Data
Engine

Data
Engine

Data
Engine

Data
Engine

Data
Engine

Lane Lane

B
F

S
M

B
F

S
M

B
F

S
M

LaneLane

B
F

S
M

B
F

S
M

Data
Engine

Data
Engine

Upload
Manager
Interface

DE

AE

Data
Engine

Data
Engine

Data
Engine

Data
Engine

Data
Engine

Data
Engine

Data
Engine

Data
Engine

Data
Engine

Data
Engine

Data
Engine

Data
Engine

Data
Engine

Data
Engine

LaneLane LaneLane

B
F

S
M

B
F

S
M

B
F

S
M

B
F

S
M

B
F

S
M

B
F

S
M

RegX accelerator
� Implementation

– area: 15.4 mm2

– clocked at 2.3 GHz (1.15 GHz)

� Lanes

– 4 physical (16 B-FSMs)

– 8 logical (32 logical B-FSMs)

� Memory

– 32 KB rule cache per B-FSM

– 512 KB rule cache in total

– LRP register file: 8 x 16 bit, 128 bits total

� Peak scan rates (data structure fits entirely in rule caches)

– lane: one byte/cycle = 18.4 Gbit/s

– stream: one byte/2 cycles = 9.2 Gbit/s

– theoretical peak rate for 4 lanes: 73.6 Gbit/s

© 2012 IBM Corporation34 MICRO 45

HW Measured Performance – Single Context / String Patterns

0

10

20

30

40

50

0 1000 2000 3000 4000

Patterns

G
b

it
/s

1 Lane

2 Lanes

3 Lanes

4 Lanes

0.0%

0.5%

1.0%

1.5%

2.0%

0 1000 2000 3000 4000

Patterns

R
u

le
 M

is
s

R
at

e

© 2012 IBM Corporation35 MICRO 45

HW Measured Performance – Single Context / Regex Patterns

0

10

20

30

40

50

0 500 1000 1500 2000

Patterns

G
b

it
/s

1 Lane

2 Lanes

3 Lanes

4 Lanes

0.0%

0.5%

1.0%

1.5%

2.0%

0 500 1000 1500 2000

Patterns

R
u

le
 M

is
s

R
at

e

© 2012 IBM Corporation36 MICRO 45

HW Measured Performance – Multiple Contexts

0.0%

0.5%

1.0%

1.5%

2.0%

0 1000 2000 3000 4000 5000 6000 7000 8000

Patterns

R
u

le
 M

is
s

R
at

e

0

10

20

30

40

50

0 1000 2000 3000 4000 5000 6000 7000 8000

Total Patterns

G
b

it
/s

String

Regex

© 2012 IBM Corporation37 MICRO 45

Conclusions

RegX accelerator
� An architecture, implementation, compiler and upload manager were

designed to realize scan rates in the range of 15-40 Gbit/s for typical
intrusion detection workloads

� Novel (micro-)architectural features

– Local Result Processor design supporting eight instructions fully in
parallel and the concept of self-running instructions

– transition-rule caches, including address translation and cache line
placement by a SW application exploiting hardware based profiling

– physical/logical lane concept involving a time-interleaved processing of
multiple data streams by B-FSMs and LRPs, sustaining the maximum
scan rate when processing out of the rule caches, without requiring a
back-pressure mechanism and independently of input characteristics

Future work
� RegX is part of our research towards more general-purpose accelerators

� this project has shown us that basic building blocks of such an accelerator
are feasible at clock frequencies beyond 2 GHz

© 2012 IBM Corporation38 MICRO 45

For more information, please contact:

Jan van Lunteren (jvl@zurich.ibm.com)

IBM Research - Zurich

Säumerstrasse 4

CH-8803 Rüschlikon

Switzerland

Phone: +41 44 724 8111

Fax: +41 44 724 8911

© 2012 IBM Corporation39 MICRO 45

Backup

© 2012 IBM Corporation40 MICRO 45

Backup

