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ABSTRACT 

Some scientific inference tasks (including mass spectrum identification 

[Dendral] , medical diagnosis [Mycin], and math theory development 

[AM]) have been successfully modelled as rule-directed search 

processes. These rule systems are designed quite differently from 

"pure production systems". By concentrating upon the design of one 

program (AM), we shall show how 13 kinds of design deviations arise 

from (i) the level of sophistication of the task that the system is 

des igned to perform, (U) the inherent nature of the task, and (lit) the 

designer's view of the task. The limitations of AM suggest even more 

radical departures from traditional rule system architecture. All these 

modifications are then collected into a new, complicated set of 

constraints on the form of the data structures, the rules, the 

interpreter , and the distribution of knowledge between rules and data 

structures. These new policies sacrifice uniformity in the interests of 

c lar i ty , efficiency and power derivable from a thorough 

characterization of the task. Rule systems whose architectures 

conform to the new design principles will be more awkward for many 

tasks than would "pure" systems. Nevertheless, the new architecture 

should be significantly more powerful and natural for building rule 

systems that do scientific discovery tasks. 



1. The Basic Argument 1 

2 . Early Design Constraints 2 

3 . *AM': A Rule System For Math Theory Formation 4 

3.1. Discovery in Mathematics as Heuristic Rule-Guided Search 4 

3.2. Representation of Mathematical Knowledge . 5 

3.3. T o p - l e v e l Control : An Agenda of Promising Questions 5 

3.4. Low- leve l Control : A Lattice of Heuristic Rules 7 

3.5. Behavior of this Rule System 8 

4 . Reexamining the Design 11 

4.1. Data Structures 11 

4.2. Rules 14 

4.3. Distribution of Knowledge Between Rules and DS 17 

4.4. Interpreter 19 

5. Speculations for a New Discovery System 20 

5.1. A New Set of Design Constraints 20 



Design of Rule Systems for Discovery p. 1 

1. T h e Basic Argument 

Although rule -based computation was originally used for formal and systems purposes 

[Post,Markov,Ftoyd], researchers in Artificial Intelligence (AI) found that the same 

methodology was also useful for modelling a wide variety of sophisticated tasks. Many 

of these early A I rule-based programs — called "production systems" — seVved as 

information processing models of humans performing cognitive tasks in several domains, 

(digit recall [19], algebra word problem solving [1], poker playing [23], etc. [16,18]). 

T h e r e w e r e many design constraints present in the classical formal rule based systems. 

Many of these details were preserved in the AI production rule based programs (e.g., 

forcing all state information into a single string of tokens). But there were many 

changes. The whole notion of "what a rule system really is" changed from an effect ive 

problem statement to a tendency to solve problems in a particular way. One typical 

coro l lary of this change of v iew was that instead of no external inputs whatsoever , 

there was now a presumption of some "environment" which supplied new entries into 

the token sequence. In the next section (see Figure 1) is an articulation of these neo -

classical (i.e., A I circa 1973; see [7]) principles for designing "pure" production 

systems. 

Due to the early successes, psychological applicability, and aesthetic simplicity 

af forded by production systems, AI researchers began to write rule systems (RSs) to 

per form informal inductive inference tasks (mass spectrum identification [4] , medical 

diagnosis [23] and consultation dialogue [6], speech understanding [14], non-resolut ion 

theorem proving [0] , math research [13], and many more). 

Yet it seems that most of the large, successful RSs have violated many of the "pure 

product ion system" guidelines. The purpose of this paper is to show that such 

"except ions" were inevitable, because any system satisfying the neo-classical design 

constraints, though universal in principle, is too impoverished to represent complex 

tasks for what they are. 

The essence of the neo-classical architecture is to opt for simplicity in all things, since 

there is v e r y little one can say about RSs in general. As more becomes known about 

the task of the RS, it turns out that some of that new knowledge takes the form of 

specif ic constraints on the design of the RS itself (as distinct from what specific 

knowledge we choose to represent within that design). Sometimes a new constraint 

d i rect ly contradicts the early, domain-independent one; sometimes it is merely a 

softening or augmentation of the old constraint. 

A f t e r examining the "pure" architecture, we shall examine in detail the design of one 

particular rule system which discovers and studies mathematical concepts. Deviations 

from the pure architecture will be both frequent and extreme. 

Subsequent sections will analyze these differences. It will be shown that each one is 

plausible — usually for reasons which depend strongly on the "scientific d i scovery" 
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domain of the RS. Some of the limitations of this RS will be treated, and their 

elimination will be seen to require abandoning still more of the original design 

constraints. 

When these modifications are collected, in the final section, we shall have quite a 

d i f ferent set of principles for building RSs. Not only will naivete have been lost: so 

will general i ty (the breadth of kinds of knowledge representable, the totality of 

tractable tasks). Rule systems conforming to the new design will be awkward for many 

tasks (just as a sledge hammer is awkward for cracking eggs). However, they should 

be significantly more powerful and natural for scientific inference tasks. 

2. Early Design Constraints 

B y a rule system (RS) we shall mean any collection of condition-action rules, together 

w i th associated data structures (DS; also called memories) which the rules may inspect 

and alter. There must also be a policy for Interpretation: detecting and firing relevant 

rules. 

T h e s e definitions are deliberately left vague. Many details must be specified fori any 

actual rule system (e.g., What may appear in the condition part of a rule?). This 

specif ication process is what we mean by designing a RS. 

F igure 1 contains an articulation of the design of the early general -purpose A I 

product ion rule systems.. Notice the common theme: the adequacy of simplicity in all 

dimensions. 

FIGURE 1: Neo-classical Rule System Architecture 

1. Principle of Simple Memories. One or two uniform data structures define 

sufficient memories for a rule system to read from and write Into. The 

format for entries In these structures Is both uncomplicated and unchanging. 

2. Principle of Simple DS Accesses. The primitive read and write operations are 

as simple and low-level as possible; typically they are simply a membership-

test type of read, and an Insert-new-element type of write. More 

complicated, algorithmic operations on the memories are not available to the 

rules. 

3. Principle of Isolated DS Elements. Elements of the uniform DS cannot point 

to (parts of) other elements. This follows from the preceding principle: If we 

aren't allowed to chase pointers, there may as well not be any. 

4. Principle of Continuous Attention. In addition to the one or two simple data 

structures, there may be an external environment which continuously Inserts 

stimuli Into the DS. The Interleaving of stimuli and internally generated 

symbols Is managed quite trivially: (a) The stimuli are simply Inserted Into 
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the DS as new elements; (b) Each rale is so small and quick that no 

"interruption" mechanism is necessary. The interpreter may ignore any 

suddenly-added stimulus until the current rule finishes executing. The RS 

may be viewed as "continuously" attending to the environment. 

5. Principle of Opaque Rules. Rules need not have a format inspectable by 

other rules, but rather can be coded in whatever way is convenient for the 

programmer and the rule interpreter; i.e., the set of rules is not treated as 

one of the RSs data structures. E.g., the condition parts of rules may be 

barred from fully analyzing the set of productions [22J, and the action parts 

of rules may not be.allowed to delete existing rules [24]. 

6. Principle of Simple Rules. Rules consist of a left- and a right-hand side 

which are quite elementary: The left hand side (lbs* situation 

characterization, IF-part, condition) is typically a pattern-match composed 

with a primitive DS read access, and the right hand side (rhs, consequence, 

THEN-part, action) is also simply a primitive DS write access. There is no 

need for sophisticated bundles of DS accesses on either side of a rule. Thus 

several extra rules should be preferred to a single rule with several actions. 

7. Principle of Encoding by Coupled Rules. A collection of interrelated rules is 

used to accomplish each subtask; i.e., wherever a subroutine would be used in 

a procedural programming language. For example, programming an 

iteration may require many rules "coupled" by writing and reading special 

(Le., otherwise meaningless) loop control notes in the data structure. 

8. Principle of Knowledge as Rules. All knowledge of substance should be, can 

: be, and is represented as rules. This includes all non-trivial domain-

dependent information. The role of the DS is just to hold simple descriptive 

information, intermediate control state messages, recent stimuli from the 

environment, etc. 

9. Principle of Simple Interpretation. The topmost control flow in the RS is via 

a simple rule interpreter. After a rule fires, it is essential that any rule in 

the system may potentially be the next one to fire (i.e., it is forbidden to 

locate a set of relevant rules and fire them off in sequence). When the rhs of 

a rule is executed, it can (and frequently will) drastically alter the situation 

that determined which rules were relevant. 

10. Principle of Closure. The representations allowed by (1-9) are sufficient and 

appropriate for organizing all the kinds of knowledge needed for tasks for 

which a given RS is designed. 

This design was plausible a priori, and worked quite well for its initial applications |(the 

simulation of simple human cognitive processes [16,19,24]). But is this design prbper 

for any RS, regardless of its intended task? In particular, what about scientific 

inference tasks? Over the years, several rule-based inference systems for scientific 

tasks have been constructed. With each new success have come some deviations from 
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the above principles [7]. Were these mere aberrations, or is there some valid reason 

for such changes in design? 

We claim the latter. The task domain — scientific discovery ~ dictates a new and 

quite different architecture for RSs. To study this phenomenon, we shall describe, in 

the next section, one particular RS which defines new mathematical concepts, studies 

them, and conjectures relationships between them. Subsequent sections will explore 

the deviations of its design from the neo-classical constraints in Figure 1. 

3. 'AM1: A Rule System For Math Theory Formation 

A recent thesis [13] describes a program, called "AM", which gradually expands a base 

of mathematical knowledge. The representation of math facts is somewhat related to 

Actors [10] and Beings [12] in the partitioning of such domain knowledge into 

ef fect ive , structured modules. Departing from the traditional control structures usually 

associated with Actors, Beings, and Frames [15], AM concentrates on one "interesting" 

mini - research question after another. These "jobs" are proposed by — and rated by — 

a collection of approximately 250 situation-action rules. Discovery in mathematics is 

modelled in AM as a rule-guided exploration process. This view is explained below in 

Section 3.1 (See also [21].) The representation of knowledge is sketched next, fol lowed 

b y a much more detailed description of the rule-based control structure of AM. 

Finally, in Section 3.5, the experimental results of the project are summarized. 

3.1. Discovery in Mathematics as Heuristic Rule-Guided Search 

The task which AM performs is the discovery of new mathematics concepts and 

relationships between them. The simple paradigm it follows for this task is to maintain 

a graph of part ial ly -developed concepts , and to obey a large collection of "heuristics" 

( rules which frequently lead to discoveries) which guide it to define and study the 

most plausible thing next. 

For example, at one point AM had some notions of sets, set-operations, numbers, and 

simple arithmetic. One heuristic rule it knew said "If / is an interesting relation, Then 

look at its inverse". This rule fired after AM had studied "multiplication" for a while. 

The rhs of the rule then directed AM to define and study the relation "d iv isors -o f" 

(e.g., d iv isors -of (12) * {1,2,3,4,6,12}). Another heuristic rule which later f i red said "7/ 

f is a relation from A into B% then it's worth examining those members of A which map 

into extremal members of 8". In this case, f was matched to "divisors-of" , A was 

"numbers", B was "sets of numbers", and an extremal member of B might be, e.g., a 

v e r y small set of numbers. Thus this heuristic rule caused AM to define the set of 

numbers with no divisors, the set of numbers with only 1 divisor, with only 2 div isors , 

etc. One of these sets (the last one mentioned) turned out subsequently to be quite 

important; these numbers are of course the primes. The above heuristic also directed 

A M to study numbers with ve ry many divisors; such highly-composite numbers w e r e 

also found to be interesting. 
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This same paradigm enabled AM to discover concepts which were much more primitive 

(e.g., cardinality) and much more sophisticated (e.g., the fundamental theorem of 

arithmetic) than prime numbers. We shall now describe the AM program in more detail. 

3,2. Representation of Mathematical Knowledge 

i 

What exactly does it mean for AM to "have the notion of" a concept? It means that! AM 

possesses a frame-like data structure for that concept. For instance, here is how one 

concept looked after AM had defined and explored it: 

FIGURE 2: A Typical Concept 

NAME: Prime Numbers 

DEFINITIONS: 

ORIGIN: Number-of -div isors-of(x) - 2 

PREDICATE-CALCULUS: Prime(x) s (Vz)(z|x -» z = l XOR z=x) 

ITERATIVE: (for x > l ) : For i from 2 to x -1 , -(i|x) 

EXAMPLES: 2, 3, 5, 7, 11, 13, 17 

BOUNDARY: 2, 3 

BOUNDARY-FAILURES: 0, 1 

FAILURES: 12 

GENERALIZATIONS: Numbers, Numbers with an even number of divisors, 

Numbers with a prime number of divisors 

SPECIALIZATIONS: Odd Primes, Prime Pairs, Prime Uniquely-addables 

CONJECS: Unique factorization, Goldbach's conjecture, Extrema of Div isors-of 

ANALOGIES: 

Maximally-divisible numbers are converse extremes of Divisors-of 

INTEREST: Conjectures tying Primes to Times, to Divisors-of, to closely related ops 

WORTH: 800 

3.3. Top-level Control: An Agenda of Promising Questions 

A M was initially g iven a collection of 115 core concepts, with only a few facets (i.e., 

s lots) filled in for each. AM repeatedly chooses some facet of some concept, and tries 

to fill in some entries for that particular slot. To decide which such job to work on 

next , AM maintains an agenda of jobs, a global queue ordered by pr ior i ty [2] . A 

typical job is "Fill-in examples of Primes''. The agenda may contain hundreds of 

entr ies such as this one. AM repeatedly selects the top job from the agenda and tries 

to ca r r y it out. This is the whole control structure! Of course, we must still explain 

how AM creates plausible new jobs to place on the agenda, how AM decides which job 

will be the best one to execute next, and how it carries out a job. 

If the job were "Fill in new Algorithms for Set-union", then satisfying it would mean 

actually synthesizing some new procedures, some new LISP code capable of forming 

the union of any two sets. A heuristic rule is relevant to a job if and only if executing 
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that rule brings A M closer to satisfying that job. Potential relevance is determined a 

priori b y where the rule is stored. A rule tacked onto the Domain/range facet of the 

Compose concept would be presumed potentially relevant to the job "Fill In the 

Domain of I nsert-Q-Delete". The Ihs of each potentially relevant rule is evaluated to 

determine whether the rule is truly relevant. 

Once a job is chosen from the agenda, AM gathers together all the potentially .relevant 

heuristic rules — the ones which might accomplish that job. They are executed, and 

then A M picks a new job. While a rule is executing, three kinds of actions or effects 

can occur : 

(I) Facets of some concepts can get filled in (e.g., examples of primes may actually be 

found and tacked onto the "Examples" facet of the "Primes" concept). A typical 

heuristic rule which might have this effect is: 

// examples of X are desired, where X Is a kind of Y (for some more general 

concept Y), 

Then check the examples of Y; some of them may be examples of X as welL 

For the job of filling in examples of Primes, this rule would have AM notice that 

Primes is a kind of Number, and therefore look over all the known examples of 

Number. Some of those would be primes, and would be transferred to the 

Examples facet of Primes. 

(li) New concepts may be created (e.g., the concept "primes which are uniquely 

representable as the sum of two other primes" may be somehow be deemed 

w o r t h studying). A typical heuristic rule which might result in this new concept 

is: 

// some (bat not most) examples of X are also examples of Y (for some 

concept Y), 

Then create a new concept defined as the intersection of those 2 concepts (X 

and Y). j 
! 

Suppose AM has already isolated the concept of being representable as the sum 

of two primes in only one way (AM actually calls such numbers "Uniquely -pr ime-

addable numbers"). When AM notices that some primes are in this set, the above 

rule will create a brand new concept, defined as the set of numbers which are 

both prime and uniquely prime addable. 

(ill) New jobs may be added to the agenda (e.g., the current activity may suggest that 

the following job is worth considering: "Generalize the concept of prime 

numbers"). A typical heuristic rule which might have this effect is: 

// very few examples of X are found, 
Then add the following job to the agenda: "Generalize the concept X": 

T h e concept of an agenda is certainly not new: schedulers have been around for a long 

time. But one important feature of AM's agenda scheme is a new idea: attaching ~ and 
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using — a list of quasi-symbolic reasons to each job which explain why the job is 

w o r t h considering, why it's plausible. It is the responsibility of the heuristic rules to 

include reasons for any jobs they propose. For example, let's reconsider the heuristic 

rule mentioned in (ill) above. It really looks more like the following: 

If very few examples of X are found, 

Then add the following job to the agenda: "Generalize the concept X", for the 

following reason: "X's are quite rare; a slightly less restrictive 

concept might be more interesting". 

If the same job is proposed by several rules, then several different reasons for it may 

be present . In addition, one ephemeral reason also exists: "Focus of attention" [9] . 

A n y jobs which are related to the one last executed get "Focus of attention" as a 

bonus reason. A M uses all these reasons to decide how to rank the jobs on the 

agenda. Each reason is given a rating (by the heuristic which proposed it), and the 

ratings are combined into an overall priority rating for each job on the agenda. The 

jobs are ordered by these ratings, so it is trivial to select the job with the highest 

rating. Note that if a job already on the agenda is re -proposed for a new reason, then 

its p r io r i t y will increase. If the job is re-proposed for an already-present reason, 

h o w e v e r , the overall rating of the job will not increase. This turned out to be an 

important enough phenomenon that it was presented in [13] as a necessary design 

constraint. 

A M uses each job's list of reasons in other ways. Once a job has been selected, the 

quality of the reasons is used to decide how much time and space the job will be 

permitted to absorb, before AM quits and moves on to a new job. Another use is to 

explain to the human observer precisely why the chosen top job is a plausible thing 

for A M to concentrate upcfn. � % 

3.4. Low-level Control: A Lattice of Heuristic Rules 

The hundreds of concepts AM possesses are interrelated in many ways. One main 

organizat ion is that provided by their Generalization and Specialization facets. The 

concepts may be viewed as nodes on a large lattice whose edges are labelled 

Genl/Spec. The importance of this organization stems from various heritability 

proper t ies . For example, Spec is transitive, so the specializations of Numbers include 

not only Primes but all its specializations as well. 

Let us descr ibe a second, ve ry important heritability property . Each of the 250 

heurist ic rules is attached to the most general (or abstract) concept for which it is 

deemed appropriate. The relevance of heuristic rules is assumed to be inherited by all 

i t s specializations. For example, a heuristic method which is capable of inverting any 

function will be attached to the concept "Function"; but it is certainly also capable of 

invert ing any permutation. If there are no known methods specific to the latter job , 

then A M will follow the Genl links upward from Permutation to Bijection to Function..., 

seeking methods for inversion. Of course the more general concepts' methods tend to 

be weaker than those of the specific concepts. 
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In other words , the Genl/Spec graph of concepts induces a graph structure upon the 

set of heuristic rules. This permits potentially relevant rules to be located efficiently. 

Here is one more example of how this heritability works in practice: Immediately after 

the job T i l l in examples of Set-equality" is chosen, AM asks each generalization of 

Set -equa l i t y for help. Thus it asks for ways to fill in examples of any Predicate, any 

Ac t i v i t y , any Concept, and finally for ways to fill in examples of Anything. One such 

heurist ic rule known to the Activity concept says: "// examples of the domain of the 

activity f are already known, Then actually execute f on some random members of its 

domain." Thus when AM applies this heuristic rule to fill in examples of Set-fequality, 

its Domain facet is inspected, and AM notes that Set-equality takes a pair of sets as its 

arguments. Then AM accesses the Examples facet of the concept Set, where it finds a 

large list of sets. The Ihs is thus satisfied, so the rule is fired. Obeying the heuristic 

ru le , A M repeatedly picks a pair of the known sets at random, and sees if they satisfy 

Set -equa l i t y (by actually running the LISP function stored in the Algorithms facet of 

Set -equal i ty ) . While this will typically return False, it will occasionally locate — by 

random chance — a pair of equal sets. 

Other heuristics, tacked onto other generalizations of Set-equality, provide additional 

methods for executing the job "Fill in examples of Set-equality." A heuristic stored on 

the concept Any-concept says to symbolically instantiate the definition. After spending 

much time manipulating the recursive definition of Set-equality, a few trivial examples 

(like { } = { } ) are produced. Notice that (as expected) the more general the concept is, 

the weaker (more time-consuming, less chance for success) its heuristics tend to be. 

For this reason, AM consults each concept's rules in order of increasing generalization. 

3.5. Behavior of this Rule System 

As the preceding four sections indicate, the dynamic behavior of AM was as follows: a 

j o b is chosen from the agenda, potentially relevant rules are located by their position 

in the Genl/Spec lattice, their Ihs's (left-hand sides) are evaluated to find those which 

actually t r igger , they are then executed (in order of decreasing specificity) until they 

are all executed (or until some local, self-imposed limit on time or space is exceeded), 

and the cycle repeats. AM has a modest facility that prints out a description of these 

activit ies as they occur. Here is a tiny excerpt of this self-trace monologue. 

** Job 65: ** Fill in Examples of the concept "Divisors-of". 

3 Reasons: (1) No known examples of Divisors-of so far, 

(2) TIMES, which is related to Divisors-of, is now ve ry interesting. 

(3) Focus of attention: AM recently defined Divisors-of.. 

26 examples found, in 9.2 seconds, e.g., Divisors-of(6)={1 2 3 6}. 
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** Job 66: ** Consider numbers having small sets of Divisors-of. 

2 Reasons: (1) Worthwhile to look for extreme cases. 

(2) Focus of attention: AM recently worked on Divisors-of. 

Filling in examples of numbers with 0 divisors. 

0 examples found, in 4.0 seconds. 

Conjecture : no numbers have precisely 0 divisors. 

Filling in examples of numbers with 1 divisors. 

1 examples found, in 4.0 seconds, e.g., D iv isors -of ( l ) - {1}. 

Conjecture : 1 is the only number with precisely 1 divisor. 

Filling in examples of numbers with 2 divisors. 

24 examples found, in 4.0 seconds, e.g., Divisors-of(13) =* {1 13}. 

No obvious conjecture. May merit more study. 

Creating a new concept: "Numbers-with-2-divisors". 

Filling in examples of numbers with 3 divisors. 

11 examples found, in 4.0 seconds, e.g., Divisors-of(49) - {1 7 49}. 

All numbers with 3 divisors are also Squares. Definitely merits more study. 

Creating a new concept: "Numbers-with-3-divisors". 

** Job 67: ** Consider the square-roots of Numbers-with-3-divisors. 

2 Reasons: (1) Numbers-with-3-divisors. are unexpectedly also Perfect Squares. 

(2) Focus of attention: AM recently worked on Nos -wi th -3 -d iv isors . 

All square - roots of Numbers-with-3-divisors seem to be Numbers-with-2-div isors . 

e.g., Div isors-of(Square-root(169)) '* Divisors-of(13) � {1 13}. 

Even the converse of this seems empirically to be true. 

i.e., the square of each No-with-2-div isors seems to be a No-wi th -3 -d iv isors . 

The chance of coincidence is below acceptable limits. 

Boosting the interestingness rating of each of the concepts involved. 

** Job 68: ** Consider the squares of Numbers-with-3-divisors. 

3 Reasons: (1) Squares of Numbers-with-2-divisors were interesting. 

(2) Square-roots of Numbers-with-3-divisors were interesting. 

(3) Focus of attention: AM recently worked on Nos -wi th -3 -d iv isors . 

Now that we 've seen how AM works, and we've been exposed to a bit of "local" 

results , let's take a moment to discuss the totality of the mathematics which AM carr ied 

out. AM began its investigations with scanty knowledge of a hundred elementary 

concepts of finite set theory. Most of the obvious set-theoretic concepts and 
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relationships were quickly found (e.g., de Morgan's laws; singletons), but no 

sophisticated set theory was ever done (e.g., diagonalization). Rather, AM discovered 

natural numbers and went off exploring elementary number theory. Arithmetic 

operations were soon found (as analogs to set-theoretic operations), and AM made 

surpr is ing progress in divisibility theory. Prime pairs, Diophantine equations, the 

unique factorization of numbers into primes, Goldbach's conjecture ~ these were some 

of the nice discoveries by AM. Many concepts which we know to be crucial were never 

uncovered , however : remainder*, gcd, greater-than, infinity, proof, etc. 

All the discoveries mentioned were made in a run lasting one cpu hour ( Interl isp+lOOk, 

SUMEX PDP-10 KI). Two hundred jobs in toto were selected from the agenda and 

executed. On the average, a job was granted 30 cpu seconds, but actually used only 

18 seconds. For a typical job, about 35 rules were located as potentially relevant, and 

about a dozen actually fired. AM began with 115 concepts and ended up with three 

times that many. Of the synthesized concepts, half were technically termed "losers" 

(both b y the author and by AM), and half the remaining ones were of only marginal 

interest . 

Al though AM fared well according to several different measures of performance (see 

Section 7.1 in [13]), of greatest significance are its Limitations. This subsection will-

merely report them, and the next section will analyze whether they were caused by 

radical departures from the neo-classical production-system architecture, or from 

depart ing not far enough from that early design. 

As A M ran longer and longer, the concepts it defined were further and further from 

the primitives it began with. Thus "prime-pairs" were defined using "primes" and 

"addition", the former of which was defined from "divisors-of", which in turn came from 

"multiplication", which arose from *'^addition", which was defined as a restriction of 

"union", which (finally!) was a primitive concept (with heuristics) that we had supplied 

to A M initially. When AM subsequently needed help with prime pairs, it was forced to 

re l y on rules of thumb supplied originally about union'mg. Although the heritability 

p r o p e r t y of heuristics did ensure that those rules were still valid, the trouble was that 

they were too general, too weak to deal effectively with the specialized notions of 

primes and arithmetic. For instance, one general rule indicated that AuB would be 

interesting if it possessed properties absent both from A and from B. This translated 

into the prime-pair case as "// p+q=ry and p,q,r are primes, Then r is interesting if it 

has properties not possessed by p or by q." The search for categories of such 

interesting primes r was of course barren. It showed a fundamental lack of 

understanding about numbers, addition, odd/even-ness, and primes. 

As the der ived concepts moved further away from finite set theory, the efficacy of the 

initial heuristics decreased. AM began to "thrash", appearing to lose most of its 

heuristic guidance. It worked on concepts like "prime triples", which is not a rational 

thing to investigate. The key deficiency was the lack of adequate me£a.-rules[6]: 

heuristics which cause the creation and modification of new heuristics. 

This concept, and many of the other "omissions", could have been discovered by the existing heuristic rules in 

AM. The paths which would have resulted in their definition were simply never rated high enough to explore. 
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Aside from the preceding major limitation, most of the other problems pertain to 

missing knowledge. Many concepts one might consider basic to discovery in math are 

absent from AM; analogies were under-util ized; physical intuition was absent; the 

interface to the user was far from ideal; etc. 

4. Reexamining the Design 

Let us now consider the major components of a RS's design and how AM treated them: 

the DS, the rules, the distribution of knowledge between DS and rules, and the rule 

interpretation policy. For each component, AM's architecture failed to adhere str ict ly 

to the pure RS guidelines. Were these departures worth the loss of simplicity? Were 

the deviations due to the task domain (scientific discovery), to the task v iew 

(heuristically guided growth of structured theories), or to other sources? These are 

the kinds of questions we shall address in each of the following subsections. 

4.1. Data Structures 

We recognize that a singte uniform DS (e.g., an infinite STM [19]) is universal in the 

Tur ing sense of being formally adequate: One can encode any representation in a 

linear, homogeneous DS. The completeness of such a DS design not withstanding, w e 

believe that encouraging several distinct, special-purpose DSs will enhance the 

performance of a discovery system. That is, we are willing to sacrifice aesthetic pur i ty 

of DSs for clarity, efficiency, and power. In this section we will explore this tradeoff. 

The data structures used in AM are unlike the uniform memories suggested by the f irst 

design constraint (see Figure 1). One DS ~ the agenda — holds an ordered list of 

plausible questions for the system to concentrate on, a list of jobs to work on. 

Another DS is the graph of concepts AM knows about. Each concept itself consists in 

much structured information (see Figure 2). The reasons AM has for each job have 

information associated with them. Still other information is present as values of 

certain functions and global variables: the cpu clock, the total number of concepts, the 

last thing t yped out to the user, the last few concepts worked on, etc. All these types 

of information are accessed by the Ihs's (left hand sides) of heuristic rules, and 

affected by rhs's (some "deliberately" in the text of the rule, some "incidentally" 

through a chain of i f -added methods). 

Why is there this multitude of diverse DSs? Each type of knowledge ( jobs, math 

knowledge, system status) needs to be treated quite differently. Since the primitive 

operations will v a r y with the type of information, so should the DS. For jobs, the 

primitive kinds of accesses will be: picking the highest-rated job, deleting the l o w e s t -

rated one, reordering some jobs, merging new ones. A natural choice to make these 

operations efficient is to keep the system's goals in a queue ordered by their rating or 

par t ia l l y -o rdered by those ratings that are commensurable. For resource information. 
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the usual request is for some statistic of some class of primary data. To maintain a 

table of such summary facts (like how much the CPU clock has run so far, or how many 

concepts there are) is to introduce an unnecessary DS and incur exorbitant costs to 

maintain many short-lived entries that will, most probably, never be used. It is far 

more reasonable to run a summarizing procedure to develop just that ephemeral, u p -

to -date information that you need. For math concepts, we have a much less volatile 

situation. We view them as an ever -growing body of highly- interrelated facts. 

Knowledge in this form is stable and rarely deleted. When new knowledge is adddd, a 

great many "routine" inferences must be drawn. In a uniform, linear memory, each 

would have to be drawn explicitly; in a structured one (as the Genl/Spec graph 

st ructure prov ides) . they may be accomplished through the tacit (analogical) 

characteristics of the representation, simply by deciding where to place the 

information. 

Each kind of knowledge dictates a set of appropriate kinds of primitive operations to 

be performed on it, which in turn suggest natural data structures in which to realize it. 

The generality of this perspective on rule-based systems is made more plausible b y 

examining other RSs which deal with many types of knowledge (e.g., [5]). If this is so, 

if the design proceeds from "knowledge to be represented" to "a data structure to 

hold it", then fixing a priori the capabilities of the DS access primitives available to 

rules is suspect. 

The re fo re , we advocate the opposite: the RS designer is encouraged to name e v e r y 

combination of "machine" operations that together comprise a single conceptual access 

of data by rules. In AM, it is quite reasonable to expect that a request like "find all 

generalizations of a given concept" would be such a primitive (i.e., could be r e f e r r e d to 

b y name). Even though it might cause the "machine" (in this case, LISP) to run around 

the Genl/Spec graph, a single rule can treat this as merely an "access" operation. The 

use of complex tests and actions is not new; we simply claim that it is always 

preferable to package knowledge (for which a reasonably fast algorithm is available) 

as a single action (though it may have side-effects in the space of concepts) or a 

single test (so long as its sole side-effect — modulo caches — is to signal). Primitive 

tests and actions should be maximally algorithmic, not minimally computational. 

The neo-classical v iew of designing a production rule system was that of defining a 

machine. Our present view is that RSs do not compute so much as they guide attention. 

In adopting this v iew (thereby separating the controller from the effector) , w e 

recognize that we are giving up an attractive feature of pure rule systems: a 

homogeneous basis for definition. For example, the rule system designer must now 

spell out in detail the definitions of the DS accessing functions; but the designer of a 

neo-classical RS is simply able to take as givens the matching and inserting operations 

(as specified in neo-classical principle #6, Figure 1), and he builds each more 

complicated one out of these primitives^. In giving up the old view of the RS as an 

abstract computing machine, the RS designer must use another homogeneous substrate 

2 Either by stringing out a sequence of primitives on one side of a rule, or by handcrafting a t ightly 'coupled 

bundle of rules (so firing such a rule would simulate traversing one link of the kind that abound in A M s Dbs). 
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(e.g., LISP) in terms of which to define his DSs and especially the procedures that 

process them. In exchange, he obtains a clear distinction between two kinds of 

knowledge contained in the neo-classical rule: plausible proposals for what to do next, 

and how to accomplish what might be proposed. 

We have seen that admitting complicated and varied DSs leads to sty l ized sets of DS 

accesses. The DSs and their sets of read/write primitives must in turn be explicit ly 

defined (coded) by the designer. This seems like a high price to pay. Is there any 

br ight side to this? Yes, one rather interesting possibility is opened up. Not only the 

RS designer, but the RS itself may define DSs and DS access functions. In AM, this 

might take the form of dynamically defining new kinds of facets (slots). E.g., after 

" inject ive Function" is defined, and after some properties of it have been d iscovered, it 

would be appropriate to introduce a new facet called "inverse" for each (concept 

represent ing an) injective function. In AM, the actual definitions of the facets of e v e r y 

concept are complex enough (shared structure), inter-related enough (shared meaning), 

and interesting enough (consistent heuristic worth) that a special concept was included 

for each one (e.g., a concept called "Examples") which contained a definit ion, 

description,. . . of the facet. Thus the same techniques for manipulating and discovering 

math concepts may be applied to DS design concepts. Not only do math theories 

emerge, so can new DS access functions (new slots; e.g., "Small Boundary Examples", 

"Factorization", or "Inverse"). 

It should be noted that in opting for non-uniform DSs, we have not in general 

sacrif iced efficiency. One has only to compare the time to access a node in a t ree , 

ve rsus in a linear list, to appreciate that efficiency may, in fact, be increased b y n o n -

uniformity. 

Just how tangle.d up a DS should we tolerate? Should memory elements be permitted 

to refer to (to "know about") each other? We believe the answer to depend upon the 

type of data structure involved. For the homogeneous DS called for in the neo-classical 

design, much simplicity is preserved by forbidding this kind of interrelationship. But 

consider a DS like AM's graph of concepts. It is growing, analogically interrelated, and 

it contains descriptions of its elements. This richness (and sheer quantity^ of 

information can be coded only inefficiently in a uniform, non-self - referential mariner. 

For another example, consider AM's agenda of jobs. One reason for a job may simply 

be the existence of some other job. In such a case, it seems natural for part of one 

e n t r y on the agenda(a reason part of one job) to point to another ent ry in the same 

DS (point to another specific job on the agenda). Thus, inter-element pointers are 

allowed, even though they blur a "pure" distinction between a DS and its entr ies.^ 

Inter -e lement references play a necessary role in organizing large bodies of highly 

interrelated information into structured modules. 

T h e r e is ye t another motivation for special-purpose DSs when the task of the RS 

includes sensing an external environment. Using a uniform memory, external stimuli 

are dumped into the working memory and rub shoulders with all the other data. J h e y 

In section 4.3 we will mention work that blurs this distinction even further. 
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must then be distinguished from the others. ("Must" because to f reely intermingle 

what one sees or is told with what one thinks or remembers is to give way to endless 

confusion.) How much cleaner, less distracting, and safer it is for stimuli to arive in 

their own special place — a place which might well be a special purpose store such as 

an intensity array (not even a list structure at all), or a low-level speech-segment 

queue. A linear memory (e.g., an infinite STM) is of course adequate; one could tag 

each incoming environmental stimulus with a special flag. But the design philosophy 

we are proposing is aimed at maximizing clarity and efficiency, not uniformity or 

universal i ty . 

We know that this view of DSs means making a specialized design effort for each class, 

of knowledge incorporated into the RS. But that is desirable, as it buys us three 

things: (i) system performance is increased, (ii) some forms of automatic.learning are 

facilitated, (ill) knowledge is easier to encode. 

4.2. Rules 

In the "pure" view of RSs, the rule store is not a full-fledged DS of the RS. For 

example, in Waterman's [24] poker player, rules may not be deleted. Rychener [22] 

states that the only way his RS may inspect rules is by examining the effect of those 

rules which have recently fired. Although AM had no explicit taboo against inspecting 

rules, such analyses were in practice never possible, since the rules were ad hoc 

blocks of LISP code. This eventually turned out to be the main limitation of the design 

of AM. The ultimate impediment to further discovery was the lack of rules which could 

reason about, modify, delete, and synthesize other rules. AM direly needed to 

synthes ize specialized forms of the given general heuristic rules (as new concepts 

arose; see the end of 3.5.) 

We want our heuristic rules to be added, kept track oly reasoned about, modified, 

deleted, generalized, specialized, ... whenever there is a good reason to do so. Note 

that those situations may be ve ry different from the ones in which such a rule might 

f i re . E.g., upon discovering a new, interesting concept, AM should t ry to create some 

special ly - tai lored heuristic rules for it. They wouldn't actually fire until much later, 

when their Ihs's were tr iggered. After having constructed such rules, A M might 

subject them to criticism and improvement as it explores the new concept. 

In sum, we have found that the discovery of heuristic rules for using new math 

concepts is a necessary part of the growth of math knowledge. Hence, following the 

argument in 4.1, the rules themselves should be DSs, and each rule might be descr ibed 

b y a concept with effective (executable) and non-effective (purely descript ive) facets. 

This lesson was made all the more painful because it was not new [5]. Apparent ly the 

need for reasoning about rules is common to many tasks. 

The current re-coding of AM does in fact' have each rule represented as a concept. 

What kinds of non-effective "facets" do they have? Recall that one of the features of 

the original AM (as described in Section 3.3) was that with each rule were associated 

some symbolic reasons which it could provide whenever it proposed a new job for the 
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agenda. So one kind of facet which every rule can possess is "Reasons". What others 

are there? Some of them describe the rule (e.g., its average cost); some facets prov ide 

a road map to the space of rules (e.g., which rule schemata are mere specializations of 

the g i ven one); some facets record its derivation (e.g., the rule was proposed as an 

analog to rule X because ...), its redundancy (some other rules need not be tried if this 

one is), etc. . 

T h e r e are some far-reaching consequences of the need to reason about rules just as if 

t h e y w e r e any other concepts known to AM. When one piece of knowledge relates to 

severa l rules, then one general concept, a rule schema, should exist to hold that 

common knowledge. Since each rule is a concept, there will be a natural urge to 

exploit the same Genl/Spec organization that proved so useful before. Heritability still 

holds; e.g., any reason which explains rule R is also somehow a partial explanation of 

each specialization of R. 

Rule schemata have cause to exist simply because they generalize — and hold much 

information which would otherwise have to be duplicated in — several specific rules. 

T h e y may tend to be "big" and less directly productive when executed, yet they are of 

value in capturing the essence of the discovery techniques.^ We put "big" in quotes 

because sheer length (total number of Ihs tests allowed, total number of rhs action's) is 

not d i rect ly what we're talking about here. A general rule schema will capture many 

regular i t ies , will express an idea common to several more specific rules. It will contain 

dual forms of the same rule, sophisticated types of variable-binding (for the duration 

of the rule application), and searching may even be required to find the actions of such 

a general rule. We may even wish to consider every rule in the RS as a rule schema of 

some level of generality, and much processing may go on to find the particular 

instance(s) of it which should be applied in any particular situation. 

Let us consider a rule schema called the "rule of enthusiasm". It subsumes several 

rules in the original AM system (pp. 247-8 of [13]), e.g., those that said; 
m 

If concept G is now very interesting, and G was created as a generalization 

of some earlier concept C, 

Give extra consideration to generalizing G, and to generalizing C in other 

ways. 

and: 

// concept S proved to be a dead-end, and S was created as a specialization 

of some earlier concept C, 

Give less consideration to specializing S, and to specializing C in other ways 

in the future. 

* In A M , even the specific rules may be "big" in the sense that their very precise knowledge may involve much 

testing to trigger and. once triggered,.may conclude some elaborate results. 
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The proposed rule schema is: 

// concept X has very high/low interest and X can be derived from some 

concept C by means m, 

Give more/less consideration to finding (and elaborating) concepts derived 

from C, X (and their "neighbors") by means analogous to m. 

There are four variables to be matched and coordinated in the Ihs of this rule: a 

concept X, the direction (high or low) of its extreme .interest rating, a derivation 

procedure m and an associated source concept C. The action itself is to search for 

jobs of a certain type and give them a corresponding (high or low) rating change. 

T h r e e types of matching are present: (i) ranging over a set of alternatives which are 

Known at the time the rule is written (e.g., the "high/low" alternative); (ii) ranging over 

a set of alternatives which can be accessed easily at any moment the rule is run, like 

the set of concepts and connections between them now in existence (e.g., the variables 

X and C range over this kind of set); (Hi) ranging over a set of alternatives which must 

be heuristically searched for as part of the rule execution (e.g., "analogous" and 

"neighbors" only make sense after a nontrivial amount of searching has been 

performed). 

Since the "rule of enthusiasm" is ve ry general, it will only be tried if no more specific 

rules (such as the two which were listed just above it) are relevant at the time. 

Ideally, the search to specify the action should create a new, specialized form of the 

rule of enthusiasm to catch this situation and handle it quickly, should it arise again. 

Note that versions of this schema that mention generalization or specialization are also 

schemata (without any specification search); they are simply less general schemata 

than the rule of enthusiasm itself. Whenever a new subject for discovery gets defined, 

the abstract, hard - to -execute rule schemata can be specialized (compiled, refined , 

etc.) into efficient heuristics for that subject. 

Another use of a rule schema might be to name a collection of neo-classical rules that 

are coupled by together fulfilling a single function. Consider a collection of rules 

which is t ightly coupled, say to perform an iteration. Much knowledge about the 

iteration loop as a whole may exist. Where is such descriptive information to be stored 

and sought? Either it must be duplicated for each of the coupled rules, or there must 

be a rule- l ike concept which "knows about" the iteration as one coherent unit. We 

conclude that even if some intertwined rules are kept separate, an extra rule (a 

schema) should exist which (at least implicitly) has a rhs which combines them ( b y 

containing knowledge common to all of them). Thus rule schemata do more than just 

unify general propert ies of rules: there must also be schemata of the kind that relate 

function to mechanism. 

Another problem crops up if we consider what happens if one of the coupled rules is 

modified. Often, some corresponding change should be made in all its companions.] For 

example, if a term is generalized (replacement of "prime" by "number" e v e r y w h e r e ) 

then the same substitution had probably better be done in each rule with which 1 this 

one is supposed to couple. What we are saying is that, for RSs which modify their 

o w n rules, it can be dangerous to split up a single conceptual process into a bunch of 

rules which interact in more or less fixed ways when run, without continuing to reason 
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about them as an integrity, like any other algorithm composed of parts. Here again, 

we find pressure to treat RSs as algorithms, not v ice-versa. 

Finally, let us make a few irresistable observations. The whole notion of coupling via 

meaningless tokens is aesthetically repugnant and quite contrary to "pure" production 

system spirit . By "meaningless" we mean entries in DS that provide a narrow h a n d -

crafted channel of communication between two specific rules that therefore "know 

about each other".^ At the least, when a coupled rule deposits some "intermediate-

state" message in a DS, one would like that message to be meaningful to many rules in 

the system, to have some significance itself. We can see that entries in a DS have an 

expected meaning to the read access functions that examine the DS.** If this pur i ty is 

maintained, then any apparent "coupling" would be merely superficial: each rule could 

stand alone as a whole domain-dependent heuristic. Thus no harm should come from 

changing a single rule, and more rules could be added that act on the "intermediate 

message" of the coupling. Such meaningful, dynamic couplings should be encouraged. 

Only the meaningless, tight couplings are being criticized here. 

4.3. Distribution of Knowledge Between Rules and DS 

A common "pure" idea is that all knowledge of substance ought to be represented as 

rules. Independent of such rules, the DS forms no meaningful whole initially, nor has it 

any final interpretation. The "answer" which the RS computes is not stored in the DS; 

rather , the answer consists in the process of rule f i r ings/ The DS is " just" an 

intermediate vehicle of control information. 

C o n t r a r y to this, we say that rules ought to have a symbiotic relationship to DSs. The 

DSs hold meaningful domain-dependent information, and rules process knowledge 

represented in them. For RSs designed to perform scientific research, the DSs contain 

the theory , and the rules contain methods of theory formation. 

But much domain-dependent knowledge is conditional. E.g., "If n and m are relatively 

prime and divide x, then so must nm". Shouldn't such If/Then information be encoded 

as rules? We answer an emphatic No. Just as there is a distribution of "all knowledge 

of substance" between rules and DSs, so too must the conditional information be 

part i t ioned between them. We shall illustrate two particular issues: (i) Much 

information can be stored implicitly in DSs; (ii) Some conditional knowledge is 

inappropriate to store as rules. 

5 B y contrast, a "meaningful" DS entry will embody a piece of information which is specific to the RS's task, not 
to the actual rules themselves. 

Perhaps this "meaning" could even be expressed formally as an invariant which the write access functions for 
the DS must never violate. 

^ The sequence of actions in time. In addition, perhaps, the "answer" may involve a few of their s ide-effects. 
E.g., (Respond 'YES'). 
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When designing a DS, it is possible to provide mechanisms for holding a vast amount of 

information Implicitly. In AM, e.g., the organization of concepts into a Genl/Spec � 

h ie ra rchy (plus the assumed heritability properties; see 3.4) permits a rule to ask for 

"all concepts more general than Primes" as if that were a piece of data explicit ly 

s t o r e d in a DS. In fact, only direct generalizations are stored ("The immediate 

general izat ion of Primes is Numbers"), and a "rippling" mechanism automatically runls up 

the Genl links to assemble a complete answer. Thus the number of specific answers the 

DS can provide is far greater than the number of individual items in the DS. T r u e , 

these DS mechanisms will use up extra time in processing to obtain the answer; this is 

eff ic ient since any particular request is very unlikely to be made. Just as each rule 

knows about a general situation, of which it will only see a few instances, that same 

qual i ty (of wide potential applicability) is just as valuable for knowledge in DSs. These 

are situations where, like Dijkstra's multiplier [8], the mechanism must provide any of 

the consequences of its knowledge quickly on demand, but in its lifetime will only be 

asked a few of them. 

Now that we have seen how tacit information can be encoded into DSs, let us see some 

cases where it should be — i.e., where it is not appropriate to encode it as rules of 

the system. Many things get called implication, and only some of them cbrrespond to 

rule application. For instance, there is logical entailment (e.g., if A A B then A), physical 

causation (e.g., if it rains, then the ground will get wet), probable associations (e.g., if it 

is w e t underfoot, then it has probably been raining.) These all describe the way the 

w o r l d is, not the way the perceiver of the world behaves. Contrast them with 

knowledge of the form "If it is raining, then open the umbrella". We claim that this last 

kind of situation-action relationship should be encoded as rules for the RS, but that the 

o ther t ypes of implication should be stored declaratively within the DS. Let's t r y to 

jus t i f y this distinction; 

T h e situation-action rules indicate imperatively how to behave in the world; the other 

t y p e s of implication merely indicate expected relationships and tendencies within the 

w o r l d . The rules of a RS are meant to indicate potential procedural actions which are 

o b e y e d b y the system, while the DSs indicate the way the world (the RSs environment) 

behaves in terms of some model of it. The essential thing to consider is what relations 

are to be caused in time; these are the things we should cast as rules. The Ihs of a 

rule measures some aspect of knowledge presently in DSs, while the rhs of the rule 

def ines the attention of the system (regarded as a processor feeding off of the DS) in 

the immediate future. 

This is the heart of why rule-sets are algorithms. They are algorithms for guiding the 

application of other (DS processing) algorithms. It also explains why other kinds of 

implications are unsuitable to be rules. Consider causal implication ("Raining — > Wet"). 

While the Ihs could be a rule's Ihs (it measures an aspect of any situation), the rhs 

should not be a rule's rhs (it does not indicate an appropriate action for the system to 

t a k e ) . 8 

8 I n a RS thai aspires to any generality at all, an antecedent theorem of the form "if [ you know that] it is raining, 

then [assert that] it is wet" is not the appropriate form to store this knowledge; it is too comp.led a form, 
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Most purist production systems have (often implicitly!) a rule of the form "If the left 

side of an implication is true in the database, Then assert the right side". This is only 

one kind of rule, of course, capable of dealing with implications. For example, MYCIN 

and LT [17] (implicitly) follow a very different rule: "If the rhs of an implication will 

sat is fy my goal, Then the Ihs of the implication is now the new goal". Other rules are 

possible; many rules for reasoning may feed off the same "table" of world knowledge. 

The point is that the implications themselves are declarative knowledge, not rules. In 

summary, then, it may be v e r y important to distinguish rules (attention guides) from 

mere implications (access guides), and to store the latter within the DSs. This policy 

was not motivated by the scientific inference task for our RS. We believe it to be a 

wor thwhi le guideline in the design of any RS. 

4.4. Interpreter 

Af te r a rule fires, the neo-classical interpretation policy (*9 in Figure 1) demands that 

any rule in the system can potentially be the next one selected to fire. This is true 

regardless of the speed-up techniques used in any particular implementation (say, by 

preprocessing the Ihs's into a discrimination net [22]). But consider RSs for scientific 

d i scove ry tasks. Their task — both at the top level and frequently at lower levels — is 

quite open-ended. If twenty rules trigger as relevant to such an open-ended activity 

(e.g., gathering empirical data, inducing conjectures, etc.) then there is much motivation 

for continuing to execute just these twenty rules for a while. They form an ad hoc 

plausible search algorithm for the agenda, item selected. 

A RS for d iscovery might reasonably be given a complex interpreter ( ru le - f i r ing 

pol icy) . AM, for example, experimented with a two-pass interpreter: first, a best - f i r s t , 

agenda -dr i ven resource allocator and attention focusser selects the job it finds most 

interest ing; second, it locates the set of relevant rules (typically about 30 to 40 rules) 

for the job, and begins executing them one after another (in best - f i rst order of 

speci f ic i ty ) until the resources allocated in the first step run out [20]. The overall 

rat ing of the job which these rules are to satisfy determines the amount of cpu time 

and list cells that may be used up before the rules are interrupted and job is 

abandoned. 

For example, say the job were "Find examples of Primes". It's allotted 35 cpu seconds 

and 300 list cells, due to its overall priority rating just before it was plucked from the 

agenda. Say, 24 rules are relevant. The first one quickly finds that "2" and "3" are 

primes. Should the job halt right then? No, not if the real reason for this job is to 

gather as much data as possible, data from which conjectures will be suggested and 

tested. In that case, many of the other 23 rules should be fired as well. They will 

p roduce not only additional examples, but perhaps other types of examples. 

standing alone I f told (or given) a rule like this, a learning system should "parse" it as a familiar kind of 

deduction file the residue of new information away as a conjectured tendency of wetness to fol low rain, and 

start checking for exceptions. A sophisticated (and lucky) discovery RS might thereby develop the concept of 

shelter . 
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The jobs on AK/Ts agenda are really just mini-research questions which are plausible to 

spend time investigating. Although phrased as specific requests, each one is really a 

research proposal , a topic to concentrate upon. We found it necessary to deviate from 

the simplest uniform interpreter for clarity (e.g., a human can follow the f i rst -pass ( job 

selection) taken alone and can follow the second-pass (job execution) by itself), for 

eff ic iency (knowing that all 24 rules are relevant, there is no need to find them 35 

times), and for power (applying qualitatively different kinds of rules yields var ious 

t y p e s of examples). We claim this quality of open-endedness will recur in any RS 

whose task is free concept exploration. This includes all scientific discovery but not all 

scientific inference. 

5. Speculations for a New Discovery System 

The spirit of this paper has been to give up straightforward simplicity in RSs for 

c lar i ty , eff iciency, and power. Several examples have been cited, but we speculate that 

there are further tradeoffs of this kind which are applicable to RSs whose purpose is 

to make new discoveries. 

Of ten, there are several possible ways the designer may view the task of (and 

subtasks of) the intended RS. We wish to add the notion of "proof" to AM, say. Should 

w e represent proof as a resolution search, as a process of criticism and improvement 

[11 ] spiralling toward a solution, as a natural deduction cascade, ...? Although any one 

of these task-v iews might perform respectably, we advocate the incorporation of all of 

them, despite the concomittant costs of added processing time, space, and interfacing. 

In fact, we wish never to exclude the possibility of the system acquiring another task -

v iew . 

We look for the development of further discovery tools in the form of domain-

independent meta-heuristics that synthesize heuristic rules, and in the form of abstract 

heuristic schemata that specialize into efficient rules for each newly -d iscovered 

domain. These discovery tools are all part of "getting familiar" with shallowly 

understood concepts, such as synthesized ones tend to be initially. It may even be 

that symbolic analogy techniques exist, cutting across the traditional boundaries of 

knowledge domains. 

We contemplate a system that keeps track of (and has methods with which it attempts 

to improve) the design of its own DSs, its own control structure, and perhaps even its 

o w n design constraints. Although working in (a collection of) specific domains, this 

would be a general symbol system discoverer, capable of picking up and explor ing 

formulations, testing them and improving them. 

5.1. A New Set of Design Constraints 

Below are 13 principles for designing a RS whose task is that of scientific theory 

formation. The y are the result of reconsidering the original principles (Figure 1) in the 

light shed b y work on AM. Most of the "pure" principles we mentioned in Figure 1 are 

changed, and a few new ones have emerged. 
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FIGURE 3: Scientific Discovery RS Architecture 

1. Principle of Several Appropriate Memories. For each type of knowledge 

which mast be dealt with In Its own way, a separate DS should be 

maintained. The precise nature of each DS should be chosen so as to 

facilitate the access (read/write) operations which will be most commonly 

requested of It. 

2. Principle of Maximal DS Accesses. The set of primitive DS access operations 

(I.e., the read tests which a rule's ihs may perform, and the write actions 

which a rhs may call for) are chosen to include the largest packages (clusters, 

chunks,...) of activity which are commonly needed and which can be 

performed efficiently on the DS. 

3. Principle of Facetted DS Elements. For ever-growing data structures, there Is 

much to be gained and little lost by permitting parts of one DS Item to point 

to other DS Items. In particular, schematic techniques of representing content 

by structure are now possible. 

4. Principle of Rules as Data. The view which the RS designer takes of the 

system's task may require that some rules be capable of reasoning about the 

rules In the RS (adding new ones, deleting old ones, keeping track of rules9 

performance, modifying existing rules,...). Some of the methods the RS uses to 

deal with scientific knowledge may be applicable to dealing with rules as 

welL In such cases, the system's rules may thus be naturally represented as 

new entries In the existing DS which holds the scientific theory. 

5. Principle of Regularities Among Rules. Each rule Is actually a rule schema. 

Sophisticated processing may be needed both to determine which Instance(s) 

are relevant and to find the precise sequence of actions to be executed. Such 

schemata are often quite elaborate. 

6. Principle of Avoiding Meanlnglessly-Coupled Rules. Passing special-pur pose 

loop control notes back and forth Is contrary to both the spirit of pure RSs 

and to efficiency. If rules are to behave as coupled, the least we demand Is 

that the notes they write and read for each other be meaningful entries In DS 

(any other rule may Interpret the same note, and other rules might have 

written one Identical to It). 

7. Principle of Controlled Environment. For many tasks, It Is detrimental to 

permit external stimuli (from an environment) to enter any DS at random. 

At the least, the RS should be able to distinguish these alien Inputs from 

Internally-generated DS entries. 

8. Principle of Tacit Knowledge. In designing the DS, much knowledge may be 

stored Implicitly; e.g., by where facts are placed In a hierarchical network. 

The DS should be designed so as to maximize this kind of concentrated, 

analogical Information storage. Hence, hard-working access functions are 

needed to encode and decode the full meaning of DSs. 
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9. Principle of Named Algorithms. When basic, "how to" knowledge is available, 

it should be packaged as an operation and used as a part of the Ihs or rhs of 

various rules. Embodying this chunk of knowledge as several coupled rules is 

not recommended, for we will want to manipulate and utilize this knowledge 

as a whole. 

10. Principle of Rules as Attention Guides. Knowledge should be encoded as rules 

when it is intended to serve as a guide of the system's attention; to direct its 

behavior. Other kinds of information, even if stated in conditional form, 

should be relegated to DSs (either explicitly as entries, or implicitly as special 

access functions). 

11. Principle of Inertial Interpreter. In tasks like scientific research, where 

relevant rules will be performing inherently open-ended activities (e.g., data-

gathering), such rules should be allowed to continue for a while even after 

they have nominally carried out the activity (e.g., gathered one piece of 

data). In such cases, the occasional wasted time and space is more than 

compensated for by the frequent acquisition of valuable knowledge that j was 

concentrated in the later rules. For scientific discovery, no single \rule 

(however "appropriate") should be taken as sufficient: a single rule must 

necessarily view the task in just one particular way. All views of the task 

have something to contribute; hence variety depends on a policy of always 

applying several rules. 

12. Principle of Openness. A discovery rule system can be enriched by 

incorporating into its design several independent views of the knowledge it 

handles. Never assume everything is known about a class of knowledge. All 

appropriate formulations of a knowledge class have something to contribute; 

hence variety depends on openness to new formulations. 

13. Principle of Support of Discovery by Design. By representing its own design 

explicitly (say, as concepts), the RS could study and improve those ooncepts, 

thereby improving itself. This includes the DS design^, the access function 

algorithms, how to couple them, the function of various rules, the 

interpretation policy of the RS, etc. This suggests that the study of designs 

of computational mechanisms may be a worthy area for a discovery system 

to pursue, whether its own design is available to it or not. 

Rule systems whose designs adhere to these guidelines will be large, elaborate, and 

non-classical. We have mentioned throughout the paper several new complications 

which the principles introduce. Trying to produce such a RS for a task for which a 

9 e.g., the facet specifications. I f the input/output requirements change with time, so should the rule system's 

data structures. 

file:///rule
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p u r e , neo-classical production rule system was appropriate will probably result in 

disaster . Nevertheless, empirical evidence suggests that RSs having this architecture 

are quite natural — and relatively tractable to construct — for open-ended tasks like 

scientific discovery. 
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