

DESIGNING A USABLE MOBILE

APPLICATION FOR FIELD DATA

COLLECTION

Kyaw Hlwan Moe

A dissertation submitted to the Faculty of Engineering and the Built

Environment, University of the Witwatersrand, Johannesburg, in

fulfillment of the requirements of the degree of Master of Science in

Engineering.

Johannesburg 2004

 i

DECLARATION

This project is being submitted for the Degree of Master of

Science in Engineering in the University of the Witwatersrand,

Johannesburg.

I declare that this dissertation is my own unaided work. It is being

submitted for the degree of Master of Science in Engineering in

the University of the Witwatersrand, Johannesburg. It has not

been previously submitted for any degree or examination in any

other university.

(Signature of candidate)

_______ day of _________________ 200 ___

 ii

ABSTRACT

The advent of mobile technology, Geospatial Information Systems (GIS) and

convergence of voice and data over wireless networks have led to an explosion of a

wide range of mobile applications. These applications include mobile internet

browsers, handheld GPS navigation systems, Location Based Services (LBS),

mobile workforce management systems, and so on. While much of the underlying

technology is already available, there are challenges with respect to the usability of

mobile applications.

This project investigates the usability of a mobile application for field data collection

in a utility industry. The purpose of the investigation is to gain a better understanding

of the usability requirements for a mobile field data collection application but more

importantly, how to meet these requirements using appropriate usability engineering

techniques. A usage-centered design approach is used to design the user interface

for the field data collection application. During this model-driven design process, the

usability requirements are analyzed in terms of the user requirements, field data

collection tasks and the operational context of fieldwork. An Underground Utility

Closure (UUC) data sourcing work employed at a telecommunications utility is used

as a case study for the field data collection work. The user interface is implemented

as a functional prototype on a pocket computer and evaluated for usability in a field

setting. It is envisaged that the usability requirements and design guidelines

presented in this project will enable software engineers to meet the design

challenges of usable mobile applications for field data collection and mobile

computing in general.

 iii

In memory of my grandfather

U Ba Khin

 iv

ACKNOWLEDGEMENTS

Prof. Barry Dwolatzky, for his supervision, advice and support throughout the

project.

Prof. Rex van Olst, for organizing field trips and meetings with relevant people from

Telkom and Intergraph South Africa.

Eskom, for funding this research.

The operations manager and data sourcing personnel from the Telkom offices at

Horizon, Roodepoort for their cooperation with the field trips to data sourcing sites.

In particular, Mr. Dean van Inn and Mr. Wimpie Putter for giving permission to study

field data sourcing work at Telkom.

 v

TABLE OF CONTENTS

Page Number/
Document Number

Declaration ……………... i

Abstract ……………………………….................................. ii

Dedication …………………………...................................... iii

Acknowledgements ……………………............................... iv

Table of Contents ………………... v

Foreword …………………... vi

Introduction …………………………………………............... 1

MSc Paper – K. Moe ………………………………............... 3

Conclusions ………………………….………………............. 14

Developments and Recommendations……........................ 18

References and Bibliography ……………………................ 21

Appendix A

Literature Survey ………….. Doc. No. 1

Software Requirements …... Doc. No. 2

User Interface Design ……………............................. Doc. No. 3

Software Design …………………………....................Doc. No. 4

Usability Evaluation ………….....................................Doc. No. 5

Appendix B

UUC data sourcing forms…….………….................... Doc. No. 6

Usability test questionnaires & data logging forms.....Doc. No. 7

iPaq H3900 Specification Sheet……......................... Doc. No. 8

 vi

FOREWORD

The format of this Masters Dissertation differs from a standard dissertation format

mainly because it consists of a short body and numerous appendices. The body

consists of an introduction, a technical paper, a conclusion, a recommendations

section and references. In essence, the substance of this dissertation is in the body

of the report. The technical paper provides an overview of the project and highlights

the most important findings of the research. Conclusions, recommendations and

future work regarding this project are proposed in the conclusions and

recommendation section. The appendices support the body of the dissertation by

providing a detailed report of the research.

The appendices are divided into two groups, namely Appendix A and Appendix B.

The former contains documents pertaining to the literature survey (Doc. No. 1),

software requirements (Doc. No. 2), user interface design (Doc. No. 3), software

design (Doc. No. 4) and usability evaluation (Doc. No. 5). The latter contains other

relevant documents such as the data sourcing forms (Doc. No. 6), usability

questionnaires (Doc. No. 7) and technical specifications for the target device (Doc.

No. 8). Noticeably, each document has a unique numeric identifier (e.g. Doc. No. 1)

that the report uses as a reference to a particular document.

 1

INTRODUCTION

The advent of mobile technology (e.g. handheld computer, mobile phones, and

portable GPS receivers etc.), Geospatial Information Systems (GIS) and

convergence of voice and data over wireless networks (GSM, GPRS, 3G, Wireless

LAN, and Bluetooth etc.) have led to an explosion of a wide range of mobile

applications. These applications include mobile internet browsers, Location Based

Services (LBS), mobile multimedia, “real-time” field data collection for resource

management, and so on. While much of the underlying technology is already

available, there are challenges with respect to the usability of mobile applications.

Mobile computing is fundamentally different from their desktop counterparts. The

software designers must meet these challenges and capitalize on unique

characteristics of mobile devices such as a small screen, limited input mechanisms,

finite power supply and network dependency etc. Not only are there differences in

the technology, but also the environment and situation in which mobile applications

are used.

The project described in this dissertation involves an investigation into the design of

usable mobile field data collection application. The purpose of the investigation is

twofold. Firstly, to understand usability requirements of a mobile application for field

data collection and secondly, to design software that meets those usability

requirements. The investigation begins with the literature survey on a number of

topics pertaining to a mobile computing, particularly the usability of mobile

applications. This is followed by the design and testing of a user interface for the

field data collection application. An Underground Utility Closure (UUC) data sourcing

work employed at a telecommunications utility is used as a case study to gather

software requirements. The user interface design for the field data collection

application is implemented as a working prototype on a mobile device. With the help

of data sourcing personnel the prototype is evaluated for usability in a field setting.

The requirements gathering and analysis process is described. The requirements

elicitation techniques include interviews with the intended users, observation of their

 2

work and the analysis of data sourcing forms. A model-driven usage-centered

design process is used to analyze the software requirements by placing more

emphasis on the tasks and the operational context of the users’ work rather than the

users themselves. A complete software design for the field data collection

application is presented. It consists of two separate layers supporting the user

interface and the application proper, respectively. The former is concerned primarily

with the presentation of the user interface whereas the latter is responsible for the

functionality of the field application. The user interface is implemented as a

functional prototype on a Pocket PC operated Personal Digital Assistant (PDA) and

the selection of the target platform is also discussed. An object-oriented software

design process called ICONIX is used to design and illustrate the application

architecture which is really a high-level overview of functionality and data structures

of the field application. The usability evaluation of the prototype with the test results

are then discussed.

 3

Abstract—This paper investigates the design of a usable

mobile application for field data collection work employed

in a utility industry. The purpose of the investigation is to

gain a better understanding of usability requirements for a

mobile field data collection application but more

importantly, how to meet these requirements from a

usability engineering standpoint. A model- driven usage-

centered design approach is adopted to design the user

interface. The field data collection work used in this project

is based on a case study of Underground Utility Closure

(UUC) data sourcing work carried out at a

telecommunications utility. The usability requirements for

the mobile field application are analyzed in terms of the

user requirements of UUC fieldworkers, the data sourcing

tasks and the operational context of fieldwork. The user

interface is designed to meet the usability requirements and

its design features are discussed. The user interface is

implemented as a functional prototype on a pocket

computer and evaluated for usability in the field. Overall, it

is felt that the prototype is able to meet the usability

requirements and the design challenges of usable mobile

field application.

Keywords: Field Data Collection, Mobile computing,

Usability, User Interface Design

1. Introduction

HE past few years have seen significant rise in the

use of mobile applications ranging from common

SMS and WAP services to the Location Based Services

(LBS), GPS navigation system, mobile Geospatial

Information Systems (GIS) systems, mobile workforce

management systems etc. Although much progress has

been made in technological innovations, mobile

applications typically suffer from poor usability. Mobile

computing is fundamentally different from the much

studied desktop counterpart. Not only are there inherent

differences in the technology, but also in the nature of

user interaction, usage patterns and environment in which

people use mobile applications. Unfortunately, well-

established usability design guidelines and techniques for

desktop applications are not always suitable for mobile

use. Hence, appropriate usability guidelines, new

paradigms for interaction styles and data presentation

techniques are needed to meet the design challenges of

usable mobile applications.

In this context, this paper presents the design of a

usable mobile application for field data collection in the

utility industry. The primary objective of the project is to

investigate the usability requirements of a mobile field

application and to meet these requirements through use of

appropriate usability design techniques. A field study of

data sourcing work employed at a telecommunication

utility is used to gather usability requirements. A model-

driven usage-centered design approach is used for

requirements analysis and the subsequent design of the

user interface. The user interface is implemented as a

working prototype on a PDA. User satisfaction of the

prototype is determined using an empirical usability test

in a field setting.

The background information on mobile computing

particularly that pertaining to the usability of mobile

applications is provided in section II. Section III

describes the deployment of mobile technology for field

data collection in the public utilities. Recent trends in

usable software design process and methodologies are

presented in section IV. The software requirements

elicitation and analysis for the field data collection

application are described in section V. The user interface

design process and usability design features of the

prototype are highlighted in section VI. Object-oriented

software architecture of the field application is presented

in Section VII. The usability evaluation of the prototype

Designing a Usable Mobile Application for

Field Data Collection

Kyaw H. Moe

School of Electrical and Information Engineering

University of the Witwatersrand

T

 2

and its findings are discussed in section VIII. And finally,

more research work is recommended in section IX.

2. Mobile Computing

Mobile devices (mobile phone, palm-top computer and

tablet computer etc.) have made remarkable advances in

terms of technological innovation. For instance, they now

come with high resolution full-colour screens, Bluetooth,

GPRS and various add-on accessories such as GPS,

digital cameras, infrared scanners and so on. In addition,

convergence of voice and data networks and the next

generation networks (e.g. 3G [1]) on the horizon will

only increase the data throughput, bandwidth and

coverage area of mobile networks. While much of the

underlying technology is already available in handheld

and mobile computing, there are challenges with respect

to the usability of mobile applications.

Usability is defined as “the extent to which a product

can be used by specified users to achieve specified goals

with effectiveness, efficiency, and satisfaction in a

specified context of use” [2]. Contrary to what some

might think, usability is not just the appearance of the

user interface (UI) but also relates to how the system

interacts with the user. Usability constitutes five basic

attributes [2]:

1) Learnability – How easy it is to learn the main

system functionality and gain proficiency to

complete the job.

2) Efficiency – is measured in terms of the number of

tasks per unit of time that the user can perform using

the system.

3) User retention over time – It is critical for

intermittent users to be able to use the system

without having to climb the learning curve again.

This attribute reflects how well the user remembers

how the system works after a period of non-usage.

4) Error rate – This attribute contributes negatively to

usability. It addresses the number of errors the user

makes while performing a task.

5) Satisfaction – This attribute measures the user’s

subjective impression of the system.

In general, usability of a mobile computer is poor

compared to its desktop counterpart. As a prime example,

the uptake by customers in many countries for new

WAP-enabled mobile phones has been disappointing [3].

The most common reason of failure is that web site

designers simply try to carry their web sites over to the

mobile Internet [4]. In order to produce highly usable

mobile applications, software designers need to

understand and take advantage of unique characteristics

of mobile computing in terms of the technology, user

population, usage patterns but more importantly, the

context and the environment in which mobile devices are

used.

Mobile computing is a relatively new paradigm that is

fundamentally different from the much studied desktop

computing [5]. There are a number of unique features and

characteristics that are intrinsic to mobile computing. The

mobile devices, for example, are resource-poor relative to

their desktop counterparts. They are limited in terms of

disk space, memory, processor speed, battery life and

screen size etc. They are also dependent on the mobile

networks that are highly variable in performance and

reliability. The differences, however, are not limited to

the technology but also in the usage patterns, the context

and environment in which mobile computers are used.

Mobile environment is heterogeneous where the users are

faced with different situations that change constantly. In

general, mobile work can be described as [6]:

1) Dynamic – the interaction between the system and

user is highly fluid.

2) Contextual – applications are highly related to the

context of where they are in [4], [7].

3) Limited Attention – users can only pay limited

attention to applications.

The fieldworkers, for example, often find themselves

in awkward situations where they need to crawl, climb or

walk while they do their work. They are involved in tasks

external to operating the mobile computers that demand a

high level of visual attention (e.g. to avoid danger or

monitor progress) [8]. The user’s hands are also used to

manipulate physical objects as opposed to users in a

traditional office setting where the hands are safely and

ergonomically placed on the keyboard. Under such

circumstances, traditional UI design techniques and

guidelines do not apply well to mobile systems [8], [9].

As a result, new paradigms for data presentation and

user interaction techniques are explored to leverage the

usability of mobile devices. For example, some

researchers have used informative feedback mechanisms

[10] and contextual information to reduce demand of user

attention (i.e. “a minimum-attention user interface”) [8],

[9]. Others have discovered the most appropriate methods

for displaying dynamic text on mobile devices with

 3

various screen sizes [11] and innovative ways to reduce

the size of UI components on without compromising the

usability [12].

3. Mobile Application for Field Use

To be proficient and competitive in a global market

means companies must properly manage their

infrastructure, workforce and other resources. Asset

management enables these companies to operate in an

optimum efficiency by allowing better management

decisions based on accurate information about their

assets. One such case is in the utility industry (e.g. water,

electricity and telecommunications) where there is a need

to capture and maintain comprehensive information about

the network according to their location, technical

specifications and logical configurations (see Fig. 1).

Only then they can carry out their service and

maintenance operations efficiently and productively.

In many developing countries, including South Africa,

the public utilities do not yet have complete information

about their networks, and they are in the process of data

collection and verification. One of the major challenges

is to find appropriate methods and technologies needed to

collect data from the field and integrate “seamlessly”

with existing network information. One such method is to

use teams of mobile workers to do a complete field audit

[13]. Though labour-intensive, it is one of the most

inexpensive and effective way to gain accurate

information about network assets as they exist in the

field. The Landbase Layer (see Figure 1) represents a

geographic location of the asset and therefore

implemented using GIS database systems. Typically, the

mobile data collection personnel are given paper maps

and data sourcing documents to collect geographically

referenced asset information. However, these paper-

based workflow systems are often time consuming, error-

prone and difficult to create a heterogeneous platform to

share information.

A mobile solution, on the other hand, allows a much

more efficient information exchange between the field

and the corporate database [14]. A typical scenario would

be where the latest asset information is downloaded (e.g.

via a wireless network in “real-time”) to a mobile

terminal in the field which the data sourcing personnel

verifies and updates the changes back to the database.

The mobile technology, of course, is not entirely new to

the utility industry where the tablet computers and GPS

devices were widely used in various field activities for

many years. The new generation mobile devices,

however, are much smaller, more technologically

advanced and significantly cheaper [15], [16]. As a

result, mobile devices are now required to do more

sophisticated, integrated functionality (e.g. mobile GIS

[17]) and they are used in greater numbers by a larger

percentage of mobile workforce.

4. Usability Design Process

The use of appropriate usability engineering

techniques and methods is crucial to a successful design

and subsequent development of usable software. This is

no easy assignment. There are differing viewpoints on

how to achieve software usability. For example, some

designers place great emphasis on the users whereas

others more on the work that the users are involved in.

This section gives a brief overview of some of the most

recognized usability design guidelines, design processes

and methodologies employed in the development of a

usable software.

A. Usability Design Guidelines

Basic usability design guidelines often help software

designers make reasonable decisions that lead to highly

usable systems. The guidelines include both the usability

“rules” and design principles. The rules define the

general character of what constitutes well-designed,

usable systems. These rules provide a broad, overall

directions for UI design, pointing designer towards a

generally superior solution. The design principles, on the

other hand, provide a narrower guidance on more specific

issues in software design. There are many usability

design guidelines (may extend to hundreds of pages), and

it is beyond the scope of this paper to describe all of

Maintenance Service Build

Operations

Logical Layer

Physical Layer

Landbase Layer

Fig. 1. Data model of network infrastructure in the utilities.

 4

them. However, some of the most common usability

rules and guidelines are listed below [18], [19]:

• Simple and natural dialogue

• Speak the user’s language

• Minimize user memory load

• Strive for consistency

• Offer error prevention, and simple error handling

• Provide clearly marked exits

• Provide informative feedback

• Permit easy reversal of actions

• Support internal locus of control

• Enable frequent users to use shortcuts

Strictly speaking, these usability rules are simple rules

of thumb that generally point the way to better designs

but without any general guarantee of good results. These

guidelines are very general and some of them may not be

applicable for all software systems. They do not resolve

design issues on their own and are no substitute for

thoughtful analysis or inspired creativity on the part of

the designer.

B. User-Centered Design (UCD)

Basic computer programming and software

development did not always have a concern for the end

users or a focus on the usability of systems. Although

software designed in a technically-oriented manner

performs processing adequately, the code that is

produced rarely meets human needs. In the past, a large

percentage of computer users composed of programmers,

technicians and engineers. The current users, however,

are not dedicated to the technology, their background is

more tied to workflow, and their use of computers may

be discretionary. As a result, there is a gradual shift from

focus on technology to a focus on people (users). This

consciousness became a dominant force in software

design and development in the form of a User-Centered

Design (UCD) process. The UCD is essentially a user-

centric software design methodology that focuses on

users and their needs in an effort to design usable

software. The UCD is defined as [20]:

“an active involvement of users for a clear

understanding of user and task requirements, iterative

design and evaluation and a multi-disciplinary

approach.”

Unfortunately, the UCD practitioners do not always

know how central the users are in the development of

usable systems although the importance of user feedback

is emphasized throughout the UCD process. A recent

survey [20] has shown that only 13% of the UCD

projects engaged in a full UCD approach in the sense

of user involvement at all three stages of the

development cycle. The methods used in the UCD

process can include anything from informal usability

testing, low-fidelity prototyping, heuristic evaluation

and navigation design to scenario-based design. But

there is a major discrepancy between the commonly

cited measures and the actually applied methods

[20]. For example, field studies were generally

ranked high on practical importance but relatively

infrequently used because they are costly, whereas

heuristic evaluations are preferred because they are

relatively easy and inexpensive.

C. Usage-centered Design

A usage-centered design process also represents a

shift in focus from the technology to the users. But unlike

the UCD, the usage-centered design focuses primarily on

the work or tasks that the users are attempting to

accomplish rather than the users themselves. The usage-

centered design views software systems as tools and “to

design dramatically more usable tools, it is not users who

must be understood, but usage – how and for what ends

software tools will be employed” [21].

This model-driven design process uses the essential

models [22] to capture the relationship of users and their

tasks with the software system and subsequently

determines the content and behaviour of user interface

(see Figure 2). These abstract models are briefly

described below [22]:

Fig. 2. A usage-centered design process [22].

 5

1) Role model – the relationship between users and the

system.

2) Task model – the structure of tasks that the users will

need to accomplish.

3) Content model – the tools and materials needed to be

supplied by the user interface, organized into useful

collections and the interconnections among these

collections.

4) Operational model – the operational context in

which the system will be deployed and used.

5) Implementation model – the visual design of the user

interface and description of its operation.

5. Software Requirements

The software requirements for the field data collection

application are identified and subsequently analyzed

during the requirements engineering phase of the project.

These requirements concern the usability, and

functionality of software, as well as the target device on

which the field application will run. The data sourcing

work employed at Telkom, the country’s largest

telecommunications utility, is used as a case study to

obtain software requirements for the field data collection

application. This section briefly describes the data

sourcing work employed at Telkom. In addition, the

elicitation, analysis and specification of usability

requirements for the field data collection application are

explained.

A. UUC Data Sourcing Work

Telkom keeps its vast, complex network of cables

underground and these cables pass through the

Underground Utility Closures (UUC). The UUCs are

constructed as manholes that one typically finds on the

city’s streets and pavements. As part of an asset

management, the utility keeps record of the network

infrastructure by doing regular data sourcing activity. The

data sourcing team is required to go inside the UUCs and

obtain information about the network assets such as

cables, ducts and joints etc. The data sourcing personnel

are required to do a complete field data audit. They

collect information about the UUC including its location,

construction status, dimensions etc. They use paper street

maps detailed with locations and IDs of UUC.

Inside the UUC, information collected includes the

specifications of cables, joints and ducts. A UUC may

contain hundreds of cables, joints and ducts depending on

the size and location of the UUC. The interconnection

(origin, destination, direction etc.) of these network

elements are recorded using detailed drawings and

specification tables. The data collection personnel works

collaboratively in a team. Typically, each team consists

of three members; one worker enters the data into the

sourcing forms, the other two assist him by looking for

the asset information. The workers communicate with

each other verbally, and they “share” the asset

information by reading out loud.

B. Requirements Elicitation

The approach adopted in this project is to interact

directly with the intended users of the field application in

order to gather the most accurate requirements

information. The UUC fieldworkers are the intended

users, and they provided not only invaluable information

about the data sourcing work but also about themselves.

A multiple requirements elicitation technique is used to

gather as much requirements information as possible.

The techniques used include the user interviews,

observation of their work and domain analysis. During

the interviews, the fieldworkers were asked about the

data sourcing work, and their background particularly the

computer skills and familiarity with mobile technology.

The data sourcing work is largely a form filling activity,

and to understand what the work is about, it is

appropriate to analyze the data sourcing forms. The

information contained in these forms explained the nature

of information sourced, the level of detail required, and

the accuracy of data entered.

Unfortunately, interviews and form analysis came

short of explaining how the data sourcing work is

actually done – in terms of interactions required, the

context and environment etc. As a result, the data

sourcing workers were observed while they do their work

inside the UUC. From the data sourcing team, a group

Fig. 3. The cable network inside the UUC.

 6

leader was selected as a “field guide” and he was able to

not only answer a broad range of issues relating to their

work, but also highlighted the most important aspects of

the fieldwork as well. A video recording of the site visits

brought the field data back to the research lab and a more

in-dept analysis of recorded material is done by

identifying important details that were previously

overlooked.

C. Requirements Analysis

The software requirements are analyzed in terms of the

needs of intended users, the nature of data sourcing tasks

and the operational context of fieldwork. An in-depth

understanding of the relationship of users with the system

is established through the user role model [23]. It

identifies a number of different roles of users to be

supported by the field data collection application. In

doing so, it captures the expectations, behaviour and

responsibilities of the users in each role. Similarly, the

task model [24] is used to understand in substantial

detail what the users will be trying to accomplish in their

work using the field application, and how they will need

to go about it. Part of this model-driven task analysis

process is the use of essential use case [24]. An essential

use case focuses on the purpose or intentions of the user

rather than on the concrete steps or mechanism by which

that purpose or intention is carried out. This problem-

oriented view of the tasks leaves open many possibilities

for the subsequent design and implementation of the user

interface.

The context in which data sourcing work takes place

(i.e. operational context) is captured in the operational

model [25]. The operational model constitutes

characteristic of users and those important aspects of

work that are most likely to affect the usability design.

The operational context is important because it affects

various design objectives, such as the speed of operation,

accuracy, ease of learning, readability, and the like. It

also has direct impact on highly specific design decisions

and details, such as the appropriate use of sound, colour,

arrangement of UI controls etc.

The constituents of the operational model for the field

data collection application are outlined below:

1) User Profile – The UUC fieldworkers have the

expertise and knowledge about the fieldwork but

limited computer skill.

2) Proficiency Profile – The UUC fieldworkers are

expected to use the field data collection application

as well-informed users (as opposed to experts or

novice users). It is expected that users would be

given some basic training before they use the

application.

3) Interaction Profile – Because the UUC fieldworker

works collaboratively with his co-workers, he is

always under pressure to keep up with the rest of the

team without slowing them down. Under these

circumstances, he learns to do thing quickly and

opportunistically. The result is a high rate of user

interactions amplified by the repetitive nature of data

sourcing tasks. There is no predefined sequence of

interaction by the user when he is entering the data

into the sourcing templates. Consider a scenario

where the user prepares to enter a cable specification

number but his colleague is still busy finding it.

Then another co-worker shouts out the specification

number of another cable, forcing the user to abandon

the former to search for a new cable in the cable

network.

4) Information Profile – As would be expected,

information flows predominantly from the user into

the system. By and large, the data sourcing work is

not a problem-solving activity hence the information

that is entered is not calculated but rather obtained

through verbal and visual means (i.e. through

observations and asking co-workers). The nature of

information sourced is rather straightforward but

most of the information is presented graphically

(drawings, tables, schematics etc.) and hence may

appear to be somewhat complex (see example in

Figure 6). The volume of information, of course,

varies according to the number of cables and ducts

inside the UUC. A typical UUC contains a few

dozen cables, joints and ducts. If one considers

approximately eight data attributes (specification

number, construction status etc.) for each of these

elements, it adds up to hundreds of separate data

attributes collected from a single UUC.

5) Environment Profile – The data sourcing work takes

place both inside and outside the UUC. Outside the

UUC, the user would be standing on the street or

pavement exposed to the environmental elements

(rain, bright sunlight etc.). In addition, the user needs

to contend with noise generated by motor vehicles

and other road users. Inside the UUC, however,

visibility is poor due to lack of natural light. There is

also a moderate level of noise and echoes generated

by verbal communications between fieldworkers as

well as constant beeps and alarms from safety

 7

equipments (e.g. gas detector).

D. Usability Requirements

The usability requirements for the UUC data collection

application are specified as follows:

1) The user interface should be highly intuitive so that

the users with limited computer skills will be able to

relate it to their work with minimum technical

support (help manuals, training etc.).

2) A high rate of user interaction and the repetitive

nature of data sourcing tasks call for a user interface

that is optimized for efficiency.

3) A high rate and concentration of interaction often

results in the user making errors, hence the user

interface should be fault tolerant, or better still,

minimize and prevent users from making errors in

the first place.

4) The user often works collaboratively, drawing his

attention away from the system. Hence, the user

interface should demand minimum amount of user

attention.

5) Because the data sourcing work is primarily about

the data entry, the system should be oriented towards

receiving and validating data with minimum effort

from the user.

6) A fairly high volume and graphical nature of

information that is sourced needs to be presented

clearly and comprehensively on a relatively small

screen of a mobile device.

7) Due to a lack of predefined sequence of action in a

data entry work and generally unpredictable nature

of fieldwork, the user should be given control of the

system whenever possible (i.e. the need for

flexibility).

E. Functional Requirements

A high-level overview of functionality the field data

collection application is specified after the analysis of

users, their work and operational context. A detailed

functionality of the application, however, is presented in

the software design model. A brief overview of

functionality of the field data collection application is

described below:

1) Provide the user with all the UUC sourcing

templates on a mobile device for field data

collection.

2) Save the asset information in a format that is

compatible or can be read from corporate GIS. For

example, most commonly used files are XML and

.txt files. And temporarily store the asset information

on a mobile device until the data can be

synchronized with a database on a desktop computer.

3) Present the user with a data sourcing map that

contains details such as the asset identification,

location, names of streets and suburb etc. The user

must be able to navigate and search for assets, streets

and suburb etc.

F. Hardware Requirements

It is important that the target device has the capability

to support functionality required by the field application.

It is equally important that it is able to operate effectively

in the environment and the context in which field

application will be used. The goal, therefore, is to find

the most suitable mobile device for the field data

application by specifying the hardware requirements. The

criteria for the mobile device for field data collection

application are that it must:

1) Be lightweight and portable (preferable to be able to

carry in one hand).

2) Be water-proof, dust-proof and shock-proof (or drop-

proof).

3) Operate equally well in all light conditions from

darkness to direct sunlight.

4) Have a display with high resolution to view data

sourcing map with a high level of detail.

5) Have a wireless network capability as well as a serial

connection to a desktop computer for data

synchronization.

6) Have enough disk space to store the asset

information collected over a period of a few weeks

or months.

7) Support a rich set of text-entry tools or input devices

for data entry.

8) Have a battery life that lasts for at least one working

day (approximately 8 hrs).

6. User Interface Design

The user interface design is probably the most

important aspect of a usable software development

process. This is because the users interact with the

system primarily through the user interface. Hence, most

of the usability problems that the user encounters are

directly related to the user interface.

 8

A usage-centered design [21] approach is used to

design the user interface for the field data collection

application. An in-dept knowledge about users, their

tasks and the operational context gained during the

requirements analysis phase directs the user interface

design process (as shown in Figure 2). A two-step

approach is adopted to produce the user interface. The

content of user interface is first determined and thereafter

its layout, appearance and behavior are implemented. The

user interface is implemented as a working prototype on

a pocket computer. The design and implementation of the

user interface are discussed in the sections below.

A. Content Model

The contents of various interaction contexts in which

field data collection work takes place is represented using

the content model. The content of interaction context

contains collections of abstract tools and materials

needed to carry out some particular task or set of

interrelated tasks. The tools supply the functions and

active capabilities required to complete a task whereas

materials are the data containers, displays or work areas

upon which the tools of the user interface can operate

(see example in Fig. 4). Each interaction context supports

one or more essential use cases. The use cases that

closely resemble each other are supported by a common

interaction context.

The interrelationships between different interactions

contexts are represented using a navigation map (see

Fig. 5). This map determines the navigation patterns

between various screens of the user interface later on

in the implementation phase.

B. Implementation Model

The implementation model is a representation of

how the user interface will actually look and function.

In other words, the abstract components of the content

model are now implemented into tangible user interface

components (e.g. buttons, textbox, screen etc.). In order

to close the gap between the abstraction and final

implementation of the user interface, the following

questions are addressed:

1) Contexts – What are the implemented interaction

contexts?

2) Components – What are the user interface

components within contexts?

3) Composition – What is the layout and organization

of components in each interaction context?

The implementation model is realized using a high-

specifyUUB
specifyUUBcontent

specifyManholeCovers

placeCable
placeJoint
browseNetwork
changeNetworkConnections
makeNote

specifyJoint

changeJointSpecs

specifyDuct
changeDuctSpecs

insertSpliceNo
insertJointSpecNo

specifyCable

changeCableSpecs

insertCableSize

placeDuct
changeDuctLocation

enterSourcingTeam

enterSourcingTimes

enterSiteInformation

findUUC

Fig. 5. The navigation map for interaction contexts.

 Enter manhole information

 TextEntryTool

��������	
��	�
���	�����	�������	

��	�����	��	���	����������	�����

ItemSelecter

�����������	
��	����������	������	�

�����	���	��������������	�������	�

�	�	����������������� 	�����

UUBspecificationsHolder

� � � � � 	 � � � � ! ! " � � � � 	 � � � � � � �

��������������������	����

ManholeShapeHolder

����	������	��������	�������������

���	�����������������	�����	��#���	

������	��

ManholeCoversHolder

�����	���� !!"� ��
	� � ���	��� ��	

����	���#���
	���	����

UUBcontentInfoHolder

�����	����!!"�����	������������	�

�	
	����

Fig. 4. The content model for Enter Manhole Information interaction context.

 9

fidelity prototype – one that closely resembles what the

final system would appear and behave. Unlike a paper

prototype such as a sketch of user interface, a functional

or high fidelity prototype requires a hardware platform

for it to run on. For this purpose, three types of mobile

devices, namely a mobile phone, a Personal Digital

Assistant (PDA) and a tablet computer were evaluated for

suitability according to the software, hardware and

usability requirements of the field data collection

application. It emerged that the PDA is the most suitable

device of the three. It has a superior functional capability

(e.g. better text-entry tools, bigger disk space, expansion

packs for GPS, bar-code scanner, GPRS etc.) than a

mobile phone, and significantly cheaper and more

portable than a tablet computer. The iPaq™ H3900 from

Compaq™ was selected as the target device which runs

on a Pocket PC operating system. A conscious decision

was taken to run the prototype on this particular platform

although it is being criticized for duplicating its desktop

counterpart [8], [9]. This project, however, took a

pragmatic approach by selecting a platform with the most

sophisticated functionality which makes it most likely to

be used for a modern field data collection application.

C. Usability Features

The main usability features of the user interface for the

UUC data collection prototype are highlighted below:

1) Efficiency – The prototype is designed to increase

the speed and accuracy of the data sourcing work. It

does this by limiting the number of user actions to a

minimum when entering data into the system. For

example, the user selects from a predefined list or

combo box rather than typing in the data using Soft

Input Panel (SIP). The latter is more time-consuming

than the former and generally, data entry tools such

as the handwriting recognition software present a

steep learning curve for the novice users.

Automating certain data entries also helps improve

the speed and accuracy of the data entry work. The

user errors are prevented from taking place in the

first place by disabling controls when they are not

applicable. For entries that cannot be pre-populated

or automated (i.e. UUC dimensions, gas readings

etc.) the data is validated on entry. It is accompanied

by a comprehensive error message if the user fails to

enter data correctly. Resource-intensive items such

as graphics and long specification lists are

prepopulated so that the user waits only once when

the program is loading rather than during the data

sourcing tasks.

2) Demand of user attention – A number of design

techniques are used to achieve a minimum-attention

user interface. Firstly, the user is constantly informed

about the status of the system by means of audio and

visual feedbacks. The visual components, for

example, are enhanced with unique sounds to

provide informative feedback to better locate targets

on the user interface. And secondly, user memory

load is reduced by using graphical displays (as

opposed to describing in text – “a picture worth a

thousand words”), automation and predictive system

response. The system, for example, automatically

traces the cable path when the user clicks on the duct

to which it is connected. If the user has to manually

browse through the entire cable network to find a

particular cable, it would require a high level of

concentration and visual attention from the user. In

an another example, the user is assisted in finding a

sense of direction and orientation inside the UUC by

providing the user with topographic view of the

UUC that dynamically displays the routeface that he

is working on and its orientation with respect to

other routefaces (see Fig. 6).

 10

3) Presentation – The appearance of the user interface

is designed to be simple, intuitive and aesthetically

appealing. Each screen of the user interface has a

well-defined structure which is consistent across all

screens. The headings, content and navigation bar

are placed at the top, center and bottom of the screen

respectively. Differing colours and fonts are used to

distinguish various components and more

importantly, their functionality. It is assumed that the

users are not necessarily knowledgeable with the use

of standard Windows widgets and components that

come with a Pocket PC platform. Hence, their

functionality is made obvious to the user. The use of

pop-up, nested menus and other hidden features are

avoided. The user interface is further simplified by

presenting only those functions that are absolutely

necessary to complete the data sourcing tasks – the

notion of What You See Is What You Need

(WYSIWYN) is strictly applied. The biggest

challenge is probably “converting” graphical

drawings on the paper sourcing into a format that is

suitable for use on a relatively small PDA screen.

Although there are tools (e.g. Scalable Vector

Graphics [26]) specifically designed to display

graphics on mobile devices, use of innovative

metaphors and new information presentation styles

are often necessary to ensure comprehensibility and

ease of user interaction. The tree architecture, for

example, is more suitable to show interconnections

of network nodes on a PDA screen rather than

merely displaying the sketch of cable network on the

mobile device (see Fig. 6).

4) Human-Computer Interaction – The nature of user

interaction is primarily a direct manipulation where

the user taps the touch screen of the PDA using a

stylus. The SIP is a primary means of text entry for a

PDA and it forms part of the direct interaction with

the system. The indirect means of interaction

includes an external keyboard, a navigation button

and programmable shortcut buttons. The external

keyboard is awkward to use because the user is often

standing and there is no flat surface inside the UUC

to place the keyboard. A direct-manipulation

interaction style remains the most effective means of

user interaction with the PDA. Hence, the prototype

is designed to exploit a wide range of gestures and

movements of the stylus on a touch screen. For

example, dragging the page using a stylus is as

effective as using a vertical scrollbar. The user

interface is also designed to quickly respond (by

visual and audio means) to user actions which

happen relatively rapidly with the direct

manipulation interaction style.

5) Navigation – The navigation on the field data

collection prototype is based on the navigation map

(see Fig. 5) of interaction contexts. By and large,

navigation patterns are designed to support a

workbench-style user interaction. This style of

navigation provides the user with the freedom to

move between different interaction contexts and

adopt the workflow that is most appropriate for him.

On the surface, a step-wise pattern of workflow

Fig. 6. The user interface for the topographic view of UUC cable network.

 11

seems to provide a simpler user interface because at

each step the user typically makes a single choice or

enters one bit of information before going on to the

next step. The consequence, however, is that there

are too many tiny, time-consuming steps which are

unsuitable for frequent and repetitive tasks such as

specifying hundreds of network nodes. The

workbench interaction, on the other hand, requires

significantly fewer steps but the outcome is a

compact, flexible and feature-laden user interface.

6) Data-sourcing map – an off-the-shelf GIS mapping

software from Intergraph called IntelliWhere

OnDemand™ is used to display the data-sourcing

map (see Figure 7). The user interface prototype runs

as a custom application over this software on a PDA.

The data is downloaded to the client from the

desktop GIS software namely GeoMedia™. After

the data sourcing is complete, the data is uploaded

back to the desktop computer and the changes

synchronized with the database (MS Access, SQL

etc) using ActiveSync™.

7. Software Design

An object-oriented software development process is

used to document detailed functionality and data

structures of the field data collection application.

Although the primary objective is to illustrate the

complexity and architecture of the field application,

software design models can reveal more information

about the functionality of the user interface than the

implementation model. This information is necessary

given the fact that usability depends to a large extent on

how the user interface functions and interacts with the

user. The software development process adopted is called

the ICONIX process (see Fig. 7) which uses a subset of

Unified Modeling Language (UML). It is a relatively

lightweight object-oriented design process that “sits

somewhere between the very large Rational Unified

Process (RUP) and the very small eXtreme programming

(XP) approach” [27]. It is particularly suitable for

relatively small software projects because it does not

have a lot of overhead that the often large and unwieldy

UML brings.

The ICONIX process begins with the user interface

prototype (see Fig. 8). Hence, its design models are

directly linked to the graphical components and features

on the user interface. For example, the text for a given

use case describes the system response to a user action

performed on a particular GUI component. The ICONX

process describes both the static components (i.e. data

structures) and dynamic behaviour of the system

designed (see Figure 7). These components of ICONIX

process are briefly described below [28]:

1) Use case model – describes the runtime behavior of

the system by answering question of what the users

are trying to do with the system by capturing user

actions and the associated system responses in great

detail.

2) Robustness diagram – identifies objects that are

needed to complete use cases in the use case model.

It is similar to a UML collaboration diagram, in that

it shows the objects that participate in the scenario

and how these objects interact with each other.

3) Domain model – identifies the main conceptual

objects that are going to participate in the system

designed.

4) Sequence diagram – describes the system behavior

in great detail in a sequential manner. In doing so, it

encompasses the basic course and all alternate

courses of action within each of the use case.

5) Class diagram – describes how the software

program code is organized by specifying classes,

Graphical User Interface

CancelOK

Attribute A:

Attribute B:

Attribute C:

Attribute:

Class name

Attribute:

Class name

Attribute:

Class name

Attribute:

Operation:

Class name

Attribute:

Operation:

Class name

Attribute:

Operation:

Class name

Attribute:

Operation:

Class name
Association

GUI Prototype
Use Case

Model

Robustness
Diagram

Sequence

Diagram

Dynamic

Static

Domain Model Class Diagram

Code

Fig. 8. ICONIX design process [26]

Fig. 7. Data-sourcing map implemented using IntelliWhere OnDemand™.

 12

interfaces, collaborations and their relationships.

8. Usability Evaluation

An empirical usability test was carried out in the field

at the actual data sourcing site to evaluate the usability of

the prototype. A team of data sourcing personnel from

Telkom again participated in the usability test. The test

participants were trained for a few hours in order to

orientate and familiarize with the prototype before the

testing could begin. The participants were asked to

complete a list of data sourcing tasks using both the

prototype and a paper sourcing form. The duration and

accuracy of these tasks were recorded using paper

logging forms. During the test, they were actively probed

for their understanding of the tasks. They were also asked

to speak out loudly whatever they were thinking

(intentions, frustrations and comments etc) while they are

doing the tasks. The participants were again interviewed

after the test and asked to complete a set of

questionnaires addressing overall usability of the

prototype as well as specific user interface design issues.

Both the performance and subjective measures of the

field data collection prototype were collected during the

usability test. The former is a measure of how well the

participant can carry out the data sourcing tasks using the

prototype relative to that of paper sourcing forms. The

performance measures include:

1) Completeness – is the percentage of total assigned

work completed within the allocated time.

2) Correctness – is the percentage of completed work

that is correct.

3) Effectiveness – is the correctly completed work as a

percentage of total work.

4) Efficiency – is the Effectiveness per unit time

5) Productiveness – is the percent of total subject time

spent productively. Unproductive time includes time

spent seeking help from the test conductor.

The performance measures are calculated as follows:

Completeness = (Tf / Tp) ×100

 = (811s/1137s) × 100

 = 71.33 %

Correctness = ((correct data items)/ (total data items)) ×100

 = (82/85) × 100

 = 96.47 %

Effectiveness = (Correctness × Completeness) / 100

 = (96.47 × 71.33) / 100

 = 68.81 %

Efficiency = (1/ Tp) × Effectiveness

 = (1/1137s) × 68.81

 = 0.061 % per second

Productivity = ((Tp – Th)/Tp) ×100

 = ((1137s – 33s)/1137s) × 100

 = 97.10 %

The Tp and Tf refers to an average amount of time taken to complete all

the data sourcing tasks using the prototype and data sourcing form

respectively. And Th refers an average amount of time taken to seek

help from the test conductor (i.e. unproductive time).

The overall performance of the prototype is more than

satisfactory. Bear in mind that this is the first time that

the participants used the prototype (training aside)

whereas they have been using the paper sourcing forms

for the past few months. To make a fair comparison, one

should really allow the participants to use the prototype

for the same amount of time as the paper sourcing forms.

Nevertheless, the performance data did help find a

number of usability problems and explained the cause of

these problems. Some of the most promising results came

from the user’s comments and suggestions. On average,

the participants found the data sourcing tasks “easy” to

do using the prototype and they were very keen to use the

prototype in their work. However, the participants were

unable to provide clear suggestions on possible

improvements for the prototype.

Unfortunately, there is no accurate means of

measuring software usability. This project has

intentionally placed emphasis primarily on the user

interface design techniques rather than relying on users or

usability test as a whole to determine the usability of the

prototype. This is because users often do not always

know what they really want and are easily influenced.

Usability testing is also very subjective and the results

vary depending on a number of factors such as the

number of participants, expertise of evaluator, test

environment etc.

9. Future Research

Undoubtedly, mobile technology will continue to

advance particularly in the areas of hardware, operating

system, programming tools and development

environments. The .NET platform [29], for example,

provides a framework for data exchange, overcoming

barrier to interoperability of applications across various

smart devices (e.g. workstations, servers, handheld

computers, smart phones etc.). XML has emerged as the

standard format for data exchange between various

components in Geospatial Information Systems (e.g.

GML, LandXML etc.) [30]. Another XML variant, SVG

[26] is also able to exchange graphical data across

 13

resource constraints mobile devices. This technology

would be particularly salient for mobile field applications

(data collection and maintenance) where use of graphical

data such as maps, detailed drawings and schematics are

often necessary. Having mentioned some of the recent

developments in mobile technology, more research work

is still needed to fully explore how they will affect the

usability of mobile field data collection applications.

10. Conclusion

Rapid advancements in mobile technology have

become a fundamental challenge for designers to produce

mobile applications with high level of usability. This

project developed a working prototype to investigate the

design of a usable mobile field application based on a

field study of data sourcing work at a telecommunication

utility. A usage-centered design approach is used to

design the user interface. The usability requirements for

the mobile field data collection application are presented.

In addition, the most pertinent usability features and

design guidelines are discussed. Having said that, they

are based on a case study and hence may not be

applicable to every usability design situation. Fieldworks

generally have their own unique characteristics, and so is

the platform on which the mobile application is

implemented. There are also the user-centered and

context-oriented design approaches that can be employed

to produce usable software. All in all, case studies such

as the one presented in this project are needed to explore

the possibilities and design challenges of usable field

applications and mobile computing as a whole.

REFERENCES

[1] Mobile Streams "Yes 2 3G - White Paper". INTERNET.

http://www.mobilewhitepapers.com/pdf/3g.pdf , Cited 19 January

2003.

[2] Ferre, X., N. Juristo, H. Windl, and L. Constantine "Usability

Basics for Software Developers", IEEE Software, vol 18, no 1,

February 2001, pp 22-29.

[3] Buchanan, G., et al. "Improving mobile internet usability",

Proceedings of the tenth international conference on World Wide

Web, ACM Press, New York, ISBN:1-58113-348-0, pp 673-680.

[4] Van Welie, M., and de Ridder, G., “Designing for Mobile

Devices: A Context-Oriented Approach”, Mobile HCI 2001:

Third International Workshop on Human Computer Interaction

with Mobile Devices, Lille, France, 2001.

[5] Satyanarayanan, M. "Fundamental Challenges in Mobile

Computing", Proceedings of Fifteenth annual ACM symposium on

Principles of distributed computing, May 1996, ISBN:0-89791-

800-2, ACM Press, New York, pp 1-7.

[6] Perry, M., K. Ohara, A. Sellen, B. Brown and R. Harper "Dealing

with Mobility: Understanding Access Anytime, Anywhere", ACM

Transactions on Human Computer Interaction, vol. 8, no. 4,

December 2001, pp 323-347.

[7] Dey, A K., and G D. Abowd "Towards a Better Understanding of

Context and Context-Awareness", CHI 2000 Workshop on the

What, Where, When and How of Context-Awareness. April 2000,

Hague, Netherlands.

[8] Kristoffersen, S., and F. Ljungberg "Making Place to make IT

work: empirical explorations of HCI for mobile CSCW",

Proceedings of the international ACM SIGGROUP conference on

Supporting group work, ACM Press, New York, ISBN:1-58113-

065-1, November 1999, pp 276-285.

[9] Pascoe, J., N. Ryan and D. Morse "Using While Moving: HCI

Issues in Fieldwork Environments", ACM Transactions on Human

Computer Interaction, vol. 7, no. 3, September 2000, pp. 417-437.

[10] Poupyrev, I. , S. Maruyama and J. Rekimoto "Ambient touch:

designing tactile interfaces for handheld devices",

Proceedings of the 15th annual ACM symposium on User

interface software and technology, ACM Press, New York,

ISBN:1-58113-488-6, October 2002, pp 51-60.

[11] Laarni, J. "Searching for optimal methods of presenting dynamic

text on different types of screens", Proceedings of the second

Nordic conference on Human-computer interaction, ACM Press,

New York, ISBN:1-58113-616-1, October 2002, pp 219-222.

[12] Brewster, S. "Overcoming the lack of screen space in mobile

computers", Personal and Ubiquitous Computing, vol. 6, issue 3,

January 2002, pp 188-205.

[13] Kuhl, L. "Doing More with Less: Leveraging Your Spatial Asset

Data", Proceedings of the 26th annual GITA Conference [CD-

ROM], March 2003, San Antonio, USA.

[14] Indus International "Asset Management - Using Mobile

Computing to gain Competitive Advantage". INTERNET.

http://www.cmmscity.com/articles/MobileComputing_wp.pdf,

Cited 27 January 2003.

[15] Fletcher, D. "Field Applications at DTE Using the Pocket PC",

Proceedings of the 26th annual GITA Conference [CD-ROM],

March 2003, San Antonio, USA.

[16] Interactive Business Systems, Inc. "Palm Pilot Data Collection for

the Mobile Workforce". INTERNET.

http://www.ibs.com/pdf/palm.pdf, Cited 27 January 2003.

[17] Randell, B. "Implementing a Mobile GIS to Enhance Efficiency

of Field Operations", Proceedings of the 26th annual GITA

Conference [CD-ROM], March 2003, San Antonio, USA.

[18] Nielsen, J. and R. Molich "Heuristic evaluation of user

interfaces", In Proceedings of CHI'90, ACM Press, New York,

April 1990, pp 249-256.

[19] Shneiderman, B. “Designing the User Interface: Strategies for

Effective Human-Computer Interaction”, 3rd Edition, Addison

Wesley Longman, ISBN: 0-201-69497-2, 1998, pp 67.

[20] Vredenburg, K., J. Mao, P. Smith and T. Carey "A survey of

user-centered design practice", Proceedings of the SIGCHI

conference on Human factors in computing systems: Changing

our world, changing ourselves, ACM Press, New York, ISBN:1-

58113-453-3, April 2002, pp 471-478.

[21] Constantine, L. and A. Lockwood “Software for Use: A Practical

Guide to the Models and Methods of Usage-Centered Design”,

ACM Press, New York, ISBN: 0-201- 92478-1, 1999, pp 23.

[22] Constantine, L. and A. Lockwood “Software for Use: A Practical

Guide to the Models and Methods of Usage-Centered Design”,

ACM Press, New York, ISBN: 0-201- 92478-1, 1999, pp 30-32.

[23] Constantine, L. and A. Lockwood “Software for Use: A Practical

Guide to the Models and Methods of Usage-Centered Design”,

ACM Press, New York, ISBN: 0-201- 92478-1, 1999, pp 78-84.

[24] Constantine, L. and A. Lockwood “Software for Use: A Practical

Guide to the Models and Methods of Usage-Centered Design”,

ACM Press, New York, ISBN: 0-201- 92478-1, 1999, pp 99-119.

[25] Constantine, L. and A. Lockwood “Software for Use: A Practical

Guide to the Models and Methods of Usage-Centered Design”,

ACM Press, New York, ISBN: 0-201- 92478-1, 1999, pp 298-

313.

 14

[26] W3C "SVG - XML for the web". INTERNET.

http://www.w3.org/Graphics/SVG/, Cited 20 July 2003.

[27] Rosenberg, D. and K. Scott "Applying Use Case Driven Object

Modeling with UML", Addison-Wesley, ISBN: 0-201-73039-1,

2001, pp 1.

[28] Rosenberg, D. and K. Scott "Applying Use Case Driven Object

Modeling with UML", Addison-Wesley, ISBN: 0-201-73039-1,

2001, pp 1-15.

[29] Microsoft "What is .NET". INTERNET.

http://www.microsoft.com/net/basics/faq.asp, Cited 23 August

2003.

[30] Martin, I. "XML - Gateway to Interoperability", Proceedings of

the 26th annual GITA Conference [CD- ROM], August

2003, San Antonio, USA.

 14

CONCLUSIONS

1 Achieving the project’s objectives

Recent years have seen the use of mobile technology in a wide range of

applications from Wireless Access Protocol (WAP) and GPS navigation systems to

mobile GIS mapping solutions. Usability is a crucial requirement if these applications

are to be used effectively by the users. The aim of this project is to study usability of

mobile applications for field data collection in utilities. The project investigated

usability requirements for a field data collection application and more importantly,

how these requirements are met.

To achieve this objective, the project reviewed literature that is pertinent to the

research. The topics include mobile computing, mobile GIS application and usability

design process. A case study of the data sourcing work employed at a

telecommunications utility is used to gather information about intended users, the

environment and operational context of the field data collection work. This

information is then analyzed before specifying the usability, functional and hardware

requirements. A model-driven usage-centered design and ICONIX software design

processes are used to design user interface and software architecture respectively.

The user interface design is implemented using a working prototype on a PDA. The

prototype is then evaluated for usability with the data sourcing personnel in the field.

The test results and recommendations for future research are discussed.

The project is considered to have accomplished its objectives. The usability

requirements for field data collection application are identified and the user interface

prototype has demonstrated how these requirements are met using appropriate UI

design techniques. The usability test is able to obtain very positive feedback from

the intended users. However, it is felt that there is room for more research and

expansion of the functionality of the prototype as new technologies emerge (see

section on Developments and Recommendations below).

 15

2 Conclusions regarding the literature survey

The literature survey informed the reader about a number of topics pertinent to the

subject of this research. They include most recent literature on mobile technology,

mobile field applications and usability design process. The section on mobile

technology highlighted recent technological development in terms of hardware,

wireless networks and mobile applications. But more importantly, it discussed

unique characteristics that are intrinsic to mobile computing such as, hardware

constraints, operating context and usability requirements. The argument here is that

mobile computing is a relatively new paradigm that is fundamentally different from

traditional desktop computing and as a result software designers need to take these

factors into careful consideration if they are to produce usable mobile applications.

An extensive use of mobile technology for field data collection work is discussed in

details. The survey began with discussion around field data collection in public

utilities and some case studies in which mobile GIS technology is used to obtain

data from the field. But the main focus was given to the way and environment in

which fieldwork is carried out. Mobile workers operate in operating context and

environment that is inherently heterogeneous where users are faced with different

situations that change constantly. In general, mobile work can be described as

dynamic, contextual and demands high level of user attention. This demands

innovative HCI techniques and usability features from designers. In general, mobile

applications require a much higher level of usability than their desktop counterparts.

The survey gave a summary of a number of usability design guidelines, techniques

and methodologies currently used by designers. The usability guidelines include

definitions of usability rules and design principles widely recognized by the software

community. Two model-driven UI design processes called User-Centered Design

and Usage-Centered Design are discussed. Both represent a move away from

techno-centric way of designing software. The difference however is that the latter

focuses on user to obtain software requirements and the latter on the operation

context and usage. The survey ends with a section on various techniques used in

 16

usability testing. They are essential for designers if they are to design and effectively

evaluate software that meets a high level of usability requirements.

3 Conclusions regarding the software requirements

A proper understanding about the field data collection work is obtained from the

requirements elicitation and analysis process. A direct interaction with actual

fieldworkers at the data sourcing site was productive and it produced relatively

accurate and reliable requirements information. These requirements, however, are

not necessarily applicable to all types of data collection work. This is because the

case study of field data collection work is based on a UUC data sourcing work which

has characteristics that are unique to this particular fieldwork.

The use of usage-centered design process in requirements analysis proved to be

effective in obtaining an in-dept understanding of intended users, their background

and more importantly, their tasks and operational context of their work. It is felt that

the software requirements that were obtained address the usability and functional

aspects of the field application in a practical manner. Furthermore, the hardware

requirements for the field application reflect realistic expectations in terms of

functional capabilities and sophistication from a modern mobile device.

4 Conclusions regarding the user interface design

The user interface is designed using a two-steps approach. The content of user

interface is addressed before determining how they will look or behave. The latter is

derived from the requirements analysis of users, tasks and operational context. The

result is that the user interface is able to give the users what they need rather than

what is available.

 17

The user interface design is implemented as a working prototype on a Pocket PC

operated PDA which has shown to be the most suitable hardware platform for the

prototype to run on. This operating system is criticized for merely duplicating

desktop software on a mobile device. However, the reality is that no other operating

system is able to give the kind of underlying functionality in terms of multimedia and

wireless connectivity required by a modern field data collection application. Again,

this is a pragmatic approach and may not be able to provide a truly innovative

solution. Another concern is that the programming language used, namely the

eMbedded Visual Basic (eVB), restricts the flexibility of the user interface design

due to its limited availability of UI components and widgets. To overcome this

problem, standard GUI components are used creatively so that they can still appear

intuitive to novice users. By and large, the user interface design is able to meet the

usability and functional requirements successfully despite some of the limitations

mentioned above.

5 Conclusions regarding the software design

The software usability is not merely how the user interface looks. To a large extent,

it concerns the behavior of software particularly how it interacts with the user. With

this in mind, the functionality of field data collection application is presented in the

software design. The software design process used, namely the ICONIX provides a

framework to comprehend not only the behavior but also the structure and

complexity of software as well. It is felt that the ICONIX design process is able to do

this sufficiently without the complexity of a much larger object-oriented design

process like Rational Unified Process (RUP).

Some of the contents of software design such as the class diagrams do not really

affect the software usability. However, these models allow the software developers

to extend the existing functionality and even to continue with the implementation of

the prototype to fully functional software. This project, however, has not

implemented the software design into a complete, fully functional software system

since it is deemed unnecessary in terms of the objective of this research.

 18

Nevertheless, object-oriented design will enable easier reuse and maintenance of

software components especially when sourcing templates are modified regularly.

Overall, the software design process used has adequately explained the behavior

and functionality of field data collection application. However, it is felt that a superior

design could be achieved if more time was spent on improving the design in an

iterative manner.

6 Conclusions regarding the usability evaluation and test

results

The usability of field data collection prototype was evaluated using an empirical field

test with the UUC data sourcing personnel. Field test was carried out at the actual

data sourcing site where the test participants were given the prototype to do their

work. The time taken to do the data sourcing tasks using the prototype was

recorded and then compared with that of paper sourcing forms. The participants

were then interviewed and asked to complete questionnaires that probe their

subjective views on usability of the prototype. The number of usability problems

discovered by the usability test is considered to be relatively low but nevertheless

corresponding recommendations were made to correct these problems.

Overall, the qualitative test results are very encouraging. The majority of the

fieldworkers found the prototype easy to use and keen to use the application in

place of paper sourcing template that they are currently using. However, the

accuracy of quantitative data is questionable due to a number of shortcomings in

usability testing. Firstly, the number of test participants and the frequency of

usability testing are insufficient. It is felt that the usability test could have been

executed far better by increasing the number of test participants and frequency of

tests over a longer period of time. Secondly, without proper data logging equipments

(video camera, data logging software etc.), a one-person team has little control over

the test conditions in the field. This could be one of the reasons why there were very

few usability problems uncovered by the usability test. Another concern is that the

test conductor has a limited expertise in conducting a usability test. Given these

 19

conditions many usability problems may have gone undetected. And finally, it is felt

that test participants were easily influenced by the test conductor and did not have

enough exposure to other mobile applications to make impartial evaluation of the

prototype.

Ideally, the number of test participants should be increase to about 7 or 8 people

and the tests be carried out over a period of 3 or 4 days. The main purpose of

usability evaluation is to fine tune critical design features and it is crucial that

redesign takes place over a number of iterations.

 20

Developments and Recommendations

1 Developments in Technology

Mobile technology is changing very rapidly. Even as we speak, there are new

developments in operating systems, hardware, programming tools and so on. As a

result, the functional capability and sophistication of mobile applications will continue

to increase. This section provides a brief description on more recent developments

in technology that are most likely to have an impact on the design and development

of usable mobile field applications in the near future.

1.1 Extensible Markup Language (XML)

XML is a text-based, structured file format that presents a method for storing and

exchanging data between disparate applications. It was traditionally used for

structured data exchange on the Internet but it has grown into a nearly-ubiquitous

format for data storage and information exchange. Not surprisingly, XML is now

becoming a standard data exchange format for geographical information including

both spatial and non-spatial properties of geographic features. Many of the XML

related technologies such as the MultiSpeak, Geography Markup Language (GML)

and LandXML are now used to resolve data interoperability problems in a wide

range of Geospatial Information Systems (GIS) applications from land planning and

surveys to field workforce automation in utilities (Martin I, 2003).

1.2 Scalable Vector Graphics (SVG)

SVG is a relatively new XML grammar for defining vector-based high quality 2D

graphics for the Web and mobile applications. The SVG drawings are lightweight

(much smaller and compressible than GIF, BMP and JPEG formats), dynamic

(scalable, zoom in/out, searchable, animation etc.) and interactive (e.g. event

handlers for mouse clicks). These unique features of SVG make it very suitable to

 21

display and manipulate detailed graphics used in mobile field applications such as

data sourcing maps, line diagrams and schematics. Recently, W3C (2003) has

introduced a SVG standard, namely SVG 1.0 to address a mobile device as a target

area for vector graphics display. Since each mobile device has different

characteristics in terms of CPU speed, memory size, colour support etc, W3C

defined two low-level profiles as subsets of SVG 1.0. The first profile, SVG Tiny

(SVGT) is suitable for highly restricted mobile devices such as mobile phones,

whereas the second profile, SVG Basic (SVGB) is targeted for higher level mobile

devices such as PDAs.

1.3 Microsoft .NET

The .NET is the Microsoft’s solution for Web services which is anticipated to

significantly change how people interact with applications and devices via the Web.

The .NET technology “enables the creating and use of XML-based applications,

processes and websites as services that share information and functionality with

each other on any platform or smart device” (Microsoft, 2003b). The .NET is a

comprehensive family of products including development tools, servers and smart

clients. Essentially, it uses software for smart devices to enable PCs, laptops, smart

phones, handheld computers, game consoles and other smart devices to operate

“seamlessly” in an integrated framework. The .NET programming model allows a

multi-device support (a wide range of smart devices), a multi-language support (e.g.

VC++, VB, eVC, eVB, and C# interoperability) to enable easier and faster

development of .NET applications.

The field data collection prototype is built using a standalone eVB development tool

which is now integrated into the .NET framework. It is envisaged that mobile devices

will become “smarter” while the number of mobile applications will increase and

more dependent on Internet and Web services (e.g. real-time data collection). For

reasons of interoperability between applications on different platforms, better help

support and faster product delivery, software developers will be drawn towards

 22

building mobile applications in an integrated environment such as the one provided

by .NET technology.

2 Project Recommendations

The user interface features and functionality of the field data collection prototype

can certainly be expanded using some of the new technologies described above. It

will be interesting to see how these new technologies impact the usability of the field

application. SVG, for example, can be used to design aspects of user interface that

require graphical presentations with a very high level of details, particularly the cable

network and topographic view of the UUC. Even with this new graphical

representation format, user interface design fundamentals are likely to remain

unchanged. But from the perspective of better performance, software maintenance

and more advance functionality such as manipulation of graphics, SVG is a superior

solution compared to standard GUI components (e.g. picture boxes, shapes and

image controls).

XML can also be used to improve interoperability of the field data collection

prototype with other Geospatial Information Systems (GIS) but not necessarily the

usability aspect of the field application. For example, XML can replace flat files (.ini

or .txt files) currently used by the prototype to exchange data. It is not really a major

modification since XML is still text-based, but it is structured in a proper format (i.e.

XML schema) that is read by the GIS database.

 23

References

Abowd, G., et al. (1997) "Cyberguide: a mobile context-aware tour guide", Wireless
Networks, vol. 3, issue 5, pp 421-433.

Barbara, S., H. Laamannen, S. Poslad, and A. Zipf (2002) "Location-based mobile tourist
services - first user experiences". INTERNET. http://deepmap01.villa-
bosch.de/zipf/papers/CRUMPET-ENTER03-final.pdf, Cited 12 March 2003

Bellamy, R. et al. (2001) “Designing an E-Grocery Application for a Palm Computer: Usability
and Interface Issues”, IEEE Personal Communications, vol. 8, no. 4, pp 60-64

Brewster, S. (2002) "Overcoming the lack of screen space in mobile computers", Personal
and Ubiquitous Computing, vol. 6, issue 3, pp 188-205.

Brun-Cottan, F. and P. Wall (1995) "Using Video to re-present the user", Communications of
the ACM, vol. 38, issue 5, pp 61-71.

Buchanan, G., et al. (2001) "Improving mobile internet usability", Proceedings of the tenth
international conference on World Wide Web, ACM Press, New York, ISBN:1-58113-348-0,
pp 673-680.

Caceres, R. et al. (2002) “Mobile Technology at Vindigo”, IEEE Wireless Communications,
vol 9, No 1, pp 50-53

Cheverst, K., N. Davies, K. Mitchell, and A. Friday (2000) "Experiences of developing and
deploying a context-aware tourist guide: the GUIDE project", Proceedings of the sixth annual
international conference on Mobile computing and networking, ACM Press, New York,
ISBN:1-58113-197-6, pp 20-31.

Cheverst, K., et al. (2001) "Using Context as a Crystal Ball: Rewards and Pitfalls", Personal
and Ubiquitous Computing. ISSN:1617-4909, Vol 5, issue 1, pp 8-11.

Cheverst, K., K. Mitchell, N. Davies (2002) "Exploring Context-aware Information Push",
Personal and Ubiquitous Computing, vol. 6, issue 4, pp 276-281

Cisco Systems (2000) "GPRS White Paper". INTERNET.
http://www.cisco.com/warp/public/cc/so/neso/gprs/gprs_wp.pdf, Cited 21 January 2003.

Constantine, L. (1996) " Usage-Centered Design for Embedded Systems: Essential Models."
Embedded Systems Conference '96 Proc. San Francisco: Miller Freeman.

Constantine, L. and A. Lockwood (1999a) Software for Use: A Practical Guide to the Models
and Methods of Usage-Centered Design,ACM Press, New York, ISBN: 0-201-92478-1, pp
24.

 24

Constantine, L. and A. Lockwood (1999b) Software for Use: A Practical Guide to the Models
and Methods of Usage-Centered Design,ACM Press, New York, ISBN: 0-201-92478-1, pp
21.

Constantine, L. and A. Lockwood (1999c) Software for Use: A Practical Guide to the Models
and Methods of Usage-Centered Design,ACM Press, New York, ISBN: 0-201-92478-1, pp
103.
Constantine, L. and A. Lockwood (1999d) Software for Use: A Practical Guide to the Models
and Methods of Usage-Centered Design,ACM Press, New York, ISBN: 0-201-92478-1, pp
109.

Constantine, L. and A. Lockwood (1999e) Software for Use: A Practical Guide to the Models
and Methods of Usage-Centered Design,ACM Press, New York, ISBN: 0-201-92478-1, pp
125-129.

Constantine, L. and A. Lockwood (1999f) Software for Use: A Practical Guide to the Models
and Methods of Usage-Centered Design,ACM Press, New York, ISBN: 0-201-92478-1, pp
390-460.

Constantine, L. and A. Lockwood (1999g) Software for Use: A Practical Guide to the Models
and Methods of Usage-Centered Design,ACM Press, New York, ISBN: 0-201-92478-1, pp
300.

Constantine, L. (2000) "What Do Users Want? - Engineering Usability into Software".
INTERNET. http://www.forUse.com. Cited 31 July 2003.

Cooper, A. (1995) About Face: The Essentials of User Interface Design, IDG Books
Worldwide, Inc. pp 389.

Davies, N., K. Cheverst, A. Friday, K. Mitchell (2002) "Future wireless applications for a
networked city: services for visitors and residents", IEEE Wireless Communications, vol. 9,
no. 1, pp. 8-16.

Dey, A K., and G D. Abowd (2000) "Towards a Better Understanding of Context and
Context-Awareness", CHI 2000 Workshop on the What, Where, When and How of Context-
Awareness. April 3, Hague, Netherlands.

Dumas, J., and J. Redish (1999a) A Practical Guide to Usability Testing,Intellect Ltd, USA,
ISBN: 1-84150-020-8. pp 30-37.

Dumas, J., and J. Redish (1999b) A Practical Guide to Usability Testing,Intellect Ltd, USA,
ISBN: 1-84150-020-8. pp 310.

Dumas, J., and J. Redish (1999c) A Practical Guide to Usability Testing,Intellect Ltd, USA,
ISBN: 1-84150-020-8. pp 386.

Dumas, J., and J. Redish (1999d) A Practical Guide to Usability Testing,Intellect Ltd, USA,
ISBN: 1-84150-020-8. pp 43.

 25

Dwolatzky, B., and R. van Olst (2003) "The Use of Location-Based Services In Maintaining
Electrical and Other Networks In Developing Countries", Proceedings of the 26th annual
GITA Conference [CD-ROM], San Antonio, USA.

eSVG (2003) "eSVG - embedded scalable vector graphics". INTERNET.
http://www.embedding.net/eSVG/. Cited 12 November 2003.

Ferre, X., N. Juristo, H. Windl, and L. Constantine (2001) "Usability Basics for Software
Developers", IEEE Software, vol 18, no 1, pp 22-29.

Fletcher, D. (2003) "Field Applications at DTE Using the Pocket PC", Proceedings of the
26th annual GITA Conference [CD-ROM], San Antonio, USA.

GIS Lounge (2003), "Mobile and Field GIS". INTERNET.
http://gislounge.com/ll/mobilegis.html. Cited 27 March 2003.

Grant, K., (2003) "Sifting through emerging mobile technologies to strike gold for your
wireless workforce", Proceedings of the 26th annual GITA Conference [CD-ROM], San
Antonio, USA.

Griffin, B. (2003) "Mommy Do I Have To? Or Overcoming Resistance To The New System",
Proceedings of the 26th annual GITA Conference [CD-ROM], San Antonio, USA.

Hackman, G. S., and D. W. Biers (1992) "Team usability testing: Are two heads better than
one?", Proceedings of the Human Factors Society 36th Annual Meeting, pp1205-1209.

Hinckley, K., et al. (1998) "Two-handed virtual manipulation", ACM Transactions on
Computer-Human Interaction, vol. 5, no. 3, pp 206-302.

Hinckley, K., et al. (2000) "Sensing techniques for mobile interaction", Proceedings of the
13th annual ACM symposium on User interface software and technology, ACM Press, New
York, ISBN:1-58113-212-3, pp 91-100.

Holland, S., D. Morse and H. Gendenryd (2002) "AudioGPS: Spatial Audio Navigation with a
Minimal Attention Interface", Personal and Ubiquitous Computing, vol. 6, issue 4, pp 253-
259.

Hughes, J. et al. (1995) "The Role of Ethnography in Interactive Systems Design"
Interactions, April 1995, pp 57-63.

Indus International (2002) "Asset Management - Using mobile Computing to gain
Competitive Advantage". INTERNET.
http://www.cmmscity.com/articles/MobileComputing_wp.pdf. Cited 27 January 2003.

Interactive Business Systems, Inc. (2001) "Palm Pilot Data Collection for the Mobile
Workforce". INTERNET. http://www.ibs.com/pdf/palm.pdf, Cited 27 January 2003.

Jacobson, I., G. Booch and J. Rambaugh (1999a) "The Unified Software Development
Process", Addison-Wesley, ISBN: 0-201-57169-2, pp 421.

Jeffries, R.J, J. R Miller, C. Wharton and K.M. Uyeda (1991) "User interface evaluation in the
real world: A comparison of four techniques. Proceedings of CHI'91,ACM, New York, pp.
119-124.

 26

Karat, C., R. Campbell and T. Fiegel (1992) "Comparison of Empirical Testing and
Walkthrough Methods in User Interface Evaluation", In Proceedings of CHI'92, ACM Press,
New York.

Karat, J., et al. (1996) "User centered design: quality or quackery?" Conference companion
on Human factors in computing systems: common ground, ACM Press, ISBN:0-89791-832-
0, pp 161-162.

Kistler, R. (2003) "Data: The Critical Investment", Proceedings of the 26th annual GITA
Conference [CD-ROM], San Antonio, USA.

Kristoffersen, S., and F. Ljungberg (1999),"Making Place to make IT work: empirical
explorations of HCI for mobile CSCW", Proceedings of the international ACM SIGGROUP
conference on Supporting group work, ACM Press, New York, ISBN:1-58113-065-1, pp 276-
285.

Kuhl, L. (2003) "Doing More with Less: Leveraging Your Spatial Asset Data", Proceedings of
the 26th annual GITA Conference [CD-ROM], San Antonio, USA.

Laarni, J. (2002) "Searching for optimal methods of presenting dynamic text on different
types of screens" Proceedings of the second Nordic conference on Human-computer
interaction, ACM Press, New York, ISBN:1-58113-616-1, pp 219-222.

Laerhoven, K., and K. Aidoo (2001) "Teaching Context to Applications", Personal and
Ubiquitous Computing, ISSN:1617-4909, Vol 5, Issue 1, pp 46-49.

Lester, K. J. (2001) "Shaping South Africa's future with GIS - 1999 General Election
Experience", INTERNET. http://hsrc.ac.za/gis/papers/SAgis/index.html. Cited 1 December
2002.

Martin, I. (2003) "XML - Gateway to Interoperability", Proceedings of the 26th annual GITA
Conference [CD-ROM], San Antonio, USA.

McKee, F. (2002) "The importance of GIS in modern society", GIM International, June 2002,
pp 68-71.

Microsoft (2003a) "Embedded visual tools downloads and samples". INTERNET.
http://msdn.microsoft.com/vstudio/device/embedded/download.aspx. Cited 27 January 2003.

Microsoft (2003b) "What is .NET". INTERNET. http://www.microsoft.com/net/basics/faq.asp.
Cited 23 August 2003.

Millen, D. R. (2000) "Rapid ethnography: time deepening strategies for HCI field research",
Conference proceedings on Designing interactive systems : processes, practices, methods,
and techniques: processes, practices, methods, and techniques, ACM Press, New York,
ISBN:1-58113-219-0, pp 280-286.

Mobile Streams (2001) "Yes 2 3G - White Paper". INTERNET.
http://www.mobilewhitepapers.com/pdf/3g.pdf, Cited 19 January 2003.

MTN (2003) "MTNdataLive Q&A", INTERNET.
http://www.mtn.co.za/assistance/qsa/gprs.asp?from=S, Cited 19 January 2003.

 27

Murray, J., D. Schell and C. Willis (1997) "User centered design in action: developing an
intelligent agent application", Proceedings of the 15th annual international conference on
Computer documentation, ACM Press, New York, ISBN: 0-89791-861-4, pp 181-188.

Nielsen, J. and R. Molich (1990) "Heuristic evaluation of user interfaces", In Proceedings of
CHI'90, ACM Press, New York, pp 249-256.

Norman, D. A., and S. W. Draper (1986) User-Centered Design. Hillsdale, N.J.: Lawrence
Erlbaum.

Otterbox (2003) "Armour PDA cases". INTERNET.
http://www.otterbox.com/category.cfm?Category=28. Cited 25 May 2003.

Pascoe, J., N. Ryan and D. Morse (2000) "Using While Moving: HCI Issues in Fieldwork
Environments", ACM Transactions on Human Computer Interaction, vol. 7, no. 3, pp. 417-
437

Perry, M., K. Ohara, A. Sellen, B. Brown and R. Harper (2001) "Dealing with Mobility:
Understanding Access Anytime, Anywhere", ACM Transactions on Human Computer
Interaction, vol. 8, no. 4, pp 323-347.

Peters, K. (2003) "Avoiding Data De-Evolution", Proceedings of the 26th annual GITA
Conference [CD-ROM], San Antonio, USA.

PocketSVG (2003) "PocketSVG - overview". INTERNET. http://www.pocketsvg.com/. Cited
12 November 2003.

Poupyrev, I. , S. Maruyama and J. Rekimoto (2002) "Ambient touch: designing tactile
interfaces for handheld devices", Proceedings of the 15th annual ACM symposium on User
interface software and technology, ACM Press, New York, ISBN:1-58113-488-6, pp 51-60.

Preece, J. (1994), Human-Computer Interaction, first edition, Addison-Wesley, pp 14.

Randell, B. (2003) "Implementing a Mobile GIS to Enhance Efficiency of Field Operations",
Proceedings of the 26th annual GITA Conference [CD-ROM], San Antonio, USA.

Rosenberg, D. and K. Scott (2001a) "Applying Use Case Driven Object Modeling with UML",
Addison-Wesley, ISBN: 0-201-73039-1, pp 1-20.

Rosenberg, D. and K. Scott (2001b) "Applying Use Case Driven Object Modeling with UML",
Addison-Wesley, ISBN: 0-201-73039-1, pp 35.

Rosenberg, D. and K. Scott (2001c) "Applying Use Case Driven Object Modeling with UML",
Addison-Wesley, ISBN: 0-201-73039-1, pp 59-60.

Rosenberg, D. and K. Scott (2001d) "Applying Use Case Driven Object Modeling with UML",
Addison-Wesley, ISBN: 0-201-73039-1, pp 86.

Rowley, D. E. (1994) "Usability Testing in the Field: bringing laboratory to the users",
Proceedings of the SIGCHI conference on Human factors in computing systems: celebrating
interdependence, ACM Press, New York, ISBN:0-89791-650-6, pp 252-257.

 28

Satyanarayanan, M. (1996) "Fundamental Challenges in Mobile Computing", Proceedings of
Fifteenth annual ACM symposium on Principles of distributed computing, ISBN:0-89791-
800-2, ACM Press, New York, pp 1-7.

Schwabe, C. (2001) "African Renaissance: Towards the Development of a Spatial
Information System for Socio-Economic Development in Africa", INTERNET.
http://hsrc.ac.za/gis/papers/AfricanRenaissance/index.html. Cited 1 December 2002.

Shneiderman, B. (1998a) Designing the User Interface: Strategies for Effective Human-
Computer Interaction, 3rd Edition, Addison Wesley Longman, ISBN: 0-201-69497-2, pp 74-
76.

Shneiderman, B. (1998b) Designing the User Interface: Strategies for Effective Human-
Computer Interaction, 3rd Edition, Addison Wesley Longman, ISBN: 0-201-69497-2, pp 67.

Shneiderman, B. (1998c) Designing the User Interface: Strategies for Effective Human-
Computer Interaction, 3rd Edition, Addison Wesley Longman, ISBN: 0-201-69497-2, pp 267.

Smith, S. L. and J. N. Mosier (1986) "Guidelines for Designing User Interface Software".
Report MTR-10090. The MITRE Corp, Bedford, MA.

Spriestersbach, A., et al. (2001) "Integrating context information into enterprise applications
for mobile workforce - a case study", Proceedings of the first international workshop on
mobile commerce, ACM Press, New York, ISBN:1-58113-376-6, pp 55-59.

Symbol (2003) "MC900 Series ruggedized handheld computer". INTERNET.
http://www.symbol.com/products/mobile_computers/kb_mc9000_roll.html, Cited 17 May
2003.

Thomas, P. and R. Macredie (2002) "Introduction to The New Usability", ACM Transactions
on Computer-Human Interaction, vol. 9, no. 2, pp 69-73.

Virzi, R. (1992) "Refining the test phase of usability evaluation: How many subjects is
enough?", Humans Factors, ACM Press, pp 457-468.

van Vliet, H. (2000a) Software Engineering Principles and Practice, 2nd Edition, John Wiley
and Sons, John Wiley, ISBN: 0-471-97508-7. pp. 210.

Vodacom (2003a) "Network Coverage Map", INTERNET.
http://www.vodacom.co.za/contracts/coverage_map.asp, Cited 19 January 2003.

Vodacom (2003b) "Vodacom MyLife services", INTERNET.
http://www.vodacom.co.za/my_life/, Cited 19 January 2003.

Vredenburg, K., J. Mao, P. Smith and T. Carey (2002) "A survey of user-centered design
practice", Proceedings of the SIGCHI conference on Human factors in computing systems:
Changing our world, changing ourselves, ACM Press, New York, ISBN:1-58113-453-3, pp
471-478.

W3C (2003) "SVG - XML for the web". INTERNET. http://www.w3.org/Graphics/SVG/. Cited
20 July 2003.

 29

Waterson, S., J. Landay and T. Matthews (2002) "In the lab and out in the wild: remote web
usability testing for mobile devices", CHI '02 extended abstracts on Human factors in
computer systems, ACM Press, ISBN:1-58113-454-1, pp 796-797.

 30

Bibliography

Jordan P An Introduction to Usability Taylor & Francis Publishing, Feb 1999, ISBN

0748407626

Weiss S Handheld Usability John Wiley & Sons, 1rst edition, July 2002, ISBN

047084469

Hanttula D Pocket PC Handbook John Wiley & Sons, Feb 2001, ISBN 0764535684

Nielsen J and Mack R Usability Inspection Methods John Wiley & Sons, 1rst edition,

April 1994, ISBN 0471018775

Balena F Programming Microsoft Visual Basic.NET (Core Reference) Microsoft

Press, 1rst edition, April 2002, ISBN 0735613753

Halvorson M Microsoft Visual Basic .NET Step by Step Microsoft Press, Jan 2002,

ISBN 0735613745

Harold E and Mearis W XML in a Nutshell O’Reilly & Associates, 2nd edition, June

2002, ISBN 0596002920

Walmsley P Definitive XML Schema Prentice Hall, 1rst edition, Dec 2001, ISBN

0130655678

Appendix A

 Literature Survey Doc. No. 1

 Page ii

Literature Survey

Doc. No. 1

 Literature Survey Doc. No. 1

 Page i

CONTENTS

CONTENTS...I

LIST OF FIGURES..III

1 SCOPE..1

1.1 Introduction..1

1.2 Purpose..1

1.3 Audience..1

2 MOBILE COMPUTING ...2

2.1 Overview ...2

2.2 Mobile Technology ...2
2.2.1 Mobile Devices..2
2.2.2 Wireless Networks ..3
2.2.3 Mobile Application – some case studies ...5

2.3 Mobile System Characteristics..8
2.3.1 Constraints...8
2.3.2 Context-awareness...9
2.3.3 Usability ..11

3 MOBILE APPLICATIONS FOR FIELD USE ..14

3.1 Field Data Collection..14

3.2 Mobile GIS..15

3.3 Mobile Work...17

3.4 User Acceptance ...20

4 USABILITY DESIGN PROCESS ..21

4.1 Usability Design Guidelines...21

4.2 User-Centered Design (UCD)..27

4.3 Usage-Centered Design ..31

4.4 Usability Evaluation...35

 Literature Survey Doc. No. 1

 Page ii

4.4.1 Heuristic Evaluation ..35
4.4.2 Empirical Usability Testing...37

5 CONCLUSION ..39

 Literature Survey Doc. No. 1

 Page iii

LIST OF FIGURES

Figure 1: Asset Information Model in central data repository___________________________14
Figure 2: An analysis of one task for an anesthesiologist. Further analysis would be
necessary to understand subtasks like “take corrective action”. (Source: Dumas J et al.,
1999d) __29
Figure 3: A Usage-Centered Design Process (Source: Constantine L et al., 1999a) ______35
Figure 4: Usability Test Laboratory (Source: Dumas J et al., 1999c) ____________________37

 Literature Survey Doc. No. 1

 Page 1

1 Scope

1.1 Introduction

This document presents a review of the literature pertinent to the project at hand,

namely the development of a usable mobile application for field data collection.

Included in this document are some background information on mobile computing

(section 2), mobile application for field use (section 3) and usable software design

process (section 4).

The section on mobile computing takes a broad look at current trends in mobile

technology and their inherent characteristics. The section on field applications

covers asset management, mobile Geospatial Information Systems (GIS), field data

collection work and mobile workers. The various techniques in the software

development including requirements gathering, user interface design and usability

evaluation are discussed in the section on usability design process.

1.2 Purpose

The purpose of this document is to introduce the reader to background literature and

other research works that are pertinent to this project. In doing so, it orientates the

reader towards the problem at hand and sets the scene for subsequent

investigation.

1.3 Audience

The intended readers of this document include researchers involved in the areas of

software usability, mobile computing, as well as UI designers, developers, the

external examiner and other interested parties.

 Literature Survey Doc. No. 1

 Page 2

2 Mobile Computing

2.1 Overview

The use of mobile devices (e.g. mobile phone, handheld computer etc.) and wireless

networks has exploded in recent years. The availability of such a wide range of

mobile devices and their increasing sophistication has become a challenge for

designers of mobile applications and other interactive systems. This is because

mobile computers have unique characteristics and fundamental differences from

their desktop counterparts. Not only are there differences in the technology, but also

in the way in which people use mobile applications. These important issues are

discussed in the sections below.

2.2 Mobile Technology

2.2.1 Mobile Devices

At present, a wide variety of mobile devices with various form factors (full, half and

quarter screen etc.) are available on the market. Their sophistication and capabilities

in terms of screen resolution, size, weight, wireless communication (e.g. Bluetooth)

and computational power have significantly increased in recent years. For example,

mobile phones (1/8 screen) are used to run a wide range of applications from

multimedia games to video conferencing. In addition, they come with add-on

accessories such as GPS, IR scanners and digital cameras. Each type of mobile

computer offers certain advantages over the other in terms of cost, portability, screen

real estate and so on. In the end, the users, network accessibility and application

requirements will determine the selection of the most suitable mobile device.

The trend in mobile computers is certainly moving towards smaller devices,

particularly in the area of field data collection work (Interactive Business Systems,

 Literature Survey Doc. No. 1

 Page 3

2001). Recent studies have shown that the Personal Digital Assistance (PDA) is now

more popular with field data collection personnel than traditionally used laptops

(Fletcher D, 2003). The laptops are now considered too heavy and unwieldy to carry

around in the field. The same sentiment is shared by tourists using mobile computers

to navigate around cities in the developed countries (Barbara S et al., 2002). A tablet

computer is also more portable than a traditional laptop but it becomes heavy when a

rugged casing is used and often is significantly more expensive than a PDA. Some of

the PDAs now come with GPRS, digital cameras and GPS which are particularly

important for remote data collection. Despite these promising features, challenges

over processor speed, memory limitations, and poor battery life still remain (see

section 2.3 for details).

Three operating systems (OS) dominate current mobile computer market namely

Palm OS, EPOC and Windows CE. The Palm Pilot PDA runs on the Palm OS, and

maintains the majority of hand-held market share due to their simple and inexpensive

design. The Window CE OS such as Pocket PC, on the other hand, offers more

sophisticated graphics and multimedia capabilities. However, it is accused of merely

replicating desktop software functionality on a small scale, and hence less preferred

by some hand-held computer users. Unfortunately, a standard OS for mobile

computers has not yet emerged and as a result many mobile applications across

different OS are incompatible. This is one of the largest obstacles for creating stable

mobile applications in the long run.

2.2.2 Wireless Networks

Mobile computers rely on wireless networks to share and access data between them

and their static servers in “real time”. The two most common mobile networks are the

wireless LAN (WLAN, also called 802.11a/b) and packet-based cellular network

(Cisco Systems, 2000). The former is suitable for large content-based applications

with high data throughput and fast Internet connectivity. They are typically used to

provide Location Based Services (LBS) to visitors and residents alike in first world

cities (Davies N et al., 2002). However, this network has relatively small coverage

 Literature Survey Doc. No. 1

 Page 4

area limited to where wireless access points (AP) are installed. The latter offers a

wider coverage area since it operates on cellular network infrastructure but at much

lower data throughput.

The next generation networks (NGN) such as 3G are expected to deliver larger

bandwidth more reliably than the circuit switched networks available today (Mobile

Streams, 2001). Unfortunately, 3G have being hyped extensively, and it has yet to be

successfully implemented (with few exceptions, for example, NTT DoCoMo of

Japan). Although the NGN has being slow in deployment, standards are emerging. It

is likely that, in the future, all communications will be IP-based. In an IP-based

paradigm, any gateway should be transparent, and thus implicitly supported by IP-

compatible wireless applications. For instance, a mobile application with an

application layer that is not dependent on the underlying wireless network is uniquely

positioned to exploit advances in next-generation communications networks.

Increased bandwidth from 3G will provide the infrastructure for much richer client

experiences than is possible today.

The type of network employed depends not only on the geographic location or

application requirements but also on the mode of connectivity required between the

mobile client and the static server. Three modes of connectivity are as follows:

� Always Connected – In this mode, mobile users can be wired or wireless,

using any mobile device that enables two-way, real-time communication with

the system. Instant access to the system information is enabled.

� Disconnected – When disconnected, mobile users interact with a handheld

device where data is stored locally, and periodically through synchronization

the data is transferred from the device to the server, and updates made by

other users are received from the server.

� Intermittently Connected – When the network, telecommunications, or

Internet connection goes down, data can be stored locally. Dynamic

 Literature Survey Doc. No. 1

 Page 5

reconnect capabilities bring the device back online when the connection is

restored, and stored data is then synchronized between the portable device

and the server.

Many power and telecommunications utilities have been utilizing wireless networks

for many years, building and maintaining costly private networks (Grant K., 2003).

The public networks are much less costly because individual customers do not have

to pay for towers and specialized equipment. In South Africa, for example, packet-

switched public cellular network is an attractive option because the country already

has three cellular networks providers (i.e. Vodacom™, MTN™ and Cell C™)

covering a large percentage of the country. There are, however, concerns over the

reliability, quality of service (QoS), mainly because the 2.5G technology is still in

relatively new. Vodacom™, South Africa’s largest cellular provider, for example,

introduced GPRS technology only in late 2001 called “Vodacom’s MyLife” (Vodacom,

2003b) and a similar service by MTN™ called “MTNdataLive” (MTN, 2003).

2.2.3 Mobile Application – some case studies

This section of the document entails case studies of two existing mobile applications

utilized in areas of e-commerce and Location Based Services (LBS) in order to

discuss some to the usability features incorporated into their designs. The first

example is a handheld/PDA shopping solution called Easi-Order™ from Safeway

UK (Bellamy R. et al, 2001). It was the first instance of an already expanding class

of e-commerce applications that combine properties of pervasive technology and

personalization.

Easi-Order™ allows customers to place orders from home and later pick up their

orders. The shopping process begins with a customer creating a personalized

shopping list. Safeway UK has a unique way to generate this list directly from logs of

till transactions. The customer transactions and product information are tracked and

stored in the database. The customer is given access to their personalized shopping

list and other lists such as items on special offer, recommended products and so on.

 Literature Survey Doc. No. 1

 Page 6

Once an order has been created, the customer attaches his PDA to a modem and

sends information to the store. Bellamy’s (2002) paper discusses the design of Easi-

Order application and they are summarized as follow:

1. Hardware and software limitations: Small screen (160 × 160 pixel) of PDA

makes it hard to present much information (11 lines of text with 30

characters per line) on the display. The Palm Pilot OS has a limited set of UI

components: icons, tables, scrollable lists, dialog boxes and buttons. It

becomes necessary to augment these components to provide satisfactory

user experience.

2. Research Methodology: The designers met face to face with intended users

namely their customers and observe their shopping habits. They made two

field trips to the store and spoke with a dozen customers spanned across a

number of demographic characteristics (age, gender, work in/out of home

etc.). Talking with customers profoundly influenced their thinking and

changed many of their earlier assumptions about the application. The design

team completed their prototype and went back to the customers over a

period of 3 days to carry out the evaluation process. The designers found a

few shortcomings with their initial design but they were corrected later in

their redesign in an iterative process.

3. Design features and user experience: The customers were confused with

use of some of the GUI components, particularly use of navigation tabs.

However, the designers found that people were able to overcome this

problem if they are first given a brief explanation using a list of simple

instruction steps and annotated pictures of the screen. They also found that

use of familiar themes such as a basket metaphor (commonly used by

shopping websites) for the Order screen helps reduced the learning curve.

Like many mobile applications Easi-Order coordinates audio and visual

feedback mechanisms to enhance user interaction. For instance, when an

item is added to the order, a distinct icon on the order tab flashes

 Literature Survey Doc. No. 1

 Page 7

accompanied by a soft, non-intrusive beep. This design feature was intended

to provide immediate perceptual feedback that item has been successfully

added to the order (thus, putting user’s mind at ease) and of attracting the

user’s attention to the Order tab and enticing him to view the Order screen.

The second case study focuses on a handheld (PDA and WAP phone) tour guide

system from Vindigo (Caceres R. et al, 2002). The software provides tour

information in areas of dining, shopping and entertainment based on contextual

information such as time of day, personal preferences and most importantly, the

geographical location of the user. The user specifies this automatically by reading

latitude and longitude coordinates from GPS receiver attached to mobile device, and

manually by selecting from a predefined list of street intersections. Automatic

location is convenient in many situations but manual location allows user to plan for

a place where he will be in future. The application offers two main functions

implemented as the “Go” and “Map” screens. The screens provide walking and

public transportation directions and interactive graphical map respectively. By

default, the map displays the locations of the user and of selected points of interest

but very little else to avoid clutter on the screen. Street names and other details are

labeled only when user taps on them. Maps can also highlight the route

corresponding to the text directions shown in the “Go” screen. The system has been

successfully deployed over 20 major cities including New York, San Francisco, and

London. Caceres (2002) highlighted constraints of mobile devices such as

processor speed, screen size, power, network connectivity and throughput. In the

face of these considerations he recommends a number of design principles for

mobile applications like Vindigo to provide a high-quality user experience. They

must:

1. Offer intuitive and responsive user interface. Simplicity must be the key to UI

design.

2. Be customized to the form factors and capabilities of target devices and

wireless networks.

 Literature Survey Doc. No. 1

 Page 8

3. Exploit local processing and storage resources while making judicious use of

wireless networks.

4. Make intelligent use of context: location, time, schedules and personal

preferences etc.

5. Provide deep relevant content with minimal user interaction.

Mobile applications pose a considerable design challenge for software developers.

They have different user profile, target platforms and operating environment, and

hence different software requirements to the traditional desktop and web

applications. It is clear from above examples that they must be carefully tailored to

meet these demands if they are to be successful. Each type of mobile application

has its own unique characteristics and designers must be able to identify and better

still exploit them to produce most usable software possible. The next section of the

document discuss in details these fundamental characteristics of mobile systems

and more importantly, the design processes and methodologies used to achieve

usable software applications.

2.3 Mobile System Characteristics

2.3.1 Constraints

Mobile computing is characterized by a number of constraints that are intrinsic to

mobility (Satyanarayanan M., 1996). Together, they complicate the design of mobile

applications that are to a large extent different from traditional information systems.

The four constraints are as follows:

� Mobile devices are resource-poor: They are limited in terms of battery life,

screen size, memory, processor speed etc. This is the price they pay for

being small and lightweight. Unfortunately, mobile computers will always

remain resource-poor compared to their desktop counterparts.

 Literature Survey Doc. No. 1

 Page 9

� Mobility is inherently hazardous: Mobile users operate in an environment

that is hostile and hazardous. They are often exposed to environmental

elements that constantly influence the usage of mobile device. For example,

a touch screen of PDA should be equally readable in direct sunlight as in the

dark. In a field data collection work, mobile devices are prone to physical

damage from an occasional dropping to exposure to water, high frequency

magnetic interference etc.

� Mobile connectivity is highly variable in performance and reliability: A

wireless networks access behaves differently in terms of bandwidth and

reliability for the indoor and outdoor environments. A GPS, for example, is

unreliable indoors and in built-up areas due to not able to “see” a sufficient

number of satellites to locate an accurate position. Mobile devices must rely

on cache to store information and have their functionality remain available

throughout periods of disconnection.

2.3.2 Context-awareness

When humans talk with humans, they are able to use implicit situational information,

or context, to increase the conversational bandwidth. Similarly, it is envisaged that

the richness of human-computer interaction (HCI), particularly in mobile computing,

will be increased by improving computer’s access to contextual information and

appropriately adapting to the changes in the context.

The notion of context, however, is very broad and not always clearly understood.

There are a number of definitions on what context really means. A survey (Dey A et

al., 2000) of definitions and categories of context includes location, nearby objects,

user environment, time of day, temperature and so on. However, Dey (2000) argues

that the definition of context should not be specific. Instead, one should take into

consideration the whole situation relevant to an application and its set of users. Of

course, one cannot enumerate which aspects of all situations are important, as this

 Literature Survey Doc. No. 1

 Page 10

will change from situation to situation. In some cases, the physical environment may

be important, while in others it may be completely immaterial.

In mobile tour guides, for example, contextual information that is relevant includes

personal and environmental (Cheverst K et al., 2000) (Abowd G et al., 1997).

Personal context may be the visitor’s interest, current location and personal

preferences on reading language, food, music etc. Examples of environmental

context may include the time of the day and opening times of attractions, and so on.

Dey defines context as follows:

Context is any information that can be used to characterize the situation of an entity.

An entity is a person, place, or object that is considered relevant to the interaction

between the user and an application, including the user and applications themselves.

The definition of context-awareness is also unclear. Dey has found that many

researchers before him defined context-aware applications to be applications that

dynamically change or adapt their behavior based on the context of the application

and the user. He, on the other hand, defines context-awareness as follows:

A system is context-aware if it uses context to provide relevant information and/or

services to the user, where relevancy depends on the user’s task.

This definition of context-awareness is more acceptable because it allows context to

be either explicitly or implicitly indicated by the user. This is important since one of

the major challenges in development of context-aware mobile application is how

contextual information should be presented (Cheverst K et al., 2002). Some

researchers argue that the more information that can be automatically captured and

turned into context, the better (Abowd G et al., 1997). If the user has to explicitly

inform the system about the context information, then the context is unlikely to be

fully utilized. However, pre-empting the user’s goal is often difficult and certain

tradeoffs are needed. This is because users are required to trust the behavior of the

 Literature Survey Doc. No. 1

 Page 11

system’s intelligence and this requires the system to have predictable behavior and

the ability to successfully and consistently preempt the user’s goal. Agents may

incorrectly preempt the user’s goal, owing to either flawed intelligence or to incorrect

or out-of-date contextual information. In such circumstances, the user is likely to get

frustrated because the system will either appear overly prescriptive or, worse still,

present incorrect results (Cheverst K et al., 2001). The lessons learnt from the

mobile tour guides suggest that designers of context-aware systems must not be

over zealous when deciding to constrain the information or functionality provided by

the system based on the current context (Cheverst K et al., 2000). The solution,

therefore, is to provide the user with the choice so that the system does not behave

in an overly authoritarian manner.

A number of researchers have also investigated sensing techniques and

experimented with a wide variety of sensors that is used to detect and input relevant

contextual information into mobile device (Hinckley K et al., 2000) (Laerhoven K et

al., 2001). Sensors can be used to detect environmental conditions, gestures and

activity to geospatial location of the user. For example, the radio frequency (RF) and

infra-red (IR) sensors have being used outdoors and inside buildings respectively

(Abowd G et al., 1997). The type of sensors used on a mobile device such as PDA

includes microphones, light sensors, and accelerometers (for measuring movement),

pressure and touch sensors etc.

2.3.3 Usability

While much of the underlying technology is available in handheld and mobile

computing, there are challenges with respect to usability of mobile devices.

Unfortunately, usability is still one of the biggest barriers for a broad usage of mobile

devices. As a result, users are less productive, commit errors, and are dissatisfied

with the software.

According to ISO 9214, Part 11, usability is “the extent to which a product can be

used by specified users to achieve specified goals with effectiveness, efficiency, and

 Literature Survey Doc. No. 1

 Page 12

satisfaction in a specified context of use”. Contrary to what some might think,

usability is not just the appearance of the user interface (UI), more importantly, it

relates to “how the system interacts with the user” (Preece J, 1994). Usability

constitutes five basic attributes (Ferre X et al., 2001):

� Learnability – How easy it is to learn the main system functionality and gain

system familiarity and proficiency to complete the job. This attribute is usually

assessed by measuring the time the user spends working with the system

before that he/she can complete certain tasks in the time it would take an

expert to complete the same tasks. This situation is particularly important to

novice users.

� Efficiency – Efficiency is measured in terms of the number of tasks per unit

of time that the user can perform using the system. The higher the system

usability is, the faster the user can perform the task and complete the job.

� User retention over time – It is critical for intermittent users to be able to use

the system without having to climb the learning curve again. This attribute

reflects how well the user remembers how the system works after a period of

non-usage.

� Error rate – This attribute contributes negatively to usability. It does not refer

to system errors. On the contrary, it addresses the number of errors the user

makes while performing a task. Good usability implies a low error rate. Errors

reduce efficiency and user satisfaction, and they can be seen as a failure to

communicate the right way of doing things to the user.

� Satisfaction – This attribute shows user’s subjective impression of the

system.

Unfortunately, usability of small devices is significantly poor compared to a well-

 Literature Survey Doc. No. 1

 Page 13

equipped desktop computer. The popular reaction to the most widely available

mobile services has been negative. In particular, the uptake by customers in many

countries for new WAP phones has being disappointing (Buchanan G et al., 2001).

Their experience suggests that one of the reasons for failure of WAP to date, and

indeed the potential failure of similar technologies, is that not enough time has been

spent really thinking about the human factors.

As more users enter the world of mobile computing, user interface designers are

challenged by moving away from large screens and familiar input devices of the

desktop computer, to small, pocket-sized screens and limited interaction techniques

of mobile devices, such as PDAs and mobile phones. Since the screen of a mobile

device is relatively small it can become cluttered with information as designers try to

cram on as much information as possible. This has resulted in devices that are hard

to use, with small text that is hard to read, cramped graphics and little contextual

information. One of the solutions is to use sound to present information (Brewster S,

2002). This reduces clutter on the screen and allows more information to be

presented on the display. Sound can also be used to improve targeting of widgets on

the screen and therefore improve the usability of different selection strategies. For

example, sound can be used to indicate when the stylus is on or off a target or when

it is nearing a target on the interface. The audio feedback mechanism is also being

used to enable people with impaired hearing to navigate (Holland S et al., 2002). The

intensity and the number of pulses of sound are used to indicate the direction and

the distance of target respectively. Other channels of communication such as tactile

feedback is also proved to be useful (Poupyrev I et al., 2002). The same study found

that 22% faster task completion when handheld device is enhanced with tactile

feedback. Some researchers (Laarni J, 2002) have also discovered that reading

speed and comprehension of information on a mobile device can be increased by

using appropriate presentation techniques depending on a particular type of screen.

 Literature Survey Doc. No. 1

 Page 14

3 Mobile Applications for Field Use

3.1 Field Data Collection

To be proficient and competitive in a global market means companies must properly

manage their infrastructure, workforce and other resources. Asset management

enables these companies to operate at an optimum efficiency by allowing better

management decisions based on accurate information about company’s assets. One

such case is in the utility industry (e.g. water, electricity and telecommunications)

where records of their vast infrastructure of network assets distributed over a wide

geographical area are captured and kept up-to-date. Subsequently, all of this data is

used to manage planning in asset purchase, maintenance, and overall performance

of the network.

Maintenance Service Build

Operations

Logical Layer

Physical Layer

Landbase Layer

Figure 1: Asset Information Model in central data repository

In order to bring about a successful asset management program, public utilities need

to capture and store accurate and comprehensive network related data within a

central repository. According to their location, technical specifications and logical

configurations, network asset information may be represented on “layers” that are

interdependent (see Figure 1). In many underdeveloped countries, including South

 Literature Survey Doc. No. 1

 Page 15

Africa, utilities do not yet have complete information about their networks, and they

are in the process of data collection and verification.

At present, appropriate techniques and processes for capturing and validating data

are being explored so that the data collected is accurate and complete. Kuhl (2003)

outlines three different approaches to field data collection in the utilities as well as

their advantages and disadvantages. The first approach is to do a complete field

audit (Kuhl L, 2003). This approach is the most effective way to gain an accurate

representation of network assets as they exist in the field. Though labour-intensive, it

can also be the most cost-effective approach. The second approach is to detect

errors in the target system and go back to the respective sources in an iterative

manner and make corrections. Unfortunately, this approach is very labour intensive

and does not always produce the best results. The third approach involves the

implementation of advanced data gateways to limit the amount of field verification

required. Advanced data gateways detect errors, automatically correct errors,

provide reports on what was fixed, and provide the tools for highlighting and fixing

the remaining errors that cannot be automatically corrected. In the end, Kuhl (2003)

suggested that the best approach is a combination of complete field audit and use of

advanced data gateways.

3.2 Mobile GIS

The spatial information captured by the Geospatial Information Systems (GIS), when

analyzed provides answers to complex problems which may otherwise be difficult to

solve. A GIS with its ability to link and display different data sets on the basis of a

common geography appears to be the perfect set of tools for supporting a decision

making process. For instance, in 1996 South African national census saw the

capture of spatial information about the country’s population into GIS. Since then, it

has been identified for use in South Africa's integrated rural development initiative

and provision of universal access to the country’s resources and infrastructure

(Lester K, 2001). Although spatial information has been successfully used in the

 Literature Survey Doc. No. 1

 Page 16

environmental and mineral exploration fields for decades, it was only recently that

GIS began to be used more and more in the socio-economic environment.

Undoubtedly, geospatial information has come to be an essential component of

problem solving in modern society. The European Commission sets the goal for

Europe to become “the most competitive and dynamic economy in the world” with an

emphasis on the exploitation of public-sector information. Seven conditions have

been identified in order to achieve this goal, five of which directly involve GIS (McKee

F, 2002). The importance placed on GIS by the Commission indicates how critical it

is to the future socio-economic and political growth of Europe. In South Africa and

Africa as a whole, focus on GIS is established by the NEPAD which aims to lift socio-

economic conditions of the people by addressing poverty and underdevelopment on

the continent (Schwabe C, 2001).

For NEPAD to succeed, provision and maintenance of services and infrastructure

(e.g. water, electricity, roads etc), and communication technology (e.g. radio,

telephone, cellular networks) are needed. NEPAD requires spatial information to be

collected in the immediate short term so that especially socio-economic and political

information can be linked to administrative boundaries at a sub-national level

(Schwabe C, 2001). Public municipalities and utilities play an important role in

providing necessary spatial information about the country’s infrastructure and

resources. The use of GIS in the public utilities environment is crucial in automating

production of plans, manage services, infrastructure, and subsequently creating

comprehensive information system at both national and sub-national level. This

information provides an understanding of what proportion of the population has

access to basic services and infrastructure, and address inequalities that may exist,

as well as encourage investment by private sector.

A typical utility makes countless changes and updates to its network every day and

they are depicted on maps and stored on paper. However, many of these paper-

based workflows are inefficient. For example, data collected from the field using a

paper sourcing form must be manually entered into a GIS database (called data

 Literature Survey Doc. No. 1

 Page 17

capturing process). This process is very time consuming, labour intensive, and prone

to human errors. As a result, utilities are providing fieldworkers with mobile

computers and mobile GIS software for field data collection and verification. It is

envisaged that use of mobile applications in asset maintenance will allow instant

access to up-to-date service related information. For example, work orders can be

downloaded directly to a technician’s wireless device and work instructions and asset

history can be viewed on site (Indus International, 2002). In addition, emergency

service can be requested immediately for an unexpected outage. With small,

lightweight and inexpensive mobile devices as well as the increased coverage of

wireless data networks, mobile solutions have become applicable for a broad usage

by the mobile workforce. There are a number of mobile GIS mapping solutions (e.g.

ArcPad, Intelliwhere and PocketGIS etc.) commercially available for asset data

collection and management (GPS World, 2002). Some of the well-known vendors

include ESRI, Intergraph and Trimble who are making significant headway into the

development of mobile GIS technologies.

3.3 Mobile Work

The context in which mobile computers are used is very different from a traditional

office setting. A mobile environment is heterogeneous (Hinckley K et al., 2000),

where users often face several different kinds of use situations that are constantly

changing. A commuter, for example, may have to stand up the first part of ride of

town, and sit down the last. While sitting down in front of a table, a palm-top

computer with external keyboard may be very suitable. While standing up, however,

it may be very difficult to use. The diversity of the mobile use context calls for a set of

interaction styles among which a mobile user can choose from in the particular

situation at hand (Hinckley K et al., 2000). Similarly, a fieldworker’s work context is a

dynamic one, where a mobile computer will be utilized throughout the course of

user’s work, often spread over a wide geographic area. One of the characteristic

difficulties of mobile work is that there is less predictability and more restricted

access to information than a traditional office work (Perry M et al., 2001). In the study

of mobile work in two settings, namely, telecommunication service engineers and

 Literature Survey Doc. No. 1

 Page 18

maritime consulting staff, four important features of mobile work were identified

(Kristoffersen S et al., 1999):

� Tasks external to operating mobile computers are the most important, as

opposed to tasks taking place “inside the computer” (e.g. a spreadsheet for

an office worker)

� User’s hands are often used to manipulate physical objects, as opposed to

the user in traditional office setting, whose hands are safely and

ergonomically placed on the keyboard.

� Users may be involved in tasks (“outside the computer”) that demand a high

level of visual attention (e.g. to avoid danger as well as monitor progress), as

opposed to a traditional office setting where a large degree of visual attention

is usually directed at the computer.

� Users may be highly mobile during the task, as opposed to in the office,

where doing and typing are often separated.

In a similar study, Pascoe (2000) studied a fieldwork carried out by a game ranger,

tracking and recording movements of animals in a Kenyan game reserve. He also

found his fieldwork exhibit similar characteristics identified by Kristoffersen (1999).

He identified three more characteristics of fieldwork and they are:

� Dynamic User Configuration – Fieldworkers will want to collect data

whenever and wherever they like. They may be doing this work while they are

standing, crawling, climbing or walking.

� High Speed Interaction – The subjects of some time-dependent observations

are highly animated or, more commonly, have intense periods or “spurts” of

activity. During these spurts of activity, they need to able to enter high

volumes of data very quickly and accurately, or it may be lost forever.

 Literature Survey Doc. No. 1

 Page 19

� Context Dependency – A fieldworker’s activities are intimately associated

with their context or, if different, the subject’s context.

The authors of both empirical studies argued that the current direct manipulation

interaction style adopted in most mobile devices is unsuitable for the mobile work

context. In particular, a high degree of visual attention that direct manipulation

demands. To overcome some of the perceived drawbacks of the Graphical User

Interface (GUI) of mobile computers, Kristoffersen (1999) and Pascoe (2000)

proposed alternative user interaction styles called MOTILE and Minimum Attention

User Interface (MAUI) respectively. The objective of both interaction styles is to

transfer interactions to modes that take less of the user’s attention away from their

current task. MOTILE is based on three principles:

� Little or no visual attention – the “executing actions” should not demand a

high degree of visual attention

� Structured, tactile input – “perceiving the systems state” should demand little

or no visual attention. One important reason is the practical problem of finding

a place for mobile computer that makes the screen easily available for the

user. This calls for feedback and output methods that demand little or no

video. Such methods may rely on audio, which is the third implication.

� Use of audio feedback - in most mobile situations they studied users could

have relied on audio feedback. Even in extreme environments, this would be

possible, because an “ear-plug” may be used.

To a similar effect, Pascoe proposed two principals for user interface design for

fieldworkers. Firstly, through an appropriate utilization of interaction modes, he

argues that the user interface can be designed to draw minimum amount of attention

away from the user’s activity. And secondly, to automatically record and filter

contextual information using knowledge of user’s current environment.

 Literature Survey Doc. No. 1

 Page 20

3.4 User Acceptance

IT projects are often proposed, developed and implemented without much regard for

the end users. Recent literature suggests that issues over user acceptance remain a

concern for successful deployment of mobile technology (Randell B, 2003). To a

large extent, a project’s success depends on their acceptance and usage. This is

particular true for fieldworkers who are the key to data collection and maintenance

process as they provide the source information for the updates that are to take place

in the GIS.

It is important to recognize and respond to the user resistance that comes with new

technologies (Griffin B, 2003). Unfortunately, user training alone is not enough. One

preconceived notion about software is that users can always be trained to put up with

the usability drawbacks of the system. All too often, users are trained to use

awkward workarounds that mask usability inadequacies. Making too many

assumptions about users’ expectations and levels of competence can get software

developers into a lot of trouble. In South Africa, and in other developing countries,

fieldworkers have a lower level of computer experience and skill than their

counterparts in developed countries (Dwolatzky B et al., 2003). Hence, one cannot

assume that the intended users are familiar with certain operating systems and

metaphors that may be associated with them.

 Literature Survey Doc. No. 1

 Page 21

4 Usability Design Process

4.1 Usability Design Guidelines

Basic usability design guidelines help designers make reasonable decisions that lead

to highly usable systems. These guidelines contribute to the goals of designing

systems that are easy to learn, but efficient, reliable and satisfying to use (these etc

usability attributes are discussed in section 2.3.3). The guidelines include both

usability rules and design principles. The “rules” of usability define a general

character of what constitutes well-designed, usable systems. These rules provide

broad, overall directions for user interface (UI) design, pointing the designer towards

a generally superior solution. The design principles, on the other hand, provide a

narrower guidance on more specific issues in the software industry.

Strictly speaking, all of these, rules and principles alike, are mere heuristics. That is,

they are simple rules of thumb that generally point the way to better designs but

without any general guarantee of good results. Heuristics will not resolve design

issues on their own and are no substitute for thoughtful analysis or inspired creativity

on the part of the designer. The best rules can be applied ignorantly or

indiscriminately. A number of usability and HCI experts have proposed many

software usability principles and some of them extend to hundreds of pages. Jakob

Nielsen (1990), one of the more well-known usability experts, summarized them into

nine fairly broad heuristics or guidelines:

• Simple and natural dialogue

• Speak the user’s language

• Minimize user memory load

• Be consistent

• Provide feedback

• Provide clearly marked exits

• Provide shortcuts

 Literature Survey Doc. No. 1

 Page 22

• Provide good error messages

• Prevent errors

Shneiderman (1998a), another well-known user interface design expert proposes

eight “golden rules of user interface design” which are to a large extent comparable

to what Nielsen proposed. They are:

• Strive for consistency

• Enable frequent users to use shortcuts

• Offer informative feedback

• Design dialogs to yield closure

• Offer error prevention and simple error handling

• Permit easy reversal of actions

• Support internal locus of control

• Reduce short-term memory load

From a usable software development approach, Constantine (1999a) proposed five

“rules” of usability and six design principles for usable user interface. They are as

follows:

First rule: Access

The system should be usable, without help or instruction, by the user who has

knowledge and experience in the application domain but no prior experience with the

system.

Ideally, a well-designed system should enable user who knows how to perform some

task to accomplish using it without consulting even an on-line help system. Highly

accessible interfaces are sometimes referred to as intuitive, meaning that the

guesses and presuppositions of users are more likely to be right than wrong and

that, even when wrong, the results are reasonable responses from the system that

are readily understood by the users. A well-designed system needs to support all it

 Literature Survey Doc. No. 1

 Page 23

users, from first time users to those who have extensive experience in working with

the system (power users).

Second rule: Efficacy

The system should not interfere with or impede efficient use by a skilled user who has

substantial experience with the system.

In many cases, the very design practices that make things easiest for beginners

make things harder for everyone else. Designers will find it very challenging to serve

both groups of users who are just learning a system and those that have already

learned it well.

Third rule: Progression

The system should facilitate continuous advancement in knowledge, skill, and facility

and accommodate progressive change in usage as the user gains experience with the

system.

The Progression Rule means that some connection is needed between the simpler

and more advanced facilities. In other words, organization and details of user

interface should actively aid the user in understanding and using additional features

while acquiring new skills. The rule also suggests that the various features and

facilities supporting newcomers, old hands, and everyone in between need to be

integrated and meaningfully related. The designers need to understand how the

patterns of usage change as users progress in knowledge and skill. Things that are

encouraging and comforting to beginners can become annoying impediments for

advanced users; facilities that advanced users employ with confidence may be

daunting or even frightening for those just starting out. Yet, all these things need to

be smoothly integrated into a seamless interface.

 Literature Survey Doc. No. 1

 Page 24

Fourth rule: Support

The system should support the real work that users are trying to accomplish by

making it easier, simpler, faster, or more fun or by making new things possible.

The support rule is at the very heart of usage-centered design (see section 4.3 for

details). It is based on the notion that all software systems are tools and good tools

support work (as oppose to mere activity). It exhorts designers to understand what

users will need to do with a system and how they will need to do it in order to perform

their work better. Every software engineering effort should be seen as an opportunity

for reengineering the work itself. Supporting the real work that users are trying to

accomplish may mean changing that work.

Fifth rule: Context

The system should be suited to the real conditions and actual environment of the

operational context within which it will be deployed and used.

This rule emphasizes that the best design intentions are inadequate if they do not

take into account where and under what circumstances systems will actually be

used. Every context is different. Operational context needs to be a background

concern throughout much of the design process in order to produce systems well

suited to the context in which they will be used.

The five rules of usability described above do not in themselves offer designers

enough in the way of specific direction when it comes to resolving practical problems

in UI design. For that, Constantine (1999a) proposed more focused design

principles. Each principle incorporates a number of closely related, more detailed

considerations within a general class of issues. These design principles are:

 Literature Survey Doc. No. 1

 Page 25

Structure Principle:

Organize the user interface purposefully, in meaningful and useful ways based on

clear, consistent models that are apparent and recognizable to users, putting related

things together and separating unrelated things, differentiating dissimilar things and

making similar things resemble one another.

This principle is concerned with the overall user interface architecture and directly

reflects the notion of user interface design as a dialogue between designers and

users. Good user interfaces are deliberately organized in ways that reflect the

structure of the work being supported and the way in which users think about that

work. All too often, especially using modern visual development tools, the placement

of visual components within forms or dialogues and their distribution among these is

almost haphazardous.

Simplicity Principle:

Make simple, common tasks simple to do, communicating clearly and simply in the

user’s own language and providing good shortcuts that are meaningfully related to

longer procedures.

Naturally, all designers would like to produce user interfaces that are simple and

easy to use. But neither everything about a user interface nor every task to be

performed can be made simple. Design is always a matter of trade-offs.

Visibility Principle

Keep all needed options and materials for a given task visible without distracting the

user with extraneous of redundant information.

This principle is about designing UI that make things visible and available to users

 Literature Survey Doc. No. 1

 Page 26

based on what they are trying to accomplish. The goal is to go beyond What You

See Is What You Get (WYSIWYG) to What You See Is What You Need (WYSIWYN).

On the one hand, the design object is to make all the necessary and relevant options

visible and explicit. On the other hand, good designs do not overwhelm users with

too many alternatives or confuse them with irrelevant information.

Feedback Principle

Keep users informed of actions or interpretations, changes of state or condition, and

errors or exceptions that are relevant and of interest to the user through clear,

concise, and unambiguous language familiar to users.

Good user interfaces are good conversationalists, telling the user what is happening

inside the system. The Feedback Principle tells designers some of the rules of this

conversation. A message that is not seen or heard communicates nothing, so part of

successful feedback is to present information in such a way that it is noticed, read,

and interpreted correctly.

Tolerance Principle

Be flexible and tolerant, reducing the cost of mistakes and misuse by allowing

undoing and redoing while also preventing errors wherever possible by tolerating

varied inputs and sequences and by interpreting all reasonable actions reasonably.

Fewer errors are better than good error messages. Not only does it accept varied

input and actions from users, but, when something unexpected arrives, it also does

not punish them. Good software programs interpret reasonably any reasonable

action by the user.

 Literature Survey Doc. No. 1

 Page 27

Reuse Principle

Reuse internal and external components and behaviors, maintaining consistency with

purpose rather than merely arbitrary consistency, thus reducing the need for users to

rethink and remember.

A user interface is more predictable and understandable to users when they see the

consistency and predictability with UI components, their arrangements, functionality

etc.

4.2 User-Centered Design (UCD)

“Computer programming and software development did not always have a concern

for users or a focus on the usability of systems. Although software designed in a

technically-oriented manner performs processing adequately, the code that is

produced rarely meets human needs. Looking back to the 1950s and 1960s, when

modern business and scientific computing began to come into its own as an industry

and a profession, users – that is, the ultimate end users of the results of

computations – did not typically get anywhere near computers. The machines –

large, expensive, and often more than a little bit temperamental – were attended like

electronic idols by duly anointed operators and fed their programs and data by

properly initiated programmers. Only the operators, the service technicians, and a

few select others actually flipped switches or pressed buttons on the control console

of one of those sluggish giants. The users of information were handed a report or a

table of numbers and considered themselves lucky if the columns were formatted so

that the numbers could be easily read. Now, the user population for office

automation, home and personal computing, and digital libraries is so vastly different

from the original that programmers’ intuitions are inappropriate. Current users are not

dedicated to the technology, their background is more tied to workflow, and their use

of computers is discretionary. In the best designs, the techno-centric style of the past

 Literature Survey Doc. No. 1

 Page 28

is yielding to a genuine desire to accommodate to the users’ skills, goals, and

preferences.” (Constantine L et al., 1999a)

The User-Centered Design (UCD) is a user-centric software design methodology that

focuses on users and their needs in an effort to design usable software. The UCD

had its origins with the seminal work of Norman and Draper (1986) and its rise

represented a gradual shift from a focus on technology to a focus on people (users).

The UCD places people at the very heart of the system design process. It has

become the dominant force in UI design for software in recent decades. The UCD is

a practice of the following principles, the active involvement of users for a clear

understanding of user and task requirements, iterative design and evaluation and a

multi-disciplinary approach (Vredenburg K et al., 2002). Two key components of

UCD are the User Analysis and Task Analysis.

User Analysis – this stage of UCD is critical for understanding user groups for which

the documentation is intended. The deliverables from this stage is an audience

definition that describes skills and abilities of the target users and job characteristics

of the user group. A user profile also includes the willingness and preparation for

learning, and expectations and interests (Murray J et al., 1997).

In order to determine user profile users are broken into multiple user segments. Each

segment has a profile that answers questions about user demographics,

psychographics, skills, knowledge, and background. They are obtained through

interviews, surveys, focus groups, observation and reviews of other information such

as industry reports, press or marketing materials. In addition, it is important to

analyze user environments. For example, where do users perform their tasks? The

conditions that exist in the working environment that impact on how users do their

work includes information about physical work environment (lighting, noise, space,

temperature, telephones, people), user location (work at home, on site, mobile), and

human factors (vision, hearing, keyboard abilities, sitting versus standing). User

requirements are gathered by asking “What do users expect the application to do for

them?” and matching requirements to tasks. That is, reviewing user tasks and

 Literature Survey Doc. No. 1

 Page 29

requirements is a reality check to make sure the requirements are in line with the

tasks that the users are trying to do.

������������	
���
�������������������	
���
�������������������	
���
�������������������	
���
�������

��		���		���		���		�

OK?
������	���������������	���������������	���������������	���������

����	�����	�����	�����	�
No

Yes

��������		������������������		������������������		������������������		����������

OK?
������	���������������	���������������	���������������	���������

����	�����	�����	�����	�
No

Yes

��

OK?
������	���������������	���������������	���������������	���������

����	�����	�����	�����	�
No

Yes

������������	
�����	��������������	
�����	��������������	
�����	��������������	
�����	��

��	������	������	������	����

OK?
������	���������������	���������������	���������������	���������

����	�����	�����	�����	�
No

Yes

��

����������� ����������������������������!"����������� ����������������������������!"����������� ����������������������������!"����������� ����������������������������!"

#���������	�����#���	��������	�������"#���������	�����#���	��������	�������"#���������	�����#���	��������	�������"#���������	�����#���	��������	�������"

�����	����� ��������������������!"�����	����� ��������������������!"�����	����� ��������������������!"�����	����� ��������������������!"

Figure 2: An analysis of one task for an anesthesiologist. Further analysis would be
necessary to understand subtasks like “take corrective action”. (Source: Dumas J et
al., 1999d)

Task Analysis – the main goal of a user interface is to support the user’s tasks. In

order to ensure that a UI appropriately supports tasks, a designer must understand

how people actually work. A task analysis is really a method for determining this.

Many task analysis techniques exist, but few are simple to understand and use. Most

are based on abstract concepts such as formulas or diagrams (see example in

Figure 2). As a result, require substantial documentation that users will neither read

nor understand. Another problem appears to be involving users in a traditional task

analysis process. One deliverable from this stage of UCD is a complete list of current

tasks and future tasks, including scenario modeling. Tasks and scenarios are used in

the design of all user information; for example, planning, diagnosis, marketing,

 Literature Survey Doc. No. 1

 Page 30

tutorial, and help information (Murray J, 1997). The following questions are

addressed during the task analysis process:

- What tasks do users perform?

- What steps are taken to perform tasks?

- What tasks are most critical?

- What information is needed to perform each task?

- What tools are currently used to complete each task?

- What output is generated from user tasks?

- How do users interact with others in the task?

- How do tasks flow in the business process?

A survey by Vredenburg (2002), however, suggests that the methods used in the

UCD include anything from informal usability testing, low-fidelity prototyping, heuristic

evaluation and navigation design to scenario-based design. It appears that informal

and less structured methods tend to be used much more widely than more formal

and structured methods in UCD process. Another key finding in this survey is that

cost-benefit tradeoff is an important consideration in the adoption of UCD methods.

Hence, there is a major discrepancy between the commonly cited measures and the

actually applied ones. For example, field studies were generally ranked high on

practical importance but relatively infrequently used because they were considered

costly, whereas heuristic evaluations were heavily used because they are relatively

easy and inexpensive. Interestingly, only 13% of the projects engaged in a full UCD

approach in the sense of user involvement at all three stages of the development

cycle. Task analysis was common activity, but was usually derived from indirect

sources (i.e. not from users directly). They have concluded that UCD methods are

generally considered to have improved product usefulness and usability, although

the degree of UCD method adoption was quite uneven across different

organizations.

 Literature Survey Doc. No. 1

 Page 31

4.3 Usage-Centered Design

“To design dramatically more usable tools, it is not only users who must be

understood, but more importantly, usage – how and for what ends software tools will

be employed”.

This emerging view of software systems as tools is referred to as usage-centered

design (Constantine L, 1996). Since good tools support work in order to make

someone’s job easier, faster simpler, more flexible, or more fun, what is really

important is not building software around users (as in the User-Centered Design), but

around uses. In other words, usage-centered design focuses on the work that users

are trying to accomplish and on what software will need to supply via the UI to help

them accomplish it. Constantine (1996), the founder of usage-centered design,

argues that it is necessary to understand users, but what really matters is to

understand what users are doing or trying to do.

The usage-centered design incorporates five key elements (Constantine L et al.,

1999a):

� Pragmatic design guidelines – The usage-centered design provides a

narrower guidance on more specific issues in software usability.

� Model-driven design process – The usage-centered design employs a set of

simple, interrelated models to model both the nature of uses or usage to

which a system will be put through and the organization of user interface that

effectively supports those uses.

� Organized development activities – The activities of usage-centered design

can be incorporated into almost any software development life cycle model,

 Literature Survey Doc. No. 1

 Page 32

particularly the Unified Process and other object-oriented software

development processes.

� Iterative improvement – The usage-centered design incorporates successive

refinements based on the findings from usability inspection and tests. Actual

implementation is completed in a series of iterations.

� Measures of quality – The usage-centered design is supported by an

innovative suite of software metrics that allow developers to assess quality of

UI designs. These metrics can augment usability inspections, reviews, and

testing.

The following questions are addressed carefully in the development of usable

software using usage-centered design:

• Who are the users and how will they relate to the system?

• What tasks are users trying to accomplish through the system we are

designing?

• What do they need from the system in order to accomplish their tasks and

how should it be organized?

• What are the operating conditions under which the system will be used?

• What should the user interface look like (or feel like or sound like) and how

should it behave?

The usage-centered design employs abstract models to solve concrete problems.

This is not surprising when abstraction is at the very foundation of modern software

development practice, from abstract data types to abstract classes. In a usage-

centered design, these abstract models are referred to as the essential models.

They are intended to capture the essence of problems through technology-free,

idealized, and abstract descriptions. The outcome is that the models are more

flexible, leaving open more options and more readily accommodating changes in

technology. The essential models are as follows:

 Literature Survey Doc. No. 1

 Page 33

� Role model – the relationship between users and the system.

� Task model – the structure of tasks that users will need to accomplish

� Content model – the tools and materials to be supplied by the user interface,

organized into useful collections and the interconnections among these

collections.

� Operational model – the operational context in which system is deployed

and used.

� Implementation model – the visual design of the user interface and

description of its operation.

The first three models represent the structure of usage and the architecture of the

user interface that will support that usage. The role model identifies the roles which

users can play. That is, it represents the various forms and patterns of relationships

possible between a system and its users. The task model is based on essential use

cases that represent specific cases of use in terms of the sundry goals that users

can undertake in using a system to accomplish work. The implementation model

which is really a final visual design of UI is based on the architectural models and

adapted to the actual environment in which the system will be used. The operational

model helps adapt the final visual design to the conditions and constraints of the

operational contexts within which system will be deployed and used. The

constituents of operational contexts are:

� Incumbents – characteristics of the actual users who will play a given role.

� Proficiency – how usage proficiency is distributed over time and among users

in a given role.

 Literature Survey Doc. No. 1

 Page 34

� Interaction – characteristic patterns of usage associated with a given role,

use case, or set of use cases.

� Information – the nature of information manipulated by users or exchanged

between users and the system.

� Functional support – specific functions, features, or facilities needed to

support users in a given role or for a specific use or set of use cases.

� Usability criteria – relative importance of specific usability objectives for a

given role or for a specific use case or set of use cases.

� Operational risk – type and level of risk associated with a given role or for a

specific use case or set of use cases.

� Device constraints – limitations or constraining characteristics of the physical

equipment used.

� Environment – relevant factors of the physical environment.

Figure 3 outlines the principal logical relationships among all five models. This

diagram should not be taken as a kind of flowchart for usage-centered design. In

practice, the usage-centered design models are developed concurrently (as opposed

to sequentially as in a waterfall model) with analysts or designers moving back and

forth among alternative views presented by the models. It is important to emphasize

that the usage-centered design essentially focuses on the user interface and

interaction design. Hence, for a complete design of software system, data models

such as object-oriented class diagrams are also necessary.

 Literature Survey Doc. No. 1

 Page 35

Figure 3: A Usage-Centered Design Process (Source: Constantine L et al., 1999a)

4.4 Usability Evaluation

Software usability can be evaluated using a number of techniques; formally by some

analysis technique, automatically by computerized procedure, empirically by

experiments with test users, and heuristically by simply looking at the interface and

passing judgment according to one’s own opinion. The sections below briefly

describe the two most widely used usability evaluation methods, namely the heuristic

evaluation and empirical usability testing.

4.4.1 Heuristic Evaluation

Heuristic evaluation is a usability engineering method for finding usability problems in

a user interface design so that they can be attended to as part of an iterative design

 Literature Survey Doc. No. 1

 Page 36

process (Nielsen J et al., 1990). Heuristic evaluation involves having a small set of

evaluators (typically, 3 to 5 people) examine the interface and judge its compliance

with recognized usability principles (the “heuristics”). Heuristic evaluation thus falls in

the category of usability inspection methods rather than the category of empirical

user testing. Furthermore, heuristic evaluation is one of the most informal usability

inspection methods and is explicitly designed as a “discount usability engineering”

method that is easy and cheap to use in practice.

Unfortunately, the number of usability guidelines can be quite large; up to a few

hundreds (Smith S et al., 1986), and are therefore seen as rather impractical by

developers. Instead, most people perform heuristic evaluation on the basis of their

own intuition and common sense. A relatively small set of heuristics such as the nine

basic usability principles (see section 4.1) from Nielsen (1990) seem more suited as

the basis for practical heuristic evaluation. Usability researchers have also found that

some people are better than others at doing heuristic evaluation (Nielsen J et al.,

1990). They do not have enough evidence to form a firm conclusion but it seems that

it might be the case that there is very little consistency in the ability of evaluators to

find usability problems. They also believe that the usability experts will be better at

heuristic evaluation than average computer professionals.

Heuristic evaluation is difficult to do (Nielsen J et al., 1990). Even in the best case

only half of the usability problems are found, and the general case is rather poor. It is

necessary to supplement the heuristic method with other evaluation methods to

increase the numbers. Individual evaluators are mostly quite bad at doing heuristic

evaluation and they usually find between 20 and 51 percent of the usability problems

in the interfaces they evaluate (Nielsen J et al., 1990). The results are much better if

several people conduct the evaluation, and they should do so independently of each

other. It is recommended that heuristic evaluation be done with between 3 and 5

evaluators and any additional resources be spent on alternative methods of

evaluation (Nielsen J et al., 1990).

The heuristic evaluation is particularly valuable in situations where other methods are

 Literature Survey Doc. No. 1

 Page 37

difficult to use because of extreme time or resource constraints or because

representative users are hard to bring in for user testing. Major advantages of

heuristic evaluation are that it is cheap, intuitive and easy to motivate people to do it,

does not require advance planning, and it can be used early in the development

process. A disadvantage, however, is that it sometimes identifies usability problems

without providing direct suggestions for how to solve them.

4.4.2 Empirical Usability Testing

Usability testing comes in many variations but the theme is simple: users sit down in

front of some version of software and watch them as they try to use it. They are

given some tasks or work to complete and they are observed, and their performance

is analyzed. The favored scheme is to build a usability testing laboratory (see Figure

4), equipped with an array of computers and audio-video equipment. The usability

testing staff consists of psychologists to technicians, and HCI specialists.

Figure 4: Usability Test Laboratory (Source: Dumas J et al., 1999c)

Field testing is the poorer sister in usability. There is no need for need for a usability

 Literature Survey Doc. No. 1

 Page 38

lab, and the only absolutely required equipment is a notebook and a pencil. Usability

testing in a field setting looks at what people actually do when they are doing real

work in an ordinary work setting. This is clearly an advantage considering that the

people tend to think and act differently when removed form their work environment

and brought into a lab to be videotaped.

Some usability experts believe that only objective testing directly with potential users

can ultimately resolve some gray areas where it is unclear just what will work and

what will not. This is something that design guidelines or expert inspection could not

achieve.

 Literature Survey Doc. No. 1

 Page 39

5 Conclusion

The literature survey informed the reader about a number of topics pertinent to the

subject of this research. They include most recent literature on mobile technology,

mobile field applications and usability design process. The section on mobile

technology highlighted recent technological development in terms of hardware,

wireless networks and mobile applications. But more importantly, it discussed

unique characteristics that are intrinsic to mobile computing such as, hardware

constraints, operating context and usability requirements. The argument here is that

mobile computing is a relatively new paradigm that is fundamentally different from

traditional desktop computing and as a result software designers need to take these

factors into careful consideration if they are to produce usable mobile applications.

An extensive use of mobile technology for field data collection work is discussed in

details. The survey began with discussion around field data collection in public

utilities and some case studies in which mobile GIS technology is used to obtain

data from the field. But the main focus was given to the way and environment in

which fieldwork is carried out. Mobile workers operate in operating context and

environment that is inherently heterogeneous where users are faced with different

situations that change constantly. In general, mobile work can be described as

dynamic, contextual and demands high level of user attention. This demands

innovative HCI techniques and usability features from designers. In general, mobile

applications require a much higher level of usability than their desktop counterparts.

The survey gave a summary of a number of usability design guidelines, techniques

and methodologies currently used by designers. The usability guidelines include

definitions of usability rules and design principles widely recognized by the software

community. Two model-driven UI design processes called User-Centered Design

and Usage-Centered Design are discussed. Both represent a move away from

techno-centric way of designing software. The difference however is that the latter

focuses on user to obtain software requirements and the latter on the operation

 Literature Survey Doc. No. 1

 Page 40

context and usage. The survey ends with a section on various techniques used in

usability testing. They are essential for designers if they are to design and effectively

evaluate software that meets a high level of usability requirements.

Software
Requirements

Doc. No. 2

 Software Requirements Doc. No. 2

 Page i

CONTENTS

CONTENTS...I

LIST OF FIGURES..III

1 SCOPE..1

1.1 Introduction..1

1.2 Purpose..1

1.3 Audience..2

2 REQUIREMENTS ELICITATION..3

2.1 Requirements Information ..3

2.2 User Involvement ...3

3.3 Requirements Elicitation Technique ..4

3 UUC DATA COLLECTION WORK...6

4 USER ROLE MODEL ...11

5 TASK MODEL ..14

6 OPERATIONAL MODEL ..32

6.1 Incumbent Profile...32

6.2 Proficiency Profile..33

6.3 Interaction Profile ..33

6.4 Information Profile ..35

6.5 Environment Profile...37

6.6 Device Constraints ...38

6.7 Operational Risk Profile..39

 Software Requirements Doc. No. 2

 Page ii

7 USABILITY CRITERIA ...40

8 FUNCTIONAL REQUIREMENTS ...43

9 HARDWARE REQUIREMENTS ...44

10 CONCLUSIONS ..45

 Software Requirements Doc. No. 2

 Page iii

LIST OF FIGURES

Figure 1: Cables, joints and ducts inside the UUC__6
Figure 2: Topographic view of UUC showing routefaces___________________________________7
Figure 3: Data sourcing map __8
Figure 4: UUC data collection personnel at work __9
Figure 5: Sourcing team, times and site information template ______________________________15
Figure 6: UUC specification template __17
Figure 7: Placing ducts on a topographic view of UUB ___________________________________19
Figure 8: Ducts specification ___20
Figure 9: Sketch of cable connections inside manhole ____________________________________22
Figure 10: Fibre Optics and Copper cables specification _________________________________23
Figure 11: Fibre optics and joint specifications ___26
Figure 12: Use case map for field data collection application ______________________________30

 Software Requirements Doc. No. 2

 Page 1

1 Scope

1.4 Introduction

“It is often said that the hardest single part of building a system is deciding what to

build. This is because the ‘problem’ of what need to be built is often less well

defined, less clear, even fuzzy in many cases.” (van Vliet H, 2000a)

During the requirements engineering phase, system requirements for the field data

collection application are identified and analyzed. In doing so, the usability, software

and hardware requirements for the field application are specified. A case study of

data sourcing work at a telecommunication utility is used to draw user requirements.

Also discussed in this document are various techniques and methodology used to

facilitate in gathering, organizing and analysis of system requirements. A usage-

centered design approach is used to analyze the usability requirements by taking

into consideration user requirements, their tasks and the operational context of the

data sourcing work.

1.5 Purpose

This document represents the analysis phase of the problem domain which includes

intended users, their tasks and operational context in which field data collection

application will be used. The purpose of this document is to communicate the results

of the analysis phase to the reader. Also, the document serves as an anchor point

against which subsequent work can be justified, namely, the system design phase

(Doc. No. 3 and 4) and usability evaluation phase (Doc. No. 5).

 Software Requirements Doc. No. 2

 Page 2

1.6 Audience

The intended readers of this document include researchers involved in the areas of

software usability, mobile computing, as well as software designers, developers, the

external examiner and other interested parties.

 Software Requirements Doc. No. 2

 Page 3

2 Requirements Elicitation

2.1 Requirements Information

Software requirements information can be obtained from various sources. In

commercial software, for example, designers look to other software, previous

versions or competing products. They may also talk with people from marketing,

technical support or other departments and conduct surveys or analyze customer

complaints. But generally speaking, the more accurate and reliable data is obtained

directly from the source – users themselves. This was the direction taken in this

project whereby the bulk of user requirements for the field data collection application

were obtained from actual fieldworkers.

A team of Underground Utility Closure (UUC) data sourcing personnel from Telkom,

the country’s largest telecommunications utility, assisted in obtaining requirements

information. The fieldworkers cooperated in answering questions relating to their

work. More importantly, they were accompanied during their field trips to collect

network related data and were observed doing their work. Also, a number of UUC

paper sourcing templates used in data collection work were made available for

analysis.

2.2 User Involvement

Although user participation is essential in any software development process, it is

not always clear how much they should get involved. One may argue that software

development process should be user-driven because it is users who will end up

using the software. In a user-centered design (see section 4.2, Doc. No. 1), for

example, users are placed at the centre of software development process where

they make most design decisions. A Taylorian approach, on the other hand, is

strictly functional one. Its underlying assumption is that there is one objective truth,

 Software Requirements Doc. No. 2

 Page 4

which merely needs to be discovered during the analysis process (van Vliet H,

2000a).

Unfortunately, each school of thought mentioned above has its shortcomings. When

a purely functional view of the world is imposed on developing software that is

supposed to support people in doing their job, the outcome may well be ill-

conceived systems. Similarly, by relying too much on the users to drive the software

development, one is exposed to a number of practical problems. Generally, the

users themselves don’t always know what they want, or what the future system is

capable of doing (van Vliet H, 2000a). As humans, they are inclined to be prejudiced

about selecting and using information. Moreover, extensive user involvement may

be costly and may lengthen the implementation period. The telecommunication

workers who participated in this research did so by their own willingness to help

without any remuneration. Hence, cost is not an issue but there is limitation on

frequency of field visits to acquire requirements information, or generally, the

amount of time that can be spent with them, because they are preoccupied with

their jobs and not always able to assist.

Given the limitations mentioned above, neither the Talyorian nor “user-centric”

approach would be appropriate for the project at hand. Instead, a more pragmatic

approach is adopted whereby potential users assist in acquiring user requirements

and evaluation of the prototype. However, they do not drive the software

development process by making design decisions. But having said that, users are

encouraged to influence the design through their comments and suggestions

throughout the development process.

3.3 Requirements Elicitation Technique

The techniques used to gather requirement information for the field data collection

application include form analysis, user interviews and observations. A multiple

requirements elicitation technique was used in an effort to gather as much

requirements information as possible. The interviews were carried out with a team of

 Software Requirements Doc. No. 2

 Page 5

seven data collection personnel from Telkom during their field trip to collect network

related data. During the interviews, users were asked about the data collection

process. The interviews were rather informal and open-ended. The intention was to

let the users talk freely about their work without imposing the interviewer’s views.

The workers use paper forms (see Doc. No. 6) referred to as sourcing templates to

record data that they have collected from the field. The forms contain various data

fields, specification tables, drawings, data entry rules and general guidelines. Data

collection work is largely a form filling activity, and to understand what the work is

about, it is appropriate to do a form analysis. Information contained in these forms

explained the nature of information obtained from the field (e.g. text/graphic,

accuracy, level of details etc.). In addition, they provided information about data

objects of the domain, their properties, and interrelations. This type of information is

particularly useful for the design of data models later in the Software Design (Doc.

No. 4).

Unfortunately, user interviews and form analysis came short of explaining how the

data sourcing work was actually done – in terms of interactions required, the context

and environment. This important information was obtained by observing users at

work. A “motivated looking” (Millen D et al., 2000) approach was adopted due to a

limited amount of available field time. This was done by selecting key informants,

asking more focused research questions, and using a video recorder to record field

visits. From the data sourcing team, a group leader was selected as a “field guide”

and he was able to not only answer a broad range of issues relating to their work,

but also highlighted the most important aspects of the work as well. Video

recordings allowed data from the field to be brought back to the lab for detailed

analysis. Repeated viewing of recorded material was done to examine user

interactions in a more thorough manner. This was necessary when activities in the

field occurred so quickly that the observer was unable to identify all the important

details when first encountered at the field site (Brun-Cotton F et al., 1995).

 Software Requirements Doc. No. 2

 Page 6

3 UUC Data Collection Work

This section gives a brief overview of the field data collection work by a data

sourcing team from Telkom. This particular utility keeps its vast, complex network of

cables underground and many of these cables pass through the Underground Utility

Closures (UUC, also called Underground Utility Box or UUB). As part of asset

management, Telkom keeps record of the network by doing regular data sourcing

activity. The data sourcing team is required to go inside the UUCs and obtain

information about the network assets such as cables, ducts and joints etc.

Figure 5: Cables, joints and ducts inside the UUC

UUCs are constructed as manholes that one typically finds in the streets,

pavements, and road intersections throughout many of our urban areas. Inside the

UUC, there are three most important network elements, namely a cable, joint and

 Software Requirements Doc. No. 2

 Page 7

duct (see Figure 1). The cables are either a Copper (Cu) or Fiber Optic type, and a

joint is created when two or more cables connect each other. Ducts appear as holes

in the wall (also called "routeface") from where cables enter (from exchange or other

UUCs) and leave the UUC. The direction of cable may be towards or away from the

exchange. As a rule of thumb, a wall facing the exchange is labeled routeface A,

and naturally the rest of the routefaces (B to H) face away from the exchange (see

Figure 2). The number of network elements varies depending on the size, and

location of the UUC. In general, UUCs that are close to the exchange contain more

network elements than those further away. Some UUCs are rather small, allowing

only one person to enter, whereas others may be large enough for four or five

people. The shape and dimension of UUCs differ as well. For example, if a UUC has

two routefaces that are perpendicular to each other then it is said to be “L-Shaped”.

Figure 6: Topographic view of UUC showing routefaces

 Software Requirements Doc. No. 2

 Page 8

The asset information entered into data sourcing forms includes (also see Doc. No.

6 for more details):

� Manhole – ID, location, covers, content (e.g. water, gas etc.), dimensions,

shape, construction type and construction status.

� Duct – size and construction type.

� Cable – size, construction type, path, and specification number.

� Joint – type, specification number, cables connected, and construction

status.

Figure 7: Data sourcing map

 Software Requirements Doc. No. 2

 Page 9

Other relevant information such as sourcing team details and sourcing times are

also recorded in the sourcing templates. Data sourcing takes place both inside and

outside the manhole since asset information is visible both inside and outside the

manhole. The sourcing personnel are required to do a complete field data audit (i.e.

no previous record of information about the assets is provided). The only previous

record of the asset provided to the fieldworker is the asset identification number and

the location of assets on a paper map (see Figure 3). The map shows the suburb

and the streets where the UUCs are located. The asset ID and location of UUC are

verified by an office clerk (called data capturer) before the asset information is finally

entered into the utility’s GIS data repository.

Figure 8: UUC data collection personnel at work

It became apparent through careful observation that the UUC data sourcing work is

largely a collaborative activity. Each member of the sourcing team is responsible for

a particular task. While some workers do the actual sourcing, others assist them by

 Software Requirements Doc. No. 2

 Page 10

opening manhole using specialized equipment, pumping water out, standing guard

outside the manhole or bringing items requested by workers inside the manhole.

The data sourcing work studied was carried out by three workers (see Figure 4);

while one worker entered data into the sourcing forms, the other two workers

obtained asset information by searching through piles of cables. The workers

communicated with each other verbally, and information was read out loud. Working

collaboratively was essential in order to do sourcing efficiently and to complete in a

reasonable amount of time. A single worker alone cannot search for a cable

specification number amongst a few dozen other cables and at the same time

record the data into a sourcing template. Both of his hands are already engaged in

recording data (one hand for holding a clip-board and the other for writing down the

information) and hence preventing him from doing any other task.

 Software Requirements Doc. No. 2

 Page 11

4 User Role Model

A good design begins with a proper understanding of intended users. User

communities may differ in age, gender, training, education, cultural or ethnic

background etc. When human diversity is multiplied by a wide range of situations,

tasks and frequencies of use, the set of design possibilities become enormous

(Shneiderman B, 1998b). Unfortunately, no single design can satisfy all the different

variations in users and situations. So, before beginning a design, they need to be

characterized as accurately and completely as possible.

A wide variety of methods and techniques can be used to analyze and characterize

users. The path taken in this project is to use a usage-centered design models (see

section 2.3, Doc. No. 1) to represent users and their relationship with field data

collection application. The rationale for this decision is threefold. Firstly, usage-

centered design provides a well structured model-driven approach for the software

development process. Models have being widely used in many software

development processes from flowcharts to use cases and class diagrams, and they

serve as unambiguous language for communication among software designers. It is

envisaged that models created here will complement the data model later in the

design process, and result in an integrated software design. Secondly, a usage-

centered design is aimed specifically at developing highly usable software by

placing greater emphasis on user tasks, operational context and HCI requirements.

And finally, usage-centered design does not place users at the center of the

software development process and hence it doesn’t require extensive user

involvement. This important aspect of usage-centered design is in line with the

amount of user involvement envisaged for this project (see section 2.2).

In this section, the roles of users are described in the form of a user role model (or

simply role model). The role model is a list of user roles to be supported by the

system. A user role is not a title or job description. Instead, it is an abstract

collection of needs, interests, expectations, behaviors and responsibilities between

 Software Requirements Doc. No. 2

 Page 12

a class or kind of users and a system. The candidate roles identified for field data

collection application are as follows:

� manholeFinder – finds the location (e.g. street, suburb etc.) of UUC on a

data sourcing map.

� dataSourcer – collects and records network-related data from the sourcing

site (i.e. UUC) into sourcing templates.

� dataCapturer – verifies sourced data quality and captures information into

the GIS data repository.

� systemMaintainer – does a regular housekeeping so that software performs

optimally. For example, he ensures there is enough disk space or memory in

mobile device to store data collected from the field.

Identifying a user role, however, does not require such role to be fully supported by

the software system. A role may be judged to be the most common or may be

deemed particularly important from a certain perspective. From a mobile application

design standpoint, the manholeFinder and dataSourcer roles in particular are the

most important, because these roles are carried out by fieldworkers in the field. In

contrast, dataCapturer and systemMaintainer roles are usually done in the offices

by technically-oriented people whose line of work heavily involves computers.

Based on this argument, only those roles that are considered the most relevant to

this project (called focal roles) are supported by the field application, and they are

manholeFinder and dataSourcer roles.

In the maholeFinder role, the user is responsible for locating manhole using a data

sourcing map. Specifically, the user needs to know the asset ID, the names of street

and suburb in which it is located. The user expects to obtain this information in

reasonable time and information be presented clearly. This kind of expectation is

understandable when a user is required to locate the right manhole amongst

 Software Requirements Doc. No. 2

 Page 13

hundreds of other assets. Selecting the wrong manhole means the data sourcing

team traveling over long distance to a wrong location resulting in lost of man-hours

and causing disruptions in the work schedule. The user in the dataSourcer role,

however, is responsible for collecting and entering asset information into sourcing

templates. He is assisted by co-workers in obtaining asset information, but he alone

is responsible for data-entry. He expects to do this quickly and accurately. In order

to do so, he needs to have access to all the sourcing templates including

specification lists and data-entry rules.

 Software Requirements Doc. No. 2

 Page 14

5 Task Model

This section of the document attempts to understand in substantial detail what users

will be trying to accomplish in their work using the field data sourcing application,

and how they will need to go about it. Establishing what users really need from

software to support their work rather than what they want or what they merely think

they need requires a dialogue between the designer and users. This dialogue must

be in the form of a conversation in which both parties gradually build a joint

understanding of the work and how to support it. The task model embodies this

joint understanding by representing the structure of user needs and tasks.

The task model for the field data collection is implemented using the essential use

cases taken from a usage-centered design process (see section 4.3, Doc. No. 1).

An essential use case is defined as (Constantine L et al., 1999c):

“a structured narrative, expressed in the language of the application domain and of

users, comprising a simplified, generalized, abstract, technology-free and

implementation-independent description of one task or interaction that is complete,

meaningful, and well-defined from the point of view of users in some role or roles in

relation to a system and that embodies the purpose or intentions underlying the

interaction”

Because the essential use case is closer to a purely problem-oriented rather than a

solution-oriented view of the task, it leaves open many more possibilities for the

design and implementation of the user interface. This important characteristic of

essential use case is not found in a conventional use case (as employed in object-

oriented software design process) where the focus is on a user action, which often

results in making assumptions either implicitly or explicitly about the form of

interface that is yet to be designed. It consists of a statement explaining overall user

purpose or intention, and a two-part narrative comprising the user intention model

(left column) and system responsibility model (right column). The former describes

 Software Requirements Doc. No. 2

 Page 15

the intent or objective that guides user’s action whereas the latter reflects user’s

expectation regarding the responsibilities of the field application.

Beginning with the dataSourcer role, this section of the document entails the

essential use cases supporting focal roles selected earlier in section 4. The very

first tasks in UUC sourcing require the user to fill in sourcing personnel details,

sourcing times, and site information (see Figure 5). They are fairly simple tasks and

the information required to complete these tasks is readily obtained. For example,

the sourcing times and team information are already known, whereas the site name

and location are read simply from the sourcing map. To complete this task, the user

needs to know what information needs to be entered. In addition, where it is to be

entered and the type of format it is in. The user intention, therefore, is to obtain all

that information and the system is responsible for making it available to the user.

Once this information is available, the user intention shifts to entering data. When

the data is finally entered, the system needs to validate if the data entered is correct.

Figure 9: Sourcing team, times and site information template

 Software Requirements Doc. No. 2

 Page 16

The essential use cases for entering sourcing team, times and site information are

as follows:

enterSourcingTeamDetails

USER INTENTION SYSTEM RESPONSIBILITY

�����������	���
��
����

������������

�

���������	���
��
����

��

�

��
�����	���
��
����

�����������

�

�
��
���������
�������������

enterSourcingTimes

USER INTENTION SYSTEM RESPONSIBILITY

���������
�����������������������

�

�������
���
����
����

�

��
���
���
����
�������������

�

�
��
���������
�������������

enterSiteInformation

USER INTENTION SYSTEM RESPONSIBILITY

���������
���
��
����

�����������

�

�������
���
��
����

��

�

��
���
���
��
����

�����������

�

�
��
���������
�������������

 Software Requirements Doc. No. 2

 Page 17

The use cases above do not show how sourcing information is presented, or the

way user enters the data. A container called “template” is used to generalize the

way sourcing information is presented. This is because the objective at this point is

to understand what the user and system needs to do rather than how it is done,

which is addressed later in the design process. The tasks that follow require the

user to enter manhole specifications such as manhole cover type, content,

dimensions, and construction status (see Figure 6).

Figure 10: UUC specification template

Although the data sourced here is all related to the manhole, the tasks involved are

carried out separately in different contexts. For example, the user alone specifies

 Software Requirements Doc. No. 2

 Page 18

the manhole cover by mere observation outside the manhole. The latter tasks,

however, requires the user to go inside the manhole with the help of co-workers to

obtain asset information. Entering the manhole may also be delayed depending on

different situations that may arise. It takes time, for example, to secure a street or

pavement where the manhole is located. And if the UUC contains water, it needs to

be pumped out before the data collector can enter.

The characteristics of use cases supporting manhole information sourcing tasks are

comparable to that of sourcing time, and site location. Again, the user needs to

know specific details of manhole to be sourced, and some necessary instructions on

entering data. For example, a short note explains how to measure the manhole

dimensions, and how to indicate them in the sketch. The system, of course, should

be assisting the user by presenting necessary information as well as provide a place

to enter data. The use cases for sourcing manhole specification are as follows:

specifyManholeCovers

USER INTENTION SYSTEM RESPONSIBILITY

������������
����
�����
��
����

��

�

����������
����
����

�

�

�������
���������
���

�

��
������
����
����������

�

��
���
���
�����������
������
����

�
����
������
�����������

�

�
��
���������
�������������

specifyUUBcontent

 USER INTENTION SYSTEM RESPONSIBILITY

�������������
�������

�

����������������
���
���

�

�

����������
����
���

�

��
���
���
�������
������

�

���������
����
������
���������
���

�
����
�������
���
����������

�

 Software Requirements Doc. No. 2

 Page 19

�
��
���������
�������������

specifyUUB

USER INTENTION SYSTEM RESPONSIBILITY

����������������
�
���

������������

�

��������������
�
���

���

�

��
����������
�
���

������������

�

�
��
���������
�������������

Figure 11: Placing ducts on a topographic view of UUB

 Software Requirements Doc. No. 2

 Page 20

The word “enter” is used above to generalize how the user inserts data into the

system. The user may type in data, select item or draw, to mention a few. Once

again, these are design issues and will only be considered later in the design

process. Moving on to sourcing ducts information, the user does two tasks. First, he

records on the template the location and name of ducts on each routeface for all the

routefaces of the UUC (see Figure 7).

The sourcing template has a topographic view of the UUC which the user turns

appropriately to face towards the wall that he is inspecting. As mentioned before,

each duct is identified by the position on the routeface it occupies. By convention,

the wall facing towards the exchange is called Routeface A, and walls facing away

from exchange are given names from Routeface B to Routeface H. The ducts on

Routeface A is labeled from bottom left to top right of the wall, but bottom right to top

left used in walls facing away from exchange. Secondly, the user specifies the type

of duct, and the diameter or size of duct (see Figure 8).

Figure 12: Ducts specification

 Software Requirements Doc. No. 2

 Page 21

The user’s intention in the first task is to find the right place on the template to insert

a duct. Although the maximum number of routefaces is eight (from A to H), the UUC

typically has three routefaces that has ducts in them. The number of ducts in a UUC

may range from a few dozen to hundreds depending on how close the UUC is to the

exchange. In the second task, the user intends to specify the ducts. But before

doing so, he needs to know their names (or positions) so that specifications

correspond to ducts they belong. The use cases for inserting and specifying ducts

are as follows:

placeDuct

USER INTENTION SYSTEM RESPONSIBILITY

�����������������
�
������������

�

�����������

�

��
�
������������
�������

�

�
��
�������������

�����������
���������������������������

specifyDuct

USER INTENTION SYSTEM RESPONSIBILITY

��
������
�����
���������

�

������������

�

����������
���

�

��
��������

�

��
�����������
�
���

���
���

�

�
��
���������
����������

�����������
��������������������
�
�������

Once all the ducts are inserted, the user begins to enter the cables and joints

information that are connected to the ducts. Before specifying the cable, the user

enters the path of the cable that is to be specified (see Figure 9). The user intention

here is to identify the cable from a complex network of other cables. Bear in mind

 Software Requirements Doc. No. 2

 Page 22

that the user is working collaboratively with his co-workers. The user himself does

not look for a cable path or its specification but rather asked his co-workers for this

information. Finding a cable path in a dark UUC is not easy and neither is looking for

specification numbers that are small, worn out or covered with dust.

Figure 13: Sketch of cable connections inside manhole

Typically, it takes two workers to obtain cable specifications. The user who is

entering data into the template must take an opportunity to record data quickly when

the information is conveyed by his co-workers. Sketching the cable path gives the

user a much clearer picture of cable connections. Also, the drawing can be done

 Software Requirements Doc. No. 2

 Page 23

fairly quickly compared to writing out words that describe the cable path. One other

strategy employed is that user quickly jots down only the essential features of the

cable and joints in the drawing, and leaving details for later. The essential features

include the cable ID, cable size and gauge. He usually uses abbreviations to make

the jotting down even faster (see Figure 9). For example, “Cu” and ‘P’ indicate

Copper cable and pressurize joint respectively. These abbreviations, however, only

make sense to the user who wrote them. The abbreviations are merely a means to

identify the cable and temporarily record its unique features.

Figure 14: Fibre Optics and Copper cables specification

Later on, when the user has an opportunity to ask his co-workers about all the

details, he fills in the specifications proper (see Figure 10). Inserting the rest of the

specification is usually done only when the full path of the cable is sourced. Hence,

this task is delayed especially when the cable path is long, and joined in many

places. It is important to emphasize the need for user to practice this kind of work

 Software Requirements Doc. No. 2

 Page 24

pattern to adapt to the collaborative work environment in which he finds himself.

When the user indicates that he intends to insert a cable or a joint, the system must

provide a container for it. The system must then confirm that network element is

placed where the user wanted. The use cases for inserting a cable and joint is as

follows:

placeCable

USER INTENTION SYSTEM RESPONSIBILITY

��
������
���������	���

�

��

�����	����
���

��

�

�

�

�
��������	����
�����

���

�

������	����
�����
���

�
��
����������������

placeJoint

USER INTENTION SYSTEM RESPONSIBILITY

��
������
��������

���

�

��

����

����
���

��

�

�

�

�
��������	����
�����

���

�

�����

����
�����
���

�
��
����������������

As the number of cables increases, the cable network becomes complicated and

difficult for the user to find a location for the cable. He may need to browse the cable

network before placing a cable or a joint. In this case, the system must show the

user all the cables and joints that are connected. A use case for browsing the

network is as follows:

 Software Requirements Doc. No. 2

 Page 25

browseNetwork

USER INTENTION SYSTEM RESPONSIBILITY

���������
��
�������
����

�

	�
����

�

�
����������
���

�

�
��������	����
�����

������

When specifying a cable or a joint, the user is interested in doing two things. First,

pick the right cable or joint and then fill in the specifications. The system, on the

other hand, is responsible for showing how these elements are connected and

information on the specifications to be entered. The use cases for specifying cable

and joint are as follows:

specifyCable

USER INTENTION SYSTEM RESPONSIBILITY

��
������
�����
�����	���

�

�
�������	���

�

��������	�������
�
���

���

�

��
������
����
�����

���

�

������������
�
���

�������
����

�

�
��
���������
�������������

specifyJoint

USER INTENTION SYSTEM RESPONSIBILITY

��
������
�����
����

���

�

�
������

���

�

�������

�������
�
���

��

�

��
������
���

�

������������
�
���

���
���

�

�
��
���������
�������������

 Software Requirements Doc. No. 2

 Page 26

When entering cable or joint specifications, the user must select a fiber sheath

specification, cable size and joint specification numbers for a list of specification

(some of the specifications are shown in Figure 11). These tasks require the user to

insert the right specification number. The user intention then is to find the correct

specification number. The system must show the list and add the specification

before exiting.

Figure 15: Fibre optics and joint specifications

The use case for inserting specification numbers for cable and joints are as follows:

insertCableSize

USER INTENTION SYSTEM RESPONSIBILITY

����������	����
����
���

�

�
��������
�������
���

�

����������	����
����
���

�

�
��
���������

��

��
������

 Software Requirements Doc. No. 2

 Page 27

insertFibreSheathNo

USER INTENTION SYSTEM RESPONSIBILITY

���������
	�������������	����

�

�
�������������	���

�

���������
	�����������
���

�

�
��
���������

��

��
������

insertJointSpecNo

USER INTENTION SYSTEM RESPONSIBILITY

���������

�������
�
���

�����	����

�

�
����

�������
�
���

�����	���

�

���������

�������
�
���

���
���

�

�
��
���������

��

��
������

Once the data is inserted, the user may want to go back and correct errors that may

have been entered. The error may include the way the cables and joints are

connected or their specification. In this case, the user will want to see previous

records of data before entering a new set of data, and the system must make this

information available. After the user makes the changes, the system then overwrites

the previous record. The changes can be made to the duct, cable and joint

specifications and their positions and connections. The use cases for these tasks

are as follows:

changeNetworkConnection

USER INTENTION SYSTEM RESPONSIBILITY

��
������
������������
����
�����

��

�
�

������������
����
�����

���

 Software Requirements Doc. No. 2

 Page 28

������������� �

�
��
�����������

��
��
�������
�������
�����
��
�������

changeDuctSpecifications

USER INTENTION SYSTEM RESPONSIBILITY

�
������������

�����������������
�
���

���

�

�������������

�

�

�����������������
�
���

���

�

�
��
�����������

��
������

changeJointSpecifications

USER INTENTION SYSTEM RESPONSIBILITY

�
��������

���

���������

�������
�
���

���

�

�������������

�

�

���������

�������
�
���

��

�

�
��
�����������

��
������

changeCableSpecifications

USER INTENTION SYSTEM RESPONSIBILITY

�
���������	���

����������	�������
�
���

���

�

�������������

�

����������	�������
�
���

���

�

�
��
�����������

��
������

 Software Requirements Doc. No. 2

 Page 29

Switching now to the manholeFinder role, the user intention here is to find UUC

and the way to get there. In locating the UUC, the user scans through the map (see

Figure 3) and looks for the names of UUC. Typically, the sourcing team chooses a

particular street in a suburb and all the UUCs on that street are sourced in a single

field trip. Hence, the user needs to find the names of streets and suburbs. In the use

case to find UUC, the system must be able to present the user with necessary

details so that he can navigate through the map and locate accurately where the

next UUC is and also how to get there. The use cases for searching UUC, street

and area are as follows:

findUUC

USER INTENTION SYSTEM RESPONSIBILITY

�
�����	��	��

�
��

�

�
����������

�
�������������

�

�
�������

�

�

��
����	��	�

�

�

��
���������

�

��
���������

Sometimes, the user is familiar with the area, especially when he is working at a

particular site for days or weeks, whereby he knows the suburb or street well. He

can then directly find the UUC and quickly get there. In such case, the first two steps

of the finding UUC task can be skipped as shown in findUUC use case above.

Now that all the use cases are individually discussed, it is important to know how

they are interrelated. For example, some tasks are related to each other more than

others, and in many cases belong to one main task. Hence, the use case map

(Constantine L et al., 1999d) is used to represent the interrelationships between

 Software Requirements Doc. No. 2

 Page 30

essential use cases supporting the dataSourcer and manholeFinder roles (see

Figure 12).

specifyCable

specifyDuct

specifyJoint

placeDuct

placeCable

placeJoint

browseNetwork

insertJointSpecNo

insertSpliceNo

insertCuCableSize

insertFibreSheathNo

ex
te

nd
s

al
l

e
xte

n
d
s

extends

changeNetworkConnection

changeCableSpecifications

changeJointSpecifications

changeDuctSpecifications

extends extends all
sp

ec
ia

liz
es

specializes

specializes

specifyUUB

specifyUUBcontent

enterSourcingTimes specifyManholeCovers

enterSiteInformationenterSourcingTeamDetails

findUUC

Figure 16: Use case map for field data collection application

The use cases above are interrelated by specialization or extension. They are

defined (Constantine L et al., 1999d) as follows:

Specialization: When one use case “is-a-kind-of” another use case, then they are

said to have a specialization relationship. This relationship is comparable to the

class-subclass relationship is used in an object-oriented analysis and design. A

double-lined arrow is used to indicate specialization in a use case map. The line is

labeled “is-a” or “specializes”.

 Software Requirements Doc. No. 2

 Page 31

Extension: One use case is said to “extends” another use case if it represents

inserted or alternative patterns of interaction within the course of the use case being

extended. It is represented by a dotted line and arrow labeled “extends”.

 Software Requirements Doc. No. 2

 Page 32

6 Operational Model

Truly usable software is highly attuned to its environment. This view emphasizes

that usable systems need to be fitted not only to the work that they support but also

the context in which that work takes place. The operational model (Constantine L

et al., 1999g) captures the operational context of UUC sourcing work. Importantly,

the operational context affects various design objectives, such as the speed of

operation, accuracy, ease of learning, readability and the like. It also has direct

impact on highly specific design decisions and details, such as appropriate use of

sound, colour, arrange of Graphical User Interface (GUI) components. The

constituents (see section 4.3, Doc. No. 1) of operational model for the field data

collection application are discussed in the sections below.

6.1 Incumbent Profile

The incumbent profile represents the various bits of information about the intended

users who will play a particular role in relation to the system. The two categories of

user information that are considered to be the most pertinent to the usability design

are the domain knowledge and system knowledge. The former refers to how

much users in a particular role are likely to know about the application domain that

the system supports. More specifically, how much users in the manholeFinder and

dataSourcer roles know about finding manholes and data sourcing respectively.

And the latter refers to how much users in the two roles can be expected to know

about the system, how it operates, and how to use it. But it is not possible to know

exactly what the limitations are of each and every user. The incumbent profile,

therefore, makes reasonable assumptions about users based on the interviews

conducted on the UUC fieldworkers and a general impression of what a typical

fieldwork might be.

The users in manholeFinder and dataSourcer roles are assumed to have the

expertise and knowledge about data sourcing work. They may have acquired this

 Software Requirements Doc. No. 2

 Page 33

knowledge from training or experience over time. Based on this assumption, the

user in the dataSourcer role to a large extent knows what to do with the sourcing

template. For example, they are familiar with technical jargons, terms and

vocabulary used such as specifications names, data entry labels etc. Similarly, the

manholeFinder knows how to use a sourcing map and able to read specific

information and symbols used on the map such as the UUC, areas, suburb and

streets.

However, the users are assumed to be have limited skill and experience with the

use of a mobile computer, mobile operating system and mobile technology in

general. But having said that, users may already have some basic knowledge in use

of desktop computers, operating system (e.g. Microsoft Windows™), and some

mobile devices such as cellular phones and GPS equipments.

6.2 Proficiency Profile

The users in dataSourcer and manholeFinder roles are expected to use field data

sourcing application as well-informed users but not necessarily as experts. It is

expected that users will be given some basic training before they use the

application. Again, the viewpoint here is that users are experts at their work but they

lack the technical know-how and knowledge about the technology used to support it.

However, users are expected to use the application frequently, because several

UUCs are sourced in each day, for every working day. So, as frequent users (as

opposed to first-time or occasional users), they may well attain expert usage level

later on.

6.3 Interaction Profile

This section looks at how users in particular roles can be expected to interact with

the system being designed. The aspects of interaction that are considered to have

 Software Requirements Doc. No. 2

 Page 34

significant influence on the user interface design of the UUC sourcing application

include:

• concentration – Is usage concentrated into burst or batches or is it more

distributed?

• intensity – What is the rate of interaction?

• predictability – Does the interactions happen in a particular pattern?

The task model in the previous section has shown that the data sourcing work

consists of a number of smaller tasks. Some of these tasks are fairly simple to do

while others require a greater effort from the data sourcing personnel. Looking at the

dataSourcer role, the number of interactions is concentrated around tasks that are

complicated. Specifically, tasks that collect information relating to the cable network

(i.e. cables, joints and ducts) require more user interaction than those that collect

sourcing team, times, site or UUC specifications. This is because the bulk of data

sourced is related to network elements, which is not surprising because the main

objective of UUC sourcing is to collect underground cable network information. In

addition, the network information is rather comprehensive and hence contains a

high level of details (see Figure 10). For example, a sketch representing the

graphical view of cable network contains a great deal of details about specifications

and interconnection between cables, joints and ducts.

When the user in the dataSourcer role is assisted by other workers, he is under

constant pressure to keep up with the work pace without slowing down the rest of

the team. In such a collaborative work environment, the user learns to do things

simultaneously, quickly and opportunistically. For example, the user is constantly

listening to co-workers while jotting down the specifications. When he hears the

information, there is a sudden rush to record it. The result is a high rate of user

interaction amplified by repetitive nature of the tasks. Although the steps required in

each task and interactions are predefined, the order in which they are executed is

difficult to predict. To illustrate this problem, consider a situation where the user

sketches the cable but the co-worker is still busy finding the specification number for

 Software Requirements Doc. No. 2

 Page 35

that cable. Then another co-worker shouts out specification number of another

cable, hence the user is forced to abandon the former, and search for a new cable

in the sketch. Similarly, the user may choose to fill in the text fields in an ad-hoc

manner when information is not available at that time. Generally speaking,

fieldworkers’ actions are fairly unpredictable because they tend to adapt to

circumstances and work accordingly given many uncertainties one finds in the field.

Turning to the manholeFinder role, locating a UUC can be difficult on a map that

covers a large area. But if the system does the searching, the user is only left with

asking the system what to search for and how to present it. In that case, both the

concentration and intensity of user interaction is fairly low. But at other times, the

user may just want to browse through the map but not necessarily search for a

particular UUC. In this case, the number of user interaction increases but the rate of

interaction remains low. Unlike the dataSourcer role, the user does not work

collaboratively and as a result he doesn’t have the pressure to keep up with others.

Also, the amount of tasks and their complexity are also relatively low. The tasks

here are limited to finding a UUC, street, or a suburb, and occasional browsing of

the map. This makes the interactions within the manholeFinder role fairly

predictable, if not predefined.

6.4 Information Profile

Where information originates and how it flows between the user and system has

important implications for the user interface design. For example, if the user has to

listen to obtain information, the system should not use audio feedback alone, or high

information complexity calls for a user interface that has comprehensibility, clarity in

presentation and layout. The information profile compiles with what is known

about the nature of the information being exchanged between the system and users

in a particular role. Included in this profile are four aspects of information:

• Input origins – Where does the input from the user in this role originate?

What is its ultimate or actual source?

 Software Requirements Doc. No. 2

 Page 36

• Flow direction – Does information flow predominantly from or to the user?

• Information volume – How much information is available and of interest to

the user?

• Information complexity – How complex is the information available and of

interest to the user?

Beginning with the dataSourcer role, the user obtains information indirectly from co-

workers who are responsible for looking up the specifications. They communicate

using their voice by speaking aloud or shouting out the information to the user who

then enters them into the sourcing templates. Having said that, some of the

information entered is obtained by the user himself. In particular, information about

the team members, sourcing times and data collection site are obtained by the data

sourcing personnel observing what is around him or information that is readily

available in his mind. Overall, it is fair to say that the majority of sourcing information

originates with visual and audio channels rather than mental means.

The primary purpose of data sourcing is to obtain asset information. It is not

surprising then that in the data sourcing work, information flows from the user into

the system. Generally speaking, this is the case for form filling or any work that

involves data-entry. However, there are exceptions, for example, when the user

uses templates to retrieve specification numbers from a list. But it can be argued

that eventually this information goes back into the template. The amount of

information obtained in data sourcing depends on the number of network nodes (i.e.

duct, cable and joint). A typical UUC has around fifty cables, a few dozens ducts

and joints. But if one considers approximately five specification attributes (e.g. size,

type, construction status etc.) for each node, it adds up to hundreds of separate

data entries. This is fairly large amount of information for a single UUC.

To a large extent, the information obtained in the dataSourcer role is rather

straightforward. The data sourcing is not a problem-solving activity, and as a result it

does not demand the user to solve complicated problems. Often, a simple selection

from a given lists of items is all it’s required. Having said that, information may

 Software Requirements Doc. No. 2

 Page 37

appear to be somewhat complex to the untrained eyes. In particular, the topological

view of UUC shows a network of cables, joints and ducts. But on closer

examination, it is essentially a tool to help the user build up a mental picture of the

cables connection and makes very much easier for user to enter information

correctly and efficiently.

Coming to the manholeFinder role, however, the information flows from both

directions. The user asks the system where a particular asset is located and it

subsequently provides the information requested. The information presented may

be a UUC, street or area of a suburb, or a combination of all these elements. When

the user is searching for a UUC, he is thinking about its location, and how to get

there. As a result, the information that user seeks from the system originates to a

large extent from the user’s mind. The rest of the information can be obtained

aurally and visually from co-workers and environment respectively. Volume of

information is moderate if the information is presented graphically rather than using

words, and so too is the complexity of the information. Under these circumstances,

the graphical presentation of information will be most appropriate.

6.5 Environment Profile

The location and type of environment in which UUC data collection application

would be used vary considerably between the two roles and even within

themselves. In the dataSourcer role, the user starts data sourcing outside the UUC

and finishes off with cables inside UUC. It takes place in two very different

environments with each having various implications on the user interface design.

Outside the manhole, the user is in an open-air environment either on a public street

or pavement. The user is exposed to environmental elements whether it is the

sunlight, rain, or wind. In addition, streets and pavements are usually noisy with

motor vehicles and other road users. From the exposure to elements perspective,

the user inside the manhole is in an environment that is comparable to indoors. The

noise level is moderate due to verbal communication between the workers, beeps

and alarms generated by equipments such as gas detectors. Because the manhole

 Software Requirements Doc. No. 2

 Page 38

is an enclosed area, these sounds generate echoes which further amplify the noise.

Certainly, the most obvious problem in the manhole is poor visibility due to lack of

light (see Figure 4). The workers generally use torches to overcome this problem

although there may be some amount of sunlight that come through the manhole

openings.

For the manholeFinder role, however, it is difficult to pinpoint exactly where it will

take place. The user chooses to find the manhole when and where it is most

appropriate for him. For example, he may be sourcing all the manholes in the street

in one site visit, so he doesn’t need to look up every time where each manhole is.

Or, he may use the system to locate the UUC while he is traveling in the car to get

there. This is typical of a mobile work that takes place in different environments and

in many different contexts. Since the data sourcing work involves constant traveling

in the car, also equally on the street at field site, it is expected that the user in the

manholeFinder role to carry out his tasks in both of these environments. Having

said that, the user is not expected to use the system while he is driving but rather as

a passenger. Inside the car, the user would be protected from the environmental

elements and other disturbances except from a low level of engine noise and

vibrations.

6.6 Device Constraints

The hardware constraints and limitations of the mobile device for the field

application are as discussed in section 2.3.1 of Doc. No. 1. Obviously, some of the

constraints are more prevalent than others for a particular mobile device. For

example, a PDA has a greater limitation on screen real estate than say a tablet

computer. In order to minimize the impact of such limitations on the mobile

application, the hardware should be carefully selected so that it meets not only the

functionality requirements but more importantly usability requirements as well. The

hardware requirements for the field data collection application are specified in

section 9.

 Software Requirements Doc. No. 2

 Page 39

6.7 Operational Risk Profile

Since UUC sourcing work is essentially about acquiring asset information from the

field, it is of paramount importance that the information obtained be saved and

safely transported to the data repository. The user may lose important data if the

computer crashes or becomes stalled which is inevitable in many operating

systems. Given a hazardous nature of fieldwork, a user may drop the mobile device,

causing a serious damage and result in a permanent loss of data. Failure to follow

proper procedures to operate a mobile computer can also result in system errors or

even cause the device to malfunction. For example, ignoring a low battery warning

will cause the device to shut down and results in loss of data as well.

 Software Requirements Doc. No. 2

 Page 40

7 Usability Criteria

In addition to the universal usability goals (i.e. time to learn, speed of performance,

rate of errors, retention over time, subjective satisfaction etc), other criteria that are

specific to a particular user role also come into play. That is, each user role has

specific usability requirements that are different from other roles. In addition, some

of these requirements may be more important than others. This section highlights

those aspects of usability that are most important to a particular role and hence

likely to have the greatest impact on usable software design objectives.

The usability criteria for the user in the dataSourcer role are as follows:

1. Since users are not particularly skilled at computer usage, they cannot be

expected to recognize and understand complex GUI widgets and common

Windows metaphors. Hence, the interface should be readily apparent and

reflect the structure of the work being supported so that the users relate it to

the work they are doing.

2. Fairly predictive and repetitive nature of tasks call for user interface that is

optimized for efficiency. This means that the designer must recognize and

understand certain workflows and patterns, and tailor the structure and

layout of user interface accordingly. In addition, as frequent users they

expect to complete the data sourcing tasks fairly quickly otherwise they may

become frustrated.

3. A high rate and concentration of user interaction often results in the user

making faults, hence user interface should be fault tolerant, or better still,

minimize and prevent the user from making errors.

4. The fieldworker often works collaboratively, drawing his attention away from

the system. The user interface should not demand too much user attention.

 Software Requirements Doc. No. 2

 Page 41

Some form of feedback is appropriate to enable the user know what is going

on with the system. Bear in mind that the work environment can be noisy, so

both a visual and audio feedback is necessary.

5. Because the data sourcing work in primarily about collecting data, the

system should be oriented towards data entry application. This mean the

user interface must verify and validate the data entered. It must also show

compatibility of data entry and allow flexibility of user control over data entry.

And finally strive towards a minimal input action by the user.

6. A fairly high complexity of interaction, volume and complexity of information

collected calls for clear, concise and comprehensive representation of the

data collected.

7. The application must take into consideration changes in environment and

limitations of the mobile device that it is run on. For example, the system

must be able to work in a dark manhole as well as in direct sunlight.

8. Due to a fairly unpredictable nature of the fieldwork, the user should be given

control of the system. Although there may be automation to reduce workload

but the user should be able to override it when necessary. This flexibility

applies also to the manner and the order in which certain tasks are

completed.

The usability criteria for the user in the manholeFinder role are as follows:

1. The application must present data sourcing map comprehensively, and with

clarity.

2. The application must be flexible by allowing the user to be in control of the

task that he is doing.

 Software Requirements Doc. No. 2

 Page 42

3. The data sourcing map should be consistent in appearance by not changing

attributes, symbols or other conventions thereof.

 Software Requirements Doc. No. 2

 Page 43

8 Functional Requirements

This section of the document gives a high level overview of the functional

requirements for the UUC data collection application (for detailed software

functionality, see Doc. No. 4). The objective of this project focuses primarily on the

usability aspect of the software. However, no matter how many usability goals that

may be envisaged, until the required functions are implemented, the system is

simply unusable. In addition, usability attributes such as system response time can

be measured effectively only after the functionality is fully implemented.

The mobile application for field data collection must:

1. Provide the user with all the UUC sourcing templates (see Doc. No. 6) on a

mobile device for field data collection.

2. Save the asset information in a format that is compatible or can be read from

corporate GIS. For example, most commonly used files are XML and .txt

files. And temporarily store the asset information on the mobile device until

the data can be synchronized with a database on a desktop computer.

3. Present the user with a data sourcing map that contains details such as the

asset identification, location, names of streets and suburb etc. The user must

be able to navigate and search for assets, streets and suburb etc.

 Software Requirements Doc. No. 2

 Page 44

9 Hardware Requirements

The field data collection application requires a hardware platform or a mobile device

on which to be implemented. More importantly, the target platform must be able to

support both usability requirements and functional requirements specified in section

8 and 9. In addition, the target device must also be able to operate in the operational

context of fieldwork (described in section 6). From a software development

viewpoint, the hardware platform will also determine the choice of programming

tools and off-the-shelf products available for the design and implementation of field

application. Having considered all these arguments, the criteria for the target device

is that it must:

1. Be lightweight and portable (preferable to be able to carry in one hand).

2. Be water-proof, dust-proof and shock-proof (or drop-proof).

3. Operate equally well in all light conditions from darkness to direct sunlight.

4. Have a display with high resolution to view data sourcing map with a high

level of detail.

5. Have a wireless network capability as well as a serial connection to a

desktop computer for data synchronization.

6. Have enough disk space to store the asset information collected over a

period of a few weeks or months.

7. Support a rich set of text-entry tools or input devices for data entry.

8. Have a battery life that lasts for at least one working day (approximately 8

hrs).

 Software Requirements Doc. No. 2

 Page 45

10 Conclusions

A proper understanding about the field data collection work is obtained from the

requirements elicitation and analysis process. A direct interaction with actual

fieldworkers at the data sourcing site was productive and it produced relatively

accurate and reliable requirements information. These requirements, however, are

not necessarily applicable to all types of data collection work. This is because the

case study of field data collection work is based on a UUC data sourcing work which

has characteristics that are unique to this particular fieldwork.

The use of usage-centered design process in requirements analysis proved to be

effective in obtaining an in-dept understanding of intended users, their background

and more importantly, their tasks and operational context of their work. It is felt that

the software requirements that were obtained address the usability and functional

aspects of the field application in a practical manner. Furthermore, the hardware

requirements for the field application reflect realistic expectations in terms of

functional capabilities and sophistication from a modern mobile device.

User Interface
Design

Doc. No. 3

 User Interface Design Doc. No. 3

 Page i

CONTENTS

CONTENTS...I

LIST OF FIGURES...II

LIST OF TABLES ...III

1 SCOPE..1

1.1 Introduction..1

1.2 Purpose..1

1.3 Audience..2

2 USER INTERFACE DESIGN ..3

2.1 Overview ...3

2.2 Content Model ..4

2.3 Implementation Model...14
2.3.1 Target Platform..15
2.3.2 Implementation Model illustrated ...19

3 CONCLUSION ..45

 User Interface Design Doc. No. 3

 Page ii

LIST OF FIGURES

Figure 1: Interaction contexts for entering sourcing team, sourcing time and site information. _____5
Figure 2: Interaction context for entering manhole specification_____________________________6
Figure 3: Interaction contexts for adding and changing network node specifications _____________8
Figure 4: Interaction context for placing ducts___9
Figure 5: Interaction context for placing joints and cables ________________________________10
Figure 6: Interaction context for finding manhole _______________________________________11
Figure 7: Navigation map for interaction contexts _______________________________________12
Figure 8: iPaq H3900 PDA___17
Figure 9: Select sourcing team members __20
Figure 10: View sourcing member information ___21
Figure 11: Update sourcing member information__22
Figure 12: Data entry for sourcing times and date_______________________________________23
Figure 13: Form and scrollbar resized when SIP is opened________________________________24
Figure 14: Enter site information __25
Figure 15: Specify manhole covers ___26
Figure 16: Specify manhole content __27
Figure 17: Enter manhole dimensions __27
Figure 18: Select manhole shape __28
Figure 19: Placing ducts onto the routeface __29
Figure 20: Tool to assist user orientate when placing ducts________________________________31
Figure 21: Enter ducts specifications ___31
Figure 22: User interface for placing cables and joints ___________________________________33
Figure 23: Trace cable path using tree-view of cable network ______________________________34
Figure 24: Error prevention in connecting nodes__34
Figure 25: Make notes about the cable specification _____________________________________35
Figure 26: Enter cable specifications ___36
Figure 27: Data-entry for joint specification ___37
Figure 28: Joint Specification Number List __38
Figure 29: Navigation menu __38
Figure 30: Select an interaction context from a main menu ________________________________39
Figure 31: Exit prompt __40
Figure 32: Field data collection application loading _____________________________________41
Figure 33: Data sourcing map on a PDA __42
Figure 34: Queries for street, asset and other attributes on the map _________________________43
Figure 35: Map attributes visible only at a particular range of scale ________________________43
Figure 36: Redline functionality of IntelliWhere OnDemand™ _____________________________44

 User Interface Design Doc. No. 3

 Page iii

List of Tables

Table 1: Comparisons of target platforms__15

 User Interface Design Doc. No. 3

 Page 1

1 Scope

1.7 Introduction

This document presents the design process and subsequent implementation of the

user interface for the field data collection application. It also outlines the various

phases of the design process and the design decisions that were made. This

document is really a representation of the usability design of field data collection

application which is embodied in the design of the user interface.

The document begins with a selection of the design methodology and description of

the notation used. It then takes the reader through the design and implementation of

the user interface. The user interface is implemented as a functional prototype on a

mobile device. The usability features of the prototype are explained through

illustrations of various UI screenshots. This document also describes the behavior of

the user interface but not necessarily the underlying functionality of field application.

For more information on the data model and detailed functionality of the field data

collection application, see the Software Design Document (Doc. No. 4).

1.8 Purpose

The purpose of this document is to present the reader with the user interface design

and discuss a number of features and characteristics of the user interface pertaining

to the usability of field data collection prototype.

 User Interface Design Doc. No. 3

 Page 2

1.3 Audience

The intended readers of this document include researchers involved in the areas of

software usability, mobile computing, as well as software designers, developers, the

external examiner and other interested parties.

 User Interface Design Doc. No. 3

 Page 3

2 User Interface Design

2.1 Overview

The primary purpose of the user interface is to interact with the user in supporting

tasks that the user is interested in doing. Some of these tasks are interrelated while

others take place in a different context, and require different types of resources.

Given the contextual nature of work, highly usable software should have a user

interface that is organized to support tasks which are carried out in various

interaction contexts (Constantine L et al., 1999e). Essentially, each interaction

context is an interaction space which contains all the tools and materials needed

for carrying out a particular task or set of interrelated tasks. This section of the

document specifies the interrelationships between interaction spaces within the user

interface, as well as all the functions, data containers and information required in

each interaction space.

The content of interaction space is represented in the content model followed by

an implementation model. In the content model, the contents and organization of

the user interface is determined without worrying about how it will look or how it will

behave. As an abstract model, it leaves many options open, not only in appearance

but also in the behavior of the user interface and its components. In an

implementation model, however, each interaction space becomes a recognizable

collection comprising parts of the user interface – a button, a combo-box, a dialog

box etc. Here, the designer creates a visual design of the user interface by drawing

upon knowledge of HCI, graphical design, widget selection, and layout to balance

competing objectives and to trade off among conflicting constraints. The visual

design does not only closely resemble the final implemented interface but it also

acts like one. Effectively, a functional prototype is used to capture both the

appearance and behavior of the final implementation of the system.

 User Interface Design Doc. No. 3

 Page 4

2.2 Content Model

The content model (Constantine L et al., 1999e) is an abstract representation of

the contents of the various interaction spaces for a system and their

interconnections. Each interaction space in the content model is populated with a

collection of abstract tools and materials representing the content and capability that

will be supplied to the user by the user interface. These abstract components are

placeholders for actual visual components in the implemented interface. The tools

supply the functions and active capabilities required to complete a task. The

materials are the data containers, displays or work areas upon which the tools of the

user interface can operate.

As would be expected, the content model is derived from the essential use cases

contained in the task model (see section 5, Doc. No. 2). Each interaction space may

support one or more use cases. The more closely two use cases are related or

resemble each other, the more reasonable it is to support them with a common

interaction context. The use case map (see Figure 13, Doc. No. 2), representing

the use case relationships and narratives actually reveals the overlapping

procedures, and guides in establishing which interaction space a particular use case

belongs to.

Looking at the dataSourcer role, the enterSourcingTeamDetails,

enterSourcingTimes and enterSiteInformation use cases take place in their own

interaction space. They are not related in any way, each task requires the user to

enter information that is specific and independent of other tasks. These tasks simply

requires user to enter information that is requested. From examining the use case

narratives, they need some type of container to hold the data that the user entered

and a tool to insert data whether it is selecting item or entering text. This tool could

be a Soft Input Panel (SIP), a button or a stylus. However, at this stage, no decision

is made on the type of container or tool to be used. These decisions come later in

the implementation model.

 User Interface Design Doc. No. 3

 Page 5

 Enter sourcing team information

 SourcingTeamInfoHolder

�����	�� ������	�� $ ����	������ �

�	#	�	��	� ����	���� �	�	����	

����	���	����

 TextEntryTool

��������	
��	�
���	�����	�������	

��	�����	��	���	����������	�����

ItemSelecter

�����������	
��	����������	������	�

�����	���	��������������	�������	�

�	�	����������������� 	�����

 Enter sourcing times & dates

 TextEntryTool

��������	
��	�
���	�����	�������	

��	�����	��	���	����������	�����

Times&DatesHolder

�����	����������������	���������	����

����	���#������

ItemSelecter

�����������	
��	����������	������	�

�����	���	��������������	�������	�

�	�	����������������� 	�����

 Enter site information

SiteInformationHolder

�����	������#����������	�	
���������	

���	%����	�����������	����

 TextEntryTool

��������	
��	�
���	�����	�������	

��	�����	��	���	����������	�����

ItemSelecter

�����������	
��	����������	������	�
�����	���	��������������	�������	�

�	�	����������������� 	�����

Figure 17: Interaction contexts for entering sourcing team, sourcing time and site

information.

The interaction contexts for the three use cases described above are shown in

Figure 1. The tools and materials in each interaction context are represented by

Post-it notes using different colours. Use of Post-it notes offers several advantages

over sketches or drawings (Constantine L et al., 1999e). The fact that a Post-it note

does not look like a Graphical User Interface (GUI) widget is a constant visual

 User Interface Design Doc. No. 3

 Page 6

reminder that this is an abstract model intended to leave many options open, not

only in appearance but also in the behavior of the user interface and its

components. Also, they can be easily moved around in reorganizing the user

interface architecture, and this ease encourages experimentation and exploration

(Constantine L et al., 1999e). The green and yellow colours represent the passive

and active components of the interaction context respectively. The active

component includes tools and functions the user may use, whereas the passive

components are static elements such as data containers or window frames. The

vocabulary used to describe these components is deliberately kept abstract and

general to accommodate a broad range of possibilities without falling into certain

stereotypes or other preconceived solutions.

 Enter manhole information

 TextEntryTool

��������	
��	�
���	�����	�������	

��	�����	��	���	����������	�����

ItemSelecter

�����������	
��	����������	������	�

�����	���	��������������	�������	�

�	�	����������������� 	�����

UUBspecificationsHolder

� � � � � 	 � � � � ! ! " � � � � 	 � � � � � � �

��������������������	����

ManholeShapeHolder

����	������	��������	�������������

���	�����������������	�����	��#���	

������	��

ManholeCoversHolder

�����	����!!"� ��
	�� ���	��� ��	

����	���#���
	���	����

UUBcontentInfoHolder

�����	����!!"�����	������������	�

�	
	����

Figure 18: Interaction context for entering manhole specification

The next three tasks that follow involve sourcing information relating to the UUC.

They are represented by the specifyManholeCovers, specifyUUBcontent and

specifyUUB use cases. These use cases are closely related because they obtain

 User Interface Design Doc. No. 3

 Page 7

information from the same source (i.e. UUC) and naturally they would be carried out

together as one coherent task. Hence, it makes sense to put the use cases in

question into a single interaction context (see Figure 2). Generally, it is desirable to

keep the number of interaction contexts to an absolute minimum by placing related

tasks in the same interaction context. This is because every change of context

requires a corresponding switch of thinking on the part of user. An excessive

switching between interactive contexts may confuse first-time users and frustrate

experienced users. The type of tools required to support these tasks is the

TextEntryTool and ItemSelecter to insert data and manipulate objects

respectively. As an example, the former could be a SIP or external keyboard and

the latter could be a stylus to draw and select items. Moving from tools to materials,

there would be two types of data containers. The one container holds textual data

such as UUC specification and the other is a placeholder for the graphical data, in

particular, the shape of UUC. The textual data containers could be a set of text

fields and combo-boxes that user uses to insert, select where appropriate. However,

the manhole shape could be drawn in a sketch pad or the user simply selects from a

collection of pictures or other graphical representations of possible manhole shapes.

Once again, the kind of tools and materials to be used is determined later in the

visual design process.

Reading the use case narratives, there are a few use cases that are very similar. In

particular, use cases that involve adding and changing (or editing) of specifications

for ducts, cables and joints (e.g. specifyDuct is similar to changeDuctSpecs).

These use cases require the same type of tools and materials which makes it

appropriate to put them in the same interaction space (see Figure 3).

 User Interface Design Doc. No. 3

 Page 8

 Adding and changing duct specifications

DuctSpecificationsHolder

�����	�����������	��#��������	���

���������	������	����&	�	����

ItemSelecter

�����������	
��	����������	������	�

�����	���	��������������	�������	�

�	�	����������������� 	����

 TextEntryTool

��������	
��	�
���	�����	�������	

��	�����	��	���	����������	�����

 Adding and changing cable specifications

CableSpecificationsHolder

�����	���� ����	� ��	��#�������� 	���

����	���&	�����	����������	�	����

ItemSelecter

�����������	
��	����������	������	�

�����	���	��������������	�������	�

�	�	����������������� 	����

 TextEntryTool

��������	
��	�
���	�����	�������	

��	�����	��	���	����������	�����

 Adding and changing joint specifications

JointSpecificationsHolder

�����	���� ����� ��	��#��������	���

���	������	�� ���	�����	�����	��	����

ItemSelecter

�����������	
��	����������	������	�

�����	���	��������������	�������	�

�	�	����������������� 	����

 TextEntryTool

��������	
��	�
���	�����	�������	

��	�����	��	���	����������	�����

JointSpecificationViewer

�� ��� ����� � � ����� ��	��# ���� ���

�	���������������

CableSizeViewer

����������������	���&	������

OpticFibreSheathViewer

� � � � � � � � � � � � � � � � # � � � 	 � � � 	 � � �

��	��#��������	���������������

Figure 19: Interaction contexts for adding and changing network node specifications

The type of tools and materials required in these interaction contexts are typical of a

form filling task. The TextEntryTools and ItemSelecter would be used to type in

text and select item from a list respectively. Some kind of container would also be

required to “hold” the data until the user is ready to finally enter data into the system.

 User Interface Design Doc. No. 3

 Page 9

As part of entering specifications, the user also needs to browse through the

specification lists such as fibre optic sheath number, joint specification number and

cable sizes. The tools to do this are OpticFibreSheathViewer,

JointSpecificationViewer and CableSizeViewer respectively.

 Place ducts

DuctLocationsHolder

���� �	���� ����� ��������� ���	���

����	#��	��#���	�!!'��

DuctPositioner

�����	�����������������	#��	���#���	

!!"��

UUCtopoViewer

�������������������
�	���#���	�!!'

�������������	#��	��!!"��

Figure 20: Interaction context for placing ducts

Also belonging to the same interaction context are the placeDuct and

changeDuctLocation (see Figure 4). When placing a duct at a particular location

on the routeface, the user is likely to make a mistake which may requires him to

change the duct position to a new location. One could argue that these use cases

belong to a single task because making errors and correcting them form part of any

work. In order to support these use cases, the user must be provided with a

topographic view of the UUC so that he can orientate himself in finding a suitable

location for each duct. Bear in mind that there could be up to eight routefaces, each

of them carrying about fifteen ducts. Once the user finds the right location,

DuctPositioner tool is used to place ducts. And of course, a placeholder is

necessary to “hold” and record position of each duct.

 User Interface Design Doc. No. 3

 Page 10

 Place cables and joints

CableNetworkViewer

����������	����������	���	�����

	�	�	����������������	�� ����������

������	��������	��������

 TextEntryTool

��������	
��	�
���	�����	�������	

��	�����	��	���	����������	�����

ItemSelecter

�����������	
��	����������	������	�

�����	���	��������������	�������	�

�	�	����������������� 	����

NotePad

����������	�����������������	����	�

����	������	�	�	�����

NetworkHolder

����������	������������������	� �����

��������	���

Figure 21: Interaction context for placing joints and cables

Once all the ducts are placed on the routefaces, information about the cable and

joint connections are obtained. Unlike ducts, placing cables and joints to the network

presents a more complex situation. The cable could be connected to a duct or to a

joint. On the other hand, a joint could be connected to two or more cables. Adding a

cable to the network includes adding all the joints that are attached to that cable

(placeCable and placeJoint). A NetworkHolder could be used as a placeholder for

the cables and joints (see Figure 5). A ItemSelecter tool may be used to point out a

location for a node. Remember that when placing a node (cable or joint) the user

also makes a short description about the node (makeNote). The NotePad container

and TextEntryTool are necessary for this data entry work. The cable and joint

network could be rather chaotic and complex especially when there are hundreds of

nodes. So, the user needs to browse through the network to find a suitable location

before placing a node (browseNetwork). As with ducts, the user often makes

mistakes when placing cables and joints to the network and subsequently it needs

to be corrected (changeNetworkConnection). In both situations, the user could

 User Interface Design Doc. No. 3

 Page 11

use CableNetworkViewer tool to view the interconnections of network nodes (i.e.

cable, joint, duct etc.).

Search for manholes

MapViewer

����������	�����
�	����	��������

#	����	��	�����������������		�����	��

������	�(���	����

 TextEntryTool

��������	
��	�
���	�����	�������	

��	�����	��	���	����������	�����

ItemSelecter

�����������	
��	����������	������	�

�����	���	��������������	�������	�

�	�	����������������� 	����

QueryInformationHolder

����������	��#�����#��������������

#	����	����������	����)�	��	���

Figure 22: Interaction context for finding manhole

Moving on to the use cases for the manholeFinder role, the user would require a

tool to view the map content such as streets and manhole. This tool is referred to as

the MapViewer in the interaction context for finding UUCs (see Figure 6). The user

would also need placeholders to insert details of the features (e.g. the name of the

street or manhole ID number) on the map he is looking for. The TextEntryTool and

ItemSelecter are also necessary to enter data and to select features on the map

respectively.

The interrelationships between the various interactions contexts described above

are represented in the navigation map (see Figure 7). The navigation map shows

when the user would have to move from one interaction context to another in order

to complete particular tasks. Essentially, the navigation map shows distribution of

tasks across various interaction contexts and provides a rough overview of

architecture and complexity of software. The notations used in the map include a

rectangle representing any abstract interaction space and a single line with an arrow

head which represents a transition between two interaction spaces. A double line

 User Interface Design Doc. No. 3

 Page 12

means that it is a context transition with implied return to the original context. Two

arrowheads in the end of the line mean that the direction of transition is applicable

both ways. Some of the context transitions are more common than others because

they consist of tasks that are repetitive and more routine than others. The solid and

dotted lines represent the most common and less likely type of context transitions

respectively.

specifyUUB
specifyUUBcontent

specifyManholeCovers

placeCable

placeJoint
browseNetwork
changeNetworkConnections

makeNote

specifyJoint
changeJointSpecs

specifyDuct
changeDuctSpecs

insertSpliceNo

insertJointSpecNo

specifyCable
changeCableSpecs

insertCableSize

placeDuct
changeDuctLocation

enterSourcingTeam

enterSourcingTimes

enterSiteInformation

findUUC

Figure 23: Navigation map for interaction contexts

 User Interface Design Doc. No. 3

 Page 13

As shown in Figure 7, the user would usually start off finding the location of the

manhole to be sourced. Then the data sourcing begins with entering information

about the sourcing team (enterSourcingTeam) and then he moves off to obtaining

cable and joint information. Once complete, he goes back to enterSourcingTimes

to enter the time the sourcing is completed. But because this work mainly involves

form filling, the user has the liberty to enter data in the order that is most convenient

to him. Also, due to the unpredictable nature of fieldwork, it is only fair that the user

be given flexibility in the way he does his work. Hence, the dotted lines depict all the

possible interaction context transitions that the user may make although they are

relatively infrequent and less common. The more frequent and obvious context

transition is when the user places network node (duct, cable or joint), followed by its

specifications entry. This context transition is applicable both ways because from

the specifications the user may also want to see where that node is place on the

network. In contrast, inserting a particular specification number into the node

specifications requires an implied return (see insertSpliceNo and insertCableSize

interaction contexts in Figure 6), for example, after clicking a “OK” button.

 User Interface Design Doc. No. 3

 Page 14

2.3 Implementation Model

This phase of the user interface design process transforms abstract components in

the content model into an implementation model (Constantine L et al., 1999b), a

prototype for the actual system specifying the layout of the user interface and

defining the interaction between the user and the system. In doing so, three general

classes of issues are addressed simultaneously. They are as follows:

1. Contexts – What are the implemented interaction contexts?

2. Components – What are the user interface components within contexts?

3. Composition – What is the layout and organization of components in each

interaction context?

The first question asks how each abstract interaction space will be embodied in the

user interface as an actual interaction context – for example, whether as a screen, a

window, a dialogue or the page of a tabbed dialogue. In the second part of the

transformation, particular user interface components or GUI widgets replace the

abstract materials and tools in the content model. The goal here is to ensure simpler

and easier operation. Again, conventional GUI components are not always suitable

and alternative solutions are sought. The visual components are then organized

appropriately so that user interface layout as a whole supports smooth and efficient

workflow. It is worth noting that the translation is not a straightforward process even

though the rule may be well defined. To some extent, a good translation is both

creative and artistic.

The implementation model is a representation of what the final implemented user

interface will look like and how it will function. Most commonly, it is a sketch or some

kind of drawings with supporting notes and documentation. But this type of passive

or non-working model has difficulty in explaining how it actually works because of its

static nature. On the other hand, a functional or working prototype is more

convincing and easily understood than a drawing that has to be explained in details.

A working prototype is better suited when the implementation model is used for

 User Interface Design Doc. No. 3

 Page 15

proof of concept. In particular, situation when the quantitative measurements of

usability issues such as HCI rate, efficiency and system response time etc are

required. In general, functional prototypes can be used to test these characteristics

far more effectively with users than their static counterparts. Based on these

arguments, the UI is implemented as a functional prototype on a mobile device. The

sections below illustrate the implementation model of user interface for the field data

collection application. But before doing so, the target platform for the prototype is

chosen.

2.3.1 Target Platform

The first step in building a functional prototype is to determine the target platform.

The target platform is the hardware or the mobile device on which the field data

collection prototype will be implemented. Three types of mobile devices, namely a

tablet computer, a Personal Digital Assistant (PDA), and a mobile phone were

evaluated (see Table 1) to see if they meet the hardware requirements specified in

section 9, Doc. No. 2. But having said that, the boundary between these devices is

not strictly defined because mobile technology and computers are fast converging

(e.g. hybrids that incorporate features of all these mobile devices). Also, hardware

features described in Table 1 are not found across all the mobile devices in a

particular category. In general, most of these features are available only for the top-

end segment of the product range.

Table 1: Comparisons of target platforms

Mobile Device

Requirements tablet computer PDA mobile phone

1 No, particularly

when it is

ruggedized.

Yes, it fits in the

palm of a hand.

Yes, it fits in the

palm of a hand.

2 Yes, ruggedized Yes, rugged No, protective

 User Interface Design Doc. No. 3

 Page 16

tablet computers

available for field

use (Symbol,

2003).

casings available

from third-party

vendors (Otterbox,

2003).

covers are not

designed for field

use – they are not

really shock-proof

or water-proof etc.

3 Yes. Yes, light sensors

that automatically

adjust the screen

backlight to the

surrounding light

condition.

Yes.

4 Yes, ½ VGA. High

resolution and full

colour display.

Yes, ¼ VGA. High

resolution with full

colour display.

No, 1/8 VGA. Low

resolution with full

colour display.

5 Yes, internal dial-

up modem, WLAN

or LAN network

cards.

Yes, expansion

cards for GSM,

GPRS, Bluetooth

and WLAN.

Yes, GSM,

Bluetooth and

GPRS capability.

6 Yes. Hard drives

(internal/external)

with high data

storage capacity.

Yes, add-on

memory cards for

extra disk space.

No.

7 Yes, touch pad,

touch screen and

hard keyboard.

Yes, touch screen,

external add-on

keyboard,

handwriting

recognition

software and soft

keyboard.

No, numeric

keyboard makes

text data-entry

difficult and

inefficient.

8 No, the best

batteries last for 4

or 5 hours.

Yes, last for more

than 10 hrs.

However,

Yes, battery lasts

for a few days,

even weeks.

 User Interface Design Doc. No. 3

 Page 17

However,

extensive use of

screen lighting and

some attachments

may significantly

decrease the

battery life.

extensive use of

screen lighting and

some attachments

may significantly

decrease the

battery life.

However,

extensive use of

screen lighting

may significantly

decrease the

battery life.

Information in Table 1 identifies a PDA as the most suitable mobile device followed

by the tablet computer. The table, however, doesn’t show a significant difference

between them, particularly in terms of cost. Typically, a tablet computer is five times

more expensive than a PDA. Hence, it is far more feasible to deploy PDA as a

mobile terminal in large numbers in the field than the former. Based on these

arguments, the PDA was selected as the target platform for the field data collection

application. The type of PDA chosen is a iPaq™ H3000 (see Figure 8) from

Compaq™ (now HP™).

Figure 24: iPaq H3900 PDA

 User Interface Design Doc. No. 3

 Page 18

Important features of the H3900 includes (see Doc. No. 6 for full technical

specifications):

• Transflective TFT LCD with 65,536 colours, resolution: 240 × 320.

• Rugged case for industrial use.

• Expansion packs for WLAN, GSM/GPRS networks and barcode scanner.

• Lithium Polymer rechargeable battery with up to 14 hours operating time

• SD slot for 64 MB, 128 MB and 256 MB memory cards.

• Input methods: External micro-keyboard, Handwriting recognition software,

soft keyboard, character recognition, voice recorder and inking.

A conscious decision was taken to use a Pocket PC platform primarily because it

supports the most sophisticated functionality pertaining to mobile field data

collection applications. Some of the functionality includes GPS, wireless network

connection and data compatibility with most widely used Windows™ applications.

Not surprisingly, most of the leading mobile GIS software suppliers (e.g. Trimble,

ESRI, and Intergraph etc.) support Pocket PC platform. The disadvantage of using

this platform, however, is that it uses information presentation techniques and

metaphors derived from its desktop computers. The implication is that these desktop

metaphors rely primarily on video for communication and that demands a very high

level of user attention (Kristoffersen S et al., 1999 and Pascoe J et al., 2000). There

are, however, a number of solutions that have being proposed to overcome this

usability shortcoming (see section 3.3, Doc. No. 1).

Embedded Visual Basic (eVB) was used to program the field data collection

prototype. The rationale for this decision is that eVB is most likely to be used by

programmers because of its simplicity and it allows rapid prototyping of the user

interface. Overall, this project has taken a pragmatic approach in selecting the

platform and programming tools that are most likely to be used so that the usability

design of the field data collection application can be applied in a realistic software

development environment.

 User Interface Design Doc. No. 3

 Page 19

2.3.2 Implementation Model illustrated

The implementation model is illustrated using screenshots taken from the user

interface of field data collection prototype. These designs have gone through a

number of iterative inspections and they are representative of a final design as

opposed to a first-cut design. They are not presented as definitive or flawless

solutions but rather as a platform to discuss problems and tradeoffs involved in

designing a usable user interface. Moving from the content model in section 2.2, the

SourcingTeamInfoHolder container is now replaced by a listview (see Figure 9).

The intention is that the user enters the names once and thereafter only selects the

names of the sourcing team from a list of pre-existing team members that are stored

in system memory. It is unnecessary for the user to type in all the member names

and their details for every UUC they source. It is far quicker and easier to select

from a list than to type in the names. A shortcut button for selecting all the list items

is also used to increase the efficiency of the task at hand. A multi-select enabled

listview allows the user to choose any combination of members in a single selection.

The itemSelecter used here would be a stylus. The user may use a finger for the

larger targets such as the “Select All Members” button. Unfortunately, due to lack of

screen space, not every target can be made large enough for the use of finger.

Research has shown that sonically-enhanced targets or visual components can

increase usability despite their small sizes (Brewster S, 2002). The “Add” and

“Cancel” buttons are relatively small targets and hence they are enhanced with

audio feedback.

 User Interface Design Doc. No. 3

 Page 20

Figure 25: Select sourcing team members

Information about the sourcing team needs to be updated occasionally, for example,

when a new member joins the team or making some changes to the information

about an existing member. By clicking the Update Member Info button, the user

gets access to detailed information about all the team members (see Figure 10).

The information is displayed graphically in a tabular table format, which is suitable

for a quick browse. Because the table has only three columns, all of them are visible

and hence there is no need for the user to scroll horizontally to view the rest of

table. This is important because the horizontal scrolling in small screen like that of a

PDA reduces readability and comprehensibility of data (Laarni J, 2002). The user

has the options to create a new entry, delete or edit an existing entry by clicking a

New, Delete and Edit buttons respectively. The Edit and Delete buttons are

enabled only when the user selects a particular team member from the table. The

user is presented with a new screen (see Figure 11) when he is adding or editing a

member information although these tasks can be done directly from the table. The

intention was not to rely on hidden features of the table widget but instead to make

their functionalities appear obvious to the users who have little exposure to

Windows UI components.

 User Interface Design Doc. No. 3

 Page 21

Figure 26: View sourcing member information

It is recommended that user does not use external keyboard or any other external

input devices attached to the PDA to enter text. An external keyboard, for example,

is awkward to use without a flat surface (not available inside the UUC) on which to

place it. Hence, SIP is assumed to be a primary means of entering customized data

into a PDA. Information is entered into the input panel in one of two ways; by

tapping a miniature keyboard (also called soft keyboard) with the stylus to enter

characters or by writing on a handwriting recognition panel using a stylus. The user

can switch between the two modes at any time. The users who are familiar with the

use of a standard desktop keyboard will find a soft keyboard easier to use than

handwriting recognition software. The latter does not always accurately recognize

letters and it takes a bit of practice to get it right. Although it may appear trivial, the

behavior of SIP affects the usability of the mobile application. In this particular

interaction context, making SIP appears automatically when the text field receives

focus and removing it after clicking the ‘OK’ button makes the data entry work faster

and more pleasant. Otherwise, the user has to repeatedly click on a keyboard icon

at the bottom of the screen to activate and deactivate the SIP which can be

inconvenient and time consuming. Also, when the SIP is opened it should not

 User Interface Design Doc. No. 3

 Page 22

conceal the textbox where the data is entered. In this particular screen (see Figure

11), however, there is enough space at the bottom of the screen for the SIP to

appear.

Figure 27: Update sourcing member information

The Times&DatesHolder container in the Enter sourcing time & date interaction

context is implemented using a textbox (see Figure 12). Even so, the user is not

expected to type in the information. The sourcing dates and times are most likely to

be the same as the date and time at which user enters the information. Instead of

typing in the date and times, the user clicks a checkbox and the system

automatically inserts the current time and date from the computer memory. This

minimal input action by the user principle is also applied to entering sourcing and

traveling duration where the user selects from a list of approximate times from a

combobox. In the case of sourcing duration, the system automatically calculates the

time, but the user also has the option to override the automation.

 User Interface Design Doc. No. 3

 Page 23

Figure 28: Data entry for sourcing times and date

If, however, the user decides to type in the information, the correct formats of data-

entry are clearly displayed to guide him. The data fields reject the data that the user

enters if the format is incorrect. A 12-hour clock with AM/PM designations is used

for the time format, which is more comprehensible than a 24-hour time format

(Shneiderman B, 1998c). The data containers that hold related information (e.g.

start time, finished time etc.) are neatly grouped together. A fair amount of space

between each group of components prevents UI from looking overcrowded. Also,

they are aligned to make the user interface look tidy and visually appealing.

 User Interface Design Doc. No. 3

 Page 24

Figure 29: Form and scrollbar resized when SIP is opened

The Enter sourcing time & date interaction context (see Figure 1) is implemented

as a single screen but not all the UI components within this context can fit into PDA

screen at once. Hence, a vertical scrollbar is used to access the data containers

which otherwise are not visible. Ideally, one would not use a scrollbar but without it

the information will be spread over many separate screens resulting in an excessive

context switching. However, if one needs to scroll, a vertical scrolling is the most

suitable type of scrolling for a PDA (Laarni J, 2002). It is particularly effective when

the user drags the scrollbar using the stylus (as opposed to a mouse for example)

provided that the length of scrolled page is not too long.

As before, SIP is used as a primary TextEntryTool. Once again, opening one

partially conceals the data fields and prevents the user from entering data. In order

to solve this problem, the form is shifted upwards and the scrollbar is resized

whenever the SIP is opened (see Figure 13). Both the stylus and external buttons

are used as the ItemSelecter. For example, the “navigation” button (also called

“directional pad”) of a PDA can be used to scroll the form or even browse through

items in the combobox. The “record” button can also be programmed to use as a

 User Interface Design Doc. No. 3

 Page 25

scroll button although it works only for a downwards scroll. But this button needs to

be pressed with quite a bit of pressure in order for it to work, and this could become

awkward for a “fast scroll”. To a similar effect, clicking “up/down” buttons on the

scrollbar is cumbersome due to their small size. The use of navigation button and

dragging the stylus along the scrollbar works equally well especially for a “fast

scroll”. The stylus allows a rich set of gestures on the touch screen and they too are

exploited for scrolling. In particular, dragging the form directly works reasonably well

provided the form does not contain too many GUI components.

Figure 30: Enter site information

Moving on to the Enter site information interaction context, the textboxes are used

as the SiteInformationHolder (see Figure 14). These containers are automatically

prepopulated with data that is read from the data-sourcing map. Of course, the user

may have to type in custom data if the UUC has changed its name or location but

this seldom happens. This type of automation helps to reduce user’s workload and

potential for errors. The format and organization of visual components are similar to

previous interaction context where components that are related to each other are

grouped together while keeping aesthetic apprehension of the user interface. The

intention was to keep consistency so that user can get accustomed to the format

and organization of the user interface.

 User Interface Design Doc. No. 3

 Page 26

Figure 31: Specify manhole covers

In the Enter manhole information interaction context, a wide variety of visual

components and widgets are used so long as they increase software usability. The

ManholeCoversHolder is made up of a combination of checkboxes and

comboboxes (see Figure 15). The user must check the checkbox in order to enable

the combobox. However, users who are not familiar with these widgets may not be

aware of when they are disabled. By “graying out” the components that are

disabled, the user can distinguish them from active components. The user can

confirm this by clicking on them, which will result in a sharp beep indicating that they

are inactive. This fool-proofing mechanism prevents errors from occurring in the first

place, which is better than correcting them later on. The comboboxes are

prepopulated with possible numbers of manhole covers so that the user does not

have to type in the information. As with the manhole covers, the data containers for

the content of UUC are enabled only when they are applicable (i.e. “time pumped” is

valid only when UUC contains water) to prevent user errors (see Figure 16).

 User Interface Design Doc. No. 3

 Page 27

Figure 32: Specify manhole content

Unfortunately, the data containers cannot always be made foolproof. Such was the

case with the data entry for the UUC dimensions (see Figure 17). Here, the user

types in the dimension using SIP, which the system validates on entry. Otherwise,

the rest of the data including manhole type and construction status are simply

selected from the combobox.

Figure 33: Enter manhole dimensions

 User Interface Design Doc. No. 3

 Page 28

A picture box is used as a ManholeShapeHolder from which the user selects the

shape of the manhole from a predefined list of images (see Figure 18). It is far

easier, quicker and less error-prone if the user selects the shape from a list than to

draw it out. However, as the number of shapes in the list increases, so is the time to

find the shape that the user is looking for. So, the number of possible manhole

shape should be categorized or limited to a few items that the user needs to browse.

This, of course, will depend on the number of manhole shapes and their variations.

The image of a manhole shape does not require a high level of details and hence

they can be stored in relatively small image files (a few kilobytes in a GIF file

format). This is necessary for performance (e.g. to reduce system loading time,

response time etc.) of field application which to a large extent affects the usability.

Figure 34: Select manhole shape

Moving on to the placeDuct interaction context (see Figure 4), the

DuctLocationsHolder is realized using a frame containing a number of ‘x’ labeled

buttons (see Figure 19). The ‘x’ represents a possible location or position of a duct

on the routeface. The locations of the ducts are displayed graphically which is

quicker and easier for the user to read and understand than lengthy text messages;

 User Interface Design Doc. No. 3

 Page 29

“a picture worth a thousand words”. The users should find the graphical presentation

highly intuitive given the obvious resemblance of the DuctLocationHolder to what

they actually see on the routeface. In order to place a duct onto the routeface, user

first checks the “Add” option-button and simply clicks on ‘x’ label where he wants to

place the duct. Once the location is selected, the gray coloured ‘x’ label transformed

into a square block labeled with the duct number. The colour transformation is

accompanied by an audio feedback indicating a new duct has been placed. The

user interface is designed to exploit the direct control style of user interaction that

the user has when he uses the stylus to manipulate objects on the touch screen.

The user has the options of adding, removing and specifying ducts by checking

appropriate optionboxes. The efficiency of these tasks also increases when the user

does not need to change the mode of operation (add, remove or specify) for every

duct especially when a large number of ducts are placed at one time. In order to

remove a duct, the user simply checks the “Remove” optionbutton (systems

automatically unchecks the other two radio buttons) and taps on the duct that needs

to be removed.

Figure 35: Placing ducts onto the routeface

 User Interface Design Doc. No. 3

 Page 30

When placing a duct, the user needs to know not only its location on the routeface

but also that routeface’s relationship to the other routefaces, particularly to that of

routeface A. Unfortunately, the PDA screen does not have space to show locations

of ducts on all the routefaces at the same time. But it can still create the same effect

by using UUCtopoViewer (see Figure 4) which essentially shows which routeface

the user is working on and where it is in relation to the rest of routefaces. This

container is implemented as a dynamic (as opposed to static) image of topographic

view of the UUC (see Figure 19). In other words, it interacts actively with the user by

displaying the content of each routeface that is selected. In addition, it “rotates” in an

anti-clockwise direction so that the routeface that was selected moves to the top

location. This routeface “points” towards the wall of the UUC which the user is facing

when he is carrying out the data sourcing tasks. In other words, the tool helps the

user to find a sense of direction and orientation inside the UUC. For example, if the

routeface C is selected (see Figure 20), the UUCtopoViewer rotates accordingly so

that the routeface A and routeface E appear on the left hand side and right hand

side of the user respectively. Generally speaking, to secure a sense of direction and

orientation is of paramount importance to mobile applications that are used in a true

mobile environment.

 User Interface Design Doc. No. 3

 Page 31

Figure 36: Tool to assist user orientate when placing ducts

When specifying the ducts, the user needs to know exactly which duct he is

specifying. Although the name will identify the duct, it is more accurate and

reassuring to “see” its location as well. This reduces the user’s workload in going out

to find where he has placed the duct. In order to specify the duct, the user first

checks the “specify/edit” optionbutton and taps on the duct that he wants to specify.

While the user is entering ducts specifications he is able to see the duct (highlighted

in red colour) that is currently being specified (see Figure 21). Once the ducts are

specified, they are highlighted in green colour to distinguish from those ducts that

have not yet specified. Again, this reduces the amount of user attention that the

system demands by providing constant feedback and helps the user keep track of

the changes. If the user wants to change the specifications he would follow the

same step as adding specification (both tasks belong to the same interaction

context as shown in Figure 3). The only difference is that data fields are pre-

populated with previous specification values.

Figure 37: Enter ducts specifications

 User Interface Design Doc. No. 3

 Page 32

It is important to note that there is no menubar, pop-up or nested menu items. The

intention behind this design decision was to make all the functionalities that the user

needs immediately obvious and readily available without looking for them. This

design approach is also referred to as What You See Is What You Need

(WYSIWYN) and it is particularly effective for task-oriented applications without too

many complex functions.

In the Place cables and joints interaction context, a tree widget is used as a

template to view the cable network (see Figure 22). Looking back at the content

model (see Figure 5), this component serves both as the NetworkHolder and the

CableNetworkViewer. A tree-view of the network shows the interconnections of

cables, joints and ducts but without the locations of ducts on the routeface. So,

another container displaying the ducts works with the NetworkHolder in a

synchronized manner to give a complete “picture” of somewhat complex cable

network. The tree-view represents the direction of the cable path rather than the

actual physical connections. This means that if the cable is located at a particular

place, it is unique and it is not repetitively shown on other parts of the tree-structure.

This way the user can create a mental map of the network connections without

going into backward traversals and getting lost.

In order to trace the cable path, the user taps one of the panels on the tabbed pane

(“routeface selection” in Figure 22) to select the routeface, he then clicks one of the

ducts on the routeface. The CableNetworkViewer responses by displaying the full

path of cables and joints connected to that duct. Alternatively, if the user clicks the

cable (or joint) from the tree-view, the system shows the duct to which they are

connected by highlighting it in red on the routeface panel. There are a number of

reasons why this kind of automation is necessary. Firstly, there is insufficient space

on the screen to show all the cable connections simultaneously. And secondly, it

would be time consuming, error-prone and confusing for the user to look for cables

in a large network. The user, however, is not expected to know how the tree widget

works. Again, the goal is not to rely on hidden features on this widget but to make

 User Interface Design Doc. No. 3

 Page 33

them appear intuitive to the user. For example, the tree nodes are automatically

expanded to display the full cable path without any user action (see Figure 23).

Figure 38: User interface for placing cables and joints

The tree-icons help the user to recognize what each node represents. Unfortunately,

there are no standard icons for cables and joints, so they were custom designed.

The objective was to make icons appear simple, yet “guessable” so that the user

can easily draw connection to what they represent. For example, the icon for a duct

is represented with a black circle with a brown background, which can be associated

to a hole in the wall. Because these are small icons, they cannot contain a high level

of details. The icons could be made larger to improve clarity but this is at the cost of

reducing the visibility of rest of the network, which is not desirable.

 User Interface Design Doc. No. 3

 Page 34

Figure 39: Trace cable path using tree-view of cable network

The user can place and connect cables, joints and ducts onto the network by

selecting appropriate optionbuttons on top right corner of the user interface (see

Figure 23). Of course, these nodes cannot be connected in any random order. For

example, the user cannot connect a joint to a duct or one end of cable to more than

one joint although a joint can be connected to any number of cables.

Figure 40: Error prevention in connecting nodes

 User Interface Design Doc. No. 3

 Page 35

The system automatically implements these rules by disabling optionbuttons that

are not applicable for a particular type of connections. For example, when the user

selects a joint from the tree structure, the optionbutton for adding duct is grayed out

or disabled. This automation prevents unnecessary errors and improves data

accuracy.

When adding cables to the network, they are automatically given a unique

identification number (see Figure 25). The user selects whether the cable type is a

Copper or Fibre Optic. The NotePad (see Figure 5) is implemented as a large

textbox where the user makes short notes. When the user clicks the NotePad

container, the SIP automatically opens. He then makes notes about the cable or he

can click the “unknown” button to insert the words “unknown” into the NotePad

which is quicker than typing in the words. The SIP automatically closes when the

user clicks the “OK” button when the task is complete. Again, use of appropriate SIP

behavior may seem trivial but it allows the user to complete the data entry task fairly

quickly.

Figure 41: Make notes about the cable specification

 User Interface Design Doc. No. 3

 Page 36

The tables are used as the placeholders for the specifications of the joints, cables

and ducts. Unlike the latter, the joint and cable tables have a large number of

columns and not all of them fit into the screen (see Figure 26). Hence, the user

needs to scroll horizontally to see them, which is difficult, awkward and ineffective in

locating data fields. The table columns could be made resizable or even smaller to

see more columns in a limited screen space. However, the reduction in column

width conceals the name and the content of each column leading to confusion and

incomprehension.

Figure 42: Enter cable specifications

In general, a horizontal scrolling is considered to be inappropriate for a PDA screen

(Cooper A, 1995). As a result, the data containers for joint and cable specifications

are displayed in a vertical format (see Figure 26 and Figure 27). Here, the user can

see almost all the data containers where he enters the specifications. Some of the

information is prepopulated by the system so as not to repeat tasks. For example,

whenever the user places a cable onto the network, the system keeps track of its ID,

direction (i.e. source and destination) and whether it has joints. Using the paper

sourcing forms, the user would have to repeat such tasks leading to inefficiencies.

 User Interface Design Doc. No. 3

 Page 37

Figure 43: Data-entry for joint specification

The specification lists are displayed when the user clicks on the “see list” text (see

Figure 27). The text is highlighted in blue to indicate that it is a navigation link that

goes to another page (the blue colour is reserved for navigation controls, more on

this later). The short notes now appear on the top the page inside another frame so

that the user can refer to it at all times. The specification table fits well into the small

screen because they have a small number of columns. The user is able to read its

content comfortably without horizontal scrolling. The specification lists are lengthy

(up to 50 items) which require user to do quite a bit of vertical scrolling before

finding the right specification number (see Figure 28). But by putting together

specifications that belongs to the same type of node (e.g. dome joint, foam joint etc)

and by arranging them in an alphabetical order makes the searching easier and

quicker.

 User Interface Design Doc. No. 3

 Page 38

Figure 44: Joint Specification Number List

The overall architecture of the user interface is based on the navigation map (see

Figure 7) of the interaction contexts. The user is given a high level of flexibility in

navigating between interactions context and complete tasks in the order that is most

convenient to him. The user is provided with the navigation menu where he selects

a particular interaction context (see Figure 29). The word “page” is used to draw

analogies between page turning in sourcing forms and use of navigation controls to

move between different interaction contexts. This kind of association would be

particularly convincing for inexperienced computer users. Keeping the number of

interaction contexts to a minimum and numbering them helps the user with

navigation and prevents getting lost. The system also encourages the user to follow

the most common pattern of navigation by providing each interaction with a link to

the previous and next interaction contexts.

Figure 45: Navigation menu

 User Interface Design Doc. No. 3

 Page 39

Each screen has a title describing the name of task or subtask that user is doing.

The titles are written in bold letters to indicate that they are in fact the page titles.

Again, these page titles are motivated by the page-turning metaphor used for

navigation between various interaction contexts.

Figure 46: Select an interaction context from a main menu

The navigation controls are coloured in blue and they are placed at the bottom of

the screen just above the menu bar (see Figure 30). The blue colour is used

exclusively for embedded links. The colour and layout are kept consistent

throughout all interaction contexts. The navigation controls include the following

embedded links:

• “< page” – goes to a previous interaction context

• “Index” – goes to the main menu (see Figure 30)

• “Help” – to access specific helpful information. This feature is disable if there

are no help available.

• “page >” – goes to the next interaction context

 User Interface Design Doc. No. 3

 Page 40

Once the data sourcing templates are filled in, the system prompts the user to either

save the data, exit without saving or return to data sourcing work (see Figure 31). If

the user selects to save data, the data is saved onto the PDA and the sourcing work

is complete for that particular UUC.

An important aspect of software usability that does not feature in the user interface

design is the performance of the field data collection prototype, particularly system

response time. Obviously, the longer the user waits for the system to response to

user action, the more likely the user becomes frustrated and the less efficient the

work becomes.

Figure 47: Exit prompt

The solution, therefore, was to load the software completely before it is used. This

strategy is being used successfully in performance intensive application such as

multimedia games. This way, the user waits only once at the beginning and not get

interrupted while he is carrying out the data sourcing tasks.

 User Interface Design Doc. No. 3

 Page 41

Figure 48: Field data collection application loading

In the field data collection prototype, the GUI components, images and

specification lists are loaded before the system is ready for use. The user,

however, is informed about the time it takes to complete the loading process at

constant intervals (see Figure 32). The loading time for the field data collection

prototype is approximately 30 seconds, which is reasonable given the significant

number of visual components used and hundreds of specification numbers read

from system files.

The finding UUC interaction context is not supported by the user interface for

the field data collection. But instead of leaving out entirely, an off-the-shelf

spatial mapping software for Pocket PC from Intergraph called IntelliWhere

OnDemand™ is used to display to the data-sourcing map (see Figure 33). The

rest of the prototype runs as a custom application that is launched from the

IntelliWhere OnDemand™.

 User Interface Design Doc. No. 3

 Page 42

Figure 49: Data sourcing map on a PDA

A paper data-sourcing map (see Figure 3, Doc. No. 2) was digitized using

GeoMedia™ which is desktop geospatial mapping software that works as a desktop

server to IntelliWhere OnDemand™. The features used in the map include:

1. UUCs

2. SDCs

3. Ducts

4. Streets

5. Suburb/Area

These features are queried using their attributes (see Figure 34). For example, the

user can ask for UUC with a particular ID, or alternatively, the IDs of the UUCs

located on a particular street, suburb etc.

 User Interface Design Doc. No. 3

 Page 43

Figure 50: Queries for street, asset and other attributes on the map

The screen size is very limited on a PDA and not all the details of the map could be

displayed simultaneously. Otherwise, the features looks crammed making it difficult

to read the map. As shown in Figure 35, the solution is to make features appear

only when the map is zoomed to a particular range of scale (e.g. 1:1000 to 1:5000).

Naturally, the suburbs and streets would appear at much higher scale than say the

UUCs and SDCs. The exact scale range is carefully determined based on the size

of the map and proximity of the features.

Figure 51: Map attributes visible only at a particular range of scale

 User Interface Design Doc. No. 3

 Page 44

The IntelliWhere OnDemand™ has a number of built-in map viewing functionalities

such as pan, zoom in and zoom out. It allows these functions using a rich set of

gestures offered by the direct interaction style of the stylus on a touch screen. One

of the most important functions is the “red-lining” of assets on the map (see Figure

36). This function allows the user to make repetitive changes to the original asset

information without overwriting the original data.

Figure 52: Redline functionality of IntelliWhere OnDemand™

 User Interface Design Doc. No. 3

 Page 45

3 Conclusion

The user interface is designed using a two-steps approach. The content of user

interface is addressed before determining how they will look or behave. The latter is

derived from the requirements analysis of users, tasks and operational context. The

result is that the user interface is able to give the users what they need rather than

what is available.

The user interface design is implemented as a working prototype on a Pocket PC

operated PDA which has shown to be the most suitable hardware platform for the

prototype to run on. This operating system is criticized for merely duplicating

desktop software on a mobile device. However, the reality is that no other operating

system is able to give the kind of underlying functionality in terms of multimedia and

wireless connectivity required by a modern field data collection application. Again,

this is a pragmatic approach and may not be able to provide a truly innovative

solution. Another concern is that the programming language used, namely the

eMbedded Visual Basic (eVB), restricts the flexibility of the user interface design

due to its limited availability of UI components and widgets. To overcome this

problem, standard GUI components are used creatively so that they can still appear

intuitive to novice users. By and large, the user interface design is able to meet the

usability and functional requirements successfully despite some of the limitations

mentioned above.

Software Design

Doc. No. 4

 Software Design Doc. No. 4

 Page i

CONTENTS

CONTENTS...I

LIST OF FIGURES..III

1 SCOPE..1

1.1 Introduction..1

1.2 Purpose..1

1.3 Audience..1

2 SOFTWARE DESIGN...2

2.1 Unified Modeling Language (UML) ...2

2.2 ICONIX Process ...3
2.2.1 Use Case Model...4
2.2.2 Robustness Diagram..5
2.2.3 Sequence Diagram...6
2.2.4 Domain Model...7
2.2.5 Class Diagram ...7

3 USE CASE MODEL..9

3.1 Use Case Map ...9

3.2 Use Case Documentation ...10
3.2.1 Select Sourcing Template Use Case ..10
3.2.2 Specify Sourcing Team Use Case...11
3.2.3 Update Team Use Case...12
3.2.4 Specify Times & Dates Use Case ...13
3.2.5 Specify Site Information Use Case ...14
3.2.6 Specify Manhole Covers Type Use Case..15
3.2.7 Specify UUC Content Use Case ...16
3.2.8 Specify Manhole Dimensions Use Case ...17
3.2.9 Place Duct Use Case...17
3.2.10 Specify Duct Use Case ...18
3.2.11 Place Cable Use Case ...19
3.2.12 Specify Cable Use Case..20
3.2.13 Place Joint Use Case...21
3.2.14 Specify Joint Use Case ...22

4 ROBUSTNESS DIAGRAM ...23

 Software Design Doc. No. 4

 Page ii

5 SEQUENCE DIAGRAM..31

6 CLASS DIAGRAM..45

7 CONCLUSION ..48

 Software Design Doc. No. 4

 Page iii

LIST OF FIGURES

Figure 1: The Vocabulary of UML (Source: Jacobson I et al., 1999a) ____________________2
Figure 2: ICONIX process (Source: Rosenberg D et al., 2001a)_________________________4
Figure 3: Robustness analysis bridges the gap between what and how of software design
process (Source: Rosenberg D et al., 2001c) __5
Figure 4: Robustness diagram stereotypes.__6
Figure 5: Use Case Diagram for the field data collection application. ____________________9
Figure 6: Robustness Diagram for Select Sourcing Template Use Case ________________23
Figure 7: Robustness Diagram for Specifying Sourcing Team Use Case ________________24
Figure 8: Robustness Diagram for Update Team Use Case ___________________________24
Figure 9: Robustness Diagram for Specify Times & Dates Use Case ___________________25
Figure 10: Robustness Diagram for Specify Site Use Case ___________________________25
Figure 11: Robustness Diagram for Specify Manhole Covers Use Case ________________26
Figure 12: Robustness Diagram for Specify UUC Content Use Case ___________________26
Figure 13: Robustness Diagram for Specify UUC Dimension Use Case_________________27
Figure 14: Robustness Diagram for Place Duct Use Case ____________________________27
Figure 15: Robustness Diagram for Specify Duct Use Case ___________________________28
Figure 16: Robustness Diagram for Specify Cable Use Case__________________________28
Figure 17: Robustness Diagram for Place Cable Use Case ___________________________29
Figure 18: Robustness Diagram for Place Joint Use Case ____________________________30
Figure 19: Robustness Diagram for Specify Joint Use Case___________________________30
Figure 20: Sequence Diagram for Select Sourcing Team Use Case ____________________31
Figure 21: Sequence Diagram for Specify Sourcing Team Use Case ___________________32
Figure 22: Sequence Diagram for Update Sourcing Team Use Case ___________________33
Figure 23: Sequence Diagram for Specify Times & Dates Use Case ___________________34
Figure 24: Sequence Diagram for Specify Site Information Use Case___________________35
Figure 25: Sequence Diagram for Specify Manhole Cover Types Use Case _____________36
Figure 26: Sequence Diagram for Specify UUC Content Use Case_____________________37
Figure 27: Sequence Diagram for Specify Manhole Dimensions Use Case ______________38
Figure 28: Sequence Diagram for Place Duct Use Case ______________________________39
Figure 29: Sequence Diagram for Specify Duct Use Case ____________________________40
Figure 30: Sequence Diagram for Place Cable Use Case _____________________________41
Figure 31: Sequence Diagram for Specify Cable Use Case ___________________________42
Figure 32: Sequence Diagram for Place Joint Use Case ______________________________43
Figure 33: Sequence Diagram for Specify Joint Use Case ____________________________44
Figure 34: Class Diagram (part 1) for Field Data Collection Application _________________45
Figure 35: Class Diagram (part 2) for Field Data Collection Application _________________46
Figure 36: Class Diagram (part 3) for Field Data Collection Application._________________47

 Software Design Doc. No. 4

 Page 1

1 Scope

1.9 Introduction

This document details the software analysis and design process of the field data

collection application. The detailed functionality, particularly those relating to the

usability of the field data collection application is illustrated using object-oriented

software design models. The user interface prototype developed during the User

Interface Design (Doc. No. 3) is used as a “starting point” for the software design

process. It is important to stress that the software usability does not only depends

on the appearance of the user interface but how it functions and behaves in

response to user actions as well.

This document is concerned primarily with high-level design architecture of the

application layer (as opposed to user interface layer) of the software. Hence, the

document does not include the actual implementation of the application layer (i.e.

program source code).

1.10 Purpose

The purpose of this document is to present the software functionality and the design

architecture of the field data collection application. In doing so, the reader should

gain a better understanding of the behaviour and complexity of the field application.

1.11 Audience

The intended readers of this document include researchers involved in the areas of

software usability, mobile computing, as well as software designers, developers, the

external examiner and other interested parties.

 Software Design Doc. No. 4

 Page 2

2 Software Design

2.1 Unified Modeling Language (UML)

The Unified Modeling Language (UML) is a standard modeling language for object-

oriented software – “a language for visualizing, specifying, constructing, and

documenting artifacts of a software-intensive system” (Jacobson I et al., 1999a).

Essentially, UML enables software developers to visualize their software designs in

standardized blueprints or diagrams. UML represents a unified notation for

expressing a variety of models and can be used by a variety of object-oriented

methods. The names of the various UML diagrams and their graphical details may

differ considerably but the deployment of most important diagrams (e.g. use cases,

sequence and class diagrams etc.) are widely accepted (see Figure 1).

Things

The UML

DiagramsRelationships

Structural Behavioral Grouping Annotational

Use case
Class

Active Class
Interface

Component
Collaboration

Node

Interaction
State machine

Package
Model

Subsystem
Framework

Note

Dependency
Association

Generalization

Use case
Class
Object

Sequence
Collaboration

Statechart
Activity

Component
Deployment

Figure 53: The Vocabulary of UML (Source: Jacobson I et al., 1999a)

 Software Design Doc. No. 4

 Page 3

2.2 ICONIX Process

The ICONIX process uses a subset of UML based on Dough’s analysis of the three

individual methodologies developed by Ivar Jacobson, Jim Rumbaugh and Grady

Booch Rosenberg D et al., 2001a). ICONIX process is a relatively lightweight object-

oriented design process without a lot of overhead of a complete UML design

process. Simply put, it “sits somewhere in between the very large Rational Unified

Process (RUP) and the very small eXtreme programming (XP) approach”

(Rosenberg D et al., 2001a). This makes the ICONIX process especially suitable for

relatively small software projects. The key features of the ICONIX process is that

(Rosenberg D et al., 2001a):

• It offers streamlined usage of the UML. In other words, it is a “minimalist”

approach comprising minimal subsets of a large and often unwieldy UML.

• It offers a high degree of traceability. At every step along the way, the

designer refers back to the requirements in some way.

• It is iterative and incremental. Multiple iterations occur between developing

the domain model and identifying and analyzing use cases.

As shown in Figure 2, the ICONIX process begins with the graphical user interface

(GUI) prototype whether it is a simple drawing or a working prototype. The design

models used in the ICONIX process extend from the GUI prototype. For instance,

the use case narratives and functions match up with the GUI components (e.g.

buttons, textbox etc.). The ICONIX process describes the behavior and structure of

the system using dynamic and static models respectively (see Figure 2). The

constituents of these models are described in the sections below.

 Software Design Doc. No. 4

 Page 4

Graphical User Interface

CancelOK

Attribute A:

Attribute B:

Attribute C:

Attribute:

Class name

Attribute:

Class name

Attribute:

Class name

Attribute:

Operation:

Class name

Attribute:

Operation:

Class name

Attribute:

Operation:

Class name

Attribute:

Operation:

Class name
Association

GUI Prototype
Use Case

Model

Robustness

Diagram

Sequence

Diagram

Dynamic

Static

Domain Model Class Diagram

Code

Figure 54: ICONIX process (Source: Rosenberg D et al., 2001a)

2.2.1 Use Case Model

The use case model describes the runtime behavior of the system by addressing

what the users are trying to do with the system (Rosenberg D et al., 2001b). This

involves the capture of user actions and the associated system responses in great

detail. It is necessary to ask “what happens?” when the user interacts with the

system (a basic course of action) and “what else can happen?” (other alternative

courses of action). The user interface prototype helps define the use cases from the

beginning. The entire dynamic part of the object model is then derived from the use

case model.

 Software Design Doc. No. 4

 Page 5

2.2.2 Robustness Diagram

The robustness diagram identifies objects that are needed to complete use cases

in the use case model. It is similar to a UML collaboration diagram, in that it shows

the objects that participate in the scenario and how these objects interact with each

other (Rosenberg D et al., 2001c). However, the robustness diagram makes the

transition from the requirements to detailed design easier. One of the most difficult

problems in the software development is moving forward from the “what” view into a

“how” view of the software design (see Figure 3). The analysis of this diagram

makes this transition easier by closing the gap between the requirement analysis

and detailed design (Rosenberg D et al., 2001c).

What
(analysis)

How
(design)

gap

Figure 55: Robustness analysis bridges the gap between what and how of software
design process (Source: Rosenberg D et al., 2001c)

The robustness diagram constitutes three stereotypes:

• Boundary objects – actors use them to communicate with the system.

Many of the boundary objects are found in the GUI prototype.

 Software Design Doc. No. 4

 Page 6

• Entity objects – are usually objects from the domain model. Typically, they

are database tables, and files that hold the information that needs to “outlive”

use case execution.

• Control objects – also called controllers serve as the “glue” between

boundary objects and entity objects. They embody much of the application

logic. They are placeholders for any functionality and system behavior

required by the use cases.

The Figure 4 below shows the visual icons for these stereotypes.

Boundary object Control objectEntity object

Figure 56: Robustness diagram stereotypes.

2.2.3 Sequence Diagram

The sequence diagram represents a detailed design of the system which is largely

about allocating behavior (Rosenberg D et al., 2001d). In other words, it describes

the system behavior in great detail in a sequential manner. In doing so, it

encompasses the basic course and all alternate courses of action within each of the

use case. The four constituents of a sequence diagram are:

• The text for the course of actions of the use case appears down the left-hand

side.

 Software Design Doc. No. 4

 Page 7

• Objects, which are carried over from the robustness diagrams, and they are

displayed with their robustness diagram stereotypes.

• Messages are arrows between objects. The objects can send message to

each other or itself.

• Methods are shown as rectangle on top of message arrows. The length of

these rectangles reflects the length of focus of control within the sequence.

The use of focus of control is optional.

2.2.4 Domain Model

The domain model identifies the main conceptual objects that are going to

participate in the system designed (Rosenberg D et al., 2001d). This is necessary in

the object-oriented software design which has a structure that is based on real world

objects. The domain model also identifies the relationship between these objects

such as generalization (“kind of”) and aggregation (“part of”). In general, the best

sources of domain classes are derived from a high-level problem statement, lower-

level requirements and expert knowledge of the problem space (Rosenberg D et al.,

2001d). More specifically, nouns and noun phrases become objects and attributes

while verbs and verb phrases become operations and associations.

2.2.5 Class Diagram

A class diagram is essentially a static design view of the system by describing how

the code is organized (Rosenberg D et al., 2001d). The class diagram also shows

the type of relationships between the classes and objects such as interfaces and

even other systems. These relationships include:

• Association – Classes or objects may be connected, associated or related

because they share some mutual properties or interaction between them.

 Software Design Doc. No. 4

 Page 8

The association is represented using a solid line drawn between the

participating classes. Associations are assumed bidirectional. But if the line

has an arrow at the end, then it indicates the direction of the relationship.

• Aggregation – This relationship is used when a class is composed of

components which are other classes or objects. This is the “has a” type of

relationship. The aggregation is denoted with a solid line with a hollow

diamond on the end. The object on the diamond end “has” or “contains” the

object on the other end.

• Inheritance – This relationship exits between one class object that is a

specialized version of another class object. These classes have a “is a” or

“is like” relationship where they share similar attributes and methods.

Usually, the subclass “inherits” some of its properties from the parent class.

The inheritance relationship in UML is depicted as a solid line with a

triangular arrowhead pointing towards the parent class.

 Software Design Doc. No. 4

 Page 9

3 Use Case Model

3.1 Use Case Map

The use case map (see section 2.2.1) of the mobile application for UUC field data

collection is as follows:

Sourcing Team

INI File

Metadatabase
Joint Specification

List INI File

Fibre Sheath

Specification List INI File Cable Size List

INI File

Specify Manhole Covers

Specify Manhole Content

Enter Manhole Dimensions

Place Cable

Place Duct

Enter Duct Specifications

Place Joint

Enter Sourcing Team Members

Enter Times & Dates

Update Sourcing Team Details

Save Data Collected

Enter Joint Specifications

Enter Cable Specifications
Select Sourcing Templates

Data Collector

Find UUC

Enter Site Information

Off-the-shelf GIS

Mapping Software

Figure 57: Use Case Diagram for the field data collection application.

 Software Design Doc. No. 4

 Page 10

3.2 Use Case Documentation

The related documentation for use cases in section 3.1 is presented below. The use

case documentation follows the convention by Rosenberg (2001a).

3.2.1 Select Sourcing Template Use Case

Basic Course:

The Data Collector clicks the first item in the list box from the Main Menu Page. The

system displays the Sourcing Team Page.

Alternate Course:

If the Data Collector clicks the second item in the listbox, the system displays the

Times & Dates Page.

If the Data Collector clicks the third item in the listbox, the system displays the Site

Information Page.

If the Data Collector clicks the fourth item in the listbox, the system displays the

Manhole Information Page.

If the Data Collector clicks the fifth item in the listbox, the system displays the Ducts

Location Page.

If the Data Collector clicks the sixth item in the listbox, the system displays the

Cable Specification Page.

If the Data Collector clicks the "Done" button, the system prompts the user if he

wants to save the data before exiting the application. If "Yes" button is clicked, the

 Software Design Doc. No. 4

 Page 11

system saves the data before ending the application. If “No” button is clicked, the

application ends without saving the data collected. If "Cancel" button is clicked, the

system returns control back to the Main Menu Page.

3.2.2 Specify Sourcing Team Use Case

Basic Course:

The Data Collector clicks the Add Member button on the Sourcing Team Page. The

system displays the Sourcing Team Section Page. The system then retrieves the

names of all the members from the persistent team list.

The Data Collector selects one or more members from the list. The system enables

the “Add” and “Remove” buttons. The Data Collector clicks the “Add” button. The

system adds the selected members to the listbox in the Sourcing Team Page. The

system then returns the user back to the Sourcing Team Page.

Alternate Course:

If the Data Collector clicks the “Select All Members” button, the system select all the

members in the listbox.

If the Data Collector clicks the “Update Member Info” button, the system passes

control over to the Update Sourcing Team Details use case.

If the Data Collector clicks the “Cancel” button, the system returns to the Sourcing

Team Page without adding any members to the list.

If the Data Collector clicks the “Remove Member” button, the system removes

selected members from the list.

 Software Design Doc. No. 4

 Page 12

If the Data Collector clicks the “<Index” link, the system passes control over to the

Selecting Sourcing Template use case.

If the Data Collector clicks the “page2>” link, the system passes control over to the

Enter Times & Dates use case.

3.2.3 Update Team Use Case

Basic Course:

The Data Collector clicks the “Update Member Info” button on the Sourcing Team

Selection Page. The system displays the Members Info Page. The system then

retrieves all the member information and displays them onto Members Information

table in the Member Info Page.

The Data Collector clicks the row of the table to select a particular member. The

system enables the “Edit” and “Delete” buttons. The Data Collector clicks the “Edit”

button. The system displays the Edit Member Info Page with the selected member

details retrieved from the table. The system then opens the SIP.

The Data Collector types in the data using SIP and clicks the “OK” button. The

system closes the SIP. The system updates the changes to the Members

Information table and to the persistent member information data, and then returns

the Data Collector back to Member Info Page.

Alternate Course:

If the Data Collector clicks the “New” button, the system displays the Edit Member

Info Page with empty data fields. The user then enters the information for new data

sourcing personnel. Thereafter, he clicks the “OK” button, and the system adds new

member information to the persistent data. It then displays the Members Info Page

and creates a new row with the information entry.

 Software Design Doc. No. 4

 Page 13

If the Data Collector clicks the “Delete” button, the system removes the table row of

the chosen member, and the system deletes the member from the persistent

member information.

3.2.4 Specify Times & Dates Use Case

Basic Course:

The Data Collector checks the “Start Date” checkbox. The system inserts current

date into the “Start Date” textbox accompanied by a sharp 'click' sound. The Data

Collector checks the “Finished Date” checkbox. The system inserts the current date

into the “Finished Date” textbox accompanied by a sharp 'click' sound. The Data

Collector checks the “Traveling Date” checkbox. The system inserts the current date

into the “Traveling Date” textbox accompanied by a sharp 'click' sound.

The Data Collector checks the “Start Time” checkbox. The system inserts the

current date into the “Start Time” textbox accompanied by a sharp 'click' sound. The

Data Collector selects the sourcing time from a combobox. The system responds

with a sharp 'click' sound. The Data Collector again selects the traveling time from a

combobox. The system responds with a sharp 'click' sound.

The Data Collector clicks the “Traveling From” textbox. The system opens the SIP

and resizes the scrollbar. The Data Collector enters the “Traveling From”, “Vehicle

Registration” and “Kilometers” information. The system verifies if the “Kilometers”

information is entered correctly (i.e. the data must be integer or float).

Alternate Course:

If the Data Collector clicks the “Date and Time” textbox (he decides to insert dates

by himself), the system opens the SIP and verifies if the data entered is valid. If the

 Software Design Doc. No. 4

 Page 14

data entered is not in a correct format (i.e. mm/dd/yy), the system displays the type

of error and prompts the user for re-entry.

If the Data Collector clicks the “Index” link, the systems passes control over to the

Select Sourcing Templates use case.

If the Data Collector clicks the “<page1” link, the system passes control over to the

Enter Sourcing Team Members use case.

If the Data Collector clicks the “page3>” link, the system passes control over to the

Enter Site Information use case.

3.2.5 Specify Site Information Use Case

Basic Course:

The Data Collector clicks the “Site Name” textbox, and the eventlistener opens the

SIP. He edits the Site Name (if necessary). The system checks the validity of the

data entered.

Alternate Course:

If the Data Collector clicks the “Index” link, the system passes control over to the

Select Sourcing Templates use case.

If the Data Collector clicks the “Page4” link, the system displays the Manhole

Information Page.

If the Data Collector clicks the “Page3” link, the system passes control over to the

Enter Times & Dates use case.

 Software Design Doc. No. 4

 Page 15

3.2.6 Specify Manhole Covers Type Use Case

Basic Course:

The Data Collector checks the “Manhole Cover Type” checkbox. The system

enables the “No of Covers” combobox. He enters the number of covers by selecting

from a “No of Covers” combobox. Once complete, the system makes a sharp 'click'

confirmation sound.

The Data Collector indicates that the manhole is secured by checking the “Yes”

checkbox. The system enables the “No of Covers” comboboxes. He then selects the

no. of covers from the combobox which the system confirms with a sharp beep.

Alternate Course:

If the Data Collector clicks the comboboxes without checking the “Manhole Type”

checkboxes the system sounds out a distinct 'disapproval' beep.

If the Data Collector checks the “No” checkbox, the system unchecks the “Yes”

checkbox and disables the “No of Covers” comboboxes for security devices.

If the Data Collector clicks the “page3” link, the system invokes the Enter Site

Information use case.

If the Data Collector clicks the “Index” link, the system invokes the Select Sourcing

Templates use case.

If the Data Collector clicks the “page4” link, the system invokes the Place Duct use

case.

 Software Design Doc. No. 4

 Page 16

3.2.7 Specify UUC Content Use Case

Basic Course:

The Data Collector checks the “Yes” checkbox on the UUC content panel. The

system enables the “Time Pumped” combobox. The system makes a sharp ‘click’

sound as a feedback mechanism. The Data Collector selects the “Time Pumped”

from the combobox. The system again makes a sharp ‘click’ sound to confirm the

data entry.

The Data Collector clicks the “Oxygen Level” textbox, and the system opens the SIP

and resizes the scrollbar. He types in the “Oxygen level” and “Other Gasses”

information. The system verifies each of these data entries.

Alternate Course:

If the Data Collector clicks the “Time Pumped” textbox, the system opens the SIP

and verifies if the data entered is in the correct format. If not, the system displays an

error message and prompts the user for re-entry. When this data container loses

focus, the system closes the SIP and resizes the scrollbar.

If the Data Collector clicks the “page3” link, the system invokes the Enter Site

Information use case.

If the Data Collector clicks the “Index” link, the system invokes the Select Sourcing

Templates use case.

If the Data Collector clicks the “page4” link, the system invokes the Place Duct use

case.

 Software Design Doc. No. 4

 Page 17

3.2.8 Specify Manhole Dimensions Use Case

Basic Course:

The Data Collector clicks the “Length” textbox. The eventlistener for that data

container is activated and the system opens the SIP and resizes the scrollbar. The

Data Collector types in the rest of the dimensions (i.e. depth, breath, height etc.) of

the manhole which the system checks on entry to see if they are in the correct

format.

The Data Collector clicks the “>>” button until he finds the right manhole shape. The

system locates the next shape on the Image List and displays it on to the

picturebox.

Alternate Course:

If the data entered is incorrect, the system rejects it and prompts the Data Collector

for re-entry.

If the Data Collector clicks the “<<” button the system locates the previous shape on

the Image List and displays it on to the picturebox.

3.2.9 Place Duct Use Case

Basic Course:

The Data Collector checks the “Add” radiobutton. Thereafter, he clicks a particular

routeface on the topographic view of UUC. The system places the selected

routeface at the top of the topographic view and rotates the other routeface

accordingly. It then retrieves information about the contents (i.e. ducts) of selected

routeface and displays them onto the “Routeface” panel.

 Software Design Doc. No. 4

 Page 18

The Data Collector clicks the “x” label (i.e. duct location) to place a new duct on the

routeface panel. The system places a duct at the selected position, and confirms the

placement with a sharp beep. The system adds new duct information to the

persistent duct list.

Alternate Course:

If the Data Collector clicks a location that is already occupied, the system displays

an error message and prompts the user for re-selection.

If the Data Collector checks the “Remove” radiobutton, and then picks a duct, the

system removes the duct from the “Routeface” panel as well as from the duct list.

If the Data Collector clicks the “Page4” link, the system displays the Manhole

Information Page.

If the Data Collector clicks the “Index” link, the system invokes the Select Sourcing

Templates use case.

If the Data Collector clicks the “Page6” link, the system displays the Cable

Specification Page.

3.2.10 Specify Duct Use Case

Basic Course:

The Data Collector checks the Specify/Edit radiobutton. He then selects the duct

which hasn't yet specified (indicated by different color). The system displays the

Specify Duct Page. He enters the specifications from a list of comboboxes, which

the system confirms by an audio feedback. The Data Collector clicks the “OK”

button. The system updates the specifications data. The system changes the color

of the duct to indicate that it has being specified. The system returns to the

 Software Design Doc. No. 4

 Page 19

DuctLocationPage. (The Data Collector may repeat this process until all the ducts

are specified).

Alternate Course:

If the Data Collector chooses to edit a duct (i.e. make changes to existing

specifications) by clicking the duct that is specified (highlighted by a different color),

the system retrieves the old specification and displays it onto the comboboxes in the

SpecifyDuct page. Once changes are made, the system updates them with the

persistent duct specifications.

If the Data Collector clicks the “See Specs” button, the system displays the Duct

Specifications Page with specification of all ducts in a table.

3.2.11 Place Cable Use Case

Basic Course:

The Data Collector selects a routeface tab. The system retrieves and displays

locations of ducts belonging to that routeface. The Data Collector selects the duct

from which the cable originates. The system highlights the selected duct and

expands the duct node from the tree. It then enables the “Add Cable” radiobutton.

The Data Collector checks the “Add Cable” radiobutton. The system displays the

Insert Cable page and prepares the data entry by opening the SIP. The Data

Collector enters the cable specifications and other notes and clicks the “OK” button.

The system saves the new duct specifications. It adds a new cable node to the tree

widget and returns control over to the Cable Specification page. The system

confirms the new cable entry with a sharp beep.

 Software Design Doc. No. 4

 Page 20

Alternate Course:

If the cable originates from a joint, the Data Collector clicks that joint from the tree

widget instead of the duct from the routeface panel.

If the Data Collector clicks a cable node and then clicks the “Delete” button, the

system removes the node from the cable network (i.e. tree widget) and delete its

specifications from the Cable Specifications table.

If the Data Collector clicks the “Index” Link, the system invokes the Select Sourcing

Templates use case.

If the Data Collector clicks the “Page5” link, the system displays the Ducts Location

Page.

If the Data Collector clicks the “Specs” button the system invokes the Specify Cable

use case.

3.2.12 Specify Cable Use Case

Basic Course:

The Data Collector clicks the “Specs” button. The system displays the Cable Spec

Table Page. It then retrieves specifications of all the cables onto the table and

highlight the cable that is selected by Data Collector. The Data Collector clicks the

“Edit” button and the system displays the Specify Cable page with specification that

were already known. The Data Collector completes the specification and clicks the

“OK” button.

The system adds the specifications to the cable data entity and confirms with a

sharp beep. The system then returns control over to the Specification Table Page.

 Software Design Doc. No. 4

 Page 21

The Data Collector clicks the “Close” button and system returns control back to the

Cable Specification Page.

Alternate Course:

If the Data Collector clicks the Cable Size or Gauge specifications textboxes, the

system opens the SIP and verifies on the data on entry to see if it is valid. If not, the

system displays error message and prompts the user for re-entry.

If the Data Collector clicks the “Cancel” button, the system returns to the Cable

Spec Table Page without adding the specifications to the Cables entity.

If the cable specified is the fibre optics, the Data Collector clicks the “See List” link.

The system then displays the Sheath Numbers in a table format. The Data Collector

selects a number and clicks the “Insert” button. The system inserts the cable

specification number back to the textbox on the Specify Cable Page.

3.2.13 Place Joint Use Case

Basic Course:

The Data Collector clicks the cable node on the tree widget. The system enables the

“Add Joint” radiobutton. The Data Collector checks the “Add Joint” radiobutton. The

system displays the Insert Joint Page. The system opens the SIP and the Data

Collector types in the specification notes, and once finished he clicks the “OK”

button.

The system closes the SIP and adds a new joint to the Joints entity. The system

returns control back to the Cable Specification Page. A new joint node is added to

the Cable Network and to the Joint Specification Table. The system provides an

audio feedback to confirm a new joint entry.

 Software Design Doc. No. 4

 Page 22

Alternate Course:

If the cable selected by the Data Collector is already connected at both source and

destination nodes the system disables the “Add Joint” radiobutton.

If the Data Collector clicks the “Delete” button the system removes the selected joint

node from the tree widget and deletes that joint from the Joints entity.

3.2.14 Specify Joint Use Case

Basic Course:

The Data Collector selects the joint node from the tree widget on the Cable

Specification Page and clicks the “Specs” button. The system displays the Joint

Specs Table page. It then retrieves all the joints specification from the Joints

persistent data and displays them on the Joint Specification Table and highlights the

row for the joint that is currently specified. The Data Collector clicks the “Edit” button

and the system displays the Specify Joint Page.

The Data Collector clicks the See List link to view the specification reference

numbers list. The system retrieves the Joint Ref. numbers and displays them onto

the Joint Ref No Table. The Data Collector selects a particular number and clicks

the “Insert” button. The system inserts the selected reference number back onto the

Specify Joint Page. The Data Collector enters the rest of the specifications and

clicks the “OK’ button. The system adds the specification to the Joints persistent

data, and confirms data entry with an audio feedback and returns control back to the

Joints Table page.

The Data Collector clicks the “Close” button and system returns control back to the

Cable Specification Page.

 Software Design Doc. No. 4

 Page 23

4 Robustness Diagram

The robustness diagrams (see section 2.2.2) for the use cases introduced in use

case model (see section 3.1) and later explained in section 3.2 are presented below.

CableSpecificationPage
DuctsLocationPage

ManholeInformationPage

SiteInformationPage

Times&DatesPage

SourcingTeamPage

Data Collector

DisplayMainMenuPage

click item from listbox

Metadatabase

SaveAllData

Figure 58: Robustness Diagram for Select Sourcing Template Use Case

 Software Design Doc. No. 4

 Page 24

SourcingTeam Details

SelectAllMem bers

Update Sourcing Team Details

RetrieveMem berNames

SourcingTeam SelectionPage

Data Collector

select m emb er/s & click Add

Rem oveMem ber

Dis play

AddMem ber

Select Sourcing Templates

Enter Tim es & Dates

SourcingTeam Page

click Add Mem b er

Figure 59: Robustness Diagram for Specifying Sourcing Team Use Case

Retrieve

Delete

Mem ber Inform ation

Mem bers InfoPage

SourcingTeam SelectionPage

Update
New

EnableEdit&DelButtons

OpenSIP

Data Collectorselect m em b er & click Edit

click Update Memb er Info

Display

CloseSIP

EditMem berInfoPage

enter data & click OK

Figure 60: Robustness Diagram for Update Team Use Case

 Software Design Doc. No. 4

 Page 25

Res izeScrollbar

DisplayError

VerifyData

Data Collector

InsertTime

InsertDate

SoundFeedback

OpenSIP

CloseSIP

Enter Sourcing Team Mem bers

Select Sourcing Templates

Enter Site Inform ation

Tim es&DatesPage

Click checkb ox and enter data

Figure 61: Robustness Diagram for Specify Times & Dates Use Case

SiteInfo

ManholeInform ationPage

Res izeScrollbar

VerifyData

DisplayError

RetrieveSiteInfo

Display

Data Collector

OpenSIP
CloseSIP

Select Sourcing Templates

Enter Times & Dates

SiteInformationPage

enter data

Figure 62: Robustness Diagram for Specify Site Use Case

 Software Design Doc. No. 4

 Page 26

Data Collector

SoundFeedback

VerifyData

DisplayError

DisableNoOfCovers

EnableNoOfCovers

Place Duct

Enter Site Information

Select Sourcing Templates

ManholeInformationPage

Figure 63: Robustness Diagram for Specify Manhole Covers Use Case

ResizeScrollbar

Data Collector
SoundFeedback

DisplayError

VerifyData

CloseSIP

OpenSIP

ContentCheckBoxListeners

enableOrDisableSelection

Select Sourcing Templates

Place Duct

Enter Site Information

ManholeInformationPage

Figure 64: Robustness Diagram for Specify UUC Content Use Case

 Software Design Doc. No. 4

 Page 27

ResizeScrollbar

ManholeShape

Data Collector

SoundFeedback

OpenSIP

CloseSIP

VerifyData

DisplayError

CreateSketch

ClearSketch

ManholeInformationPage

DisplaySketch

Figure 65: Robustness Diagram for Specify UUC Dimension Use Case

Data Collector

CableSpecificationPage

ManholeInform ationPage

Select Sourcing Templates

SoundFeedback

OrientateRouteface

Display

UUCtopographicView

DuctsLocationPage

DisplayContent

Rem oveDuct

AddDuct

Ducts

Routeface

RetrieveDuctInfo

Figure 66: Robustness Diagram for Place Duct Use Case

 Software Design Doc. No. 4

 Page 28

Routeface

Ducts
SoundFeedback

DuctsColorChange

UpdateDuctInfo

Data Collector

RetrieveDuctInfo

DuctsLocationPage

SpecifyDuctPage

DuctSpecTablePage

Display

Figure 67: Robustness Diagram for Specify Duct Use Case

Cables

FibreSheathRefNo

CompleteCableSpecs

RetrieveCableInfo

Display

Display

RetrieveFibreNo

Display

CableSpecificationPage

SpecifyCablePage

CableSpecTablePage

SelectFibreSheathPage

Data Collector

click Specs

click OK

click Edit

select row and click Insert

Figure 68: Robustness Diagram for Specify Cable Use Case

 Software Design Doc. No. 4

 Page 29

Ducts

RetrieveDuctInfo

DeleteCable

EnableCableAdd

DuctsLocationPage

Cables

Routeface

CableSpecificationPage

OpenSIP CloseSIP

Display

Data Collector

select duct or routeface

click Add radiob utton

EnableAddJoint&Duct

AddCable

Select Sourcing Tem plates

SetFocusSelectedRoute

face

SetFocusSelectedDuct

Rem oveCableNode

InsertCablePage

click OK b utton

TreeView

AddCableNode

Figure 69: Robustness Diagram for Place Cable Use Case

 Software Design Doc. No. 4

 Page 30

EnableAddJoint
AddJoint

CloseSIP OpenSIP

Joints

InsertJointPage

AddJointNode

Data Collector

Click OK

DeleteJoint

Display

TreeView

Click Cable Node

CableSpecificationPage

Click Add Cable radiobutton

Figure 70: Robustness Diagram for Place Joint Use Case

JointRefNo

Joints

Dis play

RetrieveJointInfo

CableSpecificationPage

JointSpecsTablePage

RetrieveJointRefNo

Dis play

Data Collector

click Specs

click Edit

Dis play

SelectJointRefNoPage

click Insert

SpecifyJointPage

click OK or click See List

Ins ertJointRefNo

Figure 71: Robustness Diagram for Specify Joint Use Case

 Software Design Doc. No. 4

 Page 31

5 Sequence Diagram

The sequence diagrams (see section 2.2.3) for the use cases (see section 3.2) are

presented below. The details described in sequence diagram follow from the

robustness diagram in section 4.

Figure 72: Sequence Diagram for Select Sourcing Team Use Case

1
: D

at
a

Co
lle

ct
or

2
: M

ai
nM

en
uP

ag
e

3
: S

ou
rc

in
gT

ea
m

Pa
ge

4
: T

im
es

&D
at

es
Pa

ge
5

: S
ite

In
fo

rm
at

io
nP

ag
e

6
: M

an
ho

le
In

fo
rm

at
io

nP
ag

e
7

: D
uc

ts
Lo

ca
tio

nP
ag

e
8

: C
ab

le
Sp

ec
ific

at
io

nP
ag

e
9

: M
et

ad
at

ab
as

e

B
as

ic
 C

ou
rs

e

Th
e

Da
ta

 C
ol

le
ct

or
 c

lic
ks

 th
e

fir
st

ite
m

 in
 th

e
lis

t b
ox

 fr
om

 th
e

M
ai

n

M
en

u
Pa

ge
.

Th
e

sy
st

em
 d

is
pl

ay
s

th
e

So
ur

ci
ng

Te
am

 P
ag

e.

A
lte

rn
at

e
Co

ur
se

s

If
th

e
D

at
a

Co
lle

ct
or

 c
lic

ks
 th

e
se

co
nd

ite
m

 in
 th

e
lis

tb
ox

, t
he

 s
ys

te
m

di
sp

la
ys

 th
e

Ti
m

es
 &

 D
at

es
 P

ag
e.

If
th

e
D

at
a

Co
lle

ct
or

 c
lic

ks
 th

e
th

ird

ite
m

 in
 th

e
lis

tb
ox

, t
he

 s
ys

te
m

di
sp

la
ys

 th
e

Si
te

 In
fo

rm
at

io
n

Pa
ge

.

If
th

e
D

at
a

Co
lle

ct
or

 c
lic

ks
 th

e
fo

ur
th

ite
m

 in
 th

e
lis

tb
ox

, t
he

 s
ys

te
m

di
sp

la
ys

 th
e

M
an

ho
le

 In
fo

rm
at

io
n

P
ag

e.

If
th

e
D

at
a

Co
lle

ct
or

 c
lic

ks
 th

e
fift

h

ite
m

 in
 th

e
lis

tb
ox

, t
he

 s
ys

te
m

di
sp

la
ys

 th
e

Du
ct

s
Lo

ca
tio

n
Pa

ge
.

If
th

e
D

at
a

Co
lle

ct
or

 c
lic

ks
 th

e
si

xt
h

ite
m

 in
 th

e
lis

tb
ox

, t
he

 s
ys

te
m

di
sp

la
ys

 th
e

Ca
bl

e
S

pe
ci

fic
at

io
n

P
ag

e.

If
th

e
D

at
a

Co
lle

ct
or

 c
lic

ks
 th

e
Do

ne

bu
tto

n,
 th

e
sy

st
em

 p
ro

m
pt

 th
e

us
er

 if

he
 w

an
ts

 to
 s

av
e

th
e

da
ta

 b
ef

or
e

ex
iti

ng
 th

e
ap

pl
ic

at
io

n.
 If

 y
es

, t
he

sy
st

em
 s

av
e

th
e

da
ta

 b
ef

or
e

en
di

ng

th
e

ap
pl

ic
at

io
n.

If
N

o,
 a

pp
lic

at
io

n
en

ds
 w

ith
ou

t s
av

in
g

th
e

da
ta

 c
ol

le
ct

ed
.

If
th

e
D

at
a

Co
lle

ct
or

 c
lic

ks
 C

an
ce

l

bu
tto

n,
 th

e
sy

st
em

 re
tu

rn
s

to
 th

e

M
ai

n
M

en
u

P
ag

e.

Li
st

Ite
m

Se
le

ct
ed

()

Di
sp

la
y(

)

D
is

pl
ay

()

D
is

pl
ay

()

Di
sp

la
y(

)

D
is

pl
ay

()

D
is

pl
ay

()

Sa
ve

D
at

aP
ro

m
pt

()

on
Ye

s(
)

Sa
ve

Al
lD

at
a(

)

Cl
os

e(
)

Di
sp

la
y(

)

on
C

an
ce

l(
)

on
No

()

on
D

on
e(

)

 Software Design Doc. No. 4

 Page 32

1 : Data Collector 2 : SourcingTeamPage 3 : SourcingTeamSelectionPage 4 : SourcingTeamDetailsBasic Course

The Data Collector clicks the Add Member

button on the Sourcing Team Page.

The system displays the Sourcing Team

Section Page.

The systems retrieves the names of all the

members from the persistant team list.

The Data Collector clicks member/s from the

list and clicks Add.

The system adds the selected members to

the listbox in the Sourcing Team Page. And

then the system returns the user back to the

Sourcing Team Page.

Alternate Courses

If the Data Collector clicks Select All

Members button, the system selects all the

members in the listbox.

If the Data Collector clicks the Update

Member Info button, the system passes

control to the Update Sourcing Team Details

use case.

If the Data Collector clicks the Cancel button,

the system returns to the Sourcing Team

Page without adding any members to the list.

If the Data Collector selects memeber/s and

click Remove member, the system removes

selected memebers from the list.

If the Data Collector clicks the <Index link,

the system passes control to Selecting

Sourcing Template use case.

If the Data Collector clicks the page2 > link,

the system passes control to Enter Times &

Dates use case.

onAddMember()

DisplaySTSP()

onAdd()

RetrieveMemberNames()

AddMember()

DisplaySTP()

onUpdateMemberInfo()

Pass control to Update Sourcing Team

Details use case.

DisplaySTP()

onRemoveMember()

RemoveMember()

onIndex()

Pass control to Selecting Sourcing

Templates use case.

Pass control to Selecting Sourcing

Templates use case.

onPage2()

onSelectAllMembers()

SelectAllMembers()

onCancel()

Figure 73: Sequence Diagram for Specify Sourcing Team Use Case

 Software Design Doc. No. 4

 Page 33

1 : Data Collector 2 : SourcingTeamSelectionPage 4 : EditMemberInfoPage 5 : Member InformationBasic Course

The Data Collector clicks the

Update Member Info button on

 the Sourcing Team Selection

Page.

The system displays the

Members Info Page.

The system retrieves all the

member information and

displays them on to the table

in Member Info Page.

The Data Collector clicks the

row of the table to select a

particular member.

The system enables the Edit

and Delete buttons.

The Data Collector clicks the

Edit button.

The system displays the Edit

Member Info Page with the

selected member details.

The system opens the SIP.

The Data Collector enters the

data and clicks OK button.

The system closes the SIP.

The system updates the

changes to the persistant

member information, and then

returns the Data Collector

back to Member Info Page.

Alternate Courses

If the Data Collector clicks the

New button, the system

displays the Edit Member Info

Page with empty data fields.

The sequence flows as the

basic flow.

After the Data Collector clicks

OK, system displays the

Members Info Page and

creates a row for a new

member.

If the Data Collector clicks the

Delete button, the system

removes the table row of the

chosen member, and the

system updates the changes

with the persistant member

information.

onOK()

UpdateMemberDetails()

UpdateMemberDetails()

onOK()

onUpdateMemberInfo()

3 : MembersInfoPage

RetrievemMemberDetails()

onRowSelect()

onEdit()

DisplayEMIP()

DisplayMIP()

onNew()

DisplayEMIP()

onDelete()

UpdateMemberDetails()

DisplayMIP()

DisplayMIP()

EnableEdit&DelButtons()

OpenSIP()

CloseSIP()

CreateRow()

DeleteRow()

Figure 74: Sequence Diagram for Update Sourcing Team Use Case

 Software Design Doc. No. 4

 Page 34

1 : Data Collector 2 : Times&DatesPage

StartDateChecked()

InsertDate()

SoundFeedback()

FinishedDateChecked()

InsertDate()

SoundFeedback()

TravellingDateChecked()

InsertDate()

SoundFeedback()

StartTimeChecked()

InsertTime()

SoundFeedback()

TimeSourcedSelected()

TravellingTimeSelected()

TravellingFromClicked()

SoundFeedback()

SoundFeedback()

OpenSIP()

ResizeScrollbar()

KilometerEntered()

VerifyData()

Basic Course

The Data Collector checks the Start

Date checkbox. The system inserts

current date into the Start Date

textbox accompanied by a sharp 'click'

sound.

The Data Collector checks the

Finished Date checkbox. The system

inserts current date into the Finished

Date textbox accompanied by a sharp

'click' sound.

The Data Collector checks the

Travelling Date checkbox. The system

inserts current date into the Travelling

Date textbox accompanied by a sharp

'click' sound.

The Data Collector checks the Start

Time checkbox. The system inserts

current date into the Start Time

textbox accompanied by a sharp 'click'

sound.

The Data Collector selects the

sourcing time from a combobox. The

system responds with a sharp 'click'

sound.

The Data Collector selects the

travelling time from a combobox. The

system responds with a sharp 'click'

sound.

The Data Collector clicks the Travelling

From textbox. The system opens SIP

and resizes the scrollbar.

The Data Collector enters the

Travelling From, Vehicle Registration

and Kilometers. The system verifies if

the Kilometers is entered correctly.

Alternative Courses

If the Data Collector clicks the Date

and Time textfields and decides to

insert dates by himself, the system

opens SIP and verifis if the data

entered is valid.

If the data entered is incorrect, the

system displays the type of error and

prompts for re-entry.

If the Data Collector clicks the Index

link, the systems passes control to

the Select Sourcing Templates use

case.

If the Data Collector clicks the <page1

link, the system passes control to the

Enter Sourcing Team Members use

case.

If the Data Collector clicks the page3>

link, the system passes control to the

Enter Site Information use case.

StartingDateClicked()

OpenSIP()

StartingDateEntered()

VerifyData()

DisplayError()

onIndex()

Passes control to Select

Sourcing Templates use case.

onPage1()

onPage3()

Passes control to Enter Sourcing

Team Member use case.

Passes control to Enter Site

Information use case.

Figure 75: Sequence Diagram for Specify Times & Dates Use Case

 Software Design Doc. No. 4

 Page 35

1 : Data Collector 2 : SiteInformationPage 3 : ManholeInformationPage 4 : SiteInfo

RetrieveSiteInfo()

SiteNameClicked()

OpenSIP()

VerifyData()

SiteNameEdited()

Basic Course

The Data Collector clicks the Site

Name textbox, and the listener opens

the SIP.

The Data Collector edits the Site Name

(if necessary).

The system checks the validity of the

data entered.

Alternate Courses

If the Data Collector clicks the Index

link, the system passes control to the

Select Sourcing Templates use case.

If the Data Collector clicks the Page4

link, the system displays the Manhole

Information Page.

If the Data Collector clicks the Page3

link, the system passes control to

Enter Times & Dates use case.

onIndex()

onPage4()

DisplayMIP()

onPage3()

Pass control to Select Sourcing

Templates use case.

Pass control to Enter Times &

Dates use case.

Figure 76: Sequence Diagram for Specify Site Information Use Case

 Software Design Doc. No. 4

 Page 36

1 : Data Collector 2 : ManholeInformationPage

CoverTypeChecked()

EnableNoOfCovers()

NoOfCoverSelected()

SoundFeedback()

Secured()

EnableNoOfCovers

NoOfCoverSelected()

SoundFeedback()

Basic Course

The Data Collector checks the

Manhole Cover Type checkbox.

The system enables the No Of

Covers combobox belonging to that

checkbox.

The Data Collector enters the

number of covers by selecting from

a No Of Covers combobox. The

system sounds a sharp 'click'

confirmation.

The Data Collector indicates that

manhole is secured by checking

the Yes checkbox. The system

enables the No. of Covers

comboboxes.

The Data Collector selects the no.

of covers from the combobox which

the system confirms with a sharp

beep.

Alternate Courses

If the Data Collector clicks

comboboxes without checking the

Manhole Type checkboxes the

system sounds out a distinct

'disapproval' beep.

If the Data Collector checks No

checkbox, the system unchecks

the Yes checkbox and disables the

No Of Covers comboboxes for

security devices.

If the Data Collector clicks the

page3 link, the system invokes

Enter Site Information use case.

If the Data Collector clicks the

Index link, the system invokes

Select Sourcing Templates use

case.

If the Data Collector clicks the

page4 link, the system invokes

Place Duct use case.

NoOfCoversClicked()

SoundFeedback()

NotSecured()

DisableYes()

DisableNoOfCovers()

Invoke Enter Site Information

use case.

Invoke Select Sourcing

Templates use case.

Inovke Place Duct use case.

Figure 77: Sequence Diagram for Specify Manhole Cover Types Use Case

 Software Design Doc. No. 4

 Page 37

1 : Data Collector 2 : ManholeInformationPage

onYes()

EnableTimePumped()

SoundFeedback()

TimePumpedSelected()

SoundFeedback()

ClickO2Level()

O2LevelEntered()

VerifyData()

OpenSIP()

OtherGassesEntered()

VerifyData()

Basic Course

The Data Collector checks Yes checkbox

on UUC content panel. The system

enables the Time Pumped combobox.

The system provides a sharp click as a

feedback mechnism.

The Data Collector selects Time Pumped

from the combobox.

The system provides a sharp click as a

feedback mechnism

The Data Collector clicks the Oxygen

Level textbox, the system opens SIP and

sresize Scrollbar.

The Data Collector types in the Oxygen

level and Other Gasses. The system

verifies each of these data on entry.

Alternative Courses

If Data Collector decides to type in the

Time Pumped, the system verifies if the

data is in correct format.

If the data entered is incorrect or in wrong

format, the system displays an error

message and prompts for re-entry.

If the textboxes lose focus, the system

closes SIP and resizes the scrollbar.

If the Data Collector clicks the page3 link,

the system invokes Enter Site Information

use case.

If the Data Collector clicks the Index link,

the system invokes Select Sourcing

Templates use case.

If the Data Collector clicks the page4 link,

the system invokes Place Duct use case.

TimePumpedEntered()

VerifyData()

DisplayError()

CloseSIP()

ResizeScrollbar()

ResizeScrollbar()

Invoke Enter Site Information

use case.

Invoke Select Sourcing

Templates use case.

Inovke Place Duct use case.

Figure 78: Sequence Diagram for Specify UUC Content Use Case

 Software Design Doc. No. 4

 Page 38

1 : Data Collector 2 : ManholeInformationPage 3 : ManholeShape

LengthClicked()

OpenSIP()

LengthEntered()

VerifyData()

ResizeScrollbar()

Basic Course

The Data Collector clicks the Length textbox.

The textbox listeners open the SIP and

resizes the scrollbar.

The Data Collector types in the rest of the

dimensions (i.e. depth, breath) of the manhole

which the system checks them on entry to

see if they are in correct format.

The Data Collector clicks the ">>" button.

The system identifies the next shape on the

image list and displays it on to the

picturebox.

Alternate Course

If the data entered is incorrect, the system

rejects it and prompts the Data Collector for

re-entry.

If the Data Collector clicks "<<" button, the

system identifies previous shape and

displays it on to the picturebox.

DisplayError()

onNext()

DispalyNextShape()

IdentifyShape()

onPrevShape()

DisplayPrevShape()

IdentifyShape()

Figure 79: Sequence Diagram for Specify Manhole Dimensions Use Case

 Software Design Doc. No. 4

 Page 39

1 : Data Collector 2 : DuctsLocationPage 3 : UUCtopographicView 4 : Routeface 5 : Ducts 7 : CableSpecificationPage6 : ManholeInformationPage

RoutefaceSelected()

OrientateRouteface()

DisplayContent()

RetrieveDuctInfo()

onAdd()

LocationSelected()

PlaceDuct()

AddDuct()

AudioFeedback()

onRemove()

LocationSelected()

RemoveDuct()

AudioFeedback()

DeleteDuct()

Basic Course

The Data Collector checks the

Add radiobutton. Thereafter, he

clicks a particular routeface on

the UUC topoview.

The system places the selected

routeface at the top of the

topoview and orientates the

other routeface accordingly.

The system retrieves information

about the contents (i.e. ducts) of

selected routeface and displays

them onto the Routeface panel.

The Data Collector clicks a

location to place the duct.

The system places a duct at the

selected position, and confirms

the placement with a sharp

beep.

The system adds new duct

information to the duct list.

Alternate Courses

If the Data Collector checks the

Remove radiobutton, and then

picks a duct, the system

removes the duct from the

Routeface panel as well as from

the duct list.

If the Data Collector clicks the

Page4 link, the system displays

the Manhole Information Page.

If the Data Collector clicks the

Index link, the system invokes

the Select Sourcing Templates

use case.

If the Data Collector clicks the

Page6 link, the system displays

the Cable Specification Page.

System invokes the Select

Sourcing Templates use case.

onPage4()

DisplayMIpage()

onIndex()

onPage6()

DisplayCSpage()

Figure 80: Sequence Diagram for Place Duct Use Case

 Software Design Doc. No. 4

 Page 40

1 : Data Collector 2 : DuctsLocationPage 3 : Routeface 4 : SpecifyDuctPage 5 : Ducts 6 : DuctSpecTablePage

onSpecify()

DuctSelected()

DisplaySDpage()

SpecificationsEntered()

AudioFeedback()

onOK()

UpdateDuctInfo()

DuctColorChange()

DisplayDLpage()

Basic Course

The Data Collector checks the

Specify/Edit radiobutton. He then

selects the duct which hasn't yet

specified (indicated by different

colour).

The system displays the

SpecifyDuctPage.

The Data Collector enters the

specifications from a list of

comboboxes, which the system

confirms by audio feedback.

The Data Collector clicks OK button.

The system updates the

specifications data.

The system changes the colour of the

duct to indicate that it has being

specified.

The system returns to the

DuctLocationPage. (The Data

Collector may repeat the process

until all the ducts are specified.

Alternate Courses

If the Data Collector chooses to edit a

duct (i.e. specify duct that is already

being specified), the system retrieves

the old specification and displays it

onto the comboboxes in the

SpecifyDuct page.

If the Data Collector clicks See

Specs button, the system displays

specification of all ducts in a

specification table.

RetrieveDuctInfo()

onSeeSpec()

DisplayDSTpage()

RetrieveDuctInfo()

Figure 81: Sequence Diagram for Specify Duct Use Case

 Software Design Doc. No. 4

 Page 41

1 : Data Collector 2 : Routeface 3 : CableSpecificationPage 4 : TreeView 5 : InsertCablePage 6 : Cables 7 : Ducts 8 : DuctsLocationPage

RouteFaceSelected()

RetrieveDuctInfo()

DisplayDucts()

DuctSelected()

HighlightDuct()

SetFocusSelectedDuct()

EnableCableAdd()

onCableAdd()

DisplayICpage()

OpenSIP()

onOK()

AddSpecification()

AddCableNode()

DisplayCSpage()

AudioFeedback()

Basic Course

The Data Collector clicks a

routeface tab of his choice.

The system retrieve and

displays locations of ducts

belonging to that routeface.

The Data Collector selects the

duct from which the cable

originates.

The system highlights the

selected duct and expands the

duct node from the tree.

The system then enables the

Add Cable radiobutton.

The Data Collector clicks the

Add Cable radiobutton.

The system displays the Insert

Cable page and prepares the

data entry by opening SIP.

The Data Collector enters

specification and other notes

and clicks OK button.

The system saves the new duct

specificatons.

The system adds a new cable

node to the tree view.

The system returns control over

to the Cable Specification page.

And confirms the cable entry

with a sharp beep.

Alternate Courses

If the cable originates from a

joint, the Data Collector click

that joint from the tree view

instead of the duct from the

routeface panel.

If the Data Collector clicks a

cable node and then click

Delete button, the system

removes the node from the cable

network (i.e. tree) and deletes

its specifications

If the Data Collector clicks the

Index Link, the system invokes

the Select Sourcing Templates

use case.

If the Data Collector clicks the

Page5 link, the system displays

the Ducts Location Page.

If the Data Collector clicks the

Specs button the syst...

TreeNodeClicked()

onDelete()

RemoveCableNode()

DeleteCable()

AudioFeedback()

Invokes the Select Sourcing

Template use case.

onSpecs()

onPage5()

DisplayDLpage()

onIndex()

Figure 82: Sequence Diagram for Place Cable Use Case

 Software Design Doc. No. 4

 Page 42

1 : Data Collector 2 : CableSpecificationPage 3 : CableSpecTablePage 4 : SpecifyCablePage 5 : Cables 6 : FibreSheathRefNo6 : SelectFibreSheathPage

onSpec()

DisplayCSTpage()

onEdit()

HighlightCableInTable()

RetrieveCableInfo()

DisplaySCpage()

onOK()

DisplayCSTpage()

onClose()

DisplayCSpage()

CompleteCableSpecs()

AudioFeedback()

Basic Course

The Data Collector clicks Spec button.

And the system displays the Cable

Spec Table page.

The system retrieves specifications of

all the cables onto the table and

highlights the cable that is selected by

Data Collector.

The Data Collector clicks Edit and

system displays Specify Cable page

with specification that were already

known.

The Data Collector completes the

specification and clicks OK button.

The system adds the specifications to

the cable data entity and sounds a

sharp beep as confirmation.

The system then returns control to the

Specification Table page.

The Data Collector clicks Close button

 and system returns control back to

Cable Specification Page.

Alternate Courses

If the Data Collector decides to type in

Cable Size or Guage specifications

rather than selecting from a list, the

system verifies on data entry if it is

valid. If not, the system displays error

message and prompt for re-entry.

If the Data Collector clicks Cancel

button, the system returns to the

Cable Spec Table page without adding

the specifications to the Cables entity.

If the cable specified is the fibre

optics, the Data Collector clicks

Sheath Spec No. See List. The

system then displays the Sheath

numbers in a table. The Data Collector

selects a number and click insert. The

system inserts the number back to the

textbox in the Specify Cable page.

CableSizeEntered()

DisplayError()

onCancel()

DisplayCSTpage()

onSeeList()

DisplayFSpage()

RetrieveFiberNumbers()

onInsert()

InsertSheathNo()

Figure 83: Sequence Diagram for Specify Cable Use Case

 Software Design Doc. No. 4

 Page 43

1 : Data Collector 2 : TreeView 3 : CableSpecificationPage 5 : Joints4 : InsertJointPage

CableNodeSelected()

EnableAddJoint()

onAddJoint()

onOK()

AddJoint()

AddJointNode()

AudioFeedback()

DisplayIJpage()

OpenSIP()

CloseSIP()

DisplayCSpage()

Basic Course

The Data Collector clicks the cable node

on the tree widget.

The system enables the Add Joint

radiobutton.

The Data Collector clicks Add Joint

radiobutton. And system displays the

Insert Joint Page.

The system opens SIP and the Data

Collector types in the specification notes

and once finished he clicks OK button.

The system closes SIP and adds a new

joint to the Joints entity.

The system returns control back to Cable

Specification page. A new joint node is

added to the TreeView panel on the Cable

Specification Page.

The system provides an audio feedback to

confirm a new joint entry.

Alternate Courses

If the cable selected by the Data Collector

is already connected at both ends the

system disables the Add Joint radiobutton.

If the Data Collector clicks the Delete

button the system removes the selected

joint node from the tree view and deletes

that joint from the Joints entity.

DisableAddJoint()

onDelete()

DeleteJoint()

RemoveJointNode()

Figure 84: Sequence Diagram for Place Joint Use Case

 Software Design Doc. No. 4

 Page 44

1 : Data Collector 2 : CableSpecificationPage 3 : JointSpecsTablePage 4 : SpecifyJointPage 5 : SelectJointRefNoPage 6 : Joints 7 : JointRefNo

onSpecs()

DisplayJSTpage()

HighlightJointRow()

RetrieveJointInfo()

onEdit()

DisplaySJpage()

onSeeList()

DisplaySJRNpage()

onInsert()

InsertSpecRefNo()

onOK()

RetrieveJointRefList()

CompleteJointSpeci()

AudioFeedback()

DisplayJSTpage()

onClose()

DisplayCSpage()

Basic Course

The Data Collector selects the joint

from the treeview on the Cable

Specification Page and clicks

Specs button. The system

displays the Joint Spes Table

page.

The system retrieves all joints

specification from the Joints entity

and displays them on a table

format which higlights the joint that

is being specified.

The Data Collector clicks Edit

button and the system displays the

vertical scrollable page to enter

joint specifications.

The Data Collector clicks the See

List link to view the specification

refernce numbers list.

The system retrieves Joint Ref.

numbers and displays them onto a

table.

The Data Collector selects

particular no. and clicks Insert

button.

The system inserts the selected

ref. no. back onto the Specify Joint

Page.

The Data Collector enters the rest

of the specifications and clicks

OK button.

The system adds the specification

the Joint entity, confirms data entry

with an audio feedback and returns

control back to the Joints Table

page.

The Data Collector clicks Close

button and system returns control

back to the Cable Specification

Page.

Figure 85: Sequence Diagram for Specify Joint Use Case

 Software Design Doc. No. 4

 Page 45

6 Class Diagram

The class diagram (see section 2.2.5) for the field data collection application is

presented below. The functions (or methods) and attributes of the classes are

derived from the sequence diagram in section 5.

SourcingTeam INI

file

EditMemberInfoPage

DisplayMIP()
CloseSIP()

OpenSIP()

UpdateMemberDetails()

<< boundary >>

Member Information

Name : String
Sal_Ref : String

Tel_no : String

<< entity >>

MembersInfoPage

RetrieveMemberDetails()

onRowSelect()

EnableEdit&DelButtons()

onEdit()

onNew()

onDelete()

DisplayEMIP()

CreateRow()

DeleteRow()

UpdateMemberDetails()

<< boundary >>

OffTheShelf GIS

client

Times & Dates

StartDate&Time : Date

FinishDate&Time : Date

TimeSourced : Integer

TravellingDate : Date

TravellingTime : Integer

TravellingFrom : String

VehicleReg : String

Kilometers : Integer

<< entity >>

SourcingTeamSelectionPage

DisplayMIP()

onUpdateMemberInfo()

RetrieveMemberNames()

onAdd()

AddMember()

DisplaySTP()

onSelectAllMembers()

SelectAllMembers()

onUpdateMemberInfo()

onCancel()

<< boundary >>

ManholeInformationPage

CoverTypeChecked()

EnableNoOfCovers()

NoOfCoverSelected()

SoundFeedback()
Secured()

NotSecured()

DisableYes()

DisableNoOfCovers()

LengthClicked()

OpenSIP()

DisplayPrevShape()

DisplayNextShape()

onPrevShape()

ResizeScrollbar()

IdentifyShape()

LengthEntered()

DisplayShape()

onNextShape()

DisplayError()

onYes()

EnableTimePumped()

TimePumpedSelected()

O2LevelClicked()

02LevelEntered()

TimePumpedEntered()

OtherGassesEntered()

<< boundary >>
SiteInformationPage

SiteNameClicked()

RetrieveSiteInfo()

OpenSIP()

SiteNameEdited()

VerifyData()

onIndex()

onPage4()

onPage3()

DisplayMIP()

<< boundary >>

Times&DatesPage

StartDateChecked()

InsertDate()

SoundFeedback()

FinishedDateChecked()

TravellingDateChecked()

StartingTimeChecked()

InsertTime()

TimeSourcedSelected()
TravellingTimeSelected()

TravellingFromClicked()

ResizeScrollbar()

KilometerEntered()

VerifyData()

DisplayError()

StartingDateClicked()

StartingDateEntered()

StartingDateClicked()

StartingDateEntered()

FinishedDateClicked()

FinishedDateEntered()

TravellingDateClicked()

TravellingDateEntered()

onIndex()

onPage1()

onPage3()

<< boundary >>

SourcingTeamPage

onAddMember()

DisplaySTSP()

onIndex()

onPage2()
onRemoveMember()

RemoveMember()

<< boundary >>

MainMenuPage

ListItemSelected()

Display()

SaveDataPrompt()

onYes()

onNo()

onDone()

onCancel()

SaveAllData()
close()

<< boundary >>

Data Collector

Figure 86: Class Diagram (part 1) for Field Data Collection Application

 Software Design Doc. No. 4

 Page 46

SelectJointRefNoPage

InsertSpecRefNo()

onInsert()

<< boundary >>

InsertJointPage

OpenSIP()

CloseSIP()

onOK()

AddJoint()

DisplayCSpage()

AddJointNode()

<< boundary >>

SpecifyDuctPage

AudioFeedback()

onOK()

UpdateDuctInfo()

DuctColorChange()

DisplayDLpage()

RetrieveDuctInfo()

<< boundary >>
Ducts

DuctType : String

PipeSize : Integer

InnerDuctSize : Integer

DuctNo : Integer

AtRouteface : String

AtLocation : Integer

<< entity >>

ManholeShape

ShapeID : Integer

Shape : Image

<< entity >>

JointSpecsTablePage

HighlightJointRow()

DisplaySJpage()

DisplayCSpage()

onClose()

<< boundary >>

UUCtopographicView

RoutefaceSelected()

OrientateRouteface()

DisplayContent()

<< boundary >>

DuctSpecTablePage

RetrieveDuctInfo()

onInsert()

<< boundary >>

Manhole

CoverType : String

NoOfCovers : Integer

Secured : Boolean

SecurityDevice : String

NoOfSecurityDevice : Integer

SiteName : String

ExchangeArea : String

UUC_label : String

ManholeOld_ID : String

Lattitude : String

Longitude : String

Time : String

ContainWater : Boolean

TimeForPumping : Integer

OxygenLevel : Integer

OtherGasses : String

UUCtype : String

Depth : Float

Breath : Float

Length : Float

InstalledDepth : Float

RWorFW : String

ConstructionStatus : String

<< entity >>

Routeface

LocationSelected()

RetrieveDuctInfo()

PlaceDuct()

AudioFeedback()

AddDuct()

RemoveDuct()

PlaceDuct()

DeleteDuct()

DuctSelected()

RoutefaceSelected()

DisplayDucts()

DuctSelected()

HighlightDuct()

SetFocusSelectedDuct()

EnableCableAdd()

<< boundary >>

TreeView

CableNodeSelected()

EnableAddJoint()

AudioFeedback()

DisableAddJoint()

<< boundary >>

CableSpecTablePage

RetrieveCableInfo()

HighlightCableInTable()

DisplaySCpage()

DisplayCSpage()

<< boundary >>

SpecifyJointPage

DisplaySJRpage()

onOK()

AudioFeedback()

DisplayJSTpage()

CompleteJointSpec()

<< boundary >>

DuctsLocationPage

onAdd()

onRemove()

onPage4()

onIndex()

onPage6()

DisplayMIpage()

DisplayCSpage()

onSpecify()

onSeeSpec()

DisplaySDpage()

DisplayDSTpage()

<< boundary >>

ManholeInformationPage

CoverTypeChecked()

EnableNoOfCovers()

NoOfCoverSelected()

SoundFeedback()

Secured()

NotSecured()

DisableYes()

DisableNoOfCovers()

LengthClicked()

OpenSIP()

DisplayPrevShape()

DisplayNextShape()

onPrevShape()

ResizeScrollbar()

IdentifyShape()

LengthEntered()

DisplayShape()

onNextShape()

DisplayError()

onYes()

EnableTimePumped()

TimePumpedSelected()

O2LevelClicked()

02LevelEntered()

TimePumpedEntered()

OtherGassesEntered()

<< boundary >>

Data Collector

CableSpecificationPage

DisplayICpage()

AudioFeedback()

RemoveCableNode()

DeleteCable()

DisplayDLpage()

onSpecs()

DisplayCSTpage()

opname3()

onAddJoint()

DisplayIJpage()

DeleteJoint()

RemoveJointNode()

DisplayJSTpage()

<< boundary >>

MainMenuPage

ListItemSelected()

Display()

SaveDataPrompt()

onYes()

onNo()

onDone()

onCancel()

SaveAllData()

close()

<< boundary >>

Figure 87: Class Diagram (part 2) for Field Data Collection Application

 Software Design Doc. No. 4

 Page 47

JointsSpecificatio

ns INI file

InsertCablePage

OpenSIP()

AddSpecifications()

AddCableNode()

DisplayCSpage()

<< boundary >>

CableSizeINI file

FibreSheathSpeci

fications INI file

Joints

JointNo : Integer

JointConstrStatus : String

JointType : String

Pressurized : Boolean

JointSpecNo : String

SpliceSpecNo : String

DirectionINCableNo : String

DirectionOUTCableNo : String

<< entity >>

SpecifyCablePage

CompleteCableSpecs()

AudioFeedback()

DisplayCSTpage()

CableSizeEntered()

GaugeEntered()

onOK()

DisplayError()

onCancel()

DisplayCSTpage()

<< boundary >>

Cables

DirectionIN : String

DirectionAway : String

Jointed : Boolean

CableNo : Integer

CableSize : Integer

CableType : String

CableUsage : String

CableConstruction : String

CableConstrType : String

RouteSurface : String

RouteType : String

<< entity >>

JointSpecsTablePage

HighlightJointRow()

DisplaySJpage()

DisplayCSpage()

onClose()

<< boundary >>

CableSpecTablePage

RetrieveCableInfo()

HighlightCableInTable()

DisplaySCpage()

DisplayCSpage()

<< boundary >>

Figure 88: Class Diagram (part 3) for Field Data Collection Application.

 Software Design Doc. No. 4

 Page 48

7 Conclusion

The software usability is not merely how the user interface looks. To a large extent,

it concerns the behavior of software particularly how it interacts with the user. With

this in mind, the functionality of field data collection application is presented in the

software design. The software design process used, namely the ICONIX provides a

framework to comprehend not only the behavior but also the structure and

complexity of software as well. It is felt that the ICONIX design process is able to do

this sufficiently without the complexity of a much larger object-oriented design

process like Rational Unified Process (RUP).

Some of the contents of software design such as the class diagrams do not really

affect the software usability. However, these models allow the software developers

to extend the existing functionality and even to continue with the implementation of

the prototype to fully functional software. This project, however, has not

implemented the software design into a complete, fully functional software system

since it is deemed unnecessary in terms of the objective of this research.

Nevertheless, object-oriented design will enable easier reuse and maintenance of

software components especially when sourcing templates are modified regularly.

Overall, the software design process used has adequately explained the behavior

and functionality of field data collection application. However, it is felt that a superior

design could be achieved if more time was spent on improving the design in an

iterative manner.

Usability Evaluation

Doc. No. 5

 Usability Evaluation Doc. No. 5

 Page i

CONTENTS

CONTENTS I

LIST OF FIGURES II

LIST OF TABLES III

1 SCOPE 1

1.1 Introduction..1

1.2 Purpose..1

1.3 Audience..1

2 USABILITY EVALUATION METHOD 2

3 TEST PROCEDURE 4

3.1 Testing Technique ..4

3.2 Test Participants...6

3.3 Test Cases..6

3.4 Test Environment...7

3.5 Test Equipment ..8

3.6 Test Data ...8

4 TEST RESULTS 10

4.1 Performance Data ..10

4.2 Subjective Data...15

5 TEST LIMITATIONS 16

6 DISCUSSION OF TEST RESULTS AND RECOMMENDATIONS 18

7 CONCLUSION 24

 Usability Evaluation Doc. No. 5

 Page ii

LIST OF FIGURES

Figure 1: Usability evaluation in a field setting 8
Figure 2: Times taken to complete data sourcing tasks using prototype versus paper
sourcing template. 11
Figure 3: Subjective viewpoints on the difficulty of test cases 15
Figure 4: “Triangulation” – using multiple sources of data to find usability problems (Source:
Dumas J et al., 1999b) 19
Figure 5: SIP concealing the textfields 20

 Usability Evaluation Doc. No. 5

 Page iii

LIST OF TABLES

Table 1: Test cases ___10
Table 2: Errors reported from each test case and their recovery times __________________12

 Usability Evaluation Doc. No. 5

 Page 1

1 Scope

1.12 Introduction

The field data collection prototype is evaluated for usability with the intended users

in a field setting. Although the usability test alone does not solve usability problems,

uncovering them during the usability test is an important feedback to improve the

prototype before final implementation. Effectively, the test results are then used to

fine tune critical features of the usability design. This document describes the

usability evaluation techniques, test environment and participants used for the field

data collection prototype. In addition, the test results are explained and appropriate

recommendations are made for further development of the prototype.

1.13 Purpose

The purpose of this document is to present the reader with the findings and

recommendations of usability evaluation of the field data collection prototype.

1.14 Audience

The intended readers of this document include researchers involved in the areas of

software usability, mobile computing, as well as software designers, developers, the

external examiner and other interested parties.

 Usability Evaluation Doc. No. 5

 Page 2

2 Usability Evaluation Method

The two most common usability evaluation techniques (see section 4.4, Doc. No. 1)

are considered for the field data collection prototype. They are as follows:

• Usability inspection or walkthrough methods including heuristic evaluation

and expert evaluations.

• Empirical usability testing in laboratory or field setting.

The following questions (Karat C et al., 1992) are addressed in selecting a suitable

usability evaluation technique:

a) Usability problems: Is it better than others in identifying usability problems?

b) Cost-effectiveness: Is it a relatively cost-effective technique?

c) Individuals versus teams: Does it require individual or groups of evaluators?

d) Evaluator expertise: Who are the evaluators? Can they be software

engineers or should they be exclusively human factors experts?

A number of studies have compared different types of usability evaluation

techniques to determine which are suitable for a particular situation. For example,

Jeffries (1991) used UI experts to evaluate GUI based systems using walkthrough

and empirical usability testing method. He found that heuristic evaluation identified

more usability problems and more of the serious problem than the empirical usability

testing. In an another study (Karat C et al., 1992), a group of non-UI experts and

usability engineers were asked to evaluate usability using heuristic and empirical

usability testing methods respectively. The results show that empirical testing

condition identified the largest number of usability problems, and identified a

significant number of relatively severe problems that were missed by the

walkthrough method. Although it may be obvious, the findings suggest that the more

 Usability Evaluation Doc. No. 5

 Page 3

skilled and experienced the evaluator is, the more likely the usability problems that

will be identified.

The walkthrough methods such as the heuristic evaluation achieve better results

when performed by a group of evaluators. Each evaluator typically identifies

between 20-30% of the usability defects (Nielsen J et al., 1990), but pooling the

results of evaluations improves the overall percentages. Nielsen (1990) also found

that individual evaluators who are not human factors experts are mostly quite bad at

doing heuristic evaluation and he recommended that this method be done with

between three to five evaluators and supplement this method with other evaluation

methods to increase the total number of usability problems found. He also

highlighted a few shortcomings with the heuristic evaluation method. In particular, it

identifies usability problems without providing direct suggestions for how to solve

them. A major advantage of reviews, inspection and walkthrough methods is that

they can be done relatively cheaply and quickly. In contrast, usability laboratory and

testing equipments used in empirical usability tests are expensive and not always

available. In addition, it takes longer to execute the empirical usability test because

of the time required to set up test equipments and arrange appointments with the

participants. However, a field test is usually carried out without expensive testing

equipments and hence it too can be done relatively cheaply.

Having mentioned some of the advantages and disadvantages of usability

evaluation techniques, a field test is considered to be the most suitable technique

for field data collection application. Unfortunately, the number (five or more people)

of UI experts needed to effectively evaluate the prototype was not available.

The use of usability laboratory was also not an option because of the high cost. A

field test, on the other hand, is a more convenient choice because the fieldworkers

are already available as test participants. More importantly, testing in a field setting

provides a greater realism and comfort for the fieldworkers in their familiar

environment. Some usability practitioners (Thomas P, 2002) go as far as saying

traditional usability testing in a laboratory setting to be meaningless in a context of

mobile usage.

 Usability Evaluation Doc. No. 5

 Page 4

3 Test Procedure

Now that the empirical usability testing in the field is selected as the most

appropriate usability evaluation method, this section describes how the test was

actually carried out. The following steps summarize the usability testing process:

1. Prepare tasks, questionnaires and data logging tools to be used during

testing.

2. Select and train participants (represent intended users) to do tasks.

3. Observe and record what they do and say.

4. Analyze the data, diagnose usability problems and recommend changes to

fix those problems.

3.1 Testing Technique

The nature of testing techniques used could be described as an active intervention

(Dumas J et al., 1999a) where a test conductor takes an active role during the test.

In other words, the test participant is actively probed for his understanding of

whatever is being tested on by asking questions throughout the test. There are a

number of reasons why this particular technique is useful. Firstly, by asking

questions during the test rather than in the end, one is able to get insights into

participant’ state of mind at the moment when a particular task is performed.

Otherwise, the participant forgets or is overwhelm by tasks that are more prevalent

than others. Secondly, it is an excellent technique to use with the working

prototypes because it provides a wealth of diagnostic information (Dumas J et al.,

1999a). And finally, the fieldworkers are new to the usability testing process (any

software testing for that matter) and hence close interaction with them during the

test provides reassurance, improves their cooperation and hence increases chances

of finding usability problems. Before the usability test could begin, test participants

were informed about the test and what they were required to do. In addition, they

 Usability Evaluation Doc. No. 5

 Page 5

were given a demonstration on how to use the PDA and the field data collection

prototype. Some kind of training is necessary because it gives participants a chance

to orientate and familiarize with the prototype especially when they haven’t used a

PDA before.

During the test, the participants were asked to “think out loud” as they were doing

the tasks. In other words, the participant speaks out whatever he is thinking

(intentions, frustrations and comments etc). However, some people find it awkward

and have difficulty sustaining this kind of commentary. The participant may be

embarrassed to express his mind-set and often, there is a tendency to “censor”,

mentally correcting mistakes of logic or reasoning without reporting them

(Constantine L et al., 1999f). Hence, a paired-subject strategy (also called co-

discovery) is used where the participants are assigned into two-person teams and

they complete the tasks together. Some researchers agree that the co-discovery

often yields more information about what the users are thinking and what their

strategies are in solving their problems than by asking individual participants

(Hackman G et al., 1992). Although two people are involved in the test only one

person is actually doing the tasks while his companion keeps the commentary

running sharing ideas and making comments. This open approach worked well for

the fieldworkers who are accustomed to working collaboratively in a team.

The participants were allowed to ask for help if they find that they cannot complete

an assigned task. These helps were then documented as part of usability

shortcomings of the prototype. This approach serves as a kind of helpdesk and not

to be confused with influencing participants or giving hints in doing the tasks. In a

traditional usability testing, some kind of help system is used to similar effect

whether it is a help manual or some on-line help system. The participants were

interviewed after completion of each task as well as after the test using a set of pre-

test and post-test questionnaires (for the type of data collected, see section 4).

 Usability Evaluation Doc. No. 5

 Page 6

3.2 Test Participants

The same telecommunication fieldworkers from the Telkom data sourcing team

participated in the usability test. The data sourcing team included three fieldworkers

that participated in the usability test. The question of how many participants to be

included in a usability test is one of intense discussions by the usability community.

In general, usability tests do not require a large number of test participants. In fact,

most major usability problems in a usability test can be found with relatively few

participants. For example, Virzi (1992) found that 80% of the usability problems

were detected with between 4 and 5 participants and 90% were detected with 10

participants. Additional participants were less and less likely to reveal new

information. He also suggested that a usability test should have at least two or three

participants so that test results do not reflect some idiosyncratic behaviors.

Unlike some statistical analysis, one doesn’t need a random sample of possible end

users as participants in a usability test. Instead, a convenient sample is used where

people from appropriate population whom happen to be available. This was

particularly the case with the telecommunication fieldworkers from Telkom who were

able to participate in the usability test.

3.3 Test Cases

One of the essential requirements of a usability test is to determine what to test,

more specifically, which tasks the users should do. Unfortunately, there are more

tasks than there is time available to test them. Determining the appropriate task

scope is not always simple. If the tasks scope is too narrow, the users feel that they

are in an artificial situation and they are not likely to approach the tasks in the same

way as they normally would. Making the task too broad can also become difficult to

keep the user focused for the duration of the test. The right approach, therefore, is

to concentrate on the main tasks that probe the most potential usability problems.

These main tasks are readily derived from the essential use cases (described in

section 5, Doc. No. 2) in the task model. They are as follows:

 Usability Evaluation Doc. No. 5

 Page 7

1. Enter sourcing team information

2. Enter sourcing time

3. Enter site information

4. Specify manhole covers

5. Specify UUB content

6. Specify UUB dimensions

7. Place duct

8. Specify duct

9. Place cable

10. Place joint

11. Specify cable

12. Specify joint

The test participants attempted the tasks in the order that they would complete in a

typical sourcing work. The name of the task actually describes what the task is

about. Usually, scenarios are used to describe the tasks so that it takes some of the

artificiality out of the test. Bear in mind that a traditional usability test uses

participants that come from different backgrounds and hence scenarios help them

understand about the tasks and why they are doing them. For this project, however,

use of detailed and descriptive scenarios is really unnecessary because the test

participants are all fieldworkers and they are already familiar with these tasks.

3.4 Test Environment

The usability test was carried out at the actual data sourcing site inside the UUC

(see Figure 1). A fairly typical UUC large enough to fit five people was chosen.

Although the test coordinator had very little control over test conditions, the field

setting provided the participants with more realistic test environment. This is

particularly important because people tend to think and act differently when

removed from their natural work setting. In addition, a conventional usability test

 Usability Evaluation Doc. No. 5

 Page 8

would not be able to simulate all the environmental factors (noise, light conditions

etc.) inside the UUC and collaborative activities between the fieldworkers.

Figure 89: Usability evaluation in a field setting

3.5 Test Equipment

No sophisticated recording equipment or data capturing software was used in the

usability test. Instead, a paper data-logging form (see Doc. No. 7) and a stop watch

were used to record the test data. A minimal use of test equipment allowed the

testing to take place in a confined space of UUC. It also kept the usability evaluation

within the realistic environment of the UUC without turning to some kind of

laboratory.

3.6 Test Data

The data collected from the usability test includes:

1. Subjective measures – the participant’s perceptions, opinions and

judgments.

 Usability Evaluation Doc. No. 5

 Page 9

2. Performance measures – counts of actions and behaviors observed during

the test.

Comments from the participants were obtained during and after the test. During the

test, spontaneous comments from the participants and their facial expressions

(frustration, confusion and delight etc) were noted. In addition, the help questions

asked by the participants were recorded. The participant was given one task at a

time and at the end of each task, the participant was asked to comment on the

difficulty of that task. Although this is a subjective measure, it is rated quantitatively.

For example, a “very easy” and “very difficult” is rated as “1” and “5” respectively on

a 5-point scale. The test coordinator also recorded own comments into the data-

logging form during and after the task is performed. The performance data includes

the time spent on:

• completing a task

• asking for help

• recovering from errors

A post-test questionnaire was used to gather the participant’s judgment and

comments addressing overall usability of the prototype. The participants were also

asked to comment on a number of screenshots of user interface that are linked to

specific usability design features. (The data-logging forms and post-test

questionnaire are shown in Doc. No. 7.)

 Usability Evaluation Doc. No. 5

 Page 10

4 Test Results

4.1 Performance Data

The performance data collected during the usability test includes the times taken to

complete test cases (see Table 1). However, these performance data are rather

meaningless unless we can compare them to something. Hence, the times taken to

complete the data sourcing tasks using the paper sourcing forms were also

recorded for comparison. In the first part of the test, the participants were asked to

source the data as they would normally do using their paper sourcing forms. The

one participant entered the information while the other two assisted him in finding

the asset information. The data-entry participant was given a set of tasks or test

cases that he must complete. These test cases came out slightly different to the

ones given in section 3.3 due to circumstances surfaced during the test. Some of

the tasks were done so quickly that it was not practical to record the times. For

example, to place a single duct takes less than two seconds to complete. Hence, a

number of “small” tasks are combined into a single test case (see Table 1).

Table 2: Test cases

 Test Case No. Description

1 enter sourcing team information

2 enter sourcing time

3 enter site information

4 specify manhole covers, UUB content, UUB dimensions

5 place 37 ducts

6 specify 37 ducts

7 place a single copper cable

8 place 5 cables with 2 joints

9 place a single fibre optic cable

10 place 2 cables with 1 joint

11 specify a single copper cable

12 specify a joint

13 specify a single fibre optic cable

 Usability Evaluation Doc. No. 5

 Page 11

The time that took to complete the test cases using the paper sourcing forms and

the field data collection prototype are compared in Figure 2. Before analyzing the

plot, bear in mind that the participants have been using the paper sourcing forms for

many months whereas the prototype was introduced for the first time (the training

aside). Hence, one would expect the fieldworker to complete the test cases quicker

using a paper sourcing form than the prototype. The graph in Figure 2 confirms this

supposition where most of the tasks are completed quicker using the sourcing form.

And then there are a few tasks that are done quicker using the prototype. The

question that needs to be answered here is that what make some tasks quicker than

others. In addition, the magnitude of speed difference needs to be explained as well.

8

29

20

152

97

207

20

110

25
31

25

45 42

28

112

15

210

90

180

34

149

97

34

75

89

24

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13

Test Case No.

A
v

e
ra

g
e

 a
m

o
u

n
t

o
f

ti
m

e
 t

a
k

e
n

 t
o

 c
o

m
p

le
te

 t
h

e
 t

a
s

k
 (

s
e

c
o

n
d

s
)

sourcing form

prototype

Figure 90: Times taken to complete data sourcing tasks using prototype versus paper
sourcing template.

 Usability Evaluation Doc. No. 5

 Page 12

The approach adopted in this project is to analyze the test data from several

sources at the same time (Dumas J, 1999b). In other words, one looks at all the

data together to see how each set of data supports the other. The test data in Figure

2 is analyzed together with the usability problems (shown in Table 2) the users

encountered when doing these tasks. They provide important clues in explaining the

cause of usability problems, for example – why there are delays in completing a

task. As shown in Table 2, these problems are very specific. This is because the

main objective of a usability test is to find the “real problems” as opposed to finding

existence of some phenomenon (Dumas J, 1999a).

Table 3: Errors reported from each test case and their recovery times

Test Case No. Errors Average recovery time (s)

1 none 0

2 SIP covering textbox 10

3 none 0

4 scrollbar swinging off 5

5

delay with background colour

changes 0

6 none 0

7 none 0

8 none 0

9 none 0

10 textbox confusion 3

11 scrollbar swinging off 5

12 scrollbar swinging off 5

13 none 0

From looking at Figure 2, the test case no. 2 has the largest time difference. The

participants had a problem with the SIP because when it opened it concealed the

“Kilometers” textbox (see Figure 13 in Doc. No. 3). The user then had to scroll down

a bit more and this created the delay. But this glitch does not explain relatively large

time difference. On closer examination, the test case no. 2 required the user to type

in the information for textboxes such as “Travelling From”, “Vehicle Reg.” and

“Kilometers”. The participants were also unfamiliar with the use of SIP and this

 Usability Evaluation Doc. No. 5

 Page 13

created further delays. They spent a large amount of time locating the letters on a

soft-keyboard. To a similar effect, hand-writing recognition software did not work

well for them. One participant, for example, wrote the letters too small that the

system failed to recognize any of his inputs. Also, the participants found different

“regions” of the SIP over which to write capital letters and numbers confusing.

The same trend is observed with the test case no. 4 where the user needs to type in

the UUC dimensions such as height, width and depth. The test case no. 2 and no. 4

are very few tasks that require the user to type in the information. The rest of the

tasks rely more on selections from pre-defined lists and menus. Interestingly, the

test case no. 5 and no. 6 are quicker to complete using the prototype than the paper

sourcing form. The automated labeling of ducts and use of combo-boxes made sure

that these tasks are done quickly. However, there is a slight delay with the colour

change for the ducts placement especially when the user taps the screen very

quickly and repetitively.

Noticeably, the most prevalent usability problem is with the scrollbar. The

participants prefer to use the scrollbar over navigation buttons to scroll up and down

the screen. They often scrolled too fast that they missed the data fields that they

were looking for. They became confused and felt that they were lost. This problem is

particularly evident with the Manhole Information Page (see Figure 15-18, Doc. No.

3) which contains a relatively large number of data containers.

In order to quantify and summarize the overall performance of the prototype, a set of

performance metrics is calculated. The five measures of performance are defined as

follows (Constantine L et al., 1999f):

1. Completeness – is the percentage of total assigned work completed within

the allocated time. The time taken to complete the test cases using the data

sourcing form is used as the allocated time.

 Usability Evaluation Doc. No. 5

 Page 14

2. Correctness – is the percentage of completed work that is correct. The

completed work is the total number of data items collected.

3. Effectiveness – is correctly completed work as a percentage of total work.

4. Efficiency – is Effectiveness per unit time. In other words, the percentage of

work correctly completed per unit time.

5. Productiveness – is the percentage of total test participant time spent

productively. The unproductive time includes the time spent seeking help

from the test conductor.

The performance measures are calculated as follows:

Completeness = (Tf / Tp) ×100

 = (811s/1137s) × 100 = 71.33 %

Correctness = ((correct data items)/ (total data items)) ×100

 = (82/85) × 100 = 96.47 %

Effectiveness = (Correctness × Completeness) / 100

 = (96.47 × 71.33) / 100 = 68.81 %

Efficiency = (1/ Tp) × Effectiveness

 = (1/1137s) × 68.81 = 0.061 % per second

Productivity = ((Tp – Th)/ Tp) ×100

 = ((1137s – 33s)/1137s) × 100 = 97.10 %

The Tp and Tf refers to an average amount of time taken to complete all the data

sourcing tasks using the prototype and data sourcing form respectively. And Th

 Usability Evaluation Doc. No. 5

 Page 15

refers an average amount of time taken to seek help from test conductor (i.e.

unproductive time).

4.2 Subjective Data

The subjective data collected from the usability test is both quantitative and

qualitative in nature. The former measures the “level” of difficulty of test cases from

the test participant viewpoint. The participants were asked to rate the level of the

difficulty of each test case from the magnitude of 1 to 5 (see Figure 3 below).

1

2

3

4

5very difficult

difficult

neither

easy nor difficult

easy

very easy

1 2 3 4 5 6 7 8 9 10 11 12 13

Test Case No.

Average level

of difficulty

Figure 91: Subjective viewpoints on the difficulty of test cases

On average, the participants found 10 out of 13 tasks to be “easy” to do whereas the

rest of the tasks were “neither easy nor difficult”. The questionnaires (see Doc. No.

7) addressing the specific usability features also indicated general opinion to be

positive. On the contrary, the participants made comments that were not very

specific. Instead, they highlighted only those usability problems that were most

prevalent in their minds.

 Usability Evaluation Doc. No. 5

 Page 16

5 Test Limitations

The usability test has a number of limitations that need to be mentioned in order to

determine the reliability and accuracy of test results. Firstly, the number of test

participants used is insufficient. The test participants came from a small pool of

specialized team and only a few of them were available at the time of the evaluation.

The consequence is that a larger percentage of idiosyncratic behavior of

participants could have been mistaken as the test data. In other words, the test

results particularly the quantitative data could be skewed and unreliable. Secondly,

the number of usability tests carried out are also insufficient. This again is due to a

limited number of field visits constrained by busy schedule of fieldworkers. The

number of test participants should be about 7 or 8 and usability testing carried out

over a period of 3 or 4 days in order to obtain reasonably accurate test results.

Thirdly, a one-person team using a notepad is most likely to miss out many of the

usability problems. Also, the test conductor does not have a human factors

expertise. This lack of expertise and experience in a usability testing further reduced

the number of usability problems found. Field testing is intended to provide realistic

usage of the application but a lack of proper testing equipments like digital recorders

to capture user behavior calls for concern. Ideally, a second person should assist

the primary tester with a video recording of the tests and the data taken back to the

laboratory for detailed analysis.

And finally, the test participants were unfamiliar with usability testing and they

couldn’t differentiate between a prototype and complete software. It is particularly

difficult for them to evaluate the prototype or compare it to other similar systems

because they have not used such systems before. Consequently, they are easily

influenced by the tester and unable to provide any clear suggestions on how to

improve the prototype (although they certainly like to use the application). Hence, it

is felt that test participants should have been give an opportunity to test other mobile

 Usability Evaluation Doc. No. 5

 Page 17

applications of similar nature in order to make more informed assessment of the

prototype.

 Usability Evaluation Doc. No. 5

 Page 18

6 Discussion of test results and

Recommendations

This section attempts to explain the usability test results in Section 4, but also to

provide suggestions and possible solutions for the usability problems. Beginning

with the performance data (see Figure 2), the time taken to complete the tasks using

the prototype is generally longer than the paper sourcing forms. A number of

reasons for this outcome are proposed. Firstly, the test participants have

significantly more experience using the paper templates than the prototype. Putting

two hours long training aside, the test participants have not used a PDA before.

Naturally, their proficiency will increase if they are given more time to experiment

with the device. In order to obtain a fair comparison, they should have used the

prototype to do the data sourcing for a few months and measure proficiency levels

thereafter. Secondly, there are tasks that require the user to type in the data rather

than selecting from a predefined list. These tasks take significantly longer to

complete than their paper counterparts. For a foreseeable future, typing in the data

using a SIP on a PDA (or any mobile device for that matter) will be slower than

physically writing down on a paper document. It is difficult to explain the cause of

usability problems by simply looking at the time it takes to complete them. One also

needs to look at the nature of the task, the kind of errors and help sought by the test

participants. Some usability professionals referred to this approach as the

“triangulation” method (see Figure 4 below).

 Usability Evaluation Doc. No. 5

 Page 19

problem list

quantitative data from logs

and questionnaires

participants' comments, test

team's observations

usability problems

Figure 92: “Triangulation” – using multiple sources of data to find usability problems

(Source: Dumas J et al., 1999b)

The number of usability problems found during the usability test is relatively low.

This could mean a few things. First, the usability testing was not very successful

possibly due to some of the limitations mentioned in Section 5. Or, the prototype

may be well designed; hence there were not many usability shortcomings. It is most

likely that it is contributed by a combination of these factors. Nevertheless, it is

important to explain the cause of usability problems. Some of these usability

problems (presented in Table 2) are explained using the Triangulation Method. In

addition, possible solutions and recommendations to solve these problems are

outlined.

Problem 1: SIP conceals a textbox

When the user clicks on the textbox at the bottom of the screen, the SIP is

activated by a textbox event-listener. But the SIP appears on top of the textbox,

concealing it completely (see Figure 5). The user is then required to scroll down

to see the textbox again. This is rather a trivial problem but it occurs frequently

with the pages that use vertical scrollbars. The test participants complained

about it when they first use the prototype.

 Usability Evaluation Doc. No. 5

 Page 20

Figure 93: SIP concealing the textfields

The solution to this problem is fairly simple. The system must detect if the

textbox that user clicked is placed or has moved (due to scrolling) to the bottom

section of the page. If so, the page must shift up by a SIP length when the SIP is

activated.

Problem 2: Scrollbar swings off on Manhole Specification Page

When the user tries to scroll a page by dragging the scrollbar he sometimes

misses some of the data containers. This is because the distance over which the

scrollbar moves is relatively small and scrollbar sensitivity is directly proportional

to the length of the page that it scrolls. This was the case with the Manhole

Specification Page which is longer than any other page. In other words, if the

user drags the same distance on this page it would scroll a larger section of the

page than its shorter counterpart. This inconsistency creates confusion for the

users.

The scope of this problem is global (as opposed to local problem). Hence, the

solution to the problem must be obtained from looking at other areas of the

prototype. Ideally, one would leave out the scrollbars altogether. But if the

application contains many data containers, it would require a few dozen screens

without the scrollbar. The navigation becomes difficult in order to find the right

data container. One could put these screens in a predefined sequence but this is

 Usability Evaluation Doc. No. 5

 Page 21

inflexible because the data entry personnel do not necessarily enter data in a

particular sequence. By using scrollbar the number of screens required is

significantly reduced. The Manhole Specification Page is longer than other

pages because of a relatively large number of data containers dedicated to the

manhole specification. As mentioned in the design phase, the purpose is to

enable the user to navigate easier by placing together information that is closely

related. It is recommended that the user use a navigation button for “small-

steps” scrolling so that he can see the page by small section at a time. But for a

quick scroll from top to the bottom of the page, dragging the scrollbar using the

stylus is recommended. These techniques are simple to do and could be easily

adopted by the users.

Problem 3: Delay with background colour changes on Routeface panel on

Ducts Location Page.

There is a slight delay with the change of duct colour when the user taps the

ducts extremely quickly. At such speed, the visual feedback mechanism failed to

do what it was designed for. This problem is expected. Unfortunately, there is no

clear solution to this problem. One would find this problem even with fastest

desktop computers. The user can press a number of buttons and control items

much quicker and repetitively using the stylus than a mouse or touchpad. The

rate of user interaction is generally higher with the direct manipulation style of

interaction than an indirect manipulation technique. The user is recommended to

click at a quick but reasonable speed which is more than enough for the speed

required for the placing ducts onto the routeface.

An alternative solution is to use interactive high quality graphics components in

the place of standard visual component such as buttons, frames and labels etc.

Importantly, it is necessary to use GUI components that are lightweight

considering resource constraints of a PDA. A Scalable Vector Graphic Basic

(SVGB) from W3C (2003) is designed to display vector based 2D graphics on a

PDA. This XML-based language is lightweight, data-driven, and interactive –

 Usability Evaluation Doc. No. 5

 Page 22

allows a rich set of event handlers such as onmouseover and onclick to be

assigned to any SVG graphical object. Unfortunately, the amount of delay

resulting from clicking the SVGB objects with event-listeners is found to be

greater than a standard eVB component. The former, however, is more suitable

for maintenance and reuse of software which of course is the primary objective

of object-oriented design. Once graphical templates are created using SVGB

objects, they can easily be imported to other mobile applications.

In order to view the SVG files from the eVB application, one needs to write a

separate program that will interpret Document Object Model (DOM) for that SVG

standard. Alternatively, off-the-shelf reusable code modules in the form of

ActiveX components for viewing (or editing) SVG files are available from the

third-party vendors (e.g. eSVG, 2003 and PocketSVG, 2003).

Most of these usability problems are rather trivial. There were no severe usability

problems that would require redesign of the prototype. Most of these usability

problems can be resolved by minor modification to the existing prototype. The

performance data metrics suggest that the intended users are able to use the

prototype quite effectively. They are able to enter data not only accurately but

efficiently as well. Their performance could be much greater if they used the

prototype for the same period of time for which they have been using paper sourcing

forms. Interestingly, the test participants make very few mistakes. Despite being

new to the technology, the participants appeared to be confident and comfortable

during the usability testing. Most promisingly, they look forward to use the prototype

for their data collection work.

The subjective views of the test participants documented in the post-test

questionnaires suggest that users are satisfied with the prototype. The user

comments on the user interface screenshots confirmed this conclusion. On the

contrary, they would like to see “more user-friendly” prototype but they failed to give

any specific details. For example, they couldn’t come up with anything that they

dislike about the prototype. Now that they have seen how much a usable software

 Usability Evaluation Doc. No. 5

 Page 23

system could make a difference, they wanted to make it “easier” without knowing

what they really want. Unfortunately, this is one of the dangers of relying on the

users to decide on what makes software usable.

 Usability Evaluation Doc. No. 5

 Page 24

7 Conclusion

The usability of field data collection prototype was evaluated using an empirical field

test with the UUC data sourcing personnel. Field test was carried out at the actual

data sourcing site where the test participants were given the prototype to do their

work. The time taken to do the data sourcing tasks using the prototype was

recorded and then compared with that of paper sourcing forms. The participants

were then interviewed and asked to complete questionnaires that probe their

subjective views on usability of the prototype. The number of usability problems

discovered by the usability test is considered to be relatively low but nevertheless

corresponding recommendations were made to correct these problems.

Overall, the qualitative test results are very encouraging. The majority of the

fieldworkers found the prototype easy to use and keen to use the application in

place of paper sourcing template that they are currently using. However, the

accuracy of quantitative data is questionable due to a number of shortcomings in

usability testing. Firstly, the number of test participants and the frequency of

usability testing are insufficient. It is felt that the usability test could have been

executed far better by increasing the number of test participants and frequency of

tests over a longer period of time. Secondly, without proper data logging equipments

(video camera, data logging software etc.), a one-person team has little control over

the test conditions in the field. This could be one of the reasons why there were very

few usability problems uncovered by the usability test. Another concern is that the

test conductor has a limited expertise in conducting a usability test. Given these

conditions many usability problems may have gone undetected. And finally, it is felt

that test participants were easily influenced by the test conductor and did not have

enough exposure to other mobile applications to make impartial evaluation of the

prototype.

Ideally, the number of test participants should be increased to about 7 or 8 people

and the usability testing is to be carried out over a period of 3 or 4 days. The main

 Usability Evaluation Doc. No. 5

 Page 25

purpose of usability evaluation is to fine tune critical design features and it is crucial

that redesign takes place over a number of iterations.

