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Designing Access Methods for Bitemporal Databases

A B S T R A C T

By supporting the valid and transaction time dimensions, bitemporal databases represent reality

more accurately than conventional databases. In this paper we examine the issues involved in

designing efficient access methods for bitemporal databases and propose thepartial-persistence

and thedouble-tree methodologies. The partial-persistence methodology reduces bitemporal

queries to partial persistence problems for which an efficient access method is then designed. The

double-tree methodology “sees” each bitemporal data object as consisting of two intervals (a valid-

time and a transaction-time interval), and divides objects into two categories according to whether

the right endpoint of the transaction time interval is already known. A common characteristic of

both methodologies is that they take into account the properties of each time dimension. Their

performance is compared with a straightforward approach that “sees” the intervals associated with

a bitemporal object as composing one rectangle which is stored in a single multidimensional access

method. Given that some limited additional space is available, our experimental results show that

the partial-persistence methodology provides the best overall performance, especially for

transaction timeslice queries. For those applications that require ready, off-the-shelf, access

methods the double-tree methodology is a good alternative.
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1. Introduction

Conventional database systems capture only a single snapshot of the modeled reality. While

serving many applications well, they are not sufficient for applications that require the support of

time-varying information (past and/or future data). Instead,temporal database systems have been

proposed as they can store and query temporal data through the support of two orthogonal time

dimensions: thevalid andtransaction times [OS95].

According to [J+94], “the valid time of a fact is the time when the fact is true in the modeled

reality”. Transaction time on the other hand refers to the time when a new value is posted to the

database by a transaction. A temporal database is categorized as transaction-time, valid-time or

bitemporal, according to which temporal dimension(s) it supports.

The transaction time dimension represents the history of a database activity rather than real

world history. Transaction times are system generated and monotonically increasing1. Since it is

impossible to change the past, transaction times cannot be changed and there is no way to correct

errors in past tuples. A valid-time database maintains the entire history of an enterprise as best

known now, i.e., it stores the current knowledge about the past and future. Any errors discovered

in this history, are corrected by modifying the database. When a correction is applied, previous val-

ues are not retained; therefore it is not possible to view the database as it was before the correction.

Clearly both time dimensions are needed in order to accurately model reality. In a bitemporal

database one can query tuples that are valid at some (valid) time, as known at some other (transac-

tion) time. A variety of applications can benefit from the support of valid and transaction time

[OS95]:

(a) accounting, marketing, tax-related, billing applications [W82]. The retroactive/postactive

changes that occur in such applications require the support of the valid-time dimension. For audit-

ing purposes transaction time is also needed (so that no one can “alter” recorded data). In a tax

application, we may want to find what tax laws were valid when a tax return was filed. Similarly,

a billing system should be able to issue corrections on past records and keep track of when this cor-

rection was made effective (retroactive salary increases etc.)

(b) social/medical applications [F72]. A physician makes decisions on a patient based on the

patient’s history as best known when the decision is made (by looking at the hospital database).

Patient information though can be recorded at various times. The validity of a decision can be test-

ed only against the information on which it was made.

1 Here we concentrate onlinear transaction time (as opposed tobranching transaction time [OS95]).
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(c) financial/stock-market applications [A92]. A broker makes recommendations to clients

based on the information available at the time of the recommendation. However, due to delays, not

all data is presented at real time to the broker. The correctness of a given recommendation can be

tested only against the knowledge available to the broker when the recommendation was made.

Bitemporal data tends to increase in size as transaction time proceeds, making the need for ef-

ficient indexing more crucial than in conventional databases. While much work has been done

recently on access methods that support a single time axis, not much has been done for bitemporal

indexes, i.e., methods that support both transaction and valid time dimensions on thesame index.

In this paper we examine the issues involved in designing efficient bitemporal access methods

and propose two methodologies for constructing such methods. The partial-persistence methodol-

ogy starts with a data structure that can efficiently address the valid-time dimension of a bitemporal

query and makes it partially persistent [DSST89] so as to address the transaction-time dimension,

too. We discuss two examples based on this methodology: theBitemporal Interval Tree and the

Bitemporal R-Tree. The double-tree methodology assigns bitemporal objects intwo categories ac-

cording to their transaction-time behavior and uses a separate (tree-based) access method to store

objects in each category.

The Bitemporal Interval Tree was introduced in a workshop paper [KTF95] where we present-

ed initial performance results as related to a small class of bitemporal queries. Here we present a

more thorough coverage of the general bitemporal index design problem. For completeness, we

also provide an outline of the Bitemporal Interval Tree. The additional contributions of this paper

are summarized as:

(1) the introduction of the Bitemporal R-Tree, whose implementation provides the
best overall performance for bitemporal queries in our experiments;

(2) the optimization of the Bitemporal R-Tree based on various merging and splitting
policies and two representations (intervals and points);

(3) in addition to the “timeslice” query of [KFT95], this paper examines various other
bitemporal query classes and uses a larger collection of test experiments.

A by-product of this research is a method to maintain a disk-based partially persistent ordered list

(Appendix A). The rest of the paper is organized as following: section 2 discusses the bitemporal

environment and section 3 presents previous work. Section 4 describes the principles of the pro-

posed methodologies. Sections 5 and 6 elaborate on access methods derived from the partial

persistence methodology, namely the Bitemporal Interval Tree and the Bitemporal R-Tree. Section

7 presents the experimental results. Conclusions and problems for further research are in section 8.
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2. The Bitemporal Environment and its Queries

We start with a description of temporal databases with a single time dimension (transaction or

valid) and continue with a bitemporal database (for a thorough coverage we refer to [SA86]). We

also introduce a classification for bitemporal queries which is used throughout the paper [SJ96].

Consider an initially empty set of objects that evolves over time according to the following

rules: time is always increasing and at each time instant one (or more) changes may happen. A

change is an object addition or deletion. An object is calledalive from the time it is added in the

set until (if ever) it is deleted from the set. The state of the evolving set att, namelys(t), consists

of all the alive objects att. Changes are always applied on the most current states(t). This evolution

model can also support object attribute modifications, since a modification can be represented by

the artificial deletion of the alive object followed by the simultaneous re-insertion of this object

having modified attribute(s). For simplicity we concentrate only on object additions/deletions.

Assume that the above evolution is to be stored in a database system. Since time is always in-

creasing and the past is not changed, a transaction-time database system can be utilized, with the

implicit assumption that when an object is added in, or, deleted from the evolving set at timet, a

transaction with the same timestampt updates the database system about this change. This process

associates with each object a transaction-time interval [t1, t2), wheret1 is the transaction time when

this object was entered in the database (transactioninsertion time), andt2 is the time the object was

deleted (transactiondeletion time). As the future is unknown, when an object is added its deletion

time t2 is yet not known. So typically, an object is inserted in the database with a transaction inter-

val of the form: [t1, now) wherenow is a variable representing the current time. If this object is later

deleted, its transaction-time interval is updated with the appropriate deletion time.

A valid-time database has a different abstraction. Consider a dynamic collection of objects

where associated with each object is a valid-time interval. This interval represents the validity pe-

riod of some object property. The only time dimension defined is that of the valid-time intervals.

Changes may happen to this collection, where a change is the addition/deletion or modification of

an object. Changes are not timestamped and when a deletion or modification occurs, the previous

object isnot retained in the database. Hence a valid-time database keeps only the most current col-

lection of objects. If we consider the order implied by the relative position of the valid-time

intervals on the valid-time axis as a (valid-time) history, then a valid-time database represents this

history as “best known now”.

In a bitemporal environment both time dimensions exist. To better clarify their differences,

consider an application that keeps track of a company’s contracts. A contract is of the form: (c, I),
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wherec is some contract identifier andI is the contract duration interval. IntervalI corresponds to

an interval on the valid time axis and the contract is an example of an object. The contract infor-

mation is recorded in the database at some transaction timet that is orthogonal to intervalI. For

example at timet we may record past, current or even a future contractI. (According to [S+94] this

example will create abitemporal-state table). Ahistory timeslice (denoted byht(t)) contains the

history (in the valid-time domain) of the company’s contracts as best known at timet (Figure 1).

It is possible that at a later transaction time , some previously recorded contract interval is

found to be erroneous (for example, a contract has shorter duration in reality than what was record-

ed, or should have never been recorded) or a proactive/retroactive change modifies the interval of

some recorded contract to a new one. As a result a new history timesliceht( ) is created to reflect

these changes. The evolution of the company is best represented if allht’s are retained and can be

queried. A bitemporal database can therefore be “visualized” as a series of history timeslicesht(t),

each marked by some transaction timet and consists of a collection of valid-time intervals. In gen-

eral the two time axes are orthogonal: the transaction time at which a new historical timeslice is

created is irrelevant to the intervals reported on the timeslice, which can be earlier, current or later

than this time (especially since future contracts can also be recorded).

Since access methods are closely related to the queries they are designed for, we conclude this

section with a notation scheme (proposed in [SJ96]) used to classify bitemporal queries. For our

purposes an object is characterized by threeentries: a non-temporal key (e.g., the contract identifier

c), a valid-time interval and a transaction-time interval. In general an object may have many non-

temporal attributes but for simplicity we assume only one.

A query is classified using the notation:Key/Valid/Transaction. This notation specifies which

Figure 1: A conceptual view of a bitemporal database. Each interval represents a contract; for simplicity no other

contract attributes are shown. Thet-axis (v-axis) corresponds to transaction (valid) times. At transaction

time t1 interval I1 is added onht(t1); then att2 andt3 intervalsI2 andI3 are added in history timeslices

ht(t2) andht(t3) respectively. Att4 intervalI2 is deleted, while att5 intervalI1 is modified.
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entries are involved in the query and in what way. Each entry can be described as a “point”,

“range”, “* ,” or “-”. A “point” for the Key entry means that the user has specified a single value to

match the key attribute, while “point” for theValid or Transaction entry implies a single time in-

stant is specified for this entry. Similarly, “range” indicates a specified range of values for theKey

entry, or, an interval for theValid/Transaction entries. A“*”  means that any value is accepted in

this entry, while “-” means that this entry is not applicable.

A simple bitemporal query is: “find all the company contracts that were valid onv = January 1,

1994, as recorded ont = November 1, 1993” (a “*/point/point” query). The history timeslice on

Nov. 1, 1993 contains all contracts known as of that time; this includes past, current or future con-

tracts with respect to Nov. 1, 1993. From all these, the query retrieves only the contracts that would

be valid on Jan. 1, 1994. One of the most general bitemporal queries is: “for a key rangeK, a trans-

action time intervalP and a valid time intervalE, find all contracts with identifiers in rangeK

whose valid-time interval intersectedE during transaction times inP”; this is an example of a

“range/range/range” query. Note that in general a query may ask for objects with intervals before

or after a given interval; here we only deal with intersection, i.e., the query answer includes all ob-

jects whose intervals intersect the query interval.

3. Previous Work

We begin this section with a short presentation of the performance costs involved in a temporal

access method and continue with a discussion of previous work.

Any access method used to organize time-evolving data is characterized by the following costs:

space (the space consumed by the method’s data structures in order to keep such data),update time

(the time needed to update the method’s data structures for data changes) andquery time (the time

needed to compute a temporal query). All three costs are functions of three basic parameters: the

answer sizea, the number of changesn and the page (block) sizeb. The answer sizea is the number

of objects satisfying the query predicate. The number of changesn corresponds to the total number

of valid-time changes that occur in a bitemporal evolution (thusn is also an upper bound to the

number of transaction-time updates since in general, at a given transaction a number of valid-time

updates is processed). Parametern represents the minimal information needed by any index to per-

form errorless reconstruction of time-varying data. A valid-time change corresponds to either the

insertion, deletion or modification of a valid-time interval. Regarding the page size, we assume that

every secondary memory access transmits one page ofb records and this counts as one I/O.

There are two desirable properties for an efficient access method:index pagination andquery



6

clustering. Index pagination deals with the issue of how well index nodes of a method are paginat-

ed. Query clustering is achieved if records that are “logically” related for a given query can also be

stored physically close; then the query is optimized as fewer pages are accessed.

A variety of temporal access methods have been proposed in recent years. All previous ap-

proaches directly support a single time axis; most methods assume that time is always increasing

and/or updates are always applied on the latest state (i.e., the past is not changed). These are char-

acteristics of transaction-time. Assuming atransaction-time database, a common query is the “*/-

/point” or pure-timeslice query [ST94]. For example: “findall employees recorded as working on

January 1st, 1990”. More general is the “range/-/point” orrange-timeslice query, where the predi-

cate adds a condition on the objects’ attribute space: “find all employees recorded as working on

January 1st, 1990 and whose id’s are in the range (X,Y)”.

Various methods have been proposed to solve the “*/-/point” query [EWK90, JMR91, LM93,

SG89, TGH95, TK95]. These methods keep the time evolution separate from the key space. To

answer “range/-/point” queries, such methods compute first the whole past state and then eliminate

objects outside the requested key-range. In another approach, the whole key space is divided into

predefined key-ranges and the requested “range/-/point” query is computed by solving smaller “*/

-/point” queries on the predefined key-ranges that cover the query key-range.

To better address “range/-/point” queries, a method must combine the time and key spaces

[BGO+93, KS91, LM91, LS89, MK90, S87, VV95]. The optimal solution is provided by the

Multi-Version B-tree (MVB) [BGO+93] and the Multiversion Access method (MVAS) [VV95].

Both useO(n/b) space,  update per change (in the amortized2 sense [CLR90]) and

 query time. Using the transaction-time database abstraction,n represents the to-

tal number of objects ever added or deleted,m denotes the number of “alive” objects when an

update takes place anda represents the answer size to a “range/-/point” query. Using improved

merge/split policies, the MVAS [VV95] has a smaller constant in the space bound which in prac-

tice results in lower space. The Time-Split B-tree (TSB) [LS89] is more space efficient, but it can

guarantee worst case query performance only when the evolution contains no deletions.

Obviously, a method that can efficiently address a “range/-/point” query can also address a “*/

-/point” query with the same efficiency. However, by combining the time and key spaces such a

method requires logarithmic update time which is not needed for the “*/-/point” query. The Snap-

shot Index [TK95] optimally solves the “*/-/point” query using constant instead of logarithmic

updating (in an expected amortized sense).

O mblog( )

O nblog a b⁄+( )

2 This means that some changes could require more than  update processing, but for any sequence ofk changes no more than a total
of  time will be required.

O mblog( )
O k mblog( )
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Two common queries in avalid-time database are the “*/point/-” and the “*/range/-” (find all

objects whose valid interval contains a time instantv, or respectively, intersects a given intervalE).

The first query has been termed thepoint enclosure and the second theinterval intersectionquery.

The combination of dynamic interval insertions and (physical) deletions with the above queries is

known in the computational geometry literature as thedynamic interval managementproblem. The

best main-memory solution for the dynamic interval management problem is achieved using the

priority search tree [Mc85] or theinterval tree [E83], yieldingO(k) space,  update pro-

cessing per change (addition or deletion of a valid interval) and  query time. Herek

corresponds to the number of intervals in the structure when the query is asked anda is the size of

the answer. Depending on the query predicate,a corresponds to the number of intervals containing

the query instant or the number of intervals intersecting the query interval. It has been proved that

this is the optimal solution in a main memory environment.

Until very recently finding an I/O optimal solution even for the simplest of the valid-time que-

ries (“*/point/-”) was an open problem [KRVV93]. In [AV96] such optimal solution is presented

but it is rather complex to be practical (it is I/O optimal since it usesO(k/b) space,  up-

date time and  query time). Note that for I/O’s  is different than

 since the page sizeb is not a constant but another problem parameter. The problem

becomes more difficult if an object key range is included in the predicate (creating a “range/point/

-” or a “range/range/-” query). One could use an R-tree [G84] to dynamically store valid intervals.

While such approach may be practical for many applications, recall that R-trees useO(k/b) space

and  time for interval insertion, but interval deletion and search can in the worst case be

O(k/b). Searching for an interval implies following all R-tree index nodes that overlap this interval.

At worst the whole tree may have to be searched.

Among the single time axis approaches, the work in [KS91] fallsbetween transaction and valid

time databases. This method associates with each temporal object an interval whose both endpoints

are known and uses the SR-tree (a variation of an R-tree [G84]) to store and query such intervals.

The method is optimized towards insertions of intervals and searches. Interval deletions may be

problematic since intervals are split in many segments, making their update more difficult. As men-

tioned in [KS91] such interval deletions would correspond to “revising” the history, hence they are

not critical for an index for historical data. This is the case for transaction time databases but not

for valid-time ones. However, when data objects are added in the SR-tree both of their interval end-

points are known (which is not the case for transaction-time).

If we view the SR-tree as a transaction-time structure, new objects can be inserted with interval

O k2log( )

O k2log a+( )

O kblog( )

O kblog a b⁄+( ) O kblog a b⁄+( )

O k2log a+( )

O kblog( )
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[t1, now) wherenow is some very large number. The performance would degrade for two reasons:

excessive overlapping and frequent deletions (which would be needed when an [t1, now) interval

is updated to [t1, t2)). Alternatively, newly inserted objects whose intervals have “unknown” right

endpoints would have to be kept in a separate structure (such structure is not described but it could

be some variation of an R-tree). The SR-tree could be used for valid time databases if the interval

associated with each object corresponds to the object’s valid time interval. However, in this envi-

ronment deletions of intervals are possible, hence intervals would have to be physically deleted

from the structure frequently.

In our double-tree methodology, bitemporal objects are transferred from one access method to

another when the right endpoints of their transaction time intervals become known. This object mi-

gration is reminiscent of the Dual-Root Mixed Media R-tree proposed in [KS89]; however, as it is

explained in section 4.1, these approaches address different problems. We proceed by describing

our methodologies for designing bitemporal access methods.

4. The Proposed Methodologies

In designing methods for bitemporal queries there exist some obviously inefficient approaches. At

one extreme, one could explicitly store the wholeht(t) at each transaction timet (Fig. 1). The

disadvantage of this solution is the space and update requirements. At the other extreme, one could

store all updates on a sequential log, but this has prohibitive query performance. A hybrid solution

stores wholeht’s everyl-th transaction and the update sequence between subsequent timeslices. If

the distance between timeslices is fixed the hybrid method would behave like one of the two

extremes depending on the choice ofl. Note that in this paper we assumeno query locality3 which

implies thatl cannot change according to the queries asked. Another solution would be to index

bitemporal objects only on transaction time and use a single time access method. Then a bitemporal

query is answered in two steps: first all objects existing at transaction timet are found and then the

valid time interval of each such object is checked whether it includes valid timev.

In another straightforward approach, a bitemporal object is represented by a “bounding rectan-

gle” created by the object’s valid and transaction-time intervals, that is stored in asingle

multidimensional index (Figure 2). Due to the characteristics of transaction time (unknown future),

a bitemporal object with valid-time intervalI which is inserted in the database at transaction time

t, is represented by a rectangle with a transaction-time interval of the form [t, now). Herenow is a

variable that represents the current transaction time and extends to “infinity” or “forever”. If this

3 This assumption distinguishes this work from incremental computation [JMR91] where query locality is shown to provide better query
performance than indexing.
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object is deleted or modified at some  its corresponding rectangle is removed from the

access method and a new rectangle with transaction-time interval [ ) is inserted. As an example,

a “*/point/point” query translates into finding all rectangles that include the query point(ti, vj).

For comparison purposes we have implemented this approach and tested it against our proposed

methodologies. Since in the implementation we use a single R*-tree [BKKS90] as the multidimen-

sional access method, we refer to this straightforward approach as the1-R approach. While the 1-

R approach has the advantage of using a ready, off-the-shelf access method, it has a major disad-

vantage due to the large overlapping caused by rectangles whose right-end extends to (transaction-

time)now. This overlapping affects both updating and querying.

Some applications require the support of valid timenow, i.e. valid intervals whose right end-

point is the always moving current time. One solution would be to treat such special intervals as

ending to a specialvalid-now variable and keep them together with the regular valid intervals. In-

ternallyvalid-now is stored as the largest value in the valid time domain. To evaluatevalid-now, a

reference to current time is needed which we assume is given as another query parameterr. Con-

sider a query about transaction timet, valid timev and parameterr. All valid intervals inht(t) that

containv will be accessed, including those that start beforev and end invalid-now. Despite perfor-

mance degradation due to extended overlapping, this approach is problematic if  because none

of the accessed special intervals qualifies for the answer. Thus, if an application has many intervals

ending to validnow, a better solution is to keep such intervals in a separate structure which will be

accessed only if . Such structure is a simple variation of the structures presented here since if

special intervals are stored separately, only their start points are needed. We thus proceed with the

discussion of the proposed methodologies as if all valid-time intervals are regular ones.

4.1 The Double-Tree Methodology

Our double-tree methodology avoids the above overlapping problem while retaining the advantage

t' t' t>( )

t t',

t

v

t1 t2 t3 t4 t5

Figure 2: The bounding-rectangle (1-R) approach; only the valid and transaction axis are shown. The evolution of

Fig.1 is depicted, as of (transaction) timet > t5. The modification of intervalI1 at t5 ends the initial rect-

angle forI1 and inserts a new rectangle fromt5 to now.
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of using off-the-shelf access methods. For its implementation we use two R*-trees and in the rest

we refer to it as the2-R methodology (in general various other multidimensional access methods

could be facilitated).

When a bitemporal object with valid-time intervalI is inserted in the database at transaction-

time t it is inserted at thefront R-tree. The front R-tree keeps bitemporal objects for which the right

transaction endpoint is unknown. If a bitemporal object is later “deleted” at some transaction time

 it is physically deleted from the front R-tree and inserted as a rectangle of heightI and

width from t to  on theback R-tree. The back R-tree keeps bitemporal objects with known trans-

action-time interval (Figure 3). At any given time, all bitemporal objects stored in the front R-tree

share the property that they are “alive” in the transaction-time sense. The temporal information of

every such object is thus represented simply by a vertical (valid-time) interval that “cuts” the trans-

action axis at the transaction-time this object was inserted in the database. Insertions in the front

R-tree objects are in increasing transaction time while physical deletions can happen anywhere on

the transaction axis.

As an example, “*/point/point” query about(ti, vj) is answered with two searches. The back R-

tree is searched for all rectangles that contain point(ti, vj). The front R-tree is searched for all ver-

tical intervals which intersect a horizontal intervalH. Interval H starts from the beginning of

transaction time and extends until pointti at heightvj (Figure 3). To support “range/range/range”

queries, an additional third dimension for the key ranges is added in both R-trees.

     The usage of two R-trees reminds the Dual-Root Mixed Media R-tree proposed in [KS89]

as a mixed-media index that stores intervals and consists also of two R-trees. The first R-tree is

contained on magnetic disk while the second R-tree is on the optical disk except for its root which

is always stored on the magnetic disk. Insertions are made to the first R-tree. When it reaches a

t' t' t>( ),
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Figure 3: In the 2-R methodology, bitemporal data is divided according to whether their right transaction endpoint

is known. The scenario of Fig. 2 is presented here (i.e., after timet5 has elapsed). The left 2-dimensional

space is stored in thefront R-tree while the right in theback R-tree. The query is then translated into an

interval intersection and a point enclosure problem, respectively.
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threshold, avacuuming process completely vacuums all its nodes (except the root) and inserts them

to the optical disk using the second R-tree. Note however that there is no notion of transaction and

valid time. Instead, each object is associated with an object key and a single time interval. Both

endpoints of the interval are known at the insertion of a new object. If intervals represent transac-

tion times then the right endpoints are not known at insertion. If intervals represent valid time then

interval deletions should be supported (however it is not clear how this can be achieved if an inter-

val to be deleted has already been migrated to a write-once read-many optical disk). Object

migration in [KS89] is batched and depends on the size of the first R-tree. In our approach an in-

terval-object is migrated to the back R-tree automatically when it is deleted on the transaction-time

axis. Finally, in the Dual-Root Mixed Media R-tree approach both R-trees store similar kind of ob-

jects. In our 2-R approach thefront R-tree stores a valid interval and a transaction time per object

while theback R-tree stores a rectangle (transaction/valid intervals) per object.

4.2 The Partial-Persistence Methodology

This methodology emanates from the abstraction of a bitemporal database as a sequence of history-

timeslicesht (Figure 1). It reduces bitemporal queries to problems of partial persistence. A data

structure is calledpersistent [DSST89] if an update creates a new version of the data structure

while the previous version is still retained and can be accessed. Otherwise, if old versions are dis-

carded the structure is termedephemeral. Partial persistence implies that only the newest version

can be modified (i.e., changes are applied only to the newest version), while in full persistence ev-

ery version can be modified.

Partial persistence “suits” nicely with linear transaction time since changes are always applied

on the latestht. Our methodology has two steps. First, a good ephemeral structure is chosen to rep-

resent eachht. This structure must support dynamic addition/deletion of (valid-time) interval-

objects; the supported queries depend on what bitemporal queries need to be answered. Second,

this structure is made partially persistent. [DSST89] shows how to make any linkedmain-memory

ephemeral data structure partially (or fully) persistent. Since in temporal databases the major por-

tion of data will be stored on a disk-based environment, issues like I/O, pagination and query-

clustering have to be efficiently addressed when designing the bitemporal access method. In addi-

tion, the chosen ephemeral structure should be space efficient since partial persistence can only add

to the space requirements of the structure.

By “viewing” a bitemporal query as a partial persistence problem, we obtain adouble advan-

tage. First we disassociate the valid-time requirements from the transaction-time ones. More
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specifically, the valid time support is provided from the properties of the ephemeral structure while

the transaction time support is achieved by making this structure partially persistent. Conceptually,

this methodology provides fast access to theht of interest on which the valid-time query is then

performed. Second, changes are always applied on the most current state of the structure and last

until updated (if ever) at a later transaction time.

We use the partial-persistence methodology to design two bitemporal access methods, namely

the Bitemporal Interval Tree and the Bitemporal R-Tree.

The Bitemporal Interval Tree is designed for the “*/point/point” and “*/range/point” queries.

Answering such queries implies that the ephemeral data structure should support “*/point/-” and

“*/range/-” queries, respectively. As mentioned earlier constructing a method with good worst case

behavior even for the simpler of the valid-time queries (“*/point/-”) is a difficult problem

[KRVV93, AV96]. Ideally we need a practical external ephemeral structure that provides the I/O

optimal solution for these problems. In the absence of such method we use amain-memory data

structure with goodworst-case performance, and make it partially persistent and well paginated.

Among three possible ephemeral candidates, i.e., the Interval Tree [E83], the Segment Tree [B77]

and the Priority Search Tree [Mc85], we use the Interval Tree. We did not use the Segment Tree

since it needs more than linear space (fork intervals the space is ) and would increase

the overall space. The Priority Search Tree could be another choice but it has a disadvantage over

the Interval Tree. Partial persistence keeps copies of all structural updates in an evolving ephemeral

structure. Each update to the Interval Tree involves some logarithmic searching and two structural

updates. In contrast, each update to the Priority Search Tree involves a logarithmic number of

structural updates which would increase the space of the partially persistent structure.

The Bitemporal R-Tree is designed for the more general “range/point/point” and “range/range/

point” bitemporal queries. For that purpose, the ephemeral data structure must support range point-

enclosure and range interval-intersection queries on interval-objects. Since neither a main-memo-

ry, nor an external data structure exists with good worst-case performance for this problem, we use

the R-tree [G84], an access method that has goodaverage-case performance and is well-paginated.

Making an R-tree partially persistent resulted to the Bitemporal R-Tree.

By its nature, partial persistence provides efficient access to the appropriate history timeslice

ht(t). Thus the Bitemporal Interval Tree and the Bitemporal R-Tree are optimized towards bitem-

poral queries that involve transaction-timeinstants instead of transaction-timeintervals. While not

all ht’s are explicitly stored, partial persistence relies on some limited copying of bitemporal ob-

O k k2log( )
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jects. To answer queries that involve transaction-time intervals with the Bitemporal Interval Tree

or the Bitemporal R-Tree, special care is needed during searching (due to the above copying pro-

cess). In particular, the worst case query performance of the Bitemporal Interval Tree is only

guaranteed for “*/point/point” and “*/range/point” queries. This is not an issue for the Bitemporal

R-Tree since it only provides good average case performance.

We conclude with an interesting observation. Partially persistentmultidimensional access

methods (like the Bitemporal R-tree) have yet another application. They can be used to efficiently

index data cubes [HRU96] whose one dimension is time (i.e., time-evolving data cubes).

5. The Bitemporal Interval Tree
There are various main-memory implementations of an Interval Tree [E83]. The semi-dynamic

implementation [M84] presumes that interval endpoints take values from a known universeU and

uses a full binary tree as the basic (backbone) data structure. In the fully-dynamic implementation

[M84] no universe knowledge is assumed, but a data structure that supports rotations is used (red-

black binary tree [CLR90]). We used the semi-dynamic implementation because it is easier to

make partially persistent and well-paginated. Hence, the Bitemporal Interval Tree (BIT) as

presented here is more efficient for bitemporal queries whose predicate valid timev (or valid

interval E) satisfies  (respectively ). For simplicity assume .

Queries on valid time instants outside  are still answered, but their performance is not as efficient.

Let S be a set ofn intervals with endpoints fromU. An Interval Tree for setS with respect to

U, consists of a (backbone) full binary treeT with V leaves and a number of lists (Figure 4). Each

leaf is labeled with one element fromU. Each non-leaf nodeu is assigned a valueval(u) that serves

in directing the search from nodeu to its subtrees. Every interval [l, r) from S is associated with a

single non-leaf nodeu of T, whereu is the node that containsl andr in its left and right subtrees

respectively [S89]. Intervals associated with some nodeu are kept in two doubly-linked lists:L(u)

andR(u). L(u) (respectively,R(u)) keeps the intervals in increasing (decreasing) order of their left

(right) endpoint. For fast insertion/deletion, each list is implemented using a balanced binary tree

(not shown in Fig.4). Inserting an interval [l, r) in the Interval Tree is easy: starting from the root

of T, find the first nodeu such thatl < val(u) < r. Thenl is inserted inL(u) andr in R(u). Searching

for u would at most need to go down a path of the interval tree, thus it takesO(log2V). Inserting in

each list takes at mostO(log2n) time. Deleting an interval is done in a similar way. Since every in-

terval fromS is kept in a single nodeu the space used by all the lists isO(n). In addition,O(V) space

is used for the backbone binary search tree.

v U∈ E U⊆ U 1 2 … V, , ,{ }=

U
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For simplicity we discuss the point-enclosure query. Intervals containing an instantv are found

in O(log2V + a) comparisons, wherea is the number of such intervals. Letp be the path inT from

the root to the leaf labeledv. For every nodeui in p the algorithm checks whether v < val(ui) or v >

val(ui). If v < val(ui) thenv emanates from the left subtree ofui and all intervals assigned toui have

right endpointsr that extendv (r>v). Each such interval would contain queryv, if and only if, its

left endpointl is beforev (l<v). These left endpoints already exist in increasing order in listL(ui)

and hence the algorithm simply has to traverse listL(ui) starting from the first endpoint and until

the endpoint greater thanv is found. No other endpoints need to be read from this list since they

correspond to intervals starting afterv. A similar argument holds when . The

lists ofp, traversed by the query are thequalifying lists for this query.

The key property of the Interval Tree is that it transforms interval insertions/deletions to inser-

tions/deletions of their endpoints in ordered lists. If everyht of Figure 1 is stored using an Interval

Tree, the evolution of valid-time intervals as transaction time proceeds is transformed to evolutions

of ordered lists. The first step in designing the Bitemporal Interval Tree is to make all node lists

partially persistent. To answer a “*/point/point” query for transaction timet and valid-timev, the

backbone treeT of Figure 4 is first searched for the leaf with valuev. For each node visited the left

or right list is “rollback” to the state it had at transaction timet. Thenv is searched on the past state

of such lists. While this is a correct high-level description of how our method works, it is a simpli-

fication. There are additional issues that have to be addressed, mainly how to paginate the

backbone tree when combined with the partially persistent lists.

Let X be an ephemeral ordered list, similar to a node list of the Interval Tree. As (transaction)

time proceeds,X(t) denotes the ordered sequence of elements the list had att. The inclusion of time

in the problem creates a transaction interval [t1, t2) for each list element, wheret1 is the time the

element was added in the current list andt2 is the time (if ever) this element was deleted from the

current list. For allt in [t1, t2) this element is called “alive” inX(t). We need a well paginated and

easily updated structure to keepX(t) overt, and efficiently address the query: given (transaction)

Figure 4: An Interval Tree withU = {1,..., 8}

andn = 5 intervals. The backbone binary treeT

and the doubly-linked lists are shown. The

value of each node appears inside the node. The

left/right lists for the root node contain the end-

points of (2,6), (2,5) and (3,8).
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time t, find the elements fromX(t) that are less thanv (which corresponds to some valid time).

This problem is aspecial case of the “range/-/point” query. An obvious solution would be to

use the MVB [BGO+93](or MVAS [VV95] or TSB [LS89]) tree and store X(t) on its leaf pages,

but this would create an extra overhead in the Bitemporal Interval Tree query time. Searching a list

must always start at the root of the MVB structure, for a  query time overhead per qual-

ifying list. Note that we only need access to the leaf pages which contain the elements of listX(t)

in order, starting from the beginning of the list. The MVB (MVAS, TSB) structure cannot explic-

itly achieve this since its leaf pages are not connected. For a given leaf page there is not a single

next sibling page. Rather, asX(t) evolves the next sibling page varies over time.

In AppendixA we provide a solution that searches a givenX(t) starting from the first page that

the list had att. With this solution the history of every node list in the Interval Tree is abstracted

by an ordered arrayHT which provides access to the first page of the list at each time; the other

pages of the list are accessed by appropriate pointers. The first list page at somet is found by a

logarithmic search that locates the entry ofHT that is closest tot. This search still takes

query time, but this overhead can be avoided by “synchronizing” all the lists of the Interval Tree.

The main idea in “synchronization” lies on the fact that a query is answered by following a path

on treeT (Figure 4). Consider for example a query for valid timev=3 and transaction timet. This

query uses the path leading tov=3, i.e., the path created by nodes 4.5-2.5-3.5. Answering this

bitemporal query means that the left list of node 4.5 is first rollback (paying a cost of

to searcht in the list’sHT array) then the right list of node 25 and finally the left list of node 3.5.

Our aim isnot to “pay” additional  query costs for locatingt in theHT arrays of the lists

in 2.5 and 3.5. Instead the search on the firstHT should provide enough information (in the form

of pointers) as wheret is located in the lists below. The way to achieve this is by a variation of the

“backward” updating technique we use in AppendixA, for making a list partially persistent. This

technique is now used “vertically”, on tree paths. When theHT array of a node list is very active

creating many entries (if this list is very active or if the first page of the list changes often) theHT

arrays on the parent node lists are informed (every some constant number of new entries).

Synchronization is combined with the overall pagination (for details we refer the reader to

[KTF95]). The Bitemporal Interval Tree computes “*/point/point” and “*/range/point” queries in

 I/O’s. The space isO((n+V)/b); the update is amortized

I/O’s per change. Herem is the number of intervals contained in the current timesliceht() when the

update is performed. The stated query performance is for queries with valid-time predicates includ-

O nblog( )

O nblog( )

O nblog( )

O nblog( )

O Vblog nblog a+ +( ) O m V+( )
b

log( )
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ed in setU. To represent the whole universe of valid times we add special elements  and  (the

“from-ever” and “for-ever” notions on valid time) and setsU+ andU-, that represent the finite ele-

ments which are greater/less than the maximum/minimum element ofU respectively ([KTF95]).

For queries wherev belongs toU+ (or U-) the query time becomes ;e corre-

sponds to the number of elements that the list of nodeU+ (U-) had at query timet. The

component is for rolling back this list to transaction timet and theO(e/b) component is for search-

ing it. At worst alle elements have to be checked but not all contribute to the answer.

6. The Bitemporal R-Tree

The Bitemporal Interval Tree guarantees good worst case query and update performance but has

various limitations. Inherently from the interval tree, each object is kept in two places (the left and

right node lists) thus doubling the space. The current implementation provides the good

performance for “*/point/point” queries that are inside a known valid time universeU; e.g., the

method is not completely dynamic since its performance is “focused” on a particular area of valid

time queries. Directly associated with the universe size is the size of the backbone treeT; a large

U will make the space overhead due to treeT significant as related to the total number of changes

n. Hence it is primarily for applications with small valid-time focus of interest as related to the size

on the transaction time (which is related to the number of changes).

The above limitations emanate from our choice to represent eachht with an Interval Tree. To

overcome this problem weease the requirement for good worst case performance and apply the

partial persistence methodology to a more robust structure that supports interval intersection que-

ries with good average performance.

An excellent choice for such structure is the R-tree [G84] since it is also well-paginated and

uses linear space. While its worst case update and query performance are large, the ephemeral R-

tree has been shown to work rather satisfactorily in practice: on average,  I/O’s per in-

terval update and  I/Os for interval intersection queries (as beforek corresponds

to the number of intervals in the tree anda is the size of the answer to an interval intersection que-

ry). Multidimensionality is another advantage of the R-tree. Adding a separate dimension for the

key attribute of each interval-object, allows the R-tree to efficiently address queries of the form:

“find all intervals intersecting a given intervalE and whose keys are in a given rangeK”.

Partial persistence coupled with the R-tree’s multidimensionality enable the Bitemporal R-Tree

to answer efficiently “range/range/point” queries. Using partial persistence the R-tree representing

∞− ∞

O n e b⁄+blog( )

O nblog( )

O kblog( )

O kblog a b⁄+( )
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the history timesliceht(t) is first conceptually accessed. This tree is then searched top-down to an-

swer the “range/range/-” part of the bitemporal query. This top-down search is conceptually

equivalent to searching an ephemeral R-tree that stores the intervals ofht(t).

Another possible multidimensional structure which handles intervals is the Segment R-tree

(SR-tree) [KS91]. We did not use the SR-tree since its ephemeral form uses more than linear space

to the number of intervals stored in it. This would only increase the overall space of a partially per-

sistent SR-tree. In addition, the ephemeral SR-tree has been designed to support mainly interval

additions. Interval deletions were assumed to be infrequent [KS91] and are not supported as effi-

ciently (they require finding all possible segments of the deleted interval in the SR-tree). This is

not the case in bitemporal applications where intervals can be updated frequently.

An R-tree [G84] is an external, dynamic, balanced multiway tree that stores multidimensional

objects. Each node corresponds to a disk page. For simplicity let each data object being specified

as adegenerated 2-dimensional rectangle that has a key attribute (which may not be unique) in one

dimension and an interval on the other (corresponding to a valid-time interval). Such a data object

is stored in a leaf page as adata record with three fields: its key and the two interval endpoints.

Each leaf page is associated with a bounding, 2-dimensional rectangle that whose area contains all

rectangles in the page. Non-leaf pages containindex records of the form(r, child_pointer) where

child_pointer is the address of a lower tree page andr is the covering rectangle of the lower page.

If more dimensions are used to represent data objects the dimensionality ofr increases analogous-

ly. As with a B+-tree an R-tree page is at least half and at most completely full of records.

In making the ephemeral R-tree partially persistent we can use ideas from previous work on

partially persistent B+-trees, in particular MVB-tree [BGO+93] (and its improvement the MVAS

[VV95]) and the Time-Split B-tree [TSB89]. This is because both B+ and R-trees are multiway-

balanced structures that evolve through page splits and merges. There are however differences that

affect the implementation of the Bitemporal R-tree. In contrast with a B+-tree, the R-tree does not

keep a linear order among the objects it stores thus creating various possible merging policies. Fur-

thermore, it is likely to have object insertions or deletions on an R-tree page that do not cause a

page overflow or underflow but may still change the bounding rectangle associated with this page

and provoke further changes on its ancestors. Finally, the multidimensionality of the ephemeral R-

tree and the specifics of valid-time allow for various optimizations on the performance of the

Bitemporal R-tree that should be examined.

The design of the Bitemporal R-Tree was influenced by the MVB and MVAS trees. We did not
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use the Time-Split B-tree since it is geared towards applications where the most frequent changes

are object insertions and updates. Object deletions are less frequent (step-wise constant data

[LS89]). Each version of an R-tree data record would then be associated with only one timestamp.

For a newly inserted record the timestamp stores the record’s insertion-time; subsequent record up-

dates create new versions of the record, each timestamped with the time of the update. Deletions

are implicitly represented by some special value. Adapting the [LS89] policies for the Bitemporal

R-tree would use less overall space as compared with the MVB and MVAS approaches (one reason

is that pure key-splits are allowed); however some of the queries may not be as efficient especially

if bitemporal object deletions are frequent. We did not follow this approach but it is an interesting

avenue for further research (in particular the effect of pure key-splits on the R-tree updating).

Subsection 6.1 provides an overview of the Bitemporal R-Tree and subsection 6.2 presents the

optimizations we performed for tuning its performance.

6.1 Method description

The structure of the Bitemporal R-Tree is a directed acyclic graph of pages. Conceptually it stores

the various states that the initial ephemeral R-tree assumes through its transaction-time evolution.

As a result, the graph embeds many R-trees and has a number of root pages. Each root is respon-

sible for providing access to a subsequent part of the ephemeral R-tree’s evolution.

Data records in the Bitemporal R-Tree leaf pages maintain the transaction-time evolution of the

corresponding R-tree data records. Each record is thus extended to include two additional fields:

insertion-time anddeletion-time, representing the transaction-time that the corresponding R-tree

record was inserted and logically deleted in the bitemporal database. Similarly, index records in

the non-leaf pages of the Bitemporal R-tree maintain the evolution of the corresponding index

records of the ephemeral R-tree and are also augmented with insertion-time and deletion-time

fields. Therefore each record has a transaction interval during which it is calledalive.

Assume that each page in the Bitemporal R-tree has a capacity of holdingb records. Similarly

with [BGO+93, VV95], a page is calledalive if it has not beentime-split (see below). With the ex-

ception of root pages, for all transaction-timest that a page is alive it must have at leastq records

that are alive att (q < b). This requirement enables clustering of the alive objects at a given time in

a small number of pages, which in turn will minimize the query I/O.

The first step of an update (insertion or deletion) at the transaction timet locates the target leaf

page in a way similar to the corresponding operations in an ephemeral R-tree. Note that this step

is carried out by taking into account the transaction-time intervals of the index and data records
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visited, i.e., only the latest state of the ephemeral R-tree is traversed. An update leads to astructural

change if at least one new page is created.Non-structural are those updates which are handled

within an existing page. After locating the target leaf page, an insert operation at the current trans-

action timet adds a data record with a transaction interval of [t, now) to the target leaf page. This

may trigger a structural change in the Bitemporal R-tree, if the target leaf page already hasb

records. Similarly, a delete operation at transaction timet finds the target data record and changes

the record’s interval to [insertion-time,t). This may trigger a structural change if the resulting page

ends up having less thanq alive records at the current transaction time as a result of the deletion.

The former structural change is apage overflow; the latter is aweak version underflow [BGO+93].

Page overflow and weak version underflow need special handling: atime-split is performed on

the target leaf-page. This is similar to the time-split of [LS89] or the page copying of [TK95]. The

time-split on a pagex at timet, is performed by copying to a new pagey the records alive in page

x at t. Pagex is considereddead after timet. (We can assume that the deletion-time field of all of

x’s alive records is changed tot even though this is not needed in practice). Then the resulting new

page has to be incorporated in the structure.

Briefly, there are three cases for handling the new pagey [BGO+93]4. First, if the number of

records iny are within a certain specified range,y is directly inserted in the Bitemporal R-Tree

structure. (This specified range is known apriori. In short, the number of records should be between

q+e andb-e wheree is a predetermined constant. Constante works as a buffer that guarantees that

a new structural change to the new pagey can happen only after at leaste new changes). The page

insertion is carried out by accessing the parent page ofx, marking the index record tox as deleted

at the current timet, and inserting a new index record pointing to pagey. (Conceptually this implies

that pagex is dead, i.e., not accessed for times larger thant). Even though these changes occur in

an internal page, they are similar to insertion and deletion of data records in a leaf-page and are

handled identically. Similarly, these insertions and deletions can create new changes up the tree to

the ancestors and so on. The second case is if the resulting pagey has more records than the spec-

ified range; this is called astrong version overflowcondition and is handled by splittingy into two

pages and then accommodating these pages in the structure in a manner similar to the one described

above. The third case is if pagey has less records than the specified range; this condition is called

a strong version underflow and is handled by mergingy with another “sibling” page and then ac-

commodating the new page(s) in the tree.

There are two basic differences in the way the Bitemporal R-Tree is updated as compared to

4 Note that the improved policies of [VV95] are somewhat different in handling pagey.
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the partially persistent B+-tree [BGO+93, VV95]. These differences are:

(1) The single order among the stored elements in a B+-tree creates an order among the tree’s

pages, too. Hence, a B+-tree page has at most two sibling pages and these are the only possible

candidates for this page to merge with, if needed. In comparison, the ephemeral R-tree stores spa-

tial objects and hence the notion of a sibling has to be redefined. Note however that merging in an

ephemeral R-tree is not handled explicitly. If a page goes below the lower number of records due

to deletions this page is not merged with another page. Instead, the records of the underutilized

page are reinserted in the R-tree structure [G84, BKKS90].

The reinsertion method is not feasible in the Bitemporal R-tree, since a persistent structure

“records” all changes that happen in its state. An underutilized page of an R-tree is half full and

thus it can causeO(b) record reinsertions. Each record reinsertion could at worst modify the whole

path in the R-tree (i.e., logarithmic number of changes). Recording all these changes in the Bitem-

poral R-tree will require excessive space. To avoid this problem, the Bitemporal R-tree performs

merging explicitly. Merging with a sibling may still change the whole path but this will happen

once for the under-utilized page. It is an interesting optimization problem to chose with which sib-

ling a page is merged; the various policies we examined are discussed in section 6.2.

(2) The second difference is with the way insertions and deletions are handled when they do

not lead to structural changes. In an ephemeral B+-tree, an insertion to a page that has enough emp-

ty space is simply performed by adding the new key in the page; no parent page is updated. In an

ephemeral R-tree a similar insertion may increase the geometric area covered by the data page.

Then the parent page must also be changed, in particular the rectangle of the index record that

points to the data page (so that the information about previous data page area is not lost). As this

may propagate to the root, an insertion can cause a logarithmic number of updates even though no

new page is added on the ephemeral R-tree.

To avoid recording all these changes, the Bitemporal R-tree simply adjusts the current index

records in ancestor pages without making copies of these records. Consider a given index record

created at timet with some initial rectangle area. At various time instants aftert its rectangle area

is subsequently increased (due to non-structural insertions in the pages underneath) but the record’s

insertion-time remainst. If at a later time  this index record is (logically) deleted, its transaction

interval would be [t, ) and the prevailing rectangle area would be the latest (and largest) this index

record received. A query that follows this index record will provide the correct answer for all times

in [t, ) since the prevailing rectangle area contains all previous ones. Hence the above policy does

t'

t'

t'
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not violate the correctness of the Bitemporal R-tree. Since a non-structural deletion can only de-

crease a page’s overall area the Bitemporal R-tree does not adjust ancestor index records (the

previous rectangle area contains the new one and queries will still be answered correctly).

A high level algorithmic description of the Bitemporal R-tree updating process appears in Ap-

pendix B. We proceed with a discussion on query processing. As with the ephemeral R-tree, query

processing follows a top-down search, starting from some Bitemporal R-tree root. Since updates

can propagate to ancestors, a Bitemporal R-tree root may become full and time-split. This creates

a new root page which in turn may be split at a later transaction time to create another root and so

on. By construction, each root of the Bitemporal R-tree is alive for a subsequent, non-intersecting

transaction-time interval. Efficient access to the root which was alive at timet is possible by keep-

ing an index on the roots, indexed by their time-split times. Since time-split times are in order this

root index is well-paginated.

Answering a bitemporal query on transaction timet has two parts. First, using the root index,

the root alive att is found. This part is conceptually equivalent to accessing timesliceht(t) or, more

explicitly, accessing the ephemeral R-tree representing the intervals ofh(t). Second, the answer is

found by searching this tree in a top-down fashion as in a regular R-tree. This search takes into ac-

count the record transaction interval. The transaction interval of every record returned or traversed

should include the transaction timet, while its valid time interval and its key attribute should satisfy

the valid and key query predicates respectively. Answering a bitemporal query on a transaction

time intervalP = [t, ) is similar. First all roots with transaction interval intersectingP are found.

Starting from the first alive root, Bitemporal R-tree pages are recursively accessed provided that

they have intervals intersectingP. Since the Bitemporal R-tree is a graph, some pages are accessi-

ble by multiple roots. Re-accessing pages can be avoided by keeping a list of accessed pages. This

search method finds all records with transaction intervals that intersectP. Hence it may include

many copies of the same record; the query answer is found by eliminating such copies.

6.2 Performance Tuning

The performance of the Bitemporal R-tree is described by three interrelated parameters: space, up-

date and query-time. The space of the Bitemporal R-tree isO(n/b). Intuitively, this is because our

proposed updating modifications keep the space per update bounded.

Partial persistence implies that the update and query performance of the Bitemporal R-tree are

bound by the performance of the underlying ephemeral R-tree. Intuitively this holds because up-

dates to the Bitemporal R-tree are always applied to the latestht, or conceptually to the most

t'
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current R-tree. Similarly, queries are applied to the appropriateht(t), i.e., as if the ephemeral R-tree

implementinght(t) is traversed. While the worst case query and update performance of an R-tree

are large, R-trees can have good average case behavior and thus adhere to possible optimizations.

Since the ephemeral R-tree stores the valid-time intervals, we perform three optimizations as relat-

ed to the way valid-time intervals are updated or stored. The first two optimizations are based on

choosing merging and splitting strategies. The third optimization is based on the storage represen-

tation of intervals in an R-tree.

Merging policies. The selection of the sibling page with which an underutilized page will merge

is associated with defining a “closeness” metric. We have applied five heuristic criteria.

The first criterion (calledoverlap) chooses as a sibling the currently alive page under the same

parent which has the most bounding rectangle area intersection with the underutilized page. If mul-

tiple pages have the same area intersection, the one needing the least area expansion is chosen.

In the second criterion (min_area), the sibling of a page is chosen to be the currently alive page

under the same parent whose bounding rectangle area needs the least geometricexpansion to in-

corporate (include) the data records of the underutilized page.

The third involves choosing the page which when merged with the underutilized page has the

leastmargin (or perimeter), which is the sum of the lengths of all sides of the bounding rectangle.

The fourth criterion(combined) chooses the page that if merged with the underutilized page

will provide a page with the least “area + w*margin”; herew is a small constant ( ),area is

the rectangle area of the resulting page andmargin its perimeter.

The last criterion(random) randomly picks one of the currently alive siblings of the underuti-

lized page for merging, i.e., no real “closeness” metric is used except that the sibling is also alive.

Splitting policies. Splitting is needed in two cases after a time-split. The first case is when a result-

ing page after a time-split satisfies the strong-version overflow condition (i.e., it has too many alive

records) and hence needs to be split into two new pages. The second case is when the resulting page

after a time-split satisfies a strong version underflow condition (i.e., it does not have enough alive

records) but after merging with a sibling, the resulting page satisfies the strong-version overflow

condition (because the combined number of alive records in the merged pages is large). Since split-

ting in these two cases deals only with the key and valid-time dimensions of the records (all records

in question are alive in the transaction-time sense) we implement three heuristic splitting policies

from ephemeral R-trees that attempt to minimize the total area of the page covering rectangles that

result after the split. This covering is related to key and valid-time dimensions, only.

w 0≥
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The first two policies are thequadratic andlinear splitting of the basic ephemeral R-tree [G84].

They both assign records in two groups (each group corresponding to a new page), but differ on

how groups are initialized and records are assigned. The quadratic policy initializes the two groups

by picking the pair of records that would waste the most area if put in the same group (the area of

the rectangle that covers both records minus the covering areas of the records themselves would be

the greatest). Remaining records are assigned to groups in steps. At each step the area expansion

required to add each remaining record to each group is calculated, and the record assigned is the

one showing the greatest difference in the area expansion needed between the groups.

The linear splitting policy picks records based on their “normalized separation” [G84], defined

along each dimension. For example, among the records to be split, the separation along the valid-

time dimension is the distance between the highest interval left-endpoint and the lowest interval

right-endpoint. This separation is divided by the width on this dimension (highest right-endpoint

minus the lowest left-endpoint) to create the normalized separation along this dimension. A similar

computation takes place along the key dimension. The linear splitting algorithm initializes the two

groups by picking the pair of records with the greatest normalized separation along any of the two

dimensions. The linear policy also differs on placing the remaining records: a record is randomly

picked and placed in the group that needs the lesser area expansion to accommodate it.

The third splitting policy,r_star, comes from the ephemeral R* tree [BKKS90]. To outline the

policy we first define a few relevant terms. The margin value of two rectangles is defined to be the

sum of their margins. The overlap value between two rectangles is the amount of the common area

shared between them. Records are referred to as being ordered in a given dimension if they are sort-

ed according to their values in that dimension. If intervals are stored in a given dimension, the

ordering is made according to the starting values of the intervals; ties are resolved using the interval

ending values. Ther_star splitting policy is based on determining various distributions of a page’s

records after ordering them in each dimension. Thek-th distribution in a given dimension keeps

the initialk records in the first group and the remaining in the second group. Distributions which

place less than a predefined number of records in any of the groups are not considered since these

distributions may lead to bad query performance. The splitting policy starts by first choosing the

dimension on which to split. This is performed by ordering the records in each dimension and pick-

ing the dimension which has the distribution that leads to the overall minimummargin value of the

two rectangles that cover the two groups created. The actual split follows: records are ordered on

the chosen dimension and distributed in two groups using the distribution which minimizes the

overlap value between the two rectangles which cover the two groups created in the distribution.
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We also considered splitting policies from the ephemeral R+-tree [SRF87]. However those pol-

icies are not directly applicable since an R+-tree keeps multiple copies of the records. This is costly

in terms of space for the Bitemporal R-tree, since copies of records from all the previous versions

should be retained.

Interval transformation. Large intervals tend to increase page area overlapping which in turn af-

fects the performance of the ephemeral R-tree and hence the performance of the Bitemporal R-

Tree. To deal with this problem we transformed one-dimensional valid-time intervals into points

in a two-dimensional space. A valid-time intervalI with vs, ve starting and ending values corre-

sponds to point(vs, ve) in the two-dimensional space (for simplicity we denote the beginning of

valid times as time zero). Such points are located in the upper diagonal area, since the starting value

is always less than the ending value. Storing intervals as points would allow for better pagination

which should on the average improve both the update and query performance.

A similar problem with interval storing appears more severely in the 2-R methodology. In par-

ticular, the front R-tree (Figure 3) will try to accommodate the vertical valid-time intervalsI into

pages, favoring the creation of vertical page areas that store near-by (in the transaction sense) in-

tervals. The problem is intensified since vertical intervals are placed at given transaction times. The

horizontal query intervalH of Figure 3 will intersect many of these vertical page areas even though

some of these pages may not contribute to the answer and thus affecting the query performance.

To avoid this problem we also implemented the 2-R methodology using the above translation of

intervals to points. A query for all intervals intersectingH is translated into finding all three-dimen-

sional points in a semi-infinitecuboid of heightt.

7. Performance Analysis
We implemented the Bitemporal R-Tree (BRT) and the Bitemporal Interval Tree (BIT) and

compared them with the 2-R and the straightforward 1-R approach. To avoid overpopulated graphs

we first compare the performance of the various Bitemporal R-Tree implementations. We then

proceed with comparisons among the optimized Bitemporal R-Tree and the other structures (the

BIT, the 2-R and the 1-R). The comparisons begin with the “*/point/point” query and continue with

the “range/point/point”, “range/range/point” and finally “range/range/range” queries.

7.1 Experimental Setup
For the first set of our experiments we selected fourteen data files (evolutions), each containing

60,000 updates. An update is the addition or deletion of a valid-time interval. To examine the effect

of the “mix” of updates on performance, seven of the files had 35,000 insertions and 25,000
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deletions (the 35/25 ratio) and seven had 43,000 insertions and 17,000 deletions (the 43/17 ratio).

The 43/17 group of data files has many long-lived bitemporal objects (in the transaction-time

sense) since only 17,000 of the inserted objects are deleted. In comparison, the 35/25 group has

many short-lived bitemporal objects.

Each data file was created by first choosing the valid time intervals. The starting point of a valid

interval was selected randomly (with a uniform distribution) anywhere inU = {1,..., V}. For the

above data files we usedV = 1024. Then the ending point was chosen uniformly within a distance

of K from the starting point. HenceK/2 is a good estimate for the average size of the valid-time

intervals in a data file. To study the effects of the average valid-time interval size data files were

created with the followingK/2 values: 50, 100, 200, 250, 350, 500 and 600.

The transaction time evolution was created next. For simplicity we have assumed that at each

transaction time exactly one update occurs. The number of updates per transaction does not affect

the update processing which is proportional to the total number of updates over all transactions.

Hence in each data file there are 60,000 distinct transaction times (equivalently, the size of the

transaction-time universe is 60,000). All evolutions were setup to start with 4,000 inserts, i.e., in

each of the first 4,000 transaction times a valid time interval was picked randomly for insertion

(from the valid time intervals created above). This guarantees a structure with reasonable number

of intervals before carrying out the deletes. At each of the later transaction times, a new interval

was randomly inserted with probabilityp while with probability 1-p one of the already inserted in-

tervals was randomly deleted. The value ofp was chosen accordingly so as to provide the two

groups of insertions/deletions.

7.2 Performance Tuning of the BRT

We used various implementations of the Bitemporal R-Tree based on: (a) two (transaction) time-

split policies (i.e., thebasic [BGO+93] and theimproved [VV95]), (b) five merging policies (the

overlap, min_area, margin, combined andrandom), (c) three (key/valid-time) splitting policies

(thequadratic, linear andr_star) and (d) two valid-time interval representations (interval orpoint).

Instead of presenting all possible combinations, we proceed with a step-by-step optimization by

incrementally fixing the various parameters. All BRT optimizations are shown using the 35/25

datasets; the 43/17 datasets behaved similarly. In all experiments the page size is 1K and each page

has a total capacity of about 50 bitemporal objects.

Figures 5-7 present the effect of thebasic/improved time-split and theinterval/point represen-

tation on the BRT performance. Each BRT was implemented using themargin merging policy and
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ther_star for valid-time/key splitting. Figure 5 shows the space used in number of pages. As with

B+-trees, theimproved time-split implementations use less overall space than thebasic time-split.

Thepoint representation uses less space than the correspondinginterval representation since inter-

vals introduce more restrictions in their placing into pages that result to less page utilization. In

addition, the space used by the BRTs with theinterval representation tends to increase with the av-

erage size of the valid-time intervals because larger intervals are more difficult to paginate.

Figure 6 depicts the average number of I/Os per update. During the update process, bitemporal

objects in the currenth(t) are normally accessed using the combination of their key, valid and trans-

action-time attributes. To clearly show the effect of the valid-time interval representation, we

present the average update per change without using thekey attribute. Depending on its selectivity,

the key attribute can assist in identifying the updated object. A key attribute with low selectivity

(for example,salary) implies that many objects have the same value on this attribute thus limiting

its usage in identifying the updated object. Ignoring the key attribute for updating behaves as an

extreme of the low selectivity cases or equivalently, as if all objects have the same value on the key

attribute. (We examine the full effect of key selectivity on updates later). Figure 6 indicates that

the BRTs with point representation have less updating that is also independent of the average in-

terval size. The interval based approaches have updating that increases with the average interval

size. This is again due to the difficulty of efficiently placing larger intervals into pages.

To compare the query performance we computed 10,000 “*/point/point” queries for each data

file. Each query is selected by choosing the valid timev randomly with a uniform distribution with-

in the set of valid timesU and the transaction timet randomly with a uniform distribution over all

Fig. 5: Number of pages (space) used by the BRT under
basic/improved and interval/point. The 35/25 files are shown
with V=1024 and varying avg. valid-time interval sizes.

Fig. 6: Avg. number of page I/O’s per update for the BRT
underbasic/improved and interval/point. The 35/25 files are
shown withV=1024 and varying avg. valid-time interval sizes.
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60,000 transaction times. Figure 7 shows the average number of pages accessed per query. The

point representation has less query time than the interval one and within the same representation

the basic/improved time-split policies have basically identical behavior. For all implementations

the query I/O increases with the valid interval size because the answer size also increases.

Based on the outcome of the above experiments we fix the BRT implementation to theim-

proved time-split (less space) and thepoint representation (less update/query), and proceed with

the effect of the merging and splitting policies. We actually run experiments that combined all

merging with all splitting policies. In general, we got the best performance when using the BRT

with ther_star splitting policy. Hence we only discuss the effect of merging policies when com-

bined with ther_star splitting policy. The merging policies did not have a significant effect on

query time and space (not shown). Query times for all BRTs were similar, with themargin policy

to provide a slightly better query performance. All policies used an average space of 1860 pages

with random variations less than 1.6%. The effect of the merging policies on updating appears in

Figure 8. Among the five policiesrandom andoverlap had the worse updating. The rest behaved

almost identically, with a slight advantage for themin_area andmargin.

There are various reasons why merging policies have limited effect on the BRT performance.

For all policies, the page to merge with is chosen among the currently alive siblings of the underuti-

lized page. A page is alive as long as it has at leastq alive records. Most pages operate between

q+e andb-e alive records (section 6.1). In our implementation we hadq = e =10 andb = 50. Hence

for most pages the merging policies choose from a moderate number of 20-40 alive siblings. As

the experimental results show, with the possible exception of therandom policy, all merging pol-

Fig. 7: Avg. number of I/O’s per “*/point/point” query for
the BRT underbasic/improved and interval/point. The 35/25
files are shown withV=1024 and varying valid interval sizes.

Fig. 8: Avg. number of page I/O’s per update for the BRT
under the various merging policies. The 35/25 files are shown
with V=1024 and varying avg. valid-time interval sizes.
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icies avoided bad sibling choices. Even if some choices were worse than others, there are two more

amortizing factors. First, the number of merges in an evolution is small as compared to the number

of splits. Merging happens when (due to object deletions) a page underflows, i.e., when the number

of alive records becomes lower than thresholdq. In contrast, splits happen because a page over-

flows and are due to either real object insertions or record copies due to persistence. Since deletions

are less than the summation of insertions and copies, merges are not as frequent. Second, the num-

ber of alive siblings at a given timet is a small part ofht(t) which in turn is a small portion of the

whole persistent structure that stores allht’s. (Note that merging in an ephemeral structure has

more drastic effects since it deals with a larger portion of the structure.) Based on the query and

update performance we fix the BRT merging policy tomargin.

The effects of the valid-time/key splitting policies appear in Figures 9 and 10. Ther_star policy

uses comparatively less space (Fig. 9), update (not shown) and query (Fig. 10) thanlinear andqua-

dratic. This is expected since the valid-time/key splitting policies deal with the page splitting of

the most currentht(t) as if it was an ephemeral structure. For an ephemeral R-tree it has been ob-

served that ther_star policy performs better than thelinear andquadratic policies [BKKS90].

As a result of the BRT optimization, in the rest when referred to BRT we imply the “optimized”

implementation that uses theimproved, margin, r_star policies and thepoints representation.

7.3 Performance Comparison of the Various Approaches

We proceed by comparing BRT with the BIT, the 1-R and 2-R approaches. Each of the 1-R and 2-

R was implemented using the R* tree [BKKS90] (which uses ther_star splitting policy and

reinsertions instead of page merging) and two implementations based on intervals and points.

Fig. 9: Number of pages (space) used by the BRT under the
various valid-time/key splitting policies. The 35/25 files are
shown withV=1024 and varying avg. valid-time interval sizes.

Fig. 10: Avg. number of I/O’s per “*/point/point” query for
the BRT under the valid-time/key splitting policies. The 35/25
files are shown withV=1024 and varying valid interval sizes.
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Figure 11 depicts the space consumption for the 35/25 group. The 1-R with interval representation

(1-Ri) has the best overall space utilization since a single record per bitemporal object is used. The

2-R methods also use one copy per object but the page utilization is slightly lower. The BRT uses

more space (due to record copying) but only about 57% more than the 1-Ri method (on average

1850 versus 1180 pages). The Bitemporal Interval Tree had the largest space requirements. In

addition to copying due to partial persistence, each interval in the backbone Interval Tree is kept

twice (in some left and right lists). Note that the space requirements for the BIT tend to decrease

as the average interval size increases; large intervals will be stored in node lists near the root,

leaving the rest of the backbone structure empty (hence less lists will be created). The BIT space

is also affected by the way updates are performed on each partially persistent list (see Appendix

A). Its overall space can be reduced if instead of the [BGO+93, VV95] policies we use the TSB

[LS89] time splits. We did not implement a BIT with the TSB policies but we estimated its space

requirement based on the average number of copies per object used in TSB.

Figure 12 presents the average number of pages accessed per update in all compared approach-

es, for the 35/25 data files. Again the key attribute was not used during updating (low selectivity).

The BRT has the lowest average I/O per update followed by the BIT update. The BRT, BIT and 2-

R with points (2-Rp) have updating that is basically independent of the valid-time interval size. The

update of the 2-R with intervals (2-Ri) and the 1-Ri increases with the valid-time interval length

(larger intervals are more difficult to paginate). The 1-Ri has higher update than the 2-Ri because

of the additional burden of transaction endpoints extending tonow. The 1-R with points (1-Rp) has

the worst update processing since in the point formulation, the extension tonow problem is inten-

sified (now becomes a common endpoint to many bitemporal objects).

Fig. 11: Number of pages (space) used by the BRT, BIT, 1-R
and 2-R methods for the 35/25 files withV=1024 and varying
avg. valid-time interval sizes.

Fig. 12: Avg. number of page I/O’s per update for the BRT,
BIT, 1-R and 2-R methods for the 35/25 files withV=1024 and
varying avg. valid-time interval sizes.
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To compare the query performance we computed 10,000 bitemporal “*/point/point” queries for

each data file (Figure 13). The partial persistence approaches have the best performance, with the

BIT being faster especially as the interval size increases (the performance of the BIT and the BRT

methods is virtually the same for the smaller interval sizes). The 1-Rp method has the worst query

performance, followed by the 2-Ri method. The 1-Ri and 2-Rp methods are comparable: 1-Ri is

better than the 2-Rp method for smaller valid interval sizes but the 2-Rp prevails for larger interval.

To validate the query experimental results we need a measure of the query answer size. As the

interval size increases the average number of answers also increases. For the 35/25 data files the

average query size was 305, 595, 1110, 1320, 1710, 2150 and 2335 objects/query for the 50, 100,

200, 250, 350, 500 and 600 valid interval sizes, respectively. A good access method should find

the answer with as few data page accesses as possible (accessing directory pages corresponds to a

very small part of the query I/O, about 5 pages). In our experiments, the 1-Ri method uses an av-

erage of 30 objects per page (there are about 35,000 objects and the space used is about 1180

pages). This is because each page is utilized only about 60% to allow for free space. As a result,

any method that uses this minimal R-tree utilization, would needat least 10, 20, 37, 44, 57, 72 and

78 data pages respectively, to store the objects in the average answer for each data file in the 35/25

group. To compute these answers and after excluding directory page accesses, the BRT makes 13,

26, 48, 57, 72, 90 and 100 page accesses on the average, respectively. This constitutes an 30% in-

crease on the average, over the “best” possible (R-tree utilization) solution. The BRT has smaller

page utilization since the copying due to partial persistence occupies some page space. In compar-

ison, the 1-R and 2-R tree methods search a much larger number of pages.

The performance comparison of all methods for the 43/17 group follows. The space perfor-

Fig. 13: Avg. number of I/O’s per “*/point/point” query for
the BRT,BIT, 1-R and 2-R methods for the 35/25 files with
V=1024 and varying avg. valid-time interval sizes.

Fig. 14: Avg. number of page I/O’s per update for the BRT,
BIT, 1-R and 2-R methods for the 43/17 files withV=1024 and
varying avg. valid-time interval sizes.
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mance (not shown) is similar as for the 35/25 case. For all methods the space is more than the

corresponding 35/25 case since there are now more objects created (less deletions). The BRT used

on average 65% more pages than the 1-Ri approach (2440 pages versus 1480 pages); the slight in-

crease in BRT space overhead against 35/25 is because the number of insertions has increased and

consequently the number of copies due to time-splits. The increased number of insertions makes

the update (Figure 14) of the BRT, BIT and 2-R methods to increase, too. In contrast the update of

the 1-R methods decreases because the number of deletions has decreased and deletions are a real

burden in the 1-R approach. The query time performance for the “*/point/point” queries is depicted

in Figure 15; all methods behave similarly as for the 35/25 case. Based on their behavior for the

35/25 and 43/17 datasets we choose the 2-Rp and 1-Ri to be the representatives of the 2-R and 1-

R approaches for the rest of our experiments.

Effect of the Valid-Time Universe Size. The performance of BIT is affected by the size of the val-

id-time universe, since the backbone structureT has sizeO(V). Large universe size implies more

space overhead. To study the effect of valid-time universe size we used a new set of five data files

with V equal to: 1024, 2048, 4096, 8192 and 16384. The average valid-time interval size was cho-

sen to be aboutV/2 (i.e., 500, 1000, 2000, 4000 and 8000 respectively). There were again 60,000

transactions with the 35/25 ratio of insertions/deletions. The results appear in Figures 16-18.

As expected the BIT space increases gradually with the valid universe but remains constant for

the other methods. The update of BIT and BRT is independent of the valid universe size. Despite

that the actual number of changes remains the same, the update of the 1-R and 2-R decreases as the

universe increases. This is because the same number of intervals is spread into a larger space and

can thus be accommodated easier. The query time (for “*/point/point” queries) of the BIT remains

smaller than the rest and independent of the valid universe size, followed by the BRT. Query times

for the 1-R and 2-R tend to decrease as the valid universe increases because of better pagination.

While BIT provides good query and update time, its dependence on the valid-time universe size

makes it impractical for applications with large such universe (as compared to the number of trans-

actions, i.e., the transaction-time universe). In these cases the other methods should be used. We

thus proceed to study the behavior of the BRT, 1-R and 2-R methods under a large valid-time uni-

verse. We experimented with nine new data files havingV = 16384 and the following average

valid-time interval sizes: 50, 250, 500, 2500, 5000, 8000 and 10000. Each data file had again

60,000 transactions using the 35/25 ratio of insertions/deletions. The space (not shown) of all meth-

ods behaves as before, i.e., independently of the interval size (the BRT uses about 60% more pages
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Fig. 15: Avg. number of I/O’s per “*/point/point” query for
the BRT, BIT, 1-R and 2-R methods for the 43/17 files with
V=1024 and varying avg. valid-time interval sizes.

Fig. 16: Number of pages (space) used by the BRT, BIT, 1-R
and 2-R methods for 35/25 files with varyingV. Each file had
V/2 average valid-time interval size.

Fig. 17: Avg. number of page I/O’s per update for the BRT,
BIT, 1-R and 2-R methods for 35/25 files with varyingV. Each
file hadV/2 average valid-time interval size.

Fig. 18: Avg. number of I/O’s per “*/point/point” query for
the BRT, BIT, 1-R and 2-R methods for 35/25 files with vary-
ing V. Each file hadV/2 average valid-time interval size.
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Fig. 19: Avg. number of page I/O’s per update for the BRT, 1-
R and 2-R methods for 35/25 files withV=16384 and varying
avg. valid-time interval sizes.

Fig. 20: Avg. number of I/O’s per “*/point/point” query for
the BRT, 1-R and 2-R methods for 35/25 files withV=16384
and varying avg. valid-time interval sizes.
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than the 1-R). The update (Figure 19) of the BRT and the 2-R are independent of interval size with

the BRT having the least update. The update of the 1-R increases drastically with the valid interval

size. The query times (for “*/point/point”) were as expected (Figure 20), with the BRT being the

fastest followed by 2-R and 1-R.

Effect of Key Selectivity. We proceed to examine the effect of key selectivity on updating (Figure

21). For this problem we experimented with the BRT, the 2-R and 1-R methods. The BIT was not

considered since it only indexes the valid and transaction time attributes and not the key attribute.

Each data file had 60,000 transactions with the 35/25 ratio, V = 1024 and average valid-time inter-

val size equal to 250. Since there are 35,000 insertions per data file, we first created a “pool” of

35,000 keys. These keys were integers chosen randomly from 1 to 1,000,000. Since the number of

random choices is much smaller than the key universe there were very few duplicates in the “pool”

keys. Data files with different selectivities were created by “filtering” out the lower digits of the

“pool” keys. The first data file with selectivity ~1/35000 used the exact “pool” keys. Assuming that

most “pool” keys are distinct this data file corresponds to very good/high key selectivity (approach-

ing the case of unique keys). Data for the file with selectivity ~1/1000 were created by making the

last three digits of the “pool” keys equal to “000”. Assuming that there were no duplicates in the

35,000 “pool” keys, the second file had an average of 35 duplicates per distinct “filtered” key val-

ue, i.e. selectivity around 1/1000. Similarly, the other data files were created by filtering out the

last 4 and 5 digits of the “pool” keys. The BRT has the lowest update among all methods. This is

because BRT focuses the update on the most currentht which has relatively small number of ob-

jects. For high selectivities the 1-R has less update than 2-R. High selectivity means that objects

are accessed directly from the key attribute, but 2-R has still to search two trees. However, as se-

lectivity decreases the key attribute becomes less important as compared with the effect of

temporal attributes and the update of 2-R becomes better than 1-R. Figure 21 should be compared

with Figure 12 where 2-Rp had also better update than 1-Ri. This is expected since Fig. 12 depicts

updating if no keys are used which corresponds to even lower selectivity that the ~1/10 file.

Answering more general queries. The bitemporal “range/point/point” query was examined next.

For this query we experimented with the BRT, the 2-R and 1-R methods. The BIT was not consid-

ered for this query since it would need to find all alive objects and then disregard the ones outside

the query key range. Figure 22 shows the average query time results for various key selectivities

using the same data files as Fig. 21. For each data file 10,000 queries were computed. A query was

created by randomly choosing the query key rangeK (picking two random keys in the key uni-
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verse), valid instant v and transaction timet. The BRT provides the best query performance

followed by the 2-R which is consistently better than 1-R.

Figure 23 shows the average query time results for the “range/range/point” query and various

selectivities. The same data files were used, with 10,000 queries per data file, choosing randomly

the query key rangeK, valid-time intervalE (by picking two instants in the valid universe) and

transaction timet. The query performance remains the same, with the BRT method prevailing.

The last query examined was the “range/range/range” query. By its nature, partial persistence

provides fast access to a particularht(t) by transaction timet. The performance of BRT depends on

the size of the transaction-time intervalP specified by the query. Figure 24 shows the “range/range/

range” query time results for various values ofP. The 35/25 data file withV = 1024 and average

valid-time interval length of 250 was used. AsP increases, the BRT query time increases since the

BRT has to search more subtrees and may encounter more record copies. For small through medi-

Fig. 22: Avg. number of I/O’s per “range/point/point” query
for the BRT, 1-R and 2-R methods for 35/25 files withV =
1024, avg. valid interval size 250 and varying selectivities.

Fig. 21: Avg. number of page I/O’s per update of the BRT, 1-
R and 2-R methods for 35/25 files withV = 1024, avg. valid
interval size 250 and varying selectivities.
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Fig. 24: Avg. number of I/O’s per “range/range/range” query
for the BRT, 1-R and 2-R methods for the 35/25 files with
V=1024, avg. valid interval size 250 and varying query transac-
tion-time interval.
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um size (as compared to the total transaction-time universe size of 60,000) query intervalsP, the

BRT has still the best query performance. The 2-R method becomes faster for largeP’s. It is actu-

ally an interesting open problem to find a partially persistent structure which can address queries

on transaction-time intervals with the same efficiency as for transaction-time instant.

8. Conclusions and Further Research

We have addressed the problem of designing efficient access methods for bitemporal queries and

introduced two methodologies. The first methodology translates a bitemporal query into a partial

persistence problem for which a method is then designed. This approach led to the Bitemporal

Interval Tree and the Bitemporal R-Tree. The second methodology divides bitemporal objects in

two categories, according to their transaction time behavior. In our implementations a separate R*-

tree was used to store the data in each category (2-R method). We compared our methodologies

with a straightforward approach that keeps bitemporal objects in a single R*-tree (1-R method).

In general, the partial persistent methods have better update performance than 1-R and 2-R.

They also had better query performance except for “range/range/range” queries that specify very

large transaction time intervals. The persistent methods should be preferred if some extra space can

be tolerated. In particular, the Bitemporal R-Tree is a rather robust method that can address general

bitemporal queries with good average performance, using only minimal extra space (about 60-65%

more space than the minimal space of the 1-R method). Given the current cost of secondary stor-

age, this seems a very comfortable price to pay for the performance provided by the BRT. Its

advantage is that is processes queries as if an ephemeral R-Tree for the queriedht(t) is present.

The Bitemporal Interval Tree uses more space (still linear to the number of changes) because

in addition to persistence, intervals are kept in two places. The BIT addresses queries that do not

specify a key range. Its space is affected by the size of the valid-time universe thus it should be

used for applications with small valid-time universe as compared to the transaction-time universe.

The importance of BIT is more theoretical in nature since it guarantees good worst case perfor-

mance for the above bitemporal queries (it is of special interest if we note the difficulty in designing

practical access methods with good worst case behavior for the simpler, valid-time queries). The

BIT actually provided the best overall average query performance for the “*/point/point” query.

However for most applications the Bitemporal R-Tree is a more robust and practical choice.

 The 2-R methodology is a good alternative to the partially persistent methods. It has the ad-

vantage of using off-the-shelf methods and consumes almost minimal space. Nevertheless, its
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update performance is worse than the persistent methods and similarly its query time, except for

“range/range/range” queries on very large transaction time intervals.

It remains an open problem to find the theoretically I/O optimal solutions for the various bitem-

poral queries. An interesting problem is to find a partially persistent method that provides the same

query efficiency for bitemporal queries on transaction-time intervals as for queries on transaction-

time instants. Bitemporal joins are also of great interest; various possible optimizations using the

presented methods must be examined. Another open area of research is to find bitemporal access

methods to supportbranching transaction time evolution. As we mentioned, this implies making

the chosen ephemeral data structure fully persistent. A good starting point is the work in [LM91]

where B-trees are made fully persistent, and [LST95] where branching transaction-time issues for

transaction-time databases are addressed.
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APPENDIX A: Making an ordered list partially persistent and fully paginated

Consider the initial stateX(0) of an ordered, time evolving listX(t). We need a representation ofX(0) that satisfies the

following performance requirements:

(i) good pagination. If X(0) hasi elements the representation should occupyO(i/b) pages.

(ii) fast updating. Fast additions/deletions should be supported anywhere inX(0).

(iii) fast querying. Thek first elements ofX(0) should be accessed inO(k/b) page I/O’s.

Satisfying the first requirement is easy: we simply storeX(0) elements sequentially in pages. Each page keeps anext

page pointer. This creates the list of pages (orpaginated list) PX(0). Each element inside aPX(0) page has two times-

tamps. The first timestamp corresponds to the time this element is added inX (elements ofX(0) havet=0); the second

timestamp is initially empty and is used if this element is deleted from listX. For the second requirement we facilitate

an ephemeral B+ tree on top ofPX(0), such that: (a) copies of allX(0) elements are stored in the leaf pages of the tree

and, (b) each such element copy points to the page ofPX(0) that stores the corresponding element ofX(0). For the third

requirement (searching) we simply keep a pointer to the first page of listPX(0) and then follow next page pointers.

As time evolves, so doesX(t) and its representationPX(t). We need to guarantee the same three requirements for

everyt. For good pagination it suffices to show that at eacht every page inPX(t) has enough number of “alive” ele-

ments (i.e. enough elements fromX(t)). This is guaranteed if updates onPX(t) are performed using the merging/

splitting policies of [BGO+93] or [VV95]. As before, aPX page is called “alive” as long as it contains at leastq alive

elements (q<b), otherwise it is a “dead” page. Additions of elements inX(t) are represented by a physical addition of

the new element inPX(t). Deletions of elements fromX(t) are represented as logical deletions inPX(t). The deleted

element is found inPX(t) and its second timestamp is updated with the element’s deletion time. If a deletion at some

t causes the number of alive elements in a page to go below theq threshold, the page istime-split: a new page is created

that carries (copies) the remaining alive elements of the previous page. The new page is considered as inserted att and

is added in the currentPX(t). The previous page is considered “dead” and is taken off thePX(t) list. Hence at each time

t, PX(t) is the list of the currently alive pages.

Since updating is always performed on the elements of the most recentX(t), we need access to these elements in

PX(t). This is performed through the ephemeral B+ tree. When an element addition/deletion occurs onX(t), the B+ tree

will locate the page ofPX(t) where this update is to be applied. AfterPX(t) is updated, the B+ tree is updated.

The use ofPX(t) enables a crucial problem reduction: instead of dealing with element insertions/deletions inX(t),

we deal with page insertions/deletions inPX(t). It remains to show how the fast query time is provided, i.e., how to

access the pages of a givenPX(t) in element order. We present a solution where each page insertion/deletion takesO(1)

amortized time, the space used isO(k/b) (k is the total number of page insertions/deletions inPX’s evolution and is

bounded byO(n/b)) and the firsta pages ofPX(t) are accessed in  page I/Os. At eacht the size of the

ephemeral B+ tree isO(mX/b) wheremX is the number of alive elements in the currentX(t). Updating the tree takes

 I/O’s and thus the overall update processing (PX list and B+ tree) is logarithmic (in the amortized sense).

O kblog a+( )

O mb Xlog( )



39

The description of the solution follows. First, there is an arrayHT that indicates the first (top) page ofPX(t) as time

proceeds. An entry inHT has the form: <t, pid> and specifies that at timet, the page with page id (address)pid became

the top page ofPX. Entries are incrementally added inHT when the top ofPX changes. If at somet, PX(t) ceases having

alive pages (i.e., there is no element inX(t)) an entry <t, -> is added inHT. In addition, for a given (alive) page inPX(t)

we need to keep which is the next (alive) page inPX(t). We thus associate with each page ever added inPX a table

called Next TableNT. The structure is similar withHT: an entry in the Next Table of some pageA is of the form<t,

pid> wherepid is the address of the page that att became the next page afterA in PX(t). If a pageB is deleted from

PX at some , the B+ tree provides the previous and next pages ofB at , sayA, C, and an entry < ,C> is added on

NT(A). TheNT tables are not explicitly implemented but are embedded in their corresponding list pages.

Using theHT and theNT’s we have an obvious way to search through the history ofPX. A search is first performed

on HT for the entry which contains the largest time  that is less or equal tot. Then the page whosepid is recorded

next to  is accessed. A new search is performed on theNT array associated with that page and so on, until all pages

of PX(t) are accessed. Each table search takes logarithmic time on the number of table entries (as table entries are time

ordered). While simple, this approach is not efficient. Ifk is the total number of page insertions/deletions inPX’s evo-

lution, a query that asks for the firsta pages fromPX(t) is answered in  I/O’s.

To avoid searching in each table encountered, we use a variation of thebackward updating technique [TGH95].

This technique was used in [C86] for solving computational geometry problems in main memory. The idea is tosyn-

chronize the next tables among pages in eachPX(t). Here we adapt this idea in a paginated environment. For example

consider theNT’s of two sibling pagesA andB, whereA proceedsB in PX(t). After a number ofC0 entries (whereC0

is a constant greater or equal to 2) are added onNT(B), a “ghost” entry is added inNT(A) (the sibling on the left) with

the time of the latest of the changes and a pointer to the currently last entry ofNT(B) (instead of the address ofB itself).

Such backward updating may continue until theHT is reached (for more details we refer to the TR version of [KTF95]).

The total number of the extra ghost entries is still linear to the total number of regular array entries. The number

of regular array entries is clearlyO(n/b) since there is an entry when a page is added or deleted. There are at most

 extra ghost entries per regular entry. The technique guarantees that during query processing, the entry with

the largest time that is less or equal tot inside a table provides a pointer to an entry of the right sibling’s table that is

at mostC0 away fromt. SinceC0 is a constant, this means that no new search is needed for locatingt in the sibling’s

Next Table. In a paginated environment, a natural choice ofC0 is a page or a good portion of it. LargerC0 means less

extra space but slower search.

The auxiliary structure and the backward updating technique are embedded inside thePX pages. A special area of

sizeC0 = pb table entries is reserved inside each list page, where . When the reserved space of aPX page

gets full (because the next sibling list page changes too often) this list page is logically deleted fromPX(t) and a new

copy of it (with all the alive elements of the deleted page and an empty reserved space) is created. Such a change is

termed an “artificial” deletion since it is due to backward updating. An artificial deletion is still triggered afterO(b)

element additions/deletions.

t' t' t'

tS

tS

O a kblog( )
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At worst, if the reserved areas of all pages ofPX(t) are full, an element change in the lastPX(t) page may cause

the artificial deletion of all pages currently inPX(t). This happens because the change on the last page overflows the

reserved area of the last page which in turn (due to backward updating) overflows the previous page inPX(t) and so

on. However, this will not happen often (if ever). It can be proved that the update processing per entry isO(1) in the

amortizedsense.

APPENDIX B: Updating in the Bitemporal R-tree
Algorithm Insert(r,t)
(Insert a new recordr at transaction timet).
1. Find leaf pageA for insertingr;

(this search is similar as with an ephemeral R-tree but it follows pages that are alive att).
2. InsertRecord(r,A,t).

Algorithm InsertRecord(r,A,t)
(Insert the new recordr at transaction timet in pageA).
1. Insert the new record into pageA.
2. If page-overflow ofA then

copy the records of pageA that are alive att into a new pageB;
if strong-version-overflow ofB (i.e., number of alive records greater thanb-e) then

split the pageB into two pagesB andC using one of the splitting algorithms (see section 6.2);
elseif strong-version-underflow ofB (i.e., number of alive records is less thanq+e) then

Merge(B);
3. Update the parentP of A (which is also the parent of any newB or C).

If no new page is created by the insertion but the bounding rectangle ofA is changed, adjust the index recordi of
P that points toA, to the new rectangle (see section 6.1). If a new page is created by the insertion, update the dele-
tion time of index recordi from now to t and insert a new index recordj in F for B (and possiblyC). Note that this
could lead to further structural changes in the tree but all these changes are at levels above the level ofA (or B, C).

Algorithm Merge(B)
(Merge pageB with a sibling. This result to one or two pages depending on the number of records inB and its sib-
ling).
1. Find a siblingD of B to be merged. Use one of the sibling finding methods (see section 6.2);
2. Copy the entries inD which are alive at timet into B.
3. If strong-version-overflow ofB then

split pageB into pagesB andC using one of the splitting algorithms (see section 6.2).

Algorithm Delete(r,t)
(At transaction timet delete recordr).
1. Find leaf pageA that contains recordr that is alive att;

(this search is similar as with an ephemeral R-tree but it follows pages that are alive att).
2. DeleteRecord(r,A,t).

Algorithm DeleteRecord(r,A,t)
(Delete alive recordr from pageA at transaction timet).
1. Update the deletion-time of recordr from now to t;
2. If weak-version-underflow ofA (i.e., number of alive records is less thanq) then

copy the entries of pageA that are alive att into a new pageB;
Merge(B);

3. Update the parent pageP of A (which is also the parent ofB).
If no new page was created no update is needed (see section 6.1). If a new page is created update the index record
i of P that points toA by changing its deletion time fromnow to t; insert a new index recordj in P pointing to the
new pageB. This may trigger further structural changes in the tree in a manner similar toInsertRecord.


