
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this

document without permission of its author may be prohibited by law.

Designing a Rule System That
Searches for Scientific Discoveries

Douglas B, Lenat

; ' y ; \ : - . - V v - ' a n d �

Gregory Harris

April 1977

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pa. 15213

ABSTRACT

Some scientific inference tasks (including mass spectrum identification

[Dendral] , medical diagnosis [Mycin], and math theory development

[AM]) have been successfully modelled as rule-directed search

processes. These rule systems are designed quite differently from

"pure production systems". By concentrating upon the design of one

program (AM), we shall show how 13 kinds of design deviations arise

from (i) the level of sophistication of the task that the system is

des igned to perform, (U) the inherent nature of the task, and (lit) the

designer's view of the task. The limitations of AM suggest even more

radical departures from traditional rule system architecture. All these

modifications are then collected into a new, complicated set of

constraints on the form of the data structures, the rules, the

interpreter , and the distribution of knowledge between rules and data

structures. These new policies sacrifice uniformity in the interests of

c lar i ty , efficiency and power derivable from a thorough

characterization of the task. Rule systems whose architectures

conform to the new design principles will be more awkward for many

tasks than would "pure" systems. Nevertheless, the new architecture

should be significantly more powerful and natural for building rule

systems that do scientific discovery tasks.

1. The Basic Argument 1

2 . Early Design Constraints 2

3 . *AM': A Rule System For Math Theory Formation 4

3.1. Discovery in Mathematics as Heuristic Rule-Guided Search 4

3.2. Representation of Mathematical Knowledge . 5

3.3. T o p - l e v e l Control : An Agenda of Promising Questions 5

3.4. Low- leve l Control : A Lattice of Heuristic Rules 7

3.5. Behavior of this Rule System 8

4 . Reexamining the Design 11

4.1. Data Structures 11

4.2. Rules 14

4.3. Distribution of Knowledge Between Rules and DS 17

4.4. Interpreter 19

5. Speculations for a New Discovery System 20

5.1. A New Set of Design Constraints 20

Design of Rule Systems for Discovery p. 1

1. T h e Basic Argument

Although rule -based computation was originally used for formal and systems purposes

[Post,Markov,Ftoyd], researchers in Artificial Intelligence (AI) found that the same

methodology was also useful for modelling a wide variety of sophisticated tasks. Many

of these early A I rule-based programs — called "production systems" — seVved as

information processing models of humans performing cognitive tasks in several domains,

(digit recall [19], algebra word problem solving [1], poker playing [23], etc. [16,18]).

T h e r e w e r e many design constraints present in the classical formal rule based systems.

Many of these details were preserved in the AI production rule based programs (e.g.,

forcing all state information into a single string of tokens). But there were many

changes. The whole notion of "what a rule system really is" changed from an effect ive

problem statement to a tendency to solve problems in a particular way. One typical

coro l lary of this change of v iew was that instead of no external inputs whatsoever ,

there was now a presumption of some "environment" which supplied new entries into

the token sequence. In the next section (see Figure 1) is an articulation of these neo -

classical (i.e., A I circa 1973; see [7]) principles for designing "pure" production

systems.

Due to the early successes, psychological applicability, and aesthetic simplicity

af forded by production systems, AI researchers began to write rule systems (RSs) to

per form informal inductive inference tasks (mass spectrum identification [4] , medical

diagnosis [23] and consultation dialogue [6], speech understanding [14], non-resolut ion

theorem proving [0] , math research [13], and many more).

Yet it seems that most of the large, successful RSs have violated many of the "pure

product ion system" guidelines. The purpose of this paper is to show that such

"except ions" were inevitable, because any system satisfying the neo-classical design

constraints, though universal in principle, is too impoverished to represent complex

tasks for what they are.

The essence of the neo-classical architecture is to opt for simplicity in all things, since

there is v e r y little one can say about RSs in general. As more becomes known about

the task of the RS, it turns out that some of that new knowledge takes the form of

specif ic constraints on the design of the RS itself (as distinct from what specific

knowledge we choose to represent within that design). Sometimes a new constraint

d i rect ly contradicts the early, domain-independent one; sometimes it is merely a

softening or augmentation of the old constraint.

A f t e r examining the "pure" architecture, we shall examine in detail the design of one

particular rule system which discovers and studies mathematical concepts. Deviations

from the pure architecture will be both frequent and extreme.

Subsequent sections will analyze these differences. It will be shown that each one is

plausible — usually for reasons which depend strongly on the "scientific d i scovery"

Lenat & Harris

domain of the RS. Some of the limitations of this RS will be treated, and their

elimination will be seen to require abandoning still more of the original design

constraints.

When these modifications are collected, in the final section, we shall have quite a

d i f ferent set of principles for building RSs. Not only will naivete have been lost: so

will general i ty (the breadth of kinds of knowledge representable, the totality of

tractable tasks). Rule systems conforming to the new design will be awkward for many

tasks (just as a sledge hammer is awkward for cracking eggs). However, they should

be significantly more powerful and natural for scientific inference tasks.

2. Early Design Constraints

B y a rule system (RS) we shall mean any collection of condition-action rules, together

w i th associated data structures (DS; also called memories) which the rules may inspect

and alter. There must also be a policy for Interpretation: detecting and firing relevant

rules.

T h e s e definitions are deliberately left vague. Many details must be specified fori any

actual rule system (e.g., What may appear in the condition part of a rule?). This

specif ication process is what we mean by designing a RS.

F igure 1 contains an articulation of the design of the early general -purpose A I

product ion rule systems.. Notice the common theme: the adequacy of simplicity in all

dimensions.

FIGURE 1: Neo-classical Rule System Architecture

1. Principle of Simple Memories. One or two uniform data structures define

sufficient memories for a rule system to read from and write Into. The

format for entries In these structures Is both uncomplicated and unchanging.

2. Principle of Simple DS Accesses. The primitive read and write operations are

as simple and low-level as possible; typically they are simply a membership-

test type of read, and an Insert-new-element type of write. More

complicated, algorithmic operations on the memories are not available to the

rules.

3. Principle of Isolated DS Elements. Elements of the uniform DS cannot point

to (parts of) other elements. This follows from the preceding principle: If we

aren't allowed to chase pointers, there may as well not be any.

4. Principle of Continuous Attention. In addition to the one or two simple data

structures, there may be an external environment which continuously Inserts

stimuli Into the DS. The Interleaving of stimuli and internally generated

symbols Is managed quite trivially: (a) The stimuli are simply Inserted Into

Design of Rule Systems for Discovery

the DS as new elements; (b) Each rale is so small and quick that no

"interruption" mechanism is necessary. The interpreter may ignore any

suddenly-added stimulus until the current rule finishes executing. The RS

may be viewed as "continuously" attending to the environment.

5. Principle of Opaque Rules. Rules need not have a format inspectable by

other rules, but rather can be coded in whatever way is convenient for the

programmer and the rule interpreter; i.e., the set of rules is not treated as

one of the RSs data structures. E.g., the condition parts of rules may be

barred from fully analyzing the set of productions [22J, and the action parts

of rules may not be.allowed to delete existing rules [24].

6. Principle of Simple Rules. Rules consist of a left- and a right-hand side

which are quite elementary: The left hand side (lbs* situation

characterization, IF-part, condition) is typically a pattern-match composed

with a primitive DS read access, and the right hand side (rhs, consequence,

THEN-part, action) is also simply a primitive DS write access. There is no

need for sophisticated bundles of DS accesses on either side of a rule. Thus

several extra rules should be preferred to a single rule with several actions.

7. Principle of Encoding by Coupled Rules. A collection of interrelated rules is

used to accomplish each subtask; i.e., wherever a subroutine would be used in

a procedural programming language. For example, programming an

iteration may require many rules "coupled" by writing and reading special

(Le., otherwise meaningless) loop control notes in the data structure.

8. Principle of Knowledge as Rules. All knowledge of substance should be, can

: be, and is represented as rules. This includes all non-trivial domain-

dependent information. The role of the DS is just to hold simple descriptive

information, intermediate control state messages, recent stimuli from the

environment, etc.

9. Principle of Simple Interpretation. The topmost control flow in the RS is via

a simple rule interpreter. After a rule fires, it is essential that any rule in

the system may potentially be the next one to fire (i.e., it is forbidden to

locate a set of relevant rules and fire them off in sequence). When the rhs of

a rule is executed, it can (and frequently will) drastically alter the situation

that determined which rules were relevant.

10. Principle of Closure. The representations allowed by (1-9) are sufficient and

appropriate for organizing all the kinds of knowledge needed for tasks for

which a given RS is designed.

This design was plausible a priori, and worked quite well for its initial applications |(the

simulation of simple human cognitive processes [16,19,24]). But is this design prbper

for any RS, regardless of its intended task? In particular, what about scientific

inference tasks? Over the years, several rule-based inference systems for scientific

tasks have been constructed. With each new success have come some deviations from

p. 4 Lenat & Harris

the above principles [7]. Were these mere aberrations, or is there some valid reason

for such changes in design?

We claim the latter. The task domain — scientific discovery ~ dictates a new and

quite different architecture for RSs. To study this phenomenon, we shall describe, in

the next section, one particular RS which defines new mathematical concepts, studies

them, and conjectures relationships between them. Subsequent sections will explore

the deviations of its design from the neo-classical constraints in Figure 1.

3. 'AM1: A Rule System For Math Theory Formation

A recent thesis [13] describes a program, called "AM", which gradually expands a base

of mathematical knowledge. The representation of math facts is somewhat related to

Actors [10] and Beings [12] in the partitioning of such domain knowledge into

ef fect ive , structured modules. Departing from the traditional control structures usually

associated with Actors, Beings, and Frames [15], AM concentrates on one "interesting"

mini - research question after another. These "jobs" are proposed by — and rated by —

a collection of approximately 250 situation-action rules. Discovery in mathematics is

modelled in AM as a rule-guided exploration process. This view is explained below in

Section 3.1 (See also [21].) The representation of knowledge is sketched next, fol lowed

b y a much more detailed description of the rule-based control structure of AM.

Finally, in Section 3.5, the experimental results of the project are summarized.

3.1. Discovery in Mathematics as Heuristic Rule-Guided Search

The task which AM performs is the discovery of new mathematics concepts and

relationships between them. The simple paradigm it follows for this task is to maintain

a graph of part ial ly -developed concepts , and to obey a large collection of "heuristics"

(rules which frequently lead to discoveries) which guide it to define and study the

most plausible thing next.

For example, at one point AM had some notions of sets, set-operations, numbers, and

simple arithmetic. One heuristic rule it knew said "If / is an interesting relation, Then

look at its inverse". This rule fired after AM had studied "multiplication" for a while.

The rhs of the rule then directed AM to define and study the relation "d iv isors -o f"

(e.g., d iv isors -of (12) * {1,2,3,4,6,12}). Another heuristic rule which later f i red said "7/

f is a relation from A into B% then it's worth examining those members of A which map

into extremal members of 8". In this case, f was matched to "divisors-of" , A was

"numbers", B was "sets of numbers", and an extremal member of B might be, e.g., a

v e r y small set of numbers. Thus this heuristic rule caused AM to define the set of

numbers with no divisors, the set of numbers with only 1 divisor, with only 2 div isors ,

etc. One of these sets (the last one mentioned) turned out subsequently to be quite

important; these numbers are of course the primes. The above heuristic also directed

A M to study numbers with ve ry many divisors; such highly-composite numbers w e r e

also found to be interesting.

Design of Rule Systems for Discovery

This same paradigm enabled AM to discover concepts which were much more primitive

(e.g., cardinality) and much more sophisticated (e.g., the fundamental theorem of

arithmetic) than prime numbers. We shall now describe the AM program in more detail.

3,2. Representation of Mathematical Knowledge

i

What exactly does it mean for AM to "have the notion of" a concept? It means that! AM

possesses a frame-like data structure for that concept. For instance, here is how one

concept looked after AM had defined and explored it:

FIGURE 2: A Typical Concept

NAME: Prime Numbers

DEFINITIONS:

ORIGIN: Number-of -div isors-of(x) - 2

PREDICATE-CALCULUS: Prime(x) s (Vz)(z|x -» z = l XOR z=x)

ITERATIVE: (for x > l) : For i from 2 to x -1 , -(i|x)

EXAMPLES: 2, 3, 5, 7, 11, 13, 17

BOUNDARY: 2, 3

BOUNDARY-FAILURES: 0, 1

FAILURES: 12

GENERALIZATIONS: Numbers, Numbers with an even number of divisors,

Numbers with a prime number of divisors

SPECIALIZATIONS: Odd Primes, Prime Pairs, Prime Uniquely-addables

CONJECS: Unique factorization, Goldbach's conjecture, Extrema of Div isors-of

ANALOGIES:

Maximally-divisible numbers are converse extremes of Divisors-of

INTEREST: Conjectures tying Primes to Times, to Divisors-of, to closely related ops

WORTH: 800

3.3. Top-level Control: An Agenda of Promising Questions

A M was initially g iven a collection of 115 core concepts, with only a few facets (i.e.,

s lots) filled in for each. AM repeatedly chooses some facet of some concept, and tries

to fill in some entries for that particular slot. To decide which such job to work on

next , AM maintains an agenda of jobs, a global queue ordered by pr ior i ty [2] . A

typical job is "Fill-in examples of Primes''. The agenda may contain hundreds of

entr ies such as this one. AM repeatedly selects the top job from the agenda and tries

to ca r r y it out. This is the whole control structure! Of course, we must still explain

how AM creates plausible new jobs to place on the agenda, how AM decides which job

will be the best one to execute next, and how it carries out a job.

If the job were "Fill in new Algorithms for Set-union", then satisfying it would mean

actually synthesizing some new procedures, some new LISP code capable of forming

the union of any two sets. A heuristic rule is relevant to a job if and only if executing

Lenat & Harris

that rule brings A M closer to satisfying that job. Potential relevance is determined a

priori b y where the rule is stored. A rule tacked onto the Domain/range facet of the

Compose concept would be presumed potentially relevant to the job "Fill In the

Domain of I nsert-Q-Delete". The Ihs of each potentially relevant rule is evaluated to

determine whether the rule is truly relevant.

Once a job is chosen from the agenda, AM gathers together all the potentially .relevant

heuristic rules — the ones which might accomplish that job. They are executed, and

then A M picks a new job. While a rule is executing, three kinds of actions or effects

can occur :

(I) Facets of some concepts can get filled in (e.g., examples of primes may actually be

found and tacked onto the "Examples" facet of the "Primes" concept). A typical

heuristic rule which might have this effect is:

// examples of X are desired, where X Is a kind of Y (for some more general

concept Y),

Then check the examples of Y; some of them may be examples of X as welL

For the job of filling in examples of Primes, this rule would have AM notice that

Primes is a kind of Number, and therefore look over all the known examples of

Number. Some of those would be primes, and would be transferred to the

Examples facet of Primes.

(li) New concepts may be created (e.g., the concept "primes which are uniquely

representable as the sum of two other primes" may be somehow be deemed

w o r t h studying). A typical heuristic rule which might result in this new concept

is:

// some (bat not most) examples of X are also examples of Y (for some

concept Y),

Then create a new concept defined as the intersection of those 2 concepts (X

and Y). j
!

Suppose AM has already isolated the concept of being representable as the sum

of two primes in only one way (AM actually calls such numbers "Uniquely -pr ime-

addable numbers"). When AM notices that some primes are in this set, the above

rule will create a brand new concept, defined as the set of numbers which are

both prime and uniquely prime addable.

(ill) New jobs may be added to the agenda (e.g., the current activity may suggest that

the following job is worth considering: "Generalize the concept of prime

numbers"). A typical heuristic rule which might have this effect is:

// very few examples of X are found,
Then add the following job to the agenda: "Generalize the concept X":

T h e concept of an agenda is certainly not new: schedulers have been around for a long

time. But one important feature of AM's agenda scheme is a new idea: attaching ~ and

Design of Rule Systems for Discovery

using — a list of quasi-symbolic reasons to each job which explain why the job is

w o r t h considering, why it's plausible. It is the responsibility of the heuristic rules to

include reasons for any jobs they propose. For example, let's reconsider the heuristic

rule mentioned in (ill) above. It really looks more like the following:

If very few examples of X are found,

Then add the following job to the agenda: "Generalize the concept X", for the

following reason: "X's are quite rare; a slightly less restrictive

concept might be more interesting".

If the same job is proposed by several rules, then several different reasons for it may

be present . In addition, one ephemeral reason also exists: "Focus of attention" [9] .

A n y jobs which are related to the one last executed get "Focus of attention" as a

bonus reason. A M uses all these reasons to decide how to rank the jobs on the

agenda. Each reason is given a rating (by the heuristic which proposed it), and the

ratings are combined into an overall priority rating for each job on the agenda. The

jobs are ordered by these ratings, so it is trivial to select the job with the highest

rating. Note that if a job already on the agenda is re -proposed for a new reason, then

its p r io r i t y will increase. If the job is re-proposed for an already-present reason,

h o w e v e r , the overall rating of the job will not increase. This turned out to be an

important enough phenomenon that it was presented in [13] as a necessary design

constraint.

A M uses each job's list of reasons in other ways. Once a job has been selected, the

quality of the reasons is used to decide how much time and space the job will be

permitted to absorb, before AM quits and moves on to a new job. Another use is to

explain to the human observer precisely why the chosen top job is a plausible thing

for A M to concentrate upcfn. � %

3.4. Low-level Control: A Lattice of Heuristic Rules

The hundreds of concepts AM possesses are interrelated in many ways. One main

organizat ion is that provided by their Generalization and Specialization facets. The

concepts may be viewed as nodes on a large lattice whose edges are labelled

Genl/Spec. The importance of this organization stems from various heritability

proper t ies . For example, Spec is transitive, so the specializations of Numbers include

not only Primes but all its specializations as well.

Let us descr ibe a second, ve ry important heritability property . Each of the 250

heurist ic rules is attached to the most general (or abstract) concept for which it is

deemed appropriate. The relevance of heuristic rules is assumed to be inherited by all

i t s specializations. For example, a heuristic method which is capable of inverting any

function will be attached to the concept "Function"; but it is certainly also capable of

invert ing any permutation. If there are no known methods specific to the latter job ,

then A M will follow the Genl links upward from Permutation to Bijection to Function...,

seeking methods for inversion. Of course the more general concepts' methods tend to

be weaker than those of the specific concepts.

Lenat & Harris

In other words , the Genl/Spec graph of concepts induces a graph structure upon the

set of heuristic rules. This permits potentially relevant rules to be located efficiently.

Here is one more example of how this heritability works in practice: Immediately after

the job T i l l in examples of Set-equality" is chosen, AM asks each generalization of

Set -equa l i t y for help. Thus it asks for ways to fill in examples of any Predicate, any

Ac t i v i t y , any Concept, and finally for ways to fill in examples of Anything. One such

heurist ic rule known to the Activity concept says: "// examples of the domain of the

activity f are already known, Then actually execute f on some random members of its

domain." Thus when AM applies this heuristic rule to fill in examples of Set-fequality,

its Domain facet is inspected, and AM notes that Set-equality takes a pair of sets as its

arguments. Then AM accesses the Examples facet of the concept Set, where it finds a

large list of sets. The Ihs is thus satisfied, so the rule is fired. Obeying the heuristic

ru le , A M repeatedly picks a pair of the known sets at random, and sees if they satisfy

Set -equa l i t y (by actually running the LISP function stored in the Algorithms facet of

Set -equal i ty) . While this will typically return False, it will occasionally locate — by

random chance — a pair of equal sets.

Other heuristics, tacked onto other generalizations of Set-equality, provide additional

methods for executing the job "Fill in examples of Set-equality." A heuristic stored on

the concept Any-concept says to symbolically instantiate the definition. After spending

much time manipulating the recursive definition of Set-equality, a few trivial examples

(like { } = { }) are produced. Notice that (as expected) the more general the concept is,

the weaker (more time-consuming, less chance for success) its heuristics tend to be.

For this reason, AM consults each concept's rules in order of increasing generalization.

3.5. Behavior of this Rule System

As the preceding four sections indicate, the dynamic behavior of AM was as follows: a

j o b is chosen from the agenda, potentially relevant rules are located by their position

in the Genl/Spec lattice, their Ihs's (left-hand sides) are evaluated to find those which

actually t r igger , they are then executed (in order of decreasing specificity) until they

are all executed (or until some local, self-imposed limit on time or space is exceeded),

and the cycle repeats. AM has a modest facility that prints out a description of these

activit ies as they occur. Here is a tiny excerpt of this self-trace monologue.

** Job 65: ** Fill in Examples of the concept "Divisors-of".

3 Reasons: (1) No known examples of Divisors-of so far,

(2) TIMES, which is related to Divisors-of, is now ve ry interesting.

(3) Focus of attention: AM recently defined Divisors-of..

26 examples found, in 9.2 seconds, e.g., Divisors-of(6)={1 2 3 6}.

Design of Rule Systems for Discovery

** Job 66: ** Consider numbers having small sets of Divisors-of.

2 Reasons: (1) Worthwhile to look for extreme cases.

(2) Focus of attention: AM recently worked on Divisors-of.

Filling in examples of numbers with 0 divisors.

0 examples found, in 4.0 seconds.

Conjecture : no numbers have precisely 0 divisors.

Filling in examples of numbers with 1 divisors.

1 examples found, in 4.0 seconds, e.g., D iv isors -of (l) - {1}.

Conjecture : 1 is the only number with precisely 1 divisor.

Filling in examples of numbers with 2 divisors.

24 examples found, in 4.0 seconds, e.g., Divisors-of(13) =* {1 13}.

No obvious conjecture. May merit more study.

Creating a new concept: "Numbers-with-2-divisors".

Filling in examples of numbers with 3 divisors.

11 examples found, in 4.0 seconds, e.g., Divisors-of(49) - {1 7 49}.

All numbers with 3 divisors are also Squares. Definitely merits more study.

Creating a new concept: "Numbers-with-3-divisors".

** Job 67: ** Consider the square-roots of Numbers-with-3-divisors.

2 Reasons: (1) Numbers-with-3-divisors. are unexpectedly also Perfect Squares.

(2) Focus of attention: AM recently worked on Nos -wi th -3 -d iv isors .

All square - roots of Numbers-with-3-divisors seem to be Numbers-with-2-div isors .

e.g., Div isors-of(Square-root(169)) '* Divisors-of(13) � {1 13}.

Even the converse of this seems empirically to be true.

i.e., the square of each No-with-2-div isors seems to be a No-wi th -3 -d iv isors .

The chance of coincidence is below acceptable limits.

Boosting the interestingness rating of each of the concepts involved.

** Job 68: ** Consider the squares of Numbers-with-3-divisors.

3 Reasons: (1) Squares of Numbers-with-2-divisors were interesting.

(2) Square-roots of Numbers-with-3-divisors were interesting.

(3) Focus of attention: AM recently worked on Nos -wi th -3 -d iv isors .

Now that we 've seen how AM works, and we've been exposed to a bit of "local"

results , let's take a moment to discuss the totality of the mathematics which AM carr ied

out. AM began its investigations with scanty knowledge of a hundred elementary

concepts of finite set theory. Most of the obvious set-theoretic concepts and

p. 10 Lenat & Harris

relationships were quickly found (e.g., de Morgan's laws; singletons), but no

sophisticated set theory was ever done (e.g., diagonalization). Rather, AM discovered

natural numbers and went off exploring elementary number theory. Arithmetic

operations were soon found (as analogs to set-theoretic operations), and AM made

surpr is ing progress in divisibility theory. Prime pairs, Diophantine equations, the

unique factorization of numbers into primes, Goldbach's conjecture ~ these were some

of the nice discoveries by AM. Many concepts which we know to be crucial were never

uncovered , however : remainder*, gcd, greater-than, infinity, proof, etc.

All the discoveries mentioned were made in a run lasting one cpu hour (Interl isp+lOOk,

SUMEX PDP-10 KI). Two hundred jobs in toto were selected from the agenda and

executed. On the average, a job was granted 30 cpu seconds, but actually used only

18 seconds. For a typical job, about 35 rules were located as potentially relevant, and

about a dozen actually fired. AM began with 115 concepts and ended up with three

times that many. Of the synthesized concepts, half were technically termed "losers"

(both b y the author and by AM), and half the remaining ones were of only marginal

interest .

Al though AM fared well according to several different measures of performance (see

Section 7.1 in [13]), of greatest significance are its Limitations. This subsection will-

merely report them, and the next section will analyze whether they were caused by

radical departures from the neo-classical production-system architecture, or from

depart ing not far enough from that early design.

As A M ran longer and longer, the concepts it defined were further and further from

the primitives it began with. Thus "prime-pairs" were defined using "primes" and

"addition", the former of which was defined from "divisors-of", which in turn came from

"multiplication", which arose from *'^addition", which was defined as a restriction of

"union", which (finally!) was a primitive concept (with heuristics) that we had supplied

to A M initially. When AM subsequently needed help with prime pairs, it was forced to

re l y on rules of thumb supplied originally about union'mg. Although the heritability

p r o p e r t y of heuristics did ensure that those rules were still valid, the trouble was that

they were too general, too weak to deal effectively with the specialized notions of

primes and arithmetic. For instance, one general rule indicated that AuB would be

interesting if it possessed properties absent both from A and from B. This translated

into the prime-pair case as "// p+q=ry and p,q,r are primes, Then r is interesting if it

has properties not possessed by p or by q." The search for categories of such

interesting primes r was of course barren. It showed a fundamental lack of

understanding about numbers, addition, odd/even-ness, and primes.

As the der ived concepts moved further away from finite set theory, the efficacy of the

initial heuristics decreased. AM began to "thrash", appearing to lose most of its

heuristic guidance. It worked on concepts like "prime triples", which is not a rational

thing to investigate. The key deficiency was the lack of adequate me£a.-rules[6]:

heuristics which cause the creation and modification of new heuristics.

This concept, and many of the other "omissions", could have been discovered by the existing heuristic rules in

AM. The paths which would have resulted in their definition were simply never rated high enough to explore.

Design of Rule Systems for Discovery p. 11

Aside from the preceding major limitation, most of the other problems pertain to

missing knowledge. Many concepts one might consider basic to discovery in math are

absent from AM; analogies were under-util ized; physical intuition was absent; the

interface to the user was far from ideal; etc.

4. Reexamining the Design

Let us now consider the major components of a RS's design and how AM treated them:

the DS, the rules, the distribution of knowledge between DS and rules, and the rule

interpretation policy. For each component, AM's architecture failed to adhere str ict ly

to the pure RS guidelines. Were these departures worth the loss of simplicity? Were

the deviations due to the task domain (scientific discovery), to the task v iew

(heuristically guided growth of structured theories), or to other sources? These are

the kinds of questions we shall address in each of the following subsections.

4.1. Data Structures

We recognize that a singte uniform DS (e.g., an infinite STM [19]) is universal in the

Tur ing sense of being formally adequate: One can encode any representation in a

linear, homogeneous DS. The completeness of such a DS design not withstanding, w e

believe that encouraging several distinct, special-purpose DSs will enhance the

performance of a discovery system. That is, we are willing to sacrifice aesthetic pur i ty

of DSs for clarity, efficiency, and power. In this section we will explore this tradeoff.

The data structures used in AM are unlike the uniform memories suggested by the f irst

design constraint (see Figure 1). One DS ~ the agenda — holds an ordered list of

plausible questions for the system to concentrate on, a list of jobs to work on.

Another DS is the graph of concepts AM knows about. Each concept itself consists in

much structured information (see Figure 2). The reasons AM has for each job have

information associated with them. Still other information is present as values of

certain functions and global variables: the cpu clock, the total number of concepts, the

last thing t yped out to the user, the last few concepts worked on, etc. All these types

of information are accessed by the Ihs's (left hand sides) of heuristic rules, and

affected by rhs's (some "deliberately" in the text of the rule, some "incidentally"

through a chain of i f -added methods).

Why is there this multitude of diverse DSs? Each type of knowledge (jobs, math

knowledge, system status) needs to be treated quite differently. Since the primitive

operations will v a r y with the type of information, so should the DS. For jobs, the

primitive kinds of accesses will be: picking the highest-rated job, deleting the l o w e s t -

rated one, reordering some jobs, merging new ones. A natural choice to make these

operations efficient is to keep the system's goals in a queue ordered by their rating or

par t ia l l y -o rdered by those ratings that are commensurable. For resource information.

p. 12 Lenat & Harris

the usual request is for some statistic of some class of primary data. To maintain a

table of such summary facts (like how much the CPU clock has run so far, or how many

concepts there are) is to introduce an unnecessary DS and incur exorbitant costs to

maintain many short-lived entries that will, most probably, never be used. It is far

more reasonable to run a summarizing procedure to develop just that ephemeral, u p -

to -date information that you need. For math concepts, we have a much less volatile

situation. We view them as an ever -growing body of highly- interrelated facts.

Knowledge in this form is stable and rarely deleted. When new knowledge is adddd, a

great many "routine" inferences must be drawn. In a uniform, linear memory, each

would have to be drawn explicitly; in a structured one (as the Genl/Spec graph

st ructure prov ides) . they may be accomplished through the tacit (analogical)

characteristics of the representation, simply by deciding where to place the

information.

Each kind of knowledge dictates a set of appropriate kinds of primitive operations to

be performed on it, which in turn suggest natural data structures in which to realize it.

The generality of this perspective on rule-based systems is made more plausible b y

examining other RSs which deal with many types of knowledge (e.g., [5]). If this is so,

if the design proceeds from "knowledge to be represented" to "a data structure to

hold it", then fixing a priori the capabilities of the DS access primitives available to

rules is suspect.

The re fo re , we advocate the opposite: the RS designer is encouraged to name e v e r y

combination of "machine" operations that together comprise a single conceptual access

of data by rules. In AM, it is quite reasonable to expect that a request like "find all

generalizations of a given concept" would be such a primitive (i.e., could be r e f e r r e d to

b y name). Even though it might cause the "machine" (in this case, LISP) to run around

the Genl/Spec graph, a single rule can treat this as merely an "access" operation. The

use of complex tests and actions is not new; we simply claim that it is always

preferable to package knowledge (for which a reasonably fast algorithm is available)

as a single action (though it may have side-effects in the space of concepts) or a

single test (so long as its sole side-effect — modulo caches — is to signal). Primitive

tests and actions should be maximally algorithmic, not minimally computational.

The neo-classical v iew of designing a production rule system was that of defining a

machine. Our present view is that RSs do not compute so much as they guide attention.

In adopting this v iew (thereby separating the controller from the effector) , w e

recognize that we are giving up an attractive feature of pure rule systems: a

homogeneous basis for definition. For example, the rule system designer must now

spell out in detail the definitions of the DS accessing functions; but the designer of a

neo-classical RS is simply able to take as givens the matching and inserting operations

(as specified in neo-classical principle #6, Figure 1), and he builds each more

complicated one out of these primitives^. In giving up the old view of the RS as an

abstract computing machine, the RS designer must use another homogeneous substrate

2 Either by stringing out a sequence of primitives on one side of a rule, or by handcrafting a t ightly 'coupled

bundle of rules (so firing such a rule would simulate traversing one link of the kind that abound in A M s Dbs).

Design of Rule Systems for Discovery p. 13

(e.g., LISP) in terms of which to define his DSs and especially the procedures that

process them. In exchange, he obtains a clear distinction between two kinds of

knowledge contained in the neo-classical rule: plausible proposals for what to do next,

and how to accomplish what might be proposed.

We have seen that admitting complicated and varied DSs leads to sty l ized sets of DS

accesses. The DSs and their sets of read/write primitives must in turn be explicit ly

defined (coded) by the designer. This seems like a high price to pay. Is there any

br ight side to this? Yes, one rather interesting possibility is opened up. Not only the

RS designer, but the RS itself may define DSs and DS access functions. In AM, this

might take the form of dynamically defining new kinds of facets (slots). E.g., after

" inject ive Function" is defined, and after some properties of it have been d iscovered, it

would be appropriate to introduce a new facet called "inverse" for each (concept

represent ing an) injective function. In AM, the actual definitions of the facets of e v e r y

concept are complex enough (shared structure), inter-related enough (shared meaning),

and interesting enough (consistent heuristic worth) that a special concept was included

for each one (e.g., a concept called "Examples") which contained a definit ion,

description,. . . of the facet. Thus the same techniques for manipulating and discovering

math concepts may be applied to DS design concepts. Not only do math theories

emerge, so can new DS access functions (new slots; e.g., "Small Boundary Examples",

"Factorization", or "Inverse").

It should be noted that in opting for non-uniform DSs, we have not in general

sacrif iced efficiency. One has only to compare the time to access a node in a t ree ,

ve rsus in a linear list, to appreciate that efficiency may, in fact, be increased b y n o n -

uniformity.

Just how tangle.d up a DS should we tolerate? Should memory elements be permitted

to refer to (to "know about") each other? We believe the answer to depend upon the

type of data structure involved. For the homogeneous DS called for in the neo-classical

design, much simplicity is preserved by forbidding this kind of interrelationship. But

consider a DS like AM's graph of concepts. It is growing, analogically interrelated, and

it contains descriptions of its elements. This richness (and sheer quantity^ of

information can be coded only inefficiently in a uniform, non-self - referential mariner.

For another example, consider AM's agenda of jobs. One reason for a job may simply

be the existence of some other job. In such a case, it seems natural for part of one

e n t r y on the agenda(a reason part of one job) to point to another ent ry in the same

DS (point to another specific job on the agenda). Thus, inter-element pointers are

allowed, even though they blur a "pure" distinction between a DS and its entr ies.^

Inter -e lement references play a necessary role in organizing large bodies of highly

interrelated information into structured modules.

T h e r e is ye t another motivation for special-purpose DSs when the task of the RS

includes sensing an external environment. Using a uniform memory, external stimuli

are dumped into the working memory and rub shoulders with all the other data. J h e y

In section 4.3 we will mention work that blurs this distinction even further.

p. 14 Lenat & Harris

must then be distinguished from the others. ("Must" because to f reely intermingle

what one sees or is told with what one thinks or remembers is to give way to endless

confusion.) How much cleaner, less distracting, and safer it is for stimuli to arive in

their own special place — a place which might well be a special purpose store such as

an intensity array (not even a list structure at all), or a low-level speech-segment

queue. A linear memory (e.g., an infinite STM) is of course adequate; one could tag

each incoming environmental stimulus with a special flag. But the design philosophy

we are proposing is aimed at maximizing clarity and efficiency, not uniformity or

universal i ty .

We know that this view of DSs means making a specialized design effort for each class,

of knowledge incorporated into the RS. But that is desirable, as it buys us three

things: (i) system performance is increased, (ii) some forms of automatic.learning are

facilitated, (ill) knowledge is easier to encode.

4.2. Rules

In the "pure" view of RSs, the rule store is not a full-fledged DS of the RS. For

example, in Waterman's [24] poker player, rules may not be deleted. Rychener [22]

states that the only way his RS may inspect rules is by examining the effect of those

rules which have recently fired. Although AM had no explicit taboo against inspecting

rules, such analyses were in practice never possible, since the rules were ad hoc

blocks of LISP code. This eventually turned out to be the main limitation of the design

of AM. The ultimate impediment to further discovery was the lack of rules which could

reason about, modify, delete, and synthesize other rules. AM direly needed to

synthes ize specialized forms of the given general heuristic rules (as new concepts

arose; see the end of 3.5.)

We want our heuristic rules to be added, kept track oly reasoned about, modified,

deleted, generalized, specialized, ... whenever there is a good reason to do so. Note

that those situations may be ve ry different from the ones in which such a rule might

f i re . E.g., upon discovering a new, interesting concept, AM should t ry to create some

special ly - tai lored heuristic rules for it. They wouldn't actually fire until much later,

when their Ihs's were tr iggered. After having constructed such rules, A M might

subject them to criticism and improvement as it explores the new concept.

In sum, we have found that the discovery of heuristic rules for using new math

concepts is a necessary part of the growth of math knowledge. Hence, following the

argument in 4.1, the rules themselves should be DSs, and each rule might be descr ibed

b y a concept with effective (executable) and non-effective (purely descript ive) facets.

This lesson was made all the more painful because it was not new [5]. Apparent ly the

need for reasoning about rules is common to many tasks.

The current re-coding of AM does in fact' have each rule represented as a concept.

What kinds of non-effective "facets" do they have? Recall that one of the features of

the original AM (as described in Section 3.3) was that with each rule were associated

some symbolic reasons which it could provide whenever it proposed a new job for the

Design of Rule Systems for Discovery p. 15

agenda. So one kind of facet which every rule can possess is "Reasons". What others

are there? Some of them describe the rule (e.g., its average cost); some facets prov ide

a road map to the space of rules (e.g., which rule schemata are mere specializations of

the g i ven one); some facets record its derivation (e.g., the rule was proposed as an

analog to rule X because ...), its redundancy (some other rules need not be tried if this

one is), etc. .

T h e r e are some far-reaching consequences of the need to reason about rules just as if

t h e y w e r e any other concepts known to AM. When one piece of knowledge relates to

severa l rules, then one general concept, a rule schema, should exist to hold that

common knowledge. Since each rule is a concept, there will be a natural urge to

exploit the same Genl/Spec organization that proved so useful before. Heritability still

holds; e.g., any reason which explains rule R is also somehow a partial explanation of

each specialization of R.

Rule schemata have cause to exist simply because they generalize — and hold much

information which would otherwise have to be duplicated in — several specific rules.

T h e y may tend to be "big" and less directly productive when executed, yet they are of

value in capturing the essence of the discovery techniques.^ We put "big" in quotes

because sheer length (total number of Ihs tests allowed, total number of rhs action's) is

not d i rect ly what we're talking about here. A general rule schema will capture many

regular i t ies , will express an idea common to several more specific rules. It will contain

dual forms of the same rule, sophisticated types of variable-binding (for the duration

of the rule application), and searching may even be required to find the actions of such

a general rule. We may even wish to consider every rule in the RS as a rule schema of

some level of generality, and much processing may go on to find the particular

instance(s) of it which should be applied in any particular situation.

Let us consider a rule schema called the "rule of enthusiasm". It subsumes several

rules in the original AM system (pp. 247-8 of [13]), e.g., those that said;
m

If concept G is now very interesting, and G was created as a generalization

of some earlier concept C,

Give extra consideration to generalizing G, and to generalizing C in other

ways.

and:

// concept S proved to be a dead-end, and S was created as a specialization

of some earlier concept C,

Give less consideration to specializing S, and to specializing C in other ways

in the future.

* In A M , even the specific rules may be "big" in the sense that their very precise knowledge may involve much

testing to trigger and. once triggered,.may conclude some elaborate results.

p. 16 Lenat & Harris

The proposed rule schema is:

// concept X has very high/low interest and X can be derived from some

concept C by means m,

Give more/less consideration to finding (and elaborating) concepts derived

from C, X (and their "neighbors") by means analogous to m.

There are four variables to be matched and coordinated in the Ihs of this rule: a

concept X, the direction (high or low) of its extreme .interest rating, a derivation

procedure m and an associated source concept C. The action itself is to search for

jobs of a certain type and give them a corresponding (high or low) rating change.

T h r e e types of matching are present: (i) ranging over a set of alternatives which are

Known at the time the rule is written (e.g., the "high/low" alternative); (ii) ranging over

a set of alternatives which can be accessed easily at any moment the rule is run, like

the set of concepts and connections between them now in existence (e.g., the variables

X and C range over this kind of set); (Hi) ranging over a set of alternatives which must

be heuristically searched for as part of the rule execution (e.g., "analogous" and

"neighbors" only make sense after a nontrivial amount of searching has been

performed).

Since the "rule of enthusiasm" is ve ry general, it will only be tried if no more specific

rules (such as the two which were listed just above it) are relevant at the time.

Ideally, the search to specify the action should create a new, specialized form of the

rule of enthusiasm to catch this situation and handle it quickly, should it arise again.

Note that versions of this schema that mention generalization or specialization are also

schemata (without any specification search); they are simply less general schemata

than the rule of enthusiasm itself. Whenever a new subject for discovery gets defined,

the abstract, hard - to -execute rule schemata can be specialized (compiled, refined ,

etc.) into efficient heuristics for that subject.

Another use of a rule schema might be to name a collection of neo-classical rules that

are coupled by together fulfilling a single function. Consider a collection of rules

which is t ightly coupled, say to perform an iteration. Much knowledge about the

iteration loop as a whole may exist. Where is such descriptive information to be stored

and sought? Either it must be duplicated for each of the coupled rules, or there must

be a rule- l ike concept which "knows about" the iteration as one coherent unit. We

conclude that even if some intertwined rules are kept separate, an extra rule (a

schema) should exist which (at least implicitly) has a rhs which combines them (b y

containing knowledge common to all of them). Thus rule schemata do more than just

unify general propert ies of rules: there must also be schemata of the kind that relate

function to mechanism.

Another problem crops up if we consider what happens if one of the coupled rules is

modified. Often, some corresponding change should be made in all its companions.] For

example, if a term is generalized (replacement of "prime" by "number" e v e r y w h e r e)

then the same substitution had probably better be done in each rule with which 1 this

one is supposed to couple. What we are saying is that, for RSs which modify their

o w n rules, it can be dangerous to split up a single conceptual process into a bunch of

rules which interact in more or less fixed ways when run, without continuing to reason

Design of Rule Systems for Discovery P. 17

about them as an integrity, like any other algorithm composed of parts. Here again,

we find pressure to treat RSs as algorithms, not v ice-versa.

Finally, let us make a few irresistable observations. The whole notion of coupling via

meaningless tokens is aesthetically repugnant and quite contrary to "pure" production

system spirit . By "meaningless" we mean entries in DS that provide a narrow h a n d -

crafted channel of communication between two specific rules that therefore "know

about each other".^ At the least, when a coupled rule deposits some "intermediate-

state" message in a DS, one would like that message to be meaningful to many rules in

the system, to have some significance itself. We can see that entries in a DS have an

expected meaning to the read access functions that examine the DS.** If this pur i ty is

maintained, then any apparent "coupling" would be merely superficial: each rule could

stand alone as a whole domain-dependent heuristic. Thus no harm should come from

changing a single rule, and more rules could be added that act on the "intermediate

message" of the coupling. Such meaningful, dynamic couplings should be encouraged.

Only the meaningless, tight couplings are being criticized here.

4.3. Distribution of Knowledge Between Rules and DS

A common "pure" idea is that all knowledge of substance ought to be represented as

rules. Independent of such rules, the DS forms no meaningful whole initially, nor has it

any final interpretation. The "answer" which the RS computes is not stored in the DS;

rather , the answer consists in the process of rule f i r ings/ The DS is " just" an

intermediate vehicle of control information.

C o n t r a r y to this, we say that rules ought to have a symbiotic relationship to DSs. The

DSs hold meaningful domain-dependent information, and rules process knowledge

represented in them. For RSs designed to perform scientific research, the DSs contain

the theory , and the rules contain methods of theory formation.

But much domain-dependent knowledge is conditional. E.g., "If n and m are relatively

prime and divide x, then so must nm". Shouldn't such If/Then information be encoded

as rules? We answer an emphatic No. Just as there is a distribution of "all knowledge

of substance" between rules and DSs, so too must the conditional information be

part i t ioned between them. We shall illustrate two particular issues: (i) Much

information can be stored implicitly in DSs; (ii) Some conditional knowledge is

inappropriate to store as rules.

5 B y contrast, a "meaningful" DS entry will embody a piece of information which is specific to the RS's task, not
to the actual rules themselves.

Perhaps this "meaning" could even be expressed formally as an invariant which the write access functions for
the DS must never violate.

^ The sequence of actions in time. In addition, perhaps, the "answer" may involve a few of their s ide-effects.
E.g., (Respond 'YES').

p. 18 Lenat & Harris

When designing a DS, it is possible to provide mechanisms for holding a vast amount of

information Implicitly. In AM, e.g., the organization of concepts into a Genl/Spec �

h ie ra rchy (plus the assumed heritability properties; see 3.4) permits a rule to ask for

"all concepts more general than Primes" as if that were a piece of data explicit ly

s t o r e d in a DS. In fact, only direct generalizations are stored ("The immediate

general izat ion of Primes is Numbers"), and a "rippling" mechanism automatically runls up

the Genl links to assemble a complete answer. Thus the number of specific answers the

DS can provide is far greater than the number of individual items in the DS. T r u e ,

these DS mechanisms will use up extra time in processing to obtain the answer; this is

eff ic ient since any particular request is very unlikely to be made. Just as each rule

knows about a general situation, of which it will only see a few instances, that same

qual i ty (of wide potential applicability) is just as valuable for knowledge in DSs. These

are situations where, like Dijkstra's multiplier [8], the mechanism must provide any of

the consequences of its knowledge quickly on demand, but in its lifetime will only be

asked a few of them.

Now that we have seen how tacit information can be encoded into DSs, let us see some

cases where it should be — i.e., where it is not appropriate to encode it as rules of

the system. Many things get called implication, and only some of them cbrrespond to

rule application. For instance, there is logical entailment (e.g., if A A B then A), physical

causation (e.g., if it rains, then the ground will get wet), probable associations (e.g., if it

is w e t underfoot, then it has probably been raining.) These all describe the way the

w o r l d is, not the way the perceiver of the world behaves. Contrast them with

knowledge of the form "If it is raining, then open the umbrella". We claim that this last

kind of situation-action relationship should be encoded as rules for the RS, but that the

o ther t ypes of implication should be stored declaratively within the DS. Let's t r y to

jus t i f y this distinction;

T h e situation-action rules indicate imperatively how to behave in the world; the other

t y p e s of implication merely indicate expected relationships and tendencies within the

w o r l d . The rules of a RS are meant to indicate potential procedural actions which are

o b e y e d b y the system, while the DSs indicate the way the world (the RSs environment)

behaves in terms of some model of it. The essential thing to consider is what relations

are to be caused in time; these are the things we should cast as rules. The Ihs of a

rule measures some aspect of knowledge presently in DSs, while the rhs of the rule

def ines the attention of the system (regarded as a processor feeding off of the DS) in

the immediate future.

This is the heart of why rule-sets are algorithms. They are algorithms for guiding the

application of other (DS processing) algorithms. It also explains why other kinds of

implications are unsuitable to be rules. Consider causal implication ("Raining — > Wet").

While the Ihs could be a rule's Ihs (it measures an aspect of any situation), the rhs

should not be a rule's rhs (it does not indicate an appropriate action for the system to

t a k e) . 8

8 I n a RS thai aspires to any generality at all, an antecedent theorem of the form "if [you know that] it is raining,

then [assert that] it is wet" is not the appropriate form to store this knowledge; it is too comp.led a form,

Design of Rule Systems for Discovery p. 19

Most purist production systems have (often implicitly!) a rule of the form "If the left

side of an implication is true in the database, Then assert the right side". This is only

one kind of rule, of course, capable of dealing with implications. For example, MYCIN

and LT [17] (implicitly) follow a very different rule: "If the rhs of an implication will

sat is fy my goal, Then the Ihs of the implication is now the new goal". Other rules are

possible; many rules for reasoning may feed off the same "table" of world knowledge.

The point is that the implications themselves are declarative knowledge, not rules. In

summary, then, it may be v e r y important to distinguish rules (attention guides) from

mere implications (access guides), and to store the latter within the DSs. This policy

was not motivated by the scientific inference task for our RS. We believe it to be a

wor thwhi le guideline in the design of any RS.

4.4. Interpreter

Af te r a rule fires, the neo-classical interpretation policy (*9 in Figure 1) demands that

any rule in the system can potentially be the next one selected to fire. This is true

regardless of the speed-up techniques used in any particular implementation (say, by

preprocessing the Ihs's into a discrimination net [22]). But consider RSs for scientific

d i scove ry tasks. Their task — both at the top level and frequently at lower levels — is

quite open-ended. If twenty rules trigger as relevant to such an open-ended activity

(e.g., gathering empirical data, inducing conjectures, etc.) then there is much motivation

for continuing to execute just these twenty rules for a while. They form an ad hoc

plausible search algorithm for the agenda, item selected.

A RS for d iscovery might reasonably be given a complex interpreter (ru le - f i r ing

pol icy) . AM, for example, experimented with a two-pass interpreter: first, a best - f i r s t ,

agenda -dr i ven resource allocator and attention focusser selects the job it finds most

interest ing; second, it locates the set of relevant rules (typically about 30 to 40 rules)

for the job, and begins executing them one after another (in best - f i rst order of

speci f ic i ty) until the resources allocated in the first step run out [20]. The overall

rat ing of the job which these rules are to satisfy determines the amount of cpu time

and list cells that may be used up before the rules are interrupted and job is

abandoned.

For example, say the job were "Find examples of Primes". It's allotted 35 cpu seconds

and 300 list cells, due to its overall priority rating just before it was plucked from the

agenda. Say, 24 rules are relevant. The first one quickly finds that "2" and "3" are

primes. Should the job halt right then? No, not if the real reason for this job is to

gather as much data as possible, data from which conjectures will be suggested and

tested. In that case, many of the other 23 rules should be fired as well. They will

p roduce not only additional examples, but perhaps other types of examples.

standing alone I f told (or given) a rule like this, a learning system should "parse" it as a familiar kind of

deduction file the residue of new information away as a conjectured tendency of wetness to fol low rain, and

start checking for exceptions. A sophisticated (and lucky) discovery RS might thereby develop the concept of

shelter .

p. 20 Lenat & Harris

The jobs on AK/Ts agenda are really just mini-research questions which are plausible to

spend time investigating. Although phrased as specific requests, each one is really a

research proposal , a topic to concentrate upon. We found it necessary to deviate from

the simplest uniform interpreter for clarity (e.g., a human can follow the f i rst -pass (job

selection) taken alone and can follow the second-pass (job execution) by itself), for

eff ic iency (knowing that all 24 rules are relevant, there is no need to find them 35

times), and for power (applying qualitatively different kinds of rules yields var ious

t y p e s of examples). We claim this quality of open-endedness will recur in any RS

whose task is free concept exploration. This includes all scientific discovery but not all

scientific inference.

5. Speculations for a New Discovery System

The spirit of this paper has been to give up straightforward simplicity in RSs for

c lar i ty , eff iciency, and power. Several examples have been cited, but we speculate that

there are further tradeoffs of this kind which are applicable to RSs whose purpose is

to make new discoveries.

Of ten, there are several possible ways the designer may view the task of (and

subtasks of) the intended RS. We wish to add the notion of "proof" to AM, say. Should

w e represent proof as a resolution search, as a process of criticism and improvement

[11] spiralling toward a solution, as a natural deduction cascade, ...? Although any one

of these task-v iews might perform respectably, we advocate the incorporation of all of

them, despite the concomittant costs of added processing time, space, and interfacing.

In fact, we wish never to exclude the possibility of the system acquiring another task -

v iew .

We look for the development of further discovery tools in the form of domain-

independent meta-heuristics that synthesize heuristic rules, and in the form of abstract

heuristic schemata that specialize into efficient rules for each newly -d iscovered

domain. These discovery tools are all part of "getting familiar" with shallowly

understood concepts, such as synthesized ones tend to be initially. It may even be

that symbolic analogy techniques exist, cutting across the traditional boundaries of

knowledge domains.

We contemplate a system that keeps track of (and has methods with which it attempts

to improve) the design of its own DSs, its own control structure, and perhaps even its

o w n design constraints. Although working in (a collection of) specific domains, this

would be a general symbol system discoverer, capable of picking up and explor ing

formulations, testing them and improving them.

5.1. A New Set of Design Constraints

Below are 13 principles for designing a RS whose task is that of scientific theory

formation. The y are the result of reconsidering the original principles (Figure 1) in the

light shed b y work on AM. Most of the "pure" principles we mentioned in Figure 1 are

changed, and a few new ones have emerged.

gn of Rule Systems for Discovery p. 21

FIGURE 3: Scientific Discovery RS Architecture

1. Principle of Several Appropriate Memories. For each type of knowledge

which mast be dealt with In Its own way, a separate DS should be

maintained. The precise nature of each DS should be chosen so as to

facilitate the access (read/write) operations which will be most commonly

requested of It.

2. Principle of Maximal DS Accesses. The set of primitive DS access operations

(I.e., the read tests which a rule's ihs may perform, and the write actions

which a rhs may call for) are chosen to include the largest packages (clusters,

chunks,...) of activity which are commonly needed and which can be

performed efficiently on the DS.

3. Principle of Facetted DS Elements. For ever-growing data structures, there Is

much to be gained and little lost by permitting parts of one DS Item to point

to other DS Items. In particular, schematic techniques of representing content

by structure are now possible.

4. Principle of Rules as Data. The view which the RS designer takes of the

system's task may require that some rules be capable of reasoning about the

rules In the RS (adding new ones, deleting old ones, keeping track of rules9

performance, modifying existing rules,...). Some of the methods the RS uses to

deal with scientific knowledge may be applicable to dealing with rules as

welL In such cases, the system's rules may thus be naturally represented as

new entries In the existing DS which holds the scientific theory.

5. Principle of Regularities Among Rules. Each rule Is actually a rule schema.

Sophisticated processing may be needed both to determine which Instance(s)

are relevant and to find the precise sequence of actions to be executed. Such

schemata are often quite elaborate.

6. Principle of Avoiding Meanlnglessly-Coupled Rules. Passing special-pur pose

loop control notes back and forth Is contrary to both the spirit of pure RSs

and to efficiency. If rules are to behave as coupled, the least we demand Is

that the notes they write and read for each other be meaningful entries In DS

(any other rule may Interpret the same note, and other rules might have

written one Identical to It).

7. Principle of Controlled Environment. For many tasks, It Is detrimental to

permit external stimuli (from an environment) to enter any DS at random.

At the least, the RS should be able to distinguish these alien Inputs from

Internally-generated DS entries.

8. Principle of Tacit Knowledge. In designing the DS, much knowledge may be

stored Implicitly; e.g., by where facts are placed In a hierarchical network.

The DS should be designed so as to maximize this kind of concentrated,

analogical Information storage. Hence, hard-working access functions are

needed to encode and decode the full meaning of DSs.

p. 22 Lenat & Harris

9. Principle of Named Algorithms. When basic, "how to" knowledge is available,

it should be packaged as an operation and used as a part of the Ihs or rhs of

various rules. Embodying this chunk of knowledge as several coupled rules is

not recommended, for we will want to manipulate and utilize this knowledge

as a whole.

10. Principle of Rules as Attention Guides. Knowledge should be encoded as rules

when it is intended to serve as a guide of the system's attention; to direct its

behavior. Other kinds of information, even if stated in conditional form,

should be relegated to DSs (either explicitly as entries, or implicitly as special

access functions).

11. Principle of Inertial Interpreter. In tasks like scientific research, where

relevant rules will be performing inherently open-ended activities (e.g., data-

gathering), such rules should be allowed to continue for a while even after

they have nominally carried out the activity (e.g., gathered one piece of

data). In such cases, the occasional wasted time and space is more than

compensated for by the frequent acquisition of valuable knowledge that j was

concentrated in the later rules. For scientific discovery, no single \rule

(however "appropriate") should be taken as sufficient: a single rule must

necessarily view the task in just one particular way. All views of the task

have something to contribute; hence variety depends on a policy of always

applying several rules.

12. Principle of Openness. A discovery rule system can be enriched by

incorporating into its design several independent views of the knowledge it

handles. Never assume everything is known about a class of knowledge. All

appropriate formulations of a knowledge class have something to contribute;

hence variety depends on openness to new formulations.

13. Principle of Support of Discovery by Design. By representing its own design

explicitly (say, as concepts), the RS could study and improve those ooncepts,

thereby improving itself. This includes the DS design^, the access function

algorithms, how to couple them, the function of various rules, the

interpretation policy of the RS, etc. This suggests that the study of designs

of computational mechanisms may be a worthy area for a discovery system

to pursue, whether its own design is available to it or not.

Rule systems whose designs adhere to these guidelines will be large, elaborate, and

non-classical. We have mentioned throughout the paper several new complications

which the principles introduce. Trying to produce such a RS for a task for which a

9 e.g., the facet specifications. I f the input/output requirements change with time, so should the rule system's

data structures.

file:///rule

Design of Rule Systems for Discovery p. 23

p u r e , neo-classical production rule system was appropriate will probably result in

disaster . Nevertheless, empirical evidence suggests that RSs having this architecture

are quite natural — and relatively tractable to construct — for open-ended tasks like

scientific discovery.

ACKNOWLEDGEMENT

This research builds upon Lenat's Ph.D. thesis at Stanford University, and he wishes to

d e e p l y thank his advisers and committee members: Bruce Buchanan, Edward

Feigenbaum, Cordell Green, Donald Knuth, and Allen Newell. In addition, he gladly

acknowledges the ideas he received in discussions with Dan Bobrow, Avra Cohn, and

Randy Davis. Similarly, ideas received by Harris in two long and fruitful associations,

w i t h John Seely Brown and with Roger Schank, have contributed to this work. Many of

our ideas have evolved through discussions at CMU this past year, notably with Don

C o h e n , John McDermott, Kamesh Ramakrishna, Paul Rosenbloom, James Saxe, and

especial ly Herbert Simon.

REFERENCES

[0] Bledsoe, W. W., and Tyson, M., The UT Interactive Prover, University of Texas at

Austin, Depts. of Mathematics and Computer Sciences Automatic Theorem

Proving Project Report No. 17, May, 1975.

[i] Bobrow, D., "Natural.Language Input for a Computer Problem Solving System", in

(Minsky, M., editor), Semantic Information Processing, The MIT Press,

Cambridge, Massachusetts, 1968.

[2] Bobrow, D., and Winograd, T., An Overview of KRL, A Knowledge Representation

Language, Journal of Cognitive Science, Vol 1, No 1, January 1977.

[3] Bobrow, R., and Brown, J . S., "Systematic Understanding, in (Bobrow, D., and

Collins, A., eds.), Representation and Understanding, Academic Press, S.F., 1975.

[4] Buchanan, Bruce G., G. Sutherland, and E. Feigenbaum, Heuristic DendraL A

Program for Generating Explanatory Hypotheses in Organic Chemistry, in

(Meltzer and Michie, eds.) Machine Intelligence 4, American Elsevier Pub., N.Y.,

1969, pp. 209-254.

[5] Buchanan, Bruce G., Applications of Artificial Intelligence to Scientific Reasoning,

Second USA-Japan Computer Conference, Tokyo, August 26-28. Published by

AFIPS and IPSJ, Tokyo, 1975, pp. 189-194.

[6] Davis, Randall, Applications of Meta Level Knowledge to the Construction,

Maintenance, and Use of Large Knowledge Bases, SAIL AIM-271, Artificial

Intelligence Laboratory, Stanford University, July, 1976. J

[7] Davis, R., and King, J . , An overview of production systems, Report S T A N - C S - 7 5 -

524, Memo AIM-271, Stanford U. CS Department, 1975.

Dijkstra, E. W., "Notes on Structured Programming", in Dahl, Dijkstra, and Hoare,

Structured Programming, Academic Press, London, 1972, pp. 1-82.

Hayes-Roth, Frederick, and Victor R. Lesser, Focus of Attention in a Distributed C P]

p. 24 Lenat & Harris

Speech Understanding System, Computer Science Dept. Memo , Carnegie Mellon

University , Pittsburgh, Pa., January 12, 1976.

[10] Hewitt, Carl , Viewing Control Structures as Patterns of Passing Messages, MIT A I

Lab Working Paper 92, Apri l , 1976.

[11] Lakatos, Imre, Proofs and Refutations, Cambridge U. Press, 1976.

[12] Lenat, D., BEINGs: Knowledge as Interacting Experts, 4th IJCAI , Tbilisi, Georgian

SSR, USSR, 1975.

[13] Lenat, D., AM: An Artificial Intelligence Approach to Discovery in Mathematics as

Heuristic Search, SAIL AIM-286, Artificial Intelligence Laboratory, Stanford

University , July, 1976. Jointly issued as Computer Science Dept. Report No.

STAN-CS -76 -570 .

[14] McCracken, Don, A Parallel Production System Architecture for Speech
Understanding, CMU CS Dept. Ph.D. Thesis, 1977.

[15] Minsky, Marvin, "A Framework for Representing Knowledge", in (Winston, P., ed.),

The Psychology of Computer Vision, McGraw Hill, N.Y. 1975, pp. 211-277.

[16] Moran, T.P., The symbolic imagery hypothesis: An empirical investigation via a

production system simulation of human behavior in a visualization task, C M U

CS Dept. Thesis, 1973. See also 3IJCAI, pp. 472-477.

[17] Newell , Allen, J . Shaw, and H. Simon, Empirical Explorations of the Logic Theory

Machine: A Case Study in Heuristics, RAND Corp. Report P-951, March, 1957.

[18] Newell , Allen, and Simon, Herbert, Human Problem Solving, Prentice-Hall ,

Englewood Cliffs, New Jersey, 1972.
[19] Newell , A., Production Systems: Models of Control Structures, May, 1973 C M U

Report, also published in (W.G. Chase, ed.) Visual Information Processing, NY:

Academic Press, Chapter 10, pp. 463-526.
[20] Norman, D., and D. Bobrow, On Data-limited and Resource-limited Processes,

Journal of Cognitive Psychology, Volume 7, 1975, pp. 44-64.

[21] Poly a, George, Mathematics and Plausible Reasoning, Princeton University Press,

Princeton, Vol . 1, 1954; Vol . 2, 1954.
[22] Rychener, M. D., Production systems as a programming language for artificial

intelligence applications. Pittsburgh, Pa: Carnegie-Mellon Univers i ty ,

Department of Computer Science. 1976.
[23] Shortl iffe, E. K, MYCIN — A rule-based computer program for advising

physicians regarding antimicrobial therapy selection, Stanford A I Memo 251,

October, 1974.
[24] Waterman, D. A., Adaptive Production Systems, CIP Working Paper 285, C M U

Psychology Dept., 1974. See also 4 I X A I , pp. 296-303.

[25] Waterman, D. A., Generalization Learning Techniques for Automating the

Learning of Heuristics, A I Journal (forthcoming)

