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Abstract

IT based Healthcare platforms have been widely recognized by

research communities and institutions as key players in the fu-

ture of home-based health monitoring and care. Features like

personalised care, continuous monitoring, and reduced costs

are fostering the research and use of these technologies. In this

paper, we describe the design and implementation of the video

monitoring system of the SPHERE platform (Sensor Platform

for Healthcare in a Residential Environment). SPHERE aims to

develop a smart home platform based on low cost, non-medical

sensors. We present a detailed description of the hardware and

software infrastructure designed and tested in real life scenar-

ios, with particular emphasis on the design considerations em-

ployed to foster collaboration, the real time and budget con-

straints, and mid-scale deployment plan of our case study.

1 Introduction

Medical progress has increased life expectancy causing a dra-

matic increase in the elderly population. By 2050, 20% of the

population will be over 60 years old [19]. Not only does old

age impact on daily life with its associated chronic age-related

diseases, but it also brings additional societal challenges. Our

health-care services experience extra pressure, especially in

terms of cost and shortages in caregivers [19]. These factors,

and the fact that in general patients prefer to stay in the more

familiar and comfortable environment of their home, has stim-

ulated research and development into new technologies to fa-

cilitate health care practices in residential environments. Re-

search interest in smart homes for eHealth and Active and

Assisted Living (AAL) has continuously grown in the recent

years. This research has examined different diseases and target

groups [19, 4] and technologies ranging from wearable devices

gathering movement information [27] and vital signals [4], to

environmental sensors [1] and video based platforms [9].

An important feature of video based sensing is that it fa-

cilitates, in principle, the acquisition of useful and continuous

information pertaining to human movement and activities that

can be used to quantitatively and qualitatively assess the sta-

tus of patients after specific treatments or after a rehabilitation

period. For example, a depth camera based system was pre-

sented in [3], where video data was used to analyze patients’

functional movements. A similar experimental setup was de-

ployed in [22] where a movement quality assessment measure

based on manifold learning and a Markovian assumption was

presented. Video based systems are efficient for implementing

alert systems to detect dangerous events like falls, as in [20].

Furthermore, video data analysis allows one to identify spe-

cific actions, long term activities, and behavioural patterns [9],

with some exploiting contextual information [11]. While video

based platforms offer the opportunity to extract unique, contin-

uous, and rich information from the home environment, they

also present a number of disadvantages, such as privacy issues

[9], user acceptance and system cost and scalability. Finally,

the accepted challenges of computer vision, such as arbitrary

body poses, changing illumination, occlusion, and low cost/low

resolution are still unsolved problems [23] even if depth data is

combined with colour [6]. Furthermore, these issues are greatly

amplified for AAL monitoring applications that operate in un-

constrained environments and in long term scenarios. Different

video acquisition architectures of widely varying complexities

have been used for AAL applications. For example, a single

camera was used in [16] to target specific functional mobility

actions taking place in the living room area,with only snapshots

and descriptions of detected actions stored. A centralised sys-

tem was employed in the senior housing complex, TigerPlace

[13], where depth data is stored in a central server which also

contains labels, such as movement, inactivity, fall, etc. Re-

searchers can access the stored data via a web interface. More

flexible approaches based on smart cameras and distributed

processing have been also employed, for example in [14, 15],

where colour data was processed in each node and process-

ing results transmitted to central storage nodes. As previously

mentioned, RGBD cameras are becoming increasingly more

deployed in AAL applications, such as [9, 20, 27, 21, 22, 11].

For a review of video based AAL systems, the reader is referred

to [7, 8].

In this paper we present our video monitoring system de-

veloped for the SPHERE project (Sensor Platform for Health-

care in a Residential Environment). It aims to develop a low-

cost, unobtrusive sensor platform for monitoring adults of any

age in the home environment. We will focus on the main de-

sign challenges and choices, in terms of hardware (Section 2)

and software (Section 3), for the development of the SPHERE

video infrastructure. In particular, we shall highlight the im-



portance and impact of real time considerations, budget con-

straints, and the reliability needed for our mid-scale develop-

ment plan and user acceptance. Furthermore, we present a sum-

mary of the computer vision applications (Section 4) tested and

implemented within the proposed system.

2 The SPHERE video monitoring system

SPHERE aims to develop a smart home platform comprising

non-medical networked sensors, to obtain a rich description

of the home environment and occupants’ behaviour. Three

main groups of sensors have been employed: (a) environmen-

tal sensors, which monitor temperature, humidity, luminosity,

noise level, air quality, room occupancy, electricity metering,

and water consumption, (b) RGBD vision sensors, and (c) low

power wearable sensors that use accelerometers to measure

body movements and to identify specific actions. SPHERE has

already installed the first version of its system in a test house in

Bristol (UK) used for short-to long-term user studies and archi-

tecture validation. The final goal of SPHERE is to deploy the

sensor platform in up to 100 homes in Bristol for long-term, in-

the-wild studies. The SPHERE system architecture (see Figure

1) includes a back-end (SPHERE Data Hub), which is made-up

of a number of storage devices to collect and analyze all data

collected from the 100 houses. Each house will be connected

to the Data Hub through the SPHERE Home Gateway, that has

several additional functions, including collecting data from the

sensor network and monitoring the system status. Wireless and

BLE links are used to ensure connectivity between the hetero-

geneous sensor networks and the Home Gateway. At the appli-

cation layer, the SPHERE system makes extensive use of the

MQ Telemetry Transport (MQTT) protocol for data collection

as well as for system monitoring. More details about the over-

all SPHERE architecture can be found in [25, 27].
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Figure 1. SPHERE system architecture [25].

2.1 Hardware platform

The video monitoring component of the SPHERE system is a

real-time multi-camera system, which is tasked not only with

tracking people in their home environment, but also with pro-

viding continuous quality of movement and activity recogni-

tion data. More details of these is reported in Section 4.

The selection of the hardware for the video monitoring sys-

tem has been driven by different factors, such as ease of in-

tegration with other sensors, user acceptance, and deployment

cost. Considering the 100 houses deployment plan and its fi-

nancial viability, the low cost consumer RGBD camera, Asus

Xtion, was selected. Furthermore, as previously mentioned,

RGBD devices now represent the state of the art for indoor ac-

tivity monitoring [9, 20, 21, 22, 11]. For the SPHERE project,

the camera needs to be coupled with a machine with suitable

processing capacity, minimal intrusion on the user, and mini-

mal cost. The Intel Next Unit of Computing (NUC) with 8GB

of RAM and an i5 processor meets these requirements. Its

compact size and relatively low cost, when compared to most

workstations, allows it to be placed strategically close to other

sensors. Another important attribute of the NUC is its four

USB 3.0 ports, which provide ample bandwidth for simultane-

ous capture from up to four RGBD cameras with an acquisition

rate of 30fps for each camera at VGA resolution. This gives the

system more versatility in deployment. Specifically, a range of

configurations is possible: one NUC operating all of the cam-

eras, (that was the first design choice for SPHERE [25]), one

NUC per camera (Figure 2), or hybrid configurations, depend-

ing on users’ needs as well as the circumstances of each de-

ployment. We can store up to 64GB of data locally in each

NUC, corresponding approximately to 2 hours in a single cam-

era configuration, including RGBD and tracking results. This

data can then be streamed using a buffering strategy to the cen-

tral MySQL and Mongo databases (see Section 3). There is no

ceiling on the number of NUCs that can be utilised in a single

deployment given appropriate network capacity and server per-

formance. In any eventual deployment in real homes, our con-

figuration will have minimal storage requirements as only the

processed results (i.e. tracking, segmentation) will be stored

and not the raw video data.

Figure 2. NUC and Asus Xtion sensor in SPHERE house.

A vital consideration for all of the SPHERE sensors, and

the video subsystem in particular, is installation time and long

term reliability. Recalling that the current plan is for SPHERE

to deploy its system into as many as 100 homes, with up to

three NUCs and ASUS Xtions per home, the installation and

management of such a large enterprise rapidly becomes impos-



sible without optimised installation procedures and ultra reli-

able subsystems. In order to fulfil these requirements, each

NUC runs Ubuntu with the video system set up to run as a ser-

vice, when the machine boots up. This makes the system robust

in the event of a temporary loss of power. To facilitate quick

configuration, a standardised system image is employed. The

set up process is streamlined such that a brand new NUC in its

box can be ready for deployment in about 10 minutes.

Figure 3 illustrates how the NUC and Asus Xtion fit into the

hardware infrastructure. Note that the NUCs’ clocks are syn-

chronised via NTP and the captured frames are time-stamped

at the time of capture, before being buffered for subsequent

transfer to the main gateway.

Figure 3. Video Monitoring System Architecture.

3 Collaborative Software Platform for Data
Management and Analysis

SPHERE produces enormous amounts of video data and a vari-

ety of features associated with it. This data is used in a number

of pure and applied computer vision research projects, includ-

ing person re-identification, quality of movement assessment,

calorific expenditure, robust real-time tracking, and activity

recognition. The data recorded by the SPHERE system, as with

any other vision system, is not perfect and sometimes contains

false detections and tracking errors. Furthermore, for particular

studies it is necessary to ground truth the data when supervised

approaches to learning are employed. For example, the bound-

ing boxes/tracklets relating to particular individuals need to be

given a consistent identity for person re-identification as do the

start and end times of particular activities.

Correctly labelled data sets are extremely valuable to the

community for development of different algorithms and com-

parative evaluation. In a large project, with a number of col-

laborators, the risk of duplication of effort is high when pro-

ducing these data sets. Different researchers commonly use

different tools, languages and strategies for labelling. This

may also include relatively ad hoc decisions regarding data for-

mats. This fragmented approach produces barriers to collabo-

ration as researchers have to not only obtain code and data from

their peers, but also learn how to use it and incorporate it into

Figure 4. Collaborative infrastructure for data analysis.

their normal work-flow. To combat this fragmentation and fos-

ter synergies between individuals, work packages, and groups

within SPHERE, we have developed a collaborative infrastruc-

ture for data analysis (Figure 4). Our infrastructure features

a central data repository, consisting of MySQL and Mongo

databases. During data capture, raw video and depth streams,

bounding boxes, silhouettes, and skeletons are buffered and

then stored in this central repository. For a particular capture

session, metadata, including participant ids and start and end

time-stamps, are stored in a separate database. When a re-

searcher wishes to work on a particular data set, they simply

look up the time-stamps and then enter them into either the

C++ or MATLAB interfaces. Any labelling undertaken by that

researcher, is stored centrally in tables that are accessible by

collaborators and linked to the original data set. In this way

teams can work on the same problem concurrently, on a plat-

form and language of their choice.

Figure 5. Database entity relationship diagram

Figure 5 illustrates this video database design. The top

four rows represent the ‘core’ data which is obtained at the

time of capture. The labels represent annotations added sub-



sequently by researchers working with the data. In this case

the labels refer to the identities of individuals navigating the

SPHERE house, with outliers (false detections) being given a

consistent label. This data may now serve as a ground truth for

tracking and detection algorithms or research into person re-

identification for example. We have found this has made very

real productivity differences, with researchers discussing and

prototyping ideas in hours rather than days.

3.1 Software architecture

Software reliability is critical for facilitating long term opera-

tional periods without regular physical access. To enable this,

we have employed an object oriented design and popular soft-

ware design patterns where possible. The design principles un-

derpinning the software system reflect our ambitions to build a

collaborative platform which naturally encourages cooperation

and the development of reusable and easy to extend code.

The software system is centred around the observer design

pattern. This is useful for decoupling the problems of data ac-

quisition, processing, and storage into separate classes which

can be developed independently. The acquisition is encap-

sulated in a camera class, that controls camera functionality

providing RGBD, and basic tracking information as bounding

boxes and skeleton joints. This class is the subject and it keeps

an observer collection. These observers are notified when new

data is available through a standard interface. This allows for

rapid prototyping and deployment by researchers without need-

ing to understand the underlying hardware, or the SPHERE in-

frastructure. In addition to employing this low-level design pat-

tern, we add a set of simple operators which allow for a higher

level designs to be produced, using observers as components.

These operators are combine, filter and par.

combine : Observers × Observers → Observers

filter : Observers × Observers → Observers

par : Observers → Observers

combine is a binary operator which takes two observers and

wraps them in the interface of a single one. This newly created

observer has the behaviour of the two given observers. filter is

a binary operator which takes a pair of observers and creates a

new observer. This newly created observer has the behaviour

of the original observers, but sequences them so that the first

observer can mutate the data before it is passed to the second.

par is a unary operator which takes a single observer and cre-

ates a new observer which behaves in exactly the same way,

except that its input is buffered and it is executed on another

thread. This allows us to make use of all the computational re-

sources available on the target hardware. The par operator is

not strictly necessary at this level. We could have chosen for

this decision to be made inside the observers, but this would

introduce performance overheads that were not visible at the

high level. Hence, we decided that observers’ parallelisation

should be exposed at a higher level so that the overhead in-

troduced is explicit and the benefit is clear. This also means

that researchers do not need to consider how, or when, their

observer will be executed when developing their experiments.

Concrete applications of the described high-level design

patterns used in the proposed system are shown in Figure

6. Depth based human detector (DepthBasedDetector) and

unique user Id allocation (UniqueUserID) to the tracklets are

examples of filters as they modify the data stream adding ad-

ditional information and passing to the next stage. For ex-

ample DepthBasedDetector is used to boost the confidence

of the basic tracking performed in the camera module, and

the UniqueUserID is used to assign each tracklet a unique id

among all of the cameras. Parallelisation is used to provide a

buffer between the high performance processing pipeline and

the potentially slow network and storage medium.

Figure 6. Data flow diagram of our video monitoring system

Given these operators and a set of observers we are able to

quickly design and deploy complex applications which con-

tain research experiments with minimal effort from the re-

searchers themselves. The class hierarchy is shown in Fig-

ure 7. In the SPHERE video monitoring system the Observers

are UniqueUserID and DepthBasedDetector discussed above,

and SPHEREIoTDataMon that manages MQTT connection

to SPHERE data HUB, SPHEREIoTCTRL that handles con-

trol commands from the SPHERE platform, such as start/stop

recording and system initialisation, and Database that manages

video storage. These, with our observer operators, are used to

specify our software system as shown in Figure 6. The above

application description illustrates how combining combine or

filter and the Observers forms a tree. This combination of the

observer design pattern and these operators comes close to de-

scribing functional reactive programming (FRP), specifically

discreet push oriented FRP. With the addition of a single oper-

ator, to merge branches in the tree to create a graph, this would

be equivalent to FRP [12]. In this model, our observers are

behaviours and the data from the camera is an event stream.

Another practical example exploiting this design strategy

is the way the video system is integrated into the SPHERE

platform as an IoT device. This is achieved via the class

SPHEREIoTDataMon which takes the video data, excluding

the colour and depth frames themselves, and serialises all the

processed data (such as bounding boxes and tracklets informa-

tion) into JSON strings. These strings are then transmitted via



MQTT to the SPHERE data HUB. The choice to apply this

structure at both the high and low level of the video monitoring

system has given us a structure which is robust and flexible.

This gives researchers the power to test and deploy research

systems to our video system as shown in the following section.

Figure 7. Video monitoring system class hierarchy

4 SPHERE vision based Applications

We now summarize how the HW and SW architectures pre-

sented above are employed to accomplish several eHealth ap-

plications within SPHERE. The complete vision based pipeline

in each NUC device is shown in Figure 8. The data acquisition

module gathers the camera stream synchronized with the other

sensors’ data. Depth and colour data are processed by a per-

son detector and tracking module to continuously estimate the

residents’ position. The system currently used in the SPHERE

house is the depth based OpenNI tracker [18] which also pro-

vides the estimation of user skeletal joints. This tracker and

its enhanced output have been widely used in eHealth appli-

cations, e.g. [2, 20, 22]. Nevertheless, the proposed modular

software system allows us to plug and play different detectors

and trackers. Other real time detectors based on colour and

depth data, such as [17] and real time trackers [17, 5], have

been tested and tuned into the proposed system.

Even without the rest of the SPHERE platform’s data, the

video system’s output is still a rich source of information. The

aspect ratio, velocity, and location of the bounding boxes gives

useful clues for detecting activities and behaviours. These

bounding box characteristics are analysed by a cascade of SVM

classifiers to identify basic low level functional movements,

such as sitting, standing, lying, walking and their correspond-

ing transitions. They allow us to accumulate statistics about

speed of motion and hence to infer important clinical measure-

ments in the wild. Some example studies that we have carried

out so far are recognising actions [21], and quality and inten-

sity of movement [22], and identifying typical indoor activities

of daily living and routine modeling [26], amongst others. To

overcome the unreliability of skeleton data, provided by the

OpenNI tracker, for non-frontal views we have designed a new

depth based pose estimation system that can support a large

range of views [10]. Our low-level movement recognition work

can be enriched by higher level analysis based on fusing video

features with other sensor data, such as accelerometer data, and

we hope to report on these in the near future.

Alongside these research activities, we have also released

several datasets1 for the research community. In [21], we pre-

sented a dataset, based on RGBD and wearable data, that con-

tains actions of daily life collected in the SPHERE house. An

RGBD and skeleton dataset for quality of motion estimation

was released in [22]. Finally, multi-sensor data of single users

living in the SPHERE house was released in [24].

Figure 8. NUC processing pipeline for each camera.

5 Conclusions

In this paper we presented the video monitoring system devel-

oped within the SPHERE project. Designing a reliable video

monitoring infrastructure for residential environments is a chal-

lenging task as many factors, such as cost, user acceptance, and

application domains deeply affect design choices. We intro-

duced a flexible hardware architecture based on NUCs which

can deal with different camera configurations required for dif-

ferent installation setups during the deployment phase. Low

cost RGBD devices are fundamental hardware components of

the proposed system as the combination of colour and depth

data provides a richer description of environments and humans.

Furthermore, we proposed an efficient and highly modular and

lightweight software architecture that allows to easily adapt the

system to different recording devices, i.e new depth devices

coming into the market, and to target different application sce-

narios, as the acquisition and the processing phase are decou-

pled and independent. Finally, our collaborative platform for

data management and analysis ensures the huge amounts of

data gathered are accessible to researchers in SPHERE and in

the research community in a flexible way such that researchers

can work on the same or different problems whilst seamlessly

sharing annotations and other extra metadata with one another.
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