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ABSTRACT

By supporting the valid and transaction time dimensions, bitemporal databases represent reality
more accurately than conventional databases. In this paper we examine the issues involved in
designing efficient access methods for bitemporal databases and proppatgi#tigersistence

and thedouble-treemethodologies. The partial-persistence methodology reduces bitemporal
gueries to partial persistence problems for which an efficient access method is then designed. The
double-tree methodology “sees” each bitemporal data object as consisting of two intervals (a valid-
time and a transaction-time interval), and divides objects into two categories according to whether
the right endpoint of the transaction time interval is already known. A common characteristic of
both methodologies is that they take into account the properties of each time dimension. Their
performance is compared with a straightforward approach that “sees” the intervals associated with
a bitemporal object as composing one rectangle which is stored in a single multidimensional access
method. Given that some limited additional space is available, our experimental results show that
the partial-persistence methodology provides the best overall performance, especially for
transaction timeslice queries. For those applications that require ready, off-the-shelf, access
methods the double-tree methodology is a good alternative.
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1. Introduction

Conventional database systems capture only a single snapshot of the modeled reality. While
serving many applications well, they are not sufficient for applications that require the support of
time-varying information (past and/or future data). Instéadporaldatabase systems have been
proposed as they can store and query temporal data through the support of two orthogonal time
dimensions: thealid andtransactiontimes [OS95].

According to [J+94], “the valid time of a fact is the time when the fact is true in the modeled
reality”. Transaction time on the other hand refers to the time when a new value is posted to the
database by a transaction. A temporal database is categorized as transaction-time, valid-time or
bitemporal, according to which temporal dimension(s) it supports.

The transaction time dimension represents the history of a database activity rather than real
world history. Transaction times are system generated and monotonically incre8sing it is
impossible to change the past, transaction times cannot be changed and there is no way to correct
errors in past tuples. A valid-time database maintains the entire history of an enterprise as best
known now, i.e., it stores the current knowledge about the past and future. Any errors discovered
in this history, are corrected by modifying the database. When a correction is applied, previous val-

ues are not retained; therefore it is not possible to view the database as it was before the correction.

Clearly both time dimensions are needed in order to accurately model reality. In a bitemporal
database one can query tuples that are valid at some (valid) time, as known at some other (transac-
tion) time. A variety of applications can benefit from the support of valid and transaction time
[OS95]:

(a) accounting, marketing, tax-related, billing applications [W82]. The retroactive/postactive
changes that occur in such applications require the support of the valid-time dimension. For audit-
ing purposes transaction time is also needed (so that no one can “alter” recorded data). In a tax
application, we may want to find what tax laws were valid when a tax return was filed. Similarly,

a billing system should be able to issue corrections on past records and keep track of when this cor-
rection was made effective (retroactive salary increases etc.)

(b) social/medical applications [F72]. A physician makes decisions on a patient based on the
patient’s history as best known when the decision is made (by looking at the hospital database).
Patient information though can be recorded at various times. The validity of a decision can be test-
ed only against the information on which it was made.

1 Here we concentrate dinear transaction time (as opposeddanchingtransaction time [0S95]).



(c) financial/stock-market applications [A92]. A broker makes recommendations to clients
based on the information available at the time of the recommendation. However, due to delays, not
all data is presented at real time to the broker. The correctness of a given recommendation can be

tested only against the knowledge available to the broker when the recommendation was made.

Bitemporal data tends to increase in size as transaction time proceeds, making the need for ef-
ficient indexing more crucial than in conventional databases. While much work has been done
recently on access methods that support a single time axis, not much has been done for bitemporal

indexes, i.e., methods that support both transaction and valid time dimensionsaméhadex.

In this paper we examine the issues involved in designing efficient bitemporal access methods
and propose two methodologies for constructing such methods. The partial-persistence methodol-
ogy starts with a data structure that can efficiently address the valid-time dimension of a bitemporal
guery and makes it partially persistent [DSST89] so as to address the transaction-time dimension,
too. We discuss two examples based on this methodologRitdraporal Interval Treend the
Bitemporal R-TreeThe double-tree methodology assigns bitemporal objetiginategories ac-
cording to their transaction-time behavior and uses a separate (tree-based) access method to store
objects in each category.

The Bitemporal Interval Tree was introduced in a workshop paper [KTF95] where we present-
ed initial performance results as related to a small class of bitemporal queries. Here we present a
more thorough coverage of the general bitemporal index design problem. For completeness, we
also provide an outline of the Bitemporal Interval Tree. The additional contributions of this paper
are summarized as:

(1) the introduction of the Bitemporal R-Tree, whose implementation provides the
best overall performance for bitemporal queries in our experiments;

(2) the optimization of the Bitemporal R-Tree based on various merging and splitting
policies and two representations (intervals and points);

(3) in addition to the “timeslice” query of [KFT95], this paper examines various other
bitemporal query classes and uses a larger collection of test experiments.
A by-product of this research is a method to maintain a disk-based partially persistent ordered list
(Appendix A). The rest of the paper is organized as following: section 2 discusses the bitemporal
environment and section 3 presents previous work. Section 4 describes the principles of the pro-
posed methodologies. Sections 5 and 6 elaborate on access methods derived from the partial
persistence methodology, namely the Bitemporal Interval Tree and the Bitemporal R-Tree. Section
7 presents the experimental results. Conclusions and problems for further research are in section 8.



2. The Bitemporal Environment and its Queries

We start with a description of temporal databases with a single time dimension (transaction or
valid) and continue with a bitemporal database (for a thorough coverage we refer to [SA86]). We
also introduce a classification for bitemporal queries which is used throughout the paper [SJ96].

Consider an initially empty set of objects that evolves over time according to the following
rules: time is always increasing and at each time instant one (or more) changes may happen. A
change is an object addition or deletion. An object is callied from the time it is added in the
set until (if ever) it is deleted from the set. The state of the evolving seataahelys(t), consists
of all the alive objects atChanges are always applied on the most currentsgtatEhis evolution
model can also support object attribute modifications, since a modification can be represented by
the artificial deletion of the alive object followed by the simultaneous re-insertion of this object
having modified attribute(s). For simplicity we concentrate only on object additions/deletions.

Assume that the above evolution is to be stored in a database system. Since time is always in-
creasing and the past is not changed, a transaction-time database system can be utilized, with the
implicit assumption that when an object is added in, or, deleted from the evolving settaatime
transaction with the same timestatypdates the database system about this change. This process
associates with each object a transaction-time intexy8))[ wheret; is the transaction time when
this object was entered in the database (transangertiontime), and, is the time the object was
deleted (transactiotkeletiontime). As the future is unknown, when an object is added its deletion
timet, is yet not known. So typically, an object is inserted in the database with a transaction inter-
val of the form: {;, now) wherenowis a variable representing the current time. If this object is later
deleted, its transaction-time interval is updated with the appropriate deletion time.

A valid-time database has a different abstraction. Consider a dynamic collection of objects
where associated with each object is a valid-time interval. This interval represents the validity pe-
riod of some object property. The only time dimension defined is that of the valid-time intervals.
Changes may happen to this collection, where a change is the addition/deletion or modification of
an object. Changes are not timestamped and when a deletion or modification occurs, the previous
object isnot retained in the database. Hence a valid-time database keeps only the most current col-
lection of objects. If we consider the order implied by the relative position of the valid-time
intervals on the valid-time axis as a (valid-time) history, then a valid-time database represents this
history as “best known now”.

In a bitemporal environment both time dimensions exist. To better clarify their differences,
consider an application that keeps track of a company’s contracts. A contract is of the,flgrm: (



wherec is some contract identifier amds the contract duration interval. Intervalorresponds to

an interval on the valid time axis and the contract is an example of an object. The contract infor-

mation is recorded in the database at some transaction tivaeis orthogonal to interval For

example at timéwe may record past, current or even a future coritrégtcording to [S+94] this

example will create hitemporal-statdable). Ahistory timeslicg(denoted byht(t)) contains the

history (in the valid-time domain) of the company’s contracts as best known at(kigare 1).
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Figure 1: A conceptual view of a bitemporal database. Each interval represents a contract; for simplicity |
contract attributes are shown. Thaxis (-axis) corresponds to transaction (valid) times. At transac
time ty intervall, is added omt(t)); then att, andts intervalsl, andl; are added in history timeslict
ht(ty) andht(ts) respectively. At, intervall, is deleted, while &t intervall is modified.

It is possible that at a later transaction tirret , some previously recorded contract interval is
found to be erroneous (for example, a contract has shorter duration in reality than what was record-
ed, or should have never been recorded) or a proactive/retroactive change modifies the interval of
some recorded contract to a new one. As a result a new history tinmglixes created to reflect

these changes. The evolution of the company is best representdd sfalé retained and can be
gueried. A bitemporal database can therefore be “visualized” as a series of history tim#glices

each marked by some transaction tiraed consists of a collection of valid-time intervals. In gen-

eral the two time axes are orthogonal: the transaction time at which a new historical timeslice is
created is irrelevant to the intervals reported on the timeslice, which can be earlier, current or later

than this time (especially since future contracts can also be recorded).

Since access methods are closely related to the queries they are designed for, we conclude this
section with a notation scheme (proposed in [SJ96]) used to classify bitemporal queries. For our
purposes an object is characterized by tergges a non-temporal key (e.g., the contract identifier
c), a valid-time interval and a transaction-time interval. In general an object may have many non-
temporal attributes but for simplicity we assume only one.

A query is classified using the notatidfey/Valid/TransactionThis notation specifies which



entries are involved in the query and in what way. Each entry can be described as a “point”,
“range”, “*,” or “-". A “point” for the Keyentry means that the user has specified a single value to
match the key attribute, while “point” for théalid or Transactionentry implies a single time in-

stant is specified for this entry. Similarly, “range” indicates a specified range of valuesKewythe
entry, or, an interval for théalid/Transactiorentries. A*” means that any value is accepted in

this entry, while “-” means that this entry is not applicable.

A simple bitemporal query is: “find all the company contracts that were valid@lanuary 1,
1994, as recorded drn= November 1, 1993” (a “*/point/point” query). The history timeslice on
Nov. 1, 1993 contains all contracts known as of that time; this includes past, current or future con-
tracts with respect to Nov. 1, 1993. From all these, the query retrieves only the contracts that would
be valid on Jan. 1, 1994. One of the most general bitemporal queries is: “for a kely,rangas-
action time intervaP and a valid time intervet, find all contracts with identifiers in range
whose valid-time interval intersect&dduring transaction times iR”; this is an example of a
“range/range/range” query. Note that in general a query may ask for objects with intervals before
or after a given interval; here we only deal with intersection, i.e., the query answer includes all ob-
jects whose intervals intersect the query interval.

3. Previous Work

We begin this section with a short presentation of the performance costs involved in a temporal
access method and continue with a discussion of previous work.

Any access method used to organize time-evolving data is characterized by the following costs:
space(the space consumed by the method’s data structures in order to keep suapattajime
(the time needed to update the method’s data structures for data change®raisnethe time
needed to compute a temporal query). All three costs are functions of three basic parameters: the
answer siz@, the number of changasand the page (block) sibeThe answer sizais the number
of objects satisfying the query predicate. The number of charg@sesponds to the total number
of valid-time changes that occur in a bitemporal evolution (thissalso an upper bound to the
number of transaction-time updates since in general, at a given transaction a number of valid-time
updates is processed). Paramet@presents the minimal information needed by any index to per-
form errorless reconstruction of time-varying data. A valid-time change corresponds to either the
insertion, deletion or modification of a valid-time interval. Regarding the page size, we assume that
every secondary memory access transmits one pdgesobrds and this counts as one 1/O.

There are two desirable properties for an efficient access mated: paginatiorandquery



clustering Index pagination deals with the issue of how well index nodes of a method are paginat-
ed. Query clustering is achieved if records that are “logically” related for a given query can also be
stored physically close; then the query is optimized as fewer pages are accessed.

A variety of temporal access methods have been proposed in recent years. All previous ap-
proaches directly support a single time axis; most methods assume that time is always increasing
and/or updates are always applied on the latest state (i.e., the past is not changed). These are char-

acteristics of transaction-time. Assumingansaction-time database, a common query is the “*/-

/point” or pure-timeslicequery [ST94]. For example: “finall employees recorded as working on
January 1st, 1990”. More general is the “range/-/pointange-timesliceyuery, where the predi-

cate adds a condition on the objects’ attribute space: “find all employees recorded as working on
January 1st, 1990 and whose id’s are in the rakgé’(

Various methods have been proposed to solve the “*/-/point” query [EWK90, JMR91, LM93,
SG89, TGH95, TK95]. These methods keep the time evolution separate from the key space. To
answer “range/-/point” queries, such methods compute first the whole past state and then eliminate
objects outside the requested key-range. In another approach, the whole key space is divided into
predefinedkey-ranges and the requested “range/-/point” query is computed by solving smaller “*/

-/point” queries on the predefined key-ranges that cover the query key-range.

To better address “range/-/point” queries, a method must combine the time and key spaces
[BGO+93, KS91, LM91, LS89, MK90, S87, VV95]. The optimal solution is provided by the
Multi-Version B-tree (MVB) [BGO+93] and the Multiversion Access method (MVAS) [VV95].
Both useO(n/b) space,O (log,m) update per change (in the amorizedse [CLR90]) and

O (log,n+a/b) query time. Using the transaction-time database abstractiepresents the to-

tal number of objects ever added or deletadienotes the number of “alive” objects when an
update takes place amadrepresents the answer size to a “range/-/point” query. Using improved
merge/split policies, the MVAS [VV95] has a smaller constant in the space bound which in prac-
tice results in lower space. The Time-Split B-tree (TSB) [LS89] is more space efficient, but it can

guarantee worst case query performance only when the evolution contains no deletions.

Obviously, a method that can efficiently address a “range/-/point” query can also address a “*/
-/point” query with the same efficiency. However, by combining the time and key spaces such a
method requires logarithmic update time which is not needed for the “*/-/point” query. The Snap-
shot Index [TK95] optimally solves the “*/-/point” query using constant instead of logarithmic

updating (in an expected amortized sense).

2 This means that some changes could require more@*(dogbm) update processing, but for any sdqakangesf no more than a total

of O (Klog,m) time will be required.



Two common queries in\alid-time database are the “*/point/-” and the “*/range/-" (find all
objects whose valid interval contains a time instant respectively, intersects a given inteiizal
The first query has been termed guent enclosurend the second theterval intersectiorguery.
The combination of dynamic interval insertions and (physical) deletions with the above queries is
known in the computational geometry literature aglfm@mic interval managememioblem. The
best main-memory solution for the dynamic interval management problem is achieved using the
priority search tre§Mc85] or theinterval tree[E83], yieldingO(k) spaceO (log,k) update pro-
cessing per change (addition or deletion of a valid intervallafldg,k + a) guery timek Here
corresponds to the number of intervals in the structure when the query is askesl tuedsize of
the answer. Depending on the query predieatesresponds to the number of intervals containing
the query instant or the number of intervals intersecting the query interval. It has been proved that

this is the optimal solution in a main memory environment.

Until very recently finding an I/O optimal solution even for the simplest of the valid-time que-
ries (“*/point/-") was an open problem [KRVV93]. In [AV96] such optimal solution is presented
but it is rather complex to be practical (it is I/O optimal since it @§&fh) spaceO (log k) up-
date time an® (log k+a/b) query time). Note that for I/@glog, k +a/ b) is different than
O (log,k+a) since the page sizeis not a constant but another problem parameter. The problem
becomes more difficult if an object key range is included in the predicate (creating a “range/point/
-” or a “range/range/-" query). One could use an R-tree [G84] to dynamically store valid intervals.
While such approach may be practical for many applications, recall that R-tre@&iipespace
andO (log K) time for interval insertion, but interval deletion and search can in the worst case be
O(k/b). Searching for an interval implies following all R-tree index nodes that overlap this interval.
At worst the whole tree may have to be searched.

Among the single time axis approaches, the work in [KS91]daliween transaction and valid

time databases. This method associates with each temporal object an interval whose both endpoints
are known and uses the SR-tree (a variation of an R-tree [G84]) to store and query such intervals.
The method is optimized towards insertions of intervals and searches. Interval deletions may be
problematic since intervals are split in many segments, making their update more difficult. As men-
tioned in [KS91] such interval deletions would correspond to “revising” the history, hence they are
not critical for an index for historical data. This is the case for transaction time databases but not
for valid-time ones. However, when data objects are added in the SR-tree both of their interval end-

points are known (which is not the case for transaction-time).

If we view the SR-tree as a transaction-time structure, new objects can be inserted with interval



[t;, now)wherenowis some very large number. The performance would degrade for two reasons:
excessive overlapping and frequent deletions (which would be needed whegmaw)[interval

is updated tot[, t,)). Alternatively, newly inserted objects whose intervals have “unknown” right
endpoints would have to be kept in a separate structure (such structure is not described but it could
be some variation of an R-tree). The SR-tree could be used for valid time databases if the interval
associated with each object corresponds to the object’s valid time interval. However, in this envi-
ronment deletions of intervals are possible, hence intervals would have to be physically deleted

from the structure frequently.

In our double-tree methodology, bitemporal objects are transferred from one access method to
another when the right endpoints of their transaction time intervals become known. This object mi-
gration is reminiscent of the Dual-Root Mixed Media R-tree proposed in [KS89]; however, as it is
explained in section 4.1, these approaches address different problems. We proceed by describing

our methodologies for designing bitemporal access methods.

4. The Proposed M ethodologies

In designing methods for bitemporal queries there exist some obviously inefficient approaches. At
one extreme, one could explicitly store the whulg) at each transaction tinte(Fig. 1). The
disadvantage of this solution is the space and update requirements. At the other extreme, one could
store all updates on a sequential log, but this has prohibitive query performance. A hybrid solution
stores wholdat's everyl-th transaction and the update sequence between subsequent timeslices. If
the distance between timeslices is fixed the hybrid method would behave like one of the two
extremes depending on the choicé. ™fote that in this paper we assuntequery locality which

implies thatl cannot change according to the queries asked. Another solution would be to index
bitemporal objects only on transaction time and use a single time access method. Then a bitemporal
guery is answered in two steps: first all objects existing at transactiohdnaéound and then the

valid time interval of each such object is checked whether it includes valid.time

In another straightforward approach, a bitemporal object is represented by a “bounding rectan-
gle” created by the object’'s valid and transaction-time intervals, that is storedsiigle
multidimensional index (Figure 2). Due to the characteristics of transaction time (unknown future),
a bitemporal object with valid-time intervialvhich is inserted in the database at transaction time
t, is represented by a rectangle with a transaction-time interval of thetforom). Herenowis a
variable that represents the current transaction time and extends to “infinity” or “forever”. If this

3 This assumption distinguishes this work from incremental computation [JMR91] where query locality is shown to provide better query

performance than indexing.
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object is deleted or modified at sorti€t’ > t) its corresponding rectangle is removed from the
access method and a new rectangle with transaction-time intetval [ ) is inserted. As an example,
a “*/point/point” query translates into finding all rectangles that include the query(hpi)t

For comparison purposes we have implemented this approach and tested it against our proposed
methodologies. Since in the implementation we use a single R*-tree [BKKS90] as the multidimen-
sional access method, we refer to this straightforward approacha&thpproach. While the 1-

R approach has the advantage of using a ready, off-the-shelf access method, it has a major disad-
vantage due to the large overlapping caused by rectangles whose right-end extends to (transaction-
time) now. This overlapping affects both updating and querying.

\ now

A

P

(t,v) ——

g

f; f 3 f, . ™

Figure 2: The bounding-rectangle (1-R) approach; only the valid and transaction axis are shown. The eva
Fig.1 is depicted, as of (transaction) titrets. The modification of intervd), atts ends the initial rect
angle forl; and inserts a new rectangle fré#o now

Some applications require the support of valid tmo®, i.e. valid intervals whose right end-
point is the always moving current time. One solution would be to treat such special intervals as
ending to a speciafalid-nowvariable and keep them together with the regular valid intervals. In-
ternallyvalid-nowis stored as the largest value in the valid time domain. To evahiatenow a
reference to current time is needed which we assume is given as another query par@oeter
sider a query about transaction titngalid timev and parameter. All valid intervals inht(t) that
containv will be accessed, including those that start bef@med end irvalid-now Despite perfor-
mance degradation due to extended overlapping, this approach is problemsatic if because none
of the accessed special intervals qualifies for the answer. Thus, if an application has many intervals
ending to valichow, a better solution is to keep such intervals in a separate structure which will be
accessed only if =v . Such structure is a simple variation of the structures presented here since if
special intervals are stored separately, only their start points are needed. We thus proceed with the
discussion of the proposed methodologies as if all valid-time intervals are regular ones.

4.1 The Double-Tree M ethodology

Our double-tree methodology avoids the above overlapping problem while retaining the advantage



of using off-the-shelf access methods. For its implementation we use two R*-trees and in the rest
we refer to it as th2-R methodology (in general various other multidimensional access methods
could be facilitated).

When a bitemporal object with valid-time intervat inserted in the database at transaction-
timetitis inserted at thiont R-tree. The front R-tree keeps bitemporal objects for which the right
transaction endpoint is unknown. If a bitemporal object is later “deleted” at some transaction time
t', (t'>1t) itis physically deleted from the front R-tree and inserted as a rectangle oflhenght

width fromt to t' on thebackR-tree. The back R-tree keeps bitemporal objects with known trans-
action-time interval (Figure 3). At any given time, all bitemporal objects stored in the front R-tree
share the property that they are “alive” in the transaction-time sense. The temporal information of
every such object is thus represented simply by a vertical (valid-time) interval that “cuts” the trans-
action axis at the transaction-time this object was inserted in the database. Insertions in the front
R-tree objects are in increasing transaction time while physical deletions can happen anywhere on
the transaction axis.

VA . (L, V) VA
(0! V) u (tll\lj) (tll\lj)

e

u (t31 Vl) Il
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0 ts ts" t oty t ty ts

Figure 3: In the 2-R methodology, bitemporal data is divided according to whether their right transaction e|
is known. The scenario of Fig. 2 is presented here (i.e., aftet;thras elapsed). The left 2-dimensior
space is stored in tHwnt R-tree while the right in theackR-tree. The query is then translated into
interval intersection and a point enclosure problem, respectively.

As an example, “*/point/point” query abofit v) is answered with two searches. The back R-
tree is searched for all rectangles that contain gbinf). The front R-tree is searched for all ver-
tical intervals which intersect a horizontal interl Interval H starts from the beginning of
transaction time and extends until pdjrdt heighty; (Figure 3). To support “range/range/range”
gueries, an additional third dimension for the key ranges is added in both R-trees.

The usage of two R-trees reminds the Dual-Root Mixed Media R-tree proposed in [KS89]
as a mixed-media index that stores intervals and consists also of two R-trees. The first R-tree is
contained on magnetic disk while the second R-tree is on the optical disk except for its root which
is always stored on the magnetic disk. Insertions are made to the first R-tree. When it reaches a

10



threshold, a¥acuumingprocess completely vacuums all its nodes (except the root) and inserts them
to the optical disk using the second R-tree. Note however that there is no notion of transaction and
valid time. Instead, each object is associated with an object key and a single time interval. Both
endpoints of the interval are known at the insertion of a new object. If intervals represent transac-
tion times then the right endpoints are not known at insertion. If intervals represent valid time then
interval deletions should be supported (however it is not clear how this can be achieved if an inter-
val to be deleted has already been migrated to a write-once read-many optical disk). Object
migration in [KS89] is batched and depends on the size of the first R-tree. In our approach an in-
terval-object is migrated to the back R-tree automatically when it is deleted on the transaction-time
axis. Finally, in the Dual-Root Mixed Media R-tree approach both R-trees store similar kind of ob-
jects. In our 2-R approach thent R-tree stores a valid interval and a transaction time per object
while thebackR-tree stores a rectangle (transaction/valid intervals) per object.

4.2 The Partial-Per sistence M ethodology

This methodology emanates from the abstraction of a bitemporal database as a sequence of history-
timeslicesht (Figure 1). It reduces bitemporal queries to problems of partial persistence. A data
structure is calleghersisten{DSST89] if an update creates a new version of the data structure
while the previous version is still retained and can be accessed. Otherwise, if old versions are dis-
carded the structure is termeghemeralPartial persistence implies that only the newest version

can be modified (i.e., changes are applied only to the newest version), while in full persistence ev-
ery version can be modified.

Partial persistence “suits” nicely with linear transaction time since changes are always applied
on the latestit. Our methodology has two steps. First, a good ephemeral structure is chosen to rep-
resent eaclnt. This structure must support dynamic addition/deletion of (valid-time) interval-
objects; the supported queries depend on what bitemporal queries need to be answered. Second,
this structure is made partially persistent. [DSST89] shows how to make anyrhakednemory
ephemeral data structure partially (or fully) persistent. Since in temporal databases the major por-
tion of data will be stored on a disk-based environment, issues like 1/O, pagination and query-
clustering have to be efficiently addressed when designing the bitemporal access method. In addi-
tion, the chosen ephemeral structure should be space efficient since partial persistence can only add
to the space requirements of the structure.

By “viewing” a bitemporal query as a partial persistence problem, we obtinlde advan-
tage. First we disassociate the valid-time requirements from the transaction-time ones. More

11



specifically, the valid time support is provided from the properties of the ephemeral structure while
the transaction time support is achieved by making this structure partially persistent. Conceptually,
this methodology provides fast access toththef interest on which the valid-time query is then
performed. Second, changes are always applied on the most current state of the structure and last
until updated (if ever) at a later transaction time.

We use the partial-persistence methodology to design two bitemporal access methods, namely
the Bitemporal Interval Tree and the Bitemporal R-Tree.

The Bitemporal Interval Tree is designed for the “*/point/point” and “*/range/point” queries.
Answering such queries implies that the ephemeral data structure should support “*/point/-" and
“*[range/-" queries, respectively. As mentioned earlier constructing a method with good worst case
behavior even for the simpler of the valid-time queries (“*/point/-") is a difficult problem
[KRVV93, AV96]. Ideally we need a practical external ephemeral structure that provides the 1/0
optimal solution for these problems. In the absence of such method wenase-memory data
structure with goodvorst-case performance, and make it partially persistent and well paginated.
Among three possible ephemeral candidates, i.e., the Interval Tree [E83], the Segment Tree [B77]
and the Priority Search Tree [Mc85], we use the Interval Tree. We did not use the Segment Tree
since it needs more than linear spaceKfortervals the space 9 (klog,K ) and would increase
the overall space. The Priority Search Tree could be another choice but it has a disadvantage over
the Interval Tree. Partial persistence keeps copies of all structural updates in an evolving ephemeral
structure. Each update to the Interval Tree involves some logarithmic searching and two structural
updates. In contrast, each update to the Priority Search Tree involves a logarithmic number of
structural updates which would increase the space of the partially persistent structure.

The Bitemporal R-Tree is designed for the more general “range/point/point” and “range/range/
point” bitemporal queries. For that purpose, the ephemeral data structure must support range point-
enclosure and range interval-intersection queries on interval-objects. Since neither a main-memo-
ry, nor an external data structure exists with good worst-case performance for this problem, we use
the R-tree [G84], an access method that has geexhge-case performance and is well-paginated.
Making an R-tree partially persistent resulted to the Bitemporal R-Tree.

By its nature, partial persistence provides efficient access to the appropriate history timeslice
ht(t). Thus the Bitemporal Interval Tree and the Bitemporal R-Tree are optimized towards bitem-
poral queries that involve transaction-timstantsinstead of transaction-tinietervals While not
all ht's are explicitly stored, partial persistence relies on some limited copying of bitemporal ob-
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jects. To answer queries that involve transaction-time intervals with the Bitemporal Interval Tree
or the Bitemporal R-Tree, special care is needed during searching (due to the above copying pro-
cess). In particular, the worst case query performance of the Bitemporal Interval Tree is only
guaranteed for “*/poinpoint” and “*/rangepoint” queries. This is not an issue for the Bitemporal
R-Tree since it only provides good average case performance.

We conclude with an interesting observation. Partially persisteftidimensionalaccess
methods (like the Bitemporal R-tree) have yet another application. They can be used to efficiently
index data cubes [HRU96] whose one dimension is time (i.e., time-evolving data cubes).

5. The Bitemporal Interval Tree

There are various main-memory implementations of an Interval Tree [E83]. The semi-dynamic
implementation [M84] presumes that interval endpoints take values from a known ubiarde

uses a full binary tree as the basic (backbone) data structure. In the fully-dynamic implementation
[M84] no universe knowledge is assumed, but a data structure that supports rotations is used (red-
black binary tree [CLR90]). We used the semi-dynamic implementation because it is easier to
make partially persistent and well-paginated. Hence, the Bitemporal Interval Tree (BIT) as
presented here is more efficient for bitemporal queries whose predicate valid fonealid

interval E) satisfiesv U (respectivelfe 0 U ). For simplicity assurde= {1, 2, ..., V}

Queries on valid time instants outside  are still answered, but their performance is not as efficient.

Let Sbe a set of intervals with endpoints frord. An Interval Tree for se$ with respect to
U, consists of a (backbone) full binary tfeavith V leaves and a number of lists (Figure 4). Each
leaf is labeled with one element frdgn Each non-leaf nodeis assigned a valual(u) that serves
in directing the search from noddo its subtrees. Every intervd) f) from Sis associated with a
single non-leaf noda of T, whereu is the node that contaihgndr in its left and right subtrees
respectively [S89]. Intervals associated with some wicie kept in two doubly-linked lists{u)
andR(u). L(u) (respectivelyR(u) keeps the intervals in increasing (decreasing) order of their left
(right) endpoint. For fast insertion/deletion, each list is implemented using a balanced binary tree
(not shown in Fig.4). Inserting an intervhlr) in the Interval Tree is easy: starting from the root
of T, find the first nodel such that <val(u) <r. Thenl is inserted ir.(u) andr in R(u). Searching
for u would at most need to go down a path of the interval tree, thus itQdkesV). Inserting in
each list takes at moSXlog,n) time. Deleting an interval is done in a similar way. Since every in-
terval fromSis kept in a single nodethe space used by all the list©ig). In additionO(V) space
is used for the backbone binary search tree.
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\ Figure 4. An Interval Tree withJ = {1,..., 8}

1 (2.5 4 (6.5 andn = 5 intervals The backbone binary trde
and the doubly-linked lists are shown. 1
(15 3<—35>—>4 G5 75 valueof each node appears inside the node.
yd left/right lists for the root node contain the e

L1 [2]) [3][4] [5] [6] [7] [8] pointsof (2.6), (2,5) and (3.8).

For simplicity we discuss the point-enclosure query. Intervals containing an natarfound
in O(log,V + a) comparisons, wher@is the number of such intervals. lpebe the path iff from
the root to the leaf labeled For every node, in p the algorithm checks whethex val(u) orv >
val(u). If v<val(u) thenv emanates from the left subtreeupnd all intervals assignedupchave
right endpointg that extends (r>v). Each such interval would contain queryf and only if, its
left endpointl is beforev (I<v). These left endpoints already exist in increasing order ih(ligt
and hence the algorithm simply has to traverse.(igj starting from the first endpoint and until
the endpoint greater thans found. No other endpoints need to be read from this list since they
correspond to intervals starting afterA similar argument holds when>val(y) . Theg,V
lists of p, traversed by the query are tpgalifyinglists for this query.

The key property of the Interval Tree is that it transforms interval insertions/deletions to inser-
tions/deletions of their endpoints in ordered lists. If eVaif Figure 1 is stored using an Interval
Tree, the evolution of valid-time intervals as transaction time proceeds is transformed to evolutions
of ordered lists. The first step in designing the Bitemporal Interval Tree is to make all node lists
partially persistent. To answer a “*/point/point” query for transaction tiarel valid-timev, the
backbone tre@& of Figure 4 is first searched for the leaf with valuBor each node visited the left
or right list is “rollback” to the state it had at transaction timiéhenv is searched on the past state
of such lists. While this is a correct high-level description of how our method works, it is a simpli-
fication. There are additional issues that have to be addressed, mainly how to paginate the
backbone tree when combined with the partially persistent lists.

Let X be an ephemeral ordered list, similar to a node list of the Interval Tree. As (transaction)
time proceeds{(t) denotes the ordered sequence of elements the list hiddhatinclusion of time
in the problem creates a transaction intertalt]) for each list element, whetgis the time the
element was added in the current list §nd the time (if ever) this element was deleted from the
current list. For alt in [t;, t,) this element is called “alive” iK(t). We need a well paginated and
easily updated structure to keXfi) overt, and efficiently address the query: given (transaction)
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timet, find the elements frorK(t) that are less than(which corresponds to some valid time).

This problem is &pecialcase of the “range/-/point” query. An obvious solution would be to
use the MVB [BGO+93](or MVAS [VV95] or TSB [LS89]) tree and stoig) on its leaf pages,
but this would create an extra overhead in the Bitemporal Interval Tree query time. Searching a list
must always start at the root of the MVB structure, f@r(dog, n) query time overhead per qual-
ifying list. Note that we only need access to the leaf pages which contain the elemen(f list
in order, starting from the beginning of the list. The MVB (MVAS, TSB) structure cannot explic-
itly achieve this since its leaf pages are not connected. For a given leaf page there is not a single
next sibling page. Rather, Z¢t) evolves the next sibling page varies over time.

In AppendixA we provide a solution that searches a g¥@hstarting from the first page that
the list had at. With this solution the history of every node list in the Interval Tree is abstracted
by an ordered arraflT which provides access to the first page of the list at each time; the other
pages of the list are accessed by appropriate pointers. The first list page atiséooed by a
logarithmic search that locates the entri{@fthat is closest tb This search still take® (log, n)
guery time, but this overhead can be avoided by “synchronizing” all the lists of the Interval Tree.

The main idea in “synchronization” lies on the fact that a query is answered by following a path
on treeT (Figure 4). Consider for example a query for valid tim8 and transaction tinte This
guery uses the path leadingwe3, i.e., the path created by nodes 4.5-2.5-3.5. Answering this
bitemporal query means that the left list of node 4.5 is first rollback (paying a cogiag, n)
to search in the list'sHT array) then the right list of node 25 and finally the left list of node 3.5.
Our aim isnot to “pay” additionalO (log,n) query costs for locatitig theHT arrays of the lists
in 2.5 and 3.5. Instead the search on the Hisshould provide enough information (in the form
of pointers) as whertes located in the lists below. The way to achieve this is by a variation of the
“backward” updating technique we use in Appenilixor making a list partially persistent. This
technique is now used “vertically”, on tree paths. WherHRearray of a node list is very active
creating many entries (if this list is very active or if the first page of the list changes oftefi) the
arrays on the parent node lists are informed (every some constant number of new entries).
Synchronization is combined with the overall pagination (for details we refer the reader to
[KTF95]). The Bitemporal Interval Tree computes “*/point/point” and “*/range/point” queries in
O (log,V+log,n+a) I/O’s. The space i®((n+V)/b), the update is amortizéd(logb(m+ V)
I/O’s per change. Hemais the number of intervals contained in the current timekt{¢evhen the
update is performed. The stated query performance is for queries with valid-time predicates includ-
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ed in setJ. To represent the whole universe of valid times we add special elements « and (the
“from-ever” and “for-ever” notions on valid time) and setsandU_, that represent the finite ele-
ments which are greater/less than the maximum/minimum eleméntespectively ([KTF95]).

For queries where belongs tdJ, (or U.) the query time becomé3(log,n+ e B ercorre-
sponds to the number of elements that the list of khd®).) had at query timé The O (log, n)
component is for rolling back this list to transaction tiraad theD(e/b)component is for search-

ing it. At worst alle elements have to be checked but not all contribute to the answer.

6. The Bitemporal R-Tree

The Bitemporal Interval Tree guarantees good worst case query and update performance but has
various limitations. Inherently from the interval tree, each object is kept in two places (the left and
right node lists) thus doubling the space. The current implementation provides the good
performance for “*/point/point” queries that are inside a known valid time uniéreeg., the

method is not completely dynamic since its performance is “focused” on a particular area of valid
time queries. Directly associated with the universe size is the size of the backbdne tiage

U will make the space overhead due to Fesignificant as related to the total number of changes

n. Hence it is primarily for applications with small valid-time focus of interest as related to the size
on the transaction time (which is related to the number of changes).

The above limitations emanate from our choice to representheactih an Interval Tree. To
overcome this problem weasethe requirement for good worst case performance and apply the
partial persistence methodology to a more robust structure that supports interval intersection que-
ries with good average performance.

An excellent choice for such structure is the R-tree [G84] since it is also well-paginated and
uses linear space. While its worst case update and query performance are large, the ephemeral R-
tree has been shown to work rather satisfactorily in practice: on avergiye, k) I/O’s per in-
terval update an@® (log k+a/b) 1/Os for interval intersection queries (as blefmeesponds
to the number of intervals in the tree anid the size of the answer to an interval intersection que-
ry). Multidimensionality is another advantage of the R-tree. Adding a separate dimension for the
key attribute of each interval-object, allows the R-tree to efficiently address queries of the form:
“find all intervals intersecting a given intervaland whose keys are in a given rakge

Partial persistence coupled with the R-tree’s multidimensionality enable the Bitemporal R-Tree

to answer efficiently “range/range/point” queries. Using partial persistence the R-tree representing
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the history timeslicét(t) is first conceptually accessed. This tree is then searched top-down to an-
swer the “range/range/-” part of the bitemporal query. This top-down search is conceptually
equivalent to searching an ephemeral R-tree that stores the interi{ts of

Another possible multidimensional structure which handles intervals is the Segment R-tree
(SR-tree) [KS91]. We did not use the SR-tree since its ephemeral form uses more than linear space
to the number of intervals stored in it. This would only increase the overall space of a partially per-
sistent SR-tree. In addition, the ephemeral SR-tree has been designed to support mainly interval
additions. Interval deletions were assumed to be infrequent [KS91] and are not supported as effi-
ciently (they require finding all possible segments of the deleted interval in the SR-tree). This is
not the case in bitemporal applications where intervals can be updated frequently.

An R-tree [G84] is an external, dynamic, balanced multiway tree that stores multidimensional
objects. Each node corresponds to a disk page. For simplicity let each data object being specified
as adegenerate@-dimensional rectangle that has a key attribute (which may not be unique) in one
dimension and an interval on the other (corresponding to a valid-time interval). Such a data object
is stored in a leaf page aslatarecord with three fields: its key and the two interval endpoints.
Each leaf page is associated with a bounding, 2-dimensional rectangle that whose area contains all
rectangles in the page. Non-leaf pages comt@iexrecords of the forn{r, child_pointer)where
child_pointer is the address of a lower tree pager anthe covering rectangle of the lower page.

If more dimensions are used to represent data objects the dimensionalitgrebses analogous-
ly. As with a B+-tree an R-tree page is at least half and at most completely full of records.

In making the ephemeral R-tree partially persistent we can use ideas from previous work on
partially persistent B+-trees, in particular MVB-tree [BGO+93] (and its improvement the MVAS
[VV9O5]) and the Time-Split B-tree [TSB89]. This is because both B+ and R-trees are multiway-
balanced structures that evolve through page splits and merges. There are however differences that
affect the implementation of the Bitemporal R-tree. In contrast with a B+-tree, the R-tree does not
keep a linear order among the objects it stores thus creating various possible merging policies. Fur-
thermore, it is likely to have object insertions or deletions on an R-tree page that do not cause a
page overflow or underflow but may still change the bounding rectangle associated with this page
and provoke further changes on its ancestors. Finally, the multidimensionality of the ephemeral R-
tree and the specifics of valid-time allow for various optimizations on the performance of the
Bitemporal R-tree that should be examined.

The design of the Bitemporal R-Tree was influenced by the MVB and MVAS trees. We did not
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use the Time-Split B-tree since it is geared towards applications where the most frequent changes
are object insertions and updates. Object deletions are less fregiggnwise constandata

[LS89]). Each version of an R-tree data record would then be associated with only one timestamp.
For a newly inserted record the timestamp stores the record’s insertion-time; subsequent record up-
dates create new versions of the record, each timestamped with the time of the update. Deletions
are implicitly represented by some special value. Adapting the [LS89] policies for the Bitemporal
R-tree would use less overall space as compared with the MVB and MVAS approaches (one reason
is that pure key-splits are allowed); however some of the queries may not be as efficient especially
if bitemporal object deletions are frequent. We did not follow this approach but it is an interesting
avenue for further research (in particular the effect of pure key-splits on the R-tree updating).

Subsection 6.1 provides an overview of the Bitemporal R-Tree and subsection 6.2 presents the
optimizations we performed for tuning its performance.

6.1 Method description

The structure of the Bitemporal R-Tree is a directed acyclic graph of pages. Conceptually it stores
the various states that the initial ephemeral R-tree assumes through its transaction-time evolution.
As a result, the graph embeds many R-trees and has a number of root pages. Each root is respon-
sible for providing access to a subsequent part of the ephemeral R-tree’s evolution.

Data records in the Bitemporal R-Tree leaf pages maintain the transaction-time evolution of the
corresponding R-tree data records. Each record is thus extended to include two additional fields:
insertion-timeanddeletion-time representing the transaction-time that the corresponding R-tree
record was inserted and logically deleted in the bitemporal database. Similarly, index records in
the non-leaf pages of the Bitemporal R-tree maintain the evolution of the corresponding index
records of the ephemeral R-tree and are also augmented with insertion-time and deletion-time
fields. Therefore each record has a transaction interval during which it isaaled

Assume that each page in the Bitemporal R-tree has a capacity of Hotdoayds. Similarly
with [BGO+93, VV95], a page is calledive if it has not beetime-split(see below). With the ex-
ception of root pages, for all transaction-timésat a page is alive it must have at lepstcords
that are alive at(g <b). This requirement enables clustering of the alive objects at a given time in

a small number of pages, which in turn will minimize the query 1/0.

The first step of an update (insertion or deletion) at the transactiohlticaes the target leaf
page in a way similar to the corresponding operations in an ephemeral R-tree. Note that this step
is carried out by taking into account the transaction-time intervals of the index and data records
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visited, i.e., only the latest state of the ephemeral R-tree is traversed. An update |stdstiaral

change if at least one new page is credtlh-structuralare those updates which are handled
within an existing page. After locating the target leaf page, an insert operation at the current trans-
action timet adds a data record with a transaction interval, aidw) to the target leaf page. This

may trigger a structural change in the Bitemporal R-tree, if the target leaf page alreddy has
records. Similarly, a delete operation at transaction tifimels the target data record and changes

the record’s interval to [insertion-timi, This may trigger a structural change if the resulting page
ends up having less tharalive records at the current transaction time as a result of the deletion.
The former structural change ipage overflowthe latter is aveak version underflofBGO+93].

Page overflow and weak version underflow need special handlimgeaplitis performed on
the target leaf-page. This is similar to the time-split of [LS89] or the page copying of [TK95]. The
time-split on a page at timet, is performed by copying to a new pagene records alive in page
x att. Pagex is consideredleadafter timet. (We can assume that the deletion-time field of all of
X's alive records is changedtteven though this is not needed in practice). Then the resulting new

page has to be incorporated in the structure.

Briefly, there are three cases for handling the new pdB&0O+93}. First, if the number of
records iny are within a certain specified rangeis directly inserted in the Bitemporal R-Tree
structure. (This specified range is known apriori. In short, the number of records should be between
g+e andb-e wheree is a predetermined constant. Conseanbrks as a buffer that guarantees that
a new structural change to the new pyagan happen only after at leastew changes). The page
insertion is carried out by accessing the parent pagenoérking the index record toas deleted
at the current time and inserting a new index record pointing to pag€onceptually this implies
that pagex is dead, i.e., not accessed for times larger thdtven though these changes occur in
an internal page, they are similar to insertion and deletion of data records in a leaf-page and are
handled identically. Similarly, these insertions and deletions can create new changes up the tree to
the ancestors and so on. The second case is if the resulting leggmore records than the spec-
ified range; this is calledstrong version overflowondition and is handled by splittiggnto two
pages and then accommodating these pages in the structure in a manner similar to the one described
above. The third case is if pagéas less records than the specified range; this condition is called
astrong version underflownd is handled by mergirygwith another “sibling” page and then ac-
commodating the new page(s) in the tree.

There are two basic differences in the way the Bitemporal R-Tree is updated as compared to

4 Note that the improved policies of [VV95] are somewhat different in handlingypage
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the partially persistent B+-tree [BGO+93, VV95]. These differences are:

(1) The single order among the stored elements in a B+-tree creates an order among the tree’s
pages, too. Hence, a B+-tree page has at most two sibling pages and these are the only possible
candidates for this page to merge with, if needed. In comparison, the ephemeral R-tree stores spa-
tial objects and hence the notion of a sibling has to be redefined. Note however that merging in an
ephemeral R-tree is not handled explicitly. If a page goes below the lower number of records due
to deletions this page is not merged with another page. Instead, the records of the underutilized
page are reinserted in the R-tree structure [G84, BKKS90].

The reinsertion method is not feasible in the Bitemporal R-tree, since a persistent structure
“records” all changes that happen in its state. An underutilized page of an R-tree is half full and
thus it can caus®(b) record reinsertions. Each record reinsertion could at worst modify the whole
path in the R-tree (i.e., logarithmic number of changes). Recording all these changes in the Bitem-
poral R-tree will require excessive space. To avoid this problem, the Bitemporal R-tree performs
merging explicitly. Merging with a sibling may still change the whole path but this will happen
once for the under-utilized page. It is an interesting optimization problem to chose with which sib-
ling a page is merged; the various policies we examined are discussed in section 6.2.

(2) The second difference is with the way insertions and deletions are handled when they do
not lead to structural changes. In an ephemeral B+-tree, an insertion to a page that has enough emp-
ty space is simply performed by adding the new key in the page; no parent page is updated. In an
ephemeral R-tree a similar insertion may increase the geometric area covered by the data page.
Then the parent page must also be changed, in particular the rectangle of the index record that
points to the data page (so that the information about previous data page area is not lost). As this
may propagate to the root, an insertion can cause a logarithmic number of updates even though no
new page is added on the ephemeral R-tree.

To avoid recording all these changes, the Bitemporal R-tree simply adjusts the current index
records in ancestor pages without making copies of these records. Consider a given index record
created at timéwith some initial rectangle area. At various time instants aiterectangle area
is subsequently increased (due to non-structural insertions in the pages underneath) but the record’s
insertion-time remains If at a later time" this index record is (logically) deleted, its transaction
interval would bet] t') and the prevailing rectangle area would be the latest (and largest) this index
record received. A query that follows this index record will provide the correct answer for all times
in [t, t') since the prevailing rectangle area contains all previous ones. Hence the above policy does
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not violate the correctness of the Bitemporal R-tree. Since a non-structural deletion can only de-
crease a page’s overall area the Bitemporal R-tree does not adjust ancestor index records (the
previous rectangle area contains the new one and queries will still be answered correctly).

A high level algorithmic description of the Bitemporal R-tree updating process appears in Ap-
pendix B. We proceed with a discussion on query processing. As with the ephemeral R-tree, query
processing follows a top-down search, starting from some Bitemporal R-tree root. Since updates
can propagate to ancestors, a Bitemporal R-tree root may become full and time-split. This creates
a new root page which in turn may be split at a later transaction time to create another root and so
on. By construction, each root of the Bitemporal R-tree is alive for a subsequent, non-intersecting
transaction-time interval. Efficient access to the root which was alive at isnpessible by keep-
ing an index on the roots, indexed by their time-split times. Since time-split times are in order this

root index is well-paginated.

Answering a bitemporal query on transaction tinhas two parts. First, using the root index,
the root alive atis found. This part is conceptually equivalent to accessing timésft¢er, more
explicitly, accessing the ephemeral R-tree representing the interVgty &econd, the answer is
found by searching this tree in a top-down fashion as in a regular R-tree. This search takes into ac-
count the record transaction interval. The transaction interval of every record returned or traversed
should include the transaction timp&vhile its valid time interval and its key attribute should satisfy
the valid and key query predicates respectively. Answering a bitemporal query on a transaction
time intervalP = [t, t') is similar. First all roots with transaction interval interseciraye found.
Starting from the first alive root, Bitemporal R-tree pages are recursively accessed provided that
they have intervals intersectifg Since the Bitemporal R-tree is a graph, some pages are accessi-
ble by multiple roots. Re-accessing pages can be avoided by keeping a list of accessed pages. This
search method finds all records with transaction intervals that intéskignce it may include

many copies of the same record; the query answer is found by eliminating such copies.

6.2 Performance Tuning
The performance of the Bitemporal R-tree is described by three interrelated parameters: space, up-
date and query-time. The space of the Bitemporal R-tt@énih). Intuitively, this is because our

proposed updating modifications keep the space per update bounded.

Partial persistence implies that the update and query performance of the Bitemporal R-tree are
bound by the performance of the underlying ephemeral R-tree. Intuitively this holds because up-
dates to the Bitemporal R-tree are always applied to the latest conceptually to the most

21



current R-tree. Similarly, queries are applied to the appropri@jei.e., as if the ephemeral R-tree
implementinght(t) is traversed. While the worst case query and update performance of an R-tree
are large, R-trees can have good average case behavior and thus adhere to possible optimizations.
Since the ephemeral R-tree stores the valid-time intervals, we perform three optimizations as relat-
ed to the way valid-time intervals are updated or stored. The first two optimizations are based on
choosing merging and splitting strategies. The third optimization is based on the storage represen-
tation of intervals in an R-tree.

Merging policies. The selection of the sibling page with which an underutilized page will merge
is associated with defining a “closeness” metric. We have applied five heuristic criteria.

The first criterion (calle@verlap chooses as a sibling the currently alive page under the same
parent which has the most bounding rectangle area intersection with the underutilized page. If mul-
tiple pages have the same area intersection, the one needing the least area expansion is chosen.

In the second criteriomr(in_areg, the sibling of a page is chosen to be the currently alive page
under the same parent whose bounding rectangle area needs the least gexpaesion to in-
corporate (include) the data records of the underutilized page.

The third involves choosing the page which when merged with the underutilized page has the
leastmargin (or perimetej, which is the sum of the lengths of all sides of the bounding rectangle.

The fourth criterion(combined chooses the page that if merged with the underutilized page
will provide a page with the leasarea+ w<margir’; herew is a small constani(=0 §reais

the rectangle area of the resulting pageraadyinits perimeter.

The last criterior{frandom) randomly picks one of the currently alive siblings of the underuti-
lized page for merging, i.e., no real “closeness” metric is used except that the sibling is also alive.

Splitting policies. Splitting is needed in two cases after a time-split. The first case is when a result-

ing page after a time-split satisfies the strong-version overflow condition (i.e., it has too many alive
records) and hence needs to be split into two new pages. The second case is when the resulting page
after a time-split satisfies a strong version underflow condition (i.e., it does not have enough alive
records) but after merging with a sibling, the resulting page satisfies the strong-version overflow
condition (because the combined number of alive records in the merged pages is large). Since split-
ting in these two cases deals only with the key and valid-time dimensions of the records (all records

in question are alive in the transaction-time sense) we implement three heuristic splitting policies
from ephemeral R-trees that attempt to minimize the total area of the page covering rectangles that
result after the split. This covering is related to key and valid-time dimensions, only.
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The first two policies are thguadraticandlinear splitting of the basic ephemeral R-tree [G84].
They both assign records in two groups (each group corresponding to a new page), but differ on
how groups are initialized and records are assigned. The quadratic policy initializes the two groups
by picking the pair of records that would waste the most area if put in the same group (the area of
the rectangle that covers both records minus the covering areas of the records themselves would be
the greatest). Remaining records are assigned to groups in steps. At each step the area expansion
required to add each remaining record to each group is calculated, and the record assigned is the

one showing the greatest difference in the area expansion needed between the groups.

The linear splitting policy picks records based on their “normalized separation” [G84], defined
along each dimension. For example, among the records to be split, the separation along the valid-
time dimension is the distance between the highest interval left-endpoint and the lowest interval
right-endpoint. This separation is divided by the width on this dimension (highest right-endpoint
minus the lowest left-endpoint) to create the normalized separation along this dimension. A similar
computation takes place along the key dimension. The linear splitting algorithm initializes the two
groups by picking the pair of records with the greatest normalized separation along any of the two
dimensions. The linear policy also differs on placing the remaining records: a record is randomly
picked and placed in the group that needs the lesser area expansion to accommodate it.

The third splitting policyr_star, comes from the ephemeral R* tree [BKKS90]. To outline the
policy we first define a few relevant terms. The margin value of two rectangles is defined to be the
sum of their margins. The overlap value between two rectangles is the amount of the common area
shared between them. Records are referred to as being ordered in a given dimension if they are sort-
ed according to their values in that dimension. If intervals are stored in a given dimension, the
ordering is made according to the starting values of the intervals; ties are resolved using the interval
ending values. The star splitting policy is based on determining various distributions of a page’s
records after ordering them in each dimension. Ktredistribution in a given dimension keeps
the initialk records in the first group and the remaining in the second group. Distributions which
place less than a predefined number of records in any of the groups are not considered since these
distributions may lead to bad query performance. The splitting policy starts by first choosing the
dimension on which to split. This is performed by ordering the records in each dimension and pick-
ing the dimension which has the distribution that leads to the overall minmnauginvalue of the
two rectangles that cover the two groups created. The actual split follows: records are ordered on
the chosen dimension and distributed in two groups using the distribution which minimizes the

overlapvalue between the two rectangles which cover the two groups created in the distribution.
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We also considered splitting policies from the ephemeral R+-tree [SRF87]. However those pol-
icies are not directly applicable since an R+-tree keeps multiple copies of the records. This is costly
in terms of space for the Bitemporal R-tree, since copies of records from all the previous versions

should be retained.

Interval transformation. Large intervals tend to increase page area overlapping which in turn af-
fects the performance of the ephemeral R-tree and hence the performance of the Bitemporal R-
Tree. To deal with this problem we transformed one-dimensional valid-time intervals into points

in a two-dimensional space. A valid-time interValith v,, v, starting and ending values corre-
sponds to poinfv,, V,) in the two-dimensional space (for simplicity we denote the beginning of
valid times as time zero). Such points are located in the upper diagonal area, since the starting value
is always less than the ending value. Storing intervals as points would allow for better pagination

which should on the average improve both the update and query performance.

A similar problem with interval storing appears more severely in the 2-R methodology. In par-
ticular, the front R-tree (Figure 3) will try to accommodate the vertical valid-time intérirdats
pages, favoring the creation of vertical page areas that store near-by (in the transaction sense) in-
tervals. The problem is intensified since vertical intervals are placed at given transaction times. The
horizontal query intervadll of Figure 3 will intersect many of these vertical page areas even though
some of these pages may not contribute to the answer and thus affecting the query performance.
To avoid this problem we also implemented the 2-R methodology using the above translation of
intervals to points. A query for all intervals intersecthig translated into finding all three-dimen-

sional points in a semi-infiniteuboidof heightt.

7. Performance Analysis

We implemented the Bitemporal R-Tree (BRT) and the Bitemporal Interval Tree (BIT) and
compared them with the 2-R and the straightforward 1-R approach. To avoid overpopulated graphs
we first compare the performance of the various Bitemporal R-Tree implementations. We then
proceed with comparisons among the optimized Bitemporal R-Tree and the other structures (the
BIT, the 2-R and the 1-R). The comparisons begin with the “*/point/point” query and continue with

the “range/point/point”, “range/range/point” and finally “range/range/range” queries.

7.1 Experimental Setup
For the first set of our experiments we selected fourteen data files (evolutions), each containing
60,000 updates. An update is the addition or deletion of a valid-time interval. To examine the effect

of the “mix” of updates on performance, seven of the files had 35,000 insertions and 25,000
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deletions (the 35/25 ratio) and seven had 43,000 insertions and 17,000 deletions (the 43/17 ratio).
The 43/17 group of data files has many long-lived bitemporal objects (in the transaction-time
sense) since only 17,000 of the inserted objects are deleted. In comparison, the 35/25 group has
many short-lived bitemporal objects.

Each data file was created by first choosing the valid time intervals. The starting point of a valid
interval was selected randomly (with a uniform distribution) anywhekéin{1,..., V}. For the
above data files we us&b= 1024. Then the ending point was chosen uniformly within a distance
of K from the starting point. Hend€/2 is a good estimate for the average size of the valid-time
intervals in a data file. To study the effects of the average valid-time interval size data files were
created with the following(/2 values: 50, 100, 200, 250, 350, 500 and 600.

The transaction time evolution was created next. For simplicity we have assumed that at each
transaction time exactly one update occurs. The number of updates per transaction does not affect
the update processing which is proportional to the total number of updates over all transactions.
Hence in each data file there are 60,000 distinct transaction times (equivalently, the size of the
transaction-time universe is 60,000). All evolutions were setup to start with 4,000 inserts, i.e., in
each of the first 4,000 transaction times a valid time interval was picked randomly for insertion
(from the valid time intervals created above). This guarantees a structure with reasonable number
of intervals before carrying out the deletes. At each of the later transaction times, a new interval
was randomly inserted with probabilipywhile with probability 1p one of the already inserted in-
tervals was randomly deleted. The valugpaflas chosen accordingly so as to provide the two
groups of insertions/deletions.

7.2 Performance Tuning of the BRT

We used various implementations of the Bitemporal R-Tree based on: (a) two (transaction) time-
split policies (i.e., thdasic[BGO+93] and themproved[VV95]), (b) five merging policies (the

overlap, min_areamargin, combinedindrandon), (c) three (key/valid-time) splitting policies
(thequadratic linear andr_star) and (d) two valid-time interval representatioinsgrval or point).

Instead of presenting all possible combinations, we proceed with a step-by-step optimization by
incrementally fixing the various parameters. All BRT optimizations are shown using the 35/25
datasets; the 43/17 datasets behaved similarly. In all experiments the page size is 1K and each page
has a total capacity of about 50 bitemporal objects.

Figures 5-7 present the effect of thesic/improvedime-split and thénterval/pointrepresen-
tation on the BRT performance. Each BRT was implemented usinggitggn merging policy and
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ther_star for valid-time/key splitting. Figure 5 shows the space used in number of pages. As with
B+-trees, themprovedtime-split implementations use less overall space thapatsietime-split.
Thepointrepresentation uses less space than the correspameingl representation since inter-

vals introduce more restrictions in their placing into pages that result to less page utilization. In
addition, the space used by the BRTs withititerval representation tends to increase with the av-
erage size of the valid-time intervals because larger intervals are more difficult to paginate.
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Fig. 5: Number of pages (space) used by the BRT undeFig. 6: Avg. number of page 1/O’s per update for the BR
basic/improvedandinterval/point The 35/25 files are shown underbasic/improvedand interval/point The 35/25 files are
with V=1024 and varying avg. valid-time interval sizes. shown withV=1024 and varying avg. valid-time interval size:

Figure 6 depicts the average number of I/Os per update. During the update process, bitemporal
objects in the currefi(t) are normally accessed using the combination of their key, valid and trans-
action-time attributes. To clearly show the effect of the valid-time interval representation, we
present the average update per change without usikgyh#ribute. Depending on its selectivity,
the key attribute can assist in identifying the updated object. A key attribute with low selectivity
(for examplesalary) implies that many objects have the same value on this attribute thus limiting
its usage in identifying the updated object. Ignoring the key attribute for updating behaves as an
extreme of the low selectivity cases or equivalently, as if all objects have the same value on the key
attribute. (We examine the full effect of key selectivity on updates later). Figure 6 indicates that
the BRTs with point representation have less updating that is also independent of the average in-
terval size. The interval based approaches have updating that increases with the average interval
size. This is again due to the difficulty of efficiently placing larger intervals into pages.

To compare the query performance we computed 10,000 “*/point/point” queries for each data
file. Each query is selected by choosing the valid timendomly with a uniform distribution with-

in the set of valid timed and the transaction timegandomly with a uniform distribution over all
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60,000 transaction times. Figure 7 shows the average number of pages accessed per query. The
point representation has less query time than the interval one and within the same representation
the basic/improved time-split policies have basically identical behavior. For all implementations
the query 1/O increases with the valid interval size because the answer size also increases.

Based on the outcome of the above experiments we fix the BRT implementationino the
provedtime-split (less space) and theint representation (less update/query), and proceed with
the effect of the merging and splitting policies. We actually run experiments that combined all
merging with all splitting policies. In general, we got the best performance when using the BRT
with ther_star splitting policy. Hence we only discuss the effect of merging policies when com-
bined with ther_star splitting policy. The merging policies did not have a significant effect on
guery time and space (not shown). Query times for all BRTs were similar, withatigen policy
to provide a slightly better query performance. All policies used an average space of 1860 pages
with random variations less than 1.6%. The effect of the merging policies on updating appears in
Figure 8. Among the five policieendomandoverlaphad the worse updating. The rest behaved

almost identically, with a slight advantage for them_areaandmargin

140 T T T T T 2.36 T T X T T
Improved Int. e—__ Min. Area —~—
> 120 Improved Rts—=+- I} 2.34 | Overlap —+—
g Bast 8- -g Margin -8--
X 232 | Random -x- 3
g 100 = 2 Combinded &~
g g Ll T
» » ) - 1
o) 80 B o >
- 60 . °
2 8
S
g 40 - 2
s = o
< 20 = R Z
0 1 1 1 1 1 i
50 100 200 250 350 500 600 50 100 200 250 350 500 600
Average Valid Interval Size Average Valid Interval Size
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There are various reasons why merging policies have limited effect on the BRT performance.
For all policies, the page to merge with is chosen among the currently alive siblings of the underuti-
lized page. A page is alive as long as it has at tpaBve records. Most pages operate between
g+e andb-e alive records (section 6.1). In our implementation wedraé =10 andb = 50. Hence
for most pages the merging policies choose from a moderate number of 20-40 alive siblings. As

the experimental results show, with the possible exception catidempolicy, all merging pol-
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icies avoided bad sibling choices. Even if some choices were worse than others, there are two more
amortizing factors. First, the number of merges in an evolution is small as compared to the number
of splits. Merging happens when (due to object deletions) a page underflows, i.e., when the number
of alive records becomes lower than threshplth contrast, splits happen because a page over-
flows and are due to either real object insertions or record copies due to persistence. Since deletions
are less than the summation of insertions and copies, merges are not as frequent. Second, the num-
ber of alive siblings at a given tiniés a small part ofit(t) which in turn is a small portion of the

whole persistent structure that storesh@i. (Note that merging in an ephemeral structure has
more drastic effects since it deals with a larger portion of the structure.) Based on the query and

update performance we fix the BRT merging policynargin

The effects of the valid-time/key splitting policies appear in Figures 9 and 10.Staepolicy
uses comparatively less space (Fig. 9), update (not shown) and query (Fig. liog#ramdqua-
dratic. This is expected since the valid-time/key splitting policies deal with the page splitting of
the most currert(t) as if it was an ephemeral structure. For an ephemeral R-tree it has been ob-

served that the_star policy performs better than theear andquadraticpolicies [BKKS90].
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Fig. 9: Number of pages (space) used by the BRT under thFig. 10: Avg. number of I/O’s per “*/point/point” query for
various valid-time/key splitting policies. The 35/25 files arethe BRT under the valid-time/key splitting policies. The 35/
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As a result of the BRT optimization, in the rest when referred to BRT we imply the “optimized”
implementation that uses threproved margin, r_star policies and th@ointsrepresentation.

7.3 Performance Comparison of the Various Approaches

We proceed by comparing BRT with the BIT, the 1-R and 2-R approaches. Each of the 1-R and 2-
R was implemented using the R* tree [BKKS90] (which usesrtis&ar splitting policy and
reinsertions instead of page merging) and two implementations based on intervals and points.
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Number of Pages

Figure 11 depicts the space consumption for the 35/25 group. The 1-R with interval representation
(1-Ri) has the best overall space utilization since a single record per bitemporal object is used. The
2-R methods also use one copy per object but the page utilization is slightly lower. The BRT uses
more space (due to record copying) but only about 57% more than the 1-Ri method (on average
1850 versus 1180 pages). The Bitemporal Interval Tree had the largest space requirements. In
addition to copying due to partial persistence, each interval in the backbone Interval Tree is kept
twice (in some left and right lists). Note that the space requirements for the BIT tend to decrease
as the average interval size increases; large intervals will be stored in node lists near the root,
leaving the rest of the backbone structure empty (hence less lists will be created). The BIT space
is also affected by the way updates are performed on each partially persistent list (see Appendix
A). Its overall space can be reduced if instead of the [BGO+93, VV95] policies we use the TSB
[LS89] time splits. We did not implement a BIT with the TSB policies but we estimated its space
requirement based on the average number of copies per object used in TSB.
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Fig. 11: Number of pages (space) used by the BRT, BIT, 1-FFig. 12: Avg. number of page I/O’s per update for the BR
and 2-R methods for the 35/25 files with1024 and varying BIT, 1-R and 2-R methods for the 35/25 files withl024 and
avg. valid-time interval sizes. varying avg. valid-time interval sizes.

Figure 12 presents the average number of pages accessed per update in all compared approach-
es, for the 35/25 data files. Again the key attribute was not used during updating (low selectivity).
The BRT has the lowest average I/O per update followed by the BIT update. The BRT, BIT and 2-

R with points (2-Rp) have updating that is basically independent of the valid-time interval size. The
update of the 2-R with intervals (2-Ri) and the 1-Ri increases with the valid-time interval length
(larger intervals are more difficult to paginate). The 1-Ri has higher update than the 2-Ri because
of the additional burden of transaction endpoints extendingwoThe 1-R with points (1-Rp) has

the worst update processing since in the point formulation, the extensiow pwoblem is inten-

sified (howbecomes a common endpoint to many bitemporal objects).
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To compare the query performance we computed 10,000 bitemporal “*/point/point” queries for
each data file (Figure 13). The partial persistence approaches have the best performance, with the
BIT being faster especially as the interval size increases (the performance of the BIT and the BRT
methods is virtually the same for the smaller interval sizes). The 1-Rp method has the worst query
performance, followed by the 2-Ri method. The 1-Ri and 2-Rp methods are comparable: 1-Ri is

better than the 2-Rp method for smaller valid interval sizes but the 2-Rp prevails for larger interval.

To validate the query experimental results we need a measure of the query answer size. As the
interval size increases the average number of answers also increases. For the 35/25 data files the
average query size was 305, 595, 1110, 1320, 1710, 2150 and 2335 objects/query for the 50, 100,
200, 250, 350, 500 and 600 valid interval sizes, respectively. A good access method should find
the answer with as few data page accesses as possible (accessing directory pages corresponds to a
very small part of the query 1/O, about 5 pages). In our experiments, the 1-Ri method uses an av-
erage of 30 objects per page (there are about 35,000 objects and the space used is about 1180
pages). This is because each page is utilized only about 60% to allow for free space. As a result,
any method that uses this minimal R-tree utilization, would ae&sghst 10, 20, 37, 44, 57, 72 and
78 data pages respectively, to store the objects in the average answer for each data file in the 35/25
group. To compute these answers and after excluding directory page accesses, the BRT makes 13,
26, 48, 57, 72, 90 and 100 page accesses on the average, respectively. This constitutes an 30% in-
crease on the average, over the “best” possible (R-tree utilization) solution. The BRT has smaller
page utilization since the copying due to partial persistence occupies some page space. In compar-

ison, the 1-R and 2-R tree methods search a much larger number of pages.
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Fig. 13: Avg. number of I/O’s per “*/point/point” query for Fig. 14: Avg. number of page 1/O’s per update for the BR
the BRT,BIT, 1-R and 2-R methods for the 35/25 files withBIT, 1-R and 2-R methods for the 43/17 files with1024 and
V=1024 and varying avg. valid-time interval sizes. varying avg. valid-time interval sizes.

The performance comparison of all methods for the 43/17 group follows. The space perfor-
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mance (not shown) is similar as for the 35/25 case. For all methods the space is more than the
corresponding 35/25 case since there are now more objects created (less deletions). The BRT used
on average 65% more pages than the 1-Ri approach (2440 pages versus 1480 pages); the slight in-
crease in BRT space overhead against 35/25 is because the number of insertions has increased and
consequently the number of copies due to time-splits. The increased number of insertions makes
the update (Figure 14) of the BRT, BIT and 2-R methods to increase, too. In contrast the update of
the 1-R methods decreases because the number of deletions has decreased and deletions are a real
burden in the 1-R approach. The query time performance for the “*/point/point” queries is depicted

in Figure 15; all methods behave similarly as for the 35/25 case. Based on their behavior for the
35/25 and 43/17 datasets we choose the 2-Rp and 1-Ri to be the representatives of the 2-R and 1-
R approaches for the rest of our experiments.

Effect of the Valid-Time Universe Size. The performance of BIT is affected by the size of the val-
id-time universe, since the backbone struciuteas sizeéO(V). Large universe size implies more
space overhead. To study the effect of valid-time universe size we used a new set of five data files
with V equal to: 1024, 2048, 4096, 8192 and 16384. The average valid-time interval size was cho-
sen to be abowt/2 (i.e., 500, 1000, 2000, 4000 and 8000 respectively). There were again 60,000
transactions with the 35/25 ratio of insertions/deletions. The results appear in Figures 16-18.

As expected the BIT space increases gradually with the valid universe but remains constant for
the other methods. The update of BIT and BRT is independent of the valid universe size. Despite
that the actual number of changes remains the same, the update of the 1-R and 2-R decreases as the
universe increases. This is because the same number of intervals is spread into a larger space and
can thus be accommodated easier. The query time (for “*/point/point” queries) of the BIT remains
smaller than the rest and independent of the valid universe size, followed by the BRT. Query times
for the 1-R and 2-R tend to decrease as the valid universe increases because of better pagination.

While BIT provides good query and update time, its dependence on the valid-time universe size
makes it impractical for applications with large such universe (as compared to the number of trans-
actions, i.e., the transaction-time universe). In these cases the other methods should be used. We
thus proceed to study the behavior of the BRT, 1-R and 2-R methods under a large valid-time uni-
verse. We experimented with nine new data files havirg16384 and the following average
valid-time interval sizes: 50, 250, 500, 2500, 5000, 8000 and 10000. Each data file had again
60,000 transactions using the 35/25 ratio of insertions/deletions. The space (not shown) of all meth-

ods behaves as before, i.e., independently of the interval size (the BRT uses about 60% more pages
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than the 1-R). The update (Figure 19) of the BRT and the 2-R are independent of interval size with
the BRT having the least update. The update of the 1-R increases drastically with the valid interval
size. The query times (for “*/point/point”) were as expected (Figure 20), with the BRT being the
fastest followed by 2-R and 1-R.

Effect of Key Selectivity. We proceed to examine the effect of key selectivity on updating (Figure
21). For this problem we experimented with the BRT, the 2-R and 1-R methods. The BIT was not
considered since it only indexes the valid and transaction time attributes and not the key attribute.
Each data file had 60,000 transactions with the 35/25 Matidl024 and average valid-time inter-

val size equal to 250. Since there are 35,000 insertions per data file, we first created a “pool” of
35,000 keys. These keys were integers chosen randomly from 1 to 1,000,000. Since the number of
random choices is much smaller than the key universe there were very few duplicates in the “pool”
keys. Data files with different selectivities were created by “filtering” out the lower digits of the
“pool” keys. The first data file with selectivity ~1/35000 used the exact “pool” keys. Assuming that
most “pool” keys are distinct this data file corresponds to very good/high key selectivity (approach-
ing the case of unique keys). Data for the file with selectivity ~1/1000 were created by making the
last three digits of the “pool” keys equal to “000”. Assuming that there were no duplicates in the
35,000 “pool” keys, the second file had an average of 35 duplicates per distinct “filtered” key val-
ue, i.e. selectivity around 1/1000. Similarly, the other data files were created by filtering out the
last 4 and 5 digits of the “pool” keys. The BRT has the lowest update among all methods. This is
because BRT focuses the update on the most cintrertitich has relatively small number of ob-

jects. For high selectivities the 1-R has less update than 2-R. High selectivity means that objects
are accessed directly from the key attribute, but 2-R has still to search two trees. However, as se-
lectivity decreases the key attribute becomes less important as compared with the effect of
temporal attributes and the update of 2-R becomes better than 1-R. Figure 21 should be compared
with Figure 12 where 2-Rp had also better update than 1-Ri. This is expected since Fig. 12 depicts
updating if no keys are used which corresponds to even lower selectivity that the ~1/10 file.

Answering more general queries. The bitemporal “range/point/point” query was examined next.

For this query we experimented with the BRT, the 2-R and 1-R methods. The BIT was not consid-
ered for this query since it would need to find all alive objects and then disregard the ones outside
the query key range. Figure 22 shows the average query time results for various key selectivities
using the same data files as Fig. 21. For each data file 10,000 queries were computed. A query was
created by randomly choosing the query key raRgpicking two random keys in the key uni-
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verse), valid instant and transaction timé The BRT provides the best query performance
followed by the 2-R which is consistently better than 1-R.

Figure 23 shows the average query time results for the “range/range/point” query and various
selectivities. The same data files were used, with 10,000 queries per data file, choosing randomly
the query key rangK, valid-time intervalE (by picking two instants in the valid universe) and

transaction timeé. The query performance remains the same, with the BRT method prevailing.

The last query examined was the “range/range/range” query. By its nature, partial persistence
provides fast access to a particuigt) by transaction time The performance of BRT depends on
the size of the transaction-time inter?edpecified by the query. Figure 24 shows the “range/range/
range” query time results for various values?ofThe 35/25 data file withy = 1024 and average
valid-time interval length of 250 was used.ABicreases, the BRT query time increases since the
BRT has to search more subtrees and may encounter more record copies. For small through medi-
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um size (as compared to the total transaction-time universe size of 60,000) query iR{ehals

BRT has still the best query performance. The 2-R method becomes faster fBtdalgis actu-

ally an interesting open problem to find a partially persistent structure which can address queries
on transaction-time intervals with the same efficiency as for transaction-time instant.

8. Conclusions and Further Research

We have addressed the problem of designing efficient access methods for bitemporal queries and
introduced two methodologies. The first methodology translates a bitemporal query into a partial
persistence problem for which a method is then designed. This approach led to the Bitemporal
Interval Tree and the Bitemporal R-Tree. The second methodology divides bitemporal objects in
two categories, according to their transaction time behavior. In our implementations a separate R*-
tree was used to store the data in each category (2-R method). We compared our methodologies
with a straightforward approach that keeps bitemporal objects in a single R*-tree (1-R method).

In general, the partial persistent methods have better update performance than 1-R and 2-R.
They also had better query performance except for “range/range/range” queries that specify very
large transaction time intervals. The persistent methods should be preferred if some extra space can
be tolerated. In particular, the Bitemporal R-Tree is a rather robust method that can address general
bitemporal queries with good average performance, using only minimal extra space (about 60-65%
more space than the minimal space of the 1-R method). Given the current cost of secondary stor-
age, this seems a very comfortable price to pay for the performance provided by the BRT. Its
advantage is that is processes queries as if an ephemeral R-Tree for thehgipisquresent.

The Bitemporal Interval Tree uses more space (still linear to the number of changes) because
in addition to persistence, intervals are kept in two places. The BIT addresses queries that do not
specify a key range. Its space is affected by the size of the valid-time universe thus it should be
used for applications with small valid-time universe as compared to the transaction-time universe.
The importance of BIT is more theoretical in nature since it guarantees good worst case perfor-
mance for the above bitemporal queries (it is of special interest if we note the difficulty in designing
practical access methods with good worst case behavior for the simpler, valid-time queries). The
BIT actually provided the best overall average query performance for the “*/point/point” query.
However for most applications the Bitemporal R-Tree is a more robust and practical choice.

The 2-R methodology is a good alternative to the partially persistent methods. It has the ad-
vantage of using off-the-shelf methods and consumes almost minimal space. Nevertheless, its
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update performance is worse than the persistent methods and similarly its query time, except for

“range/range/range” queries on very large transaction time intervals.

It remains an open problem to find the theoretically I/O optimal solutions for the various bitem-
poral queries. An interesting problem is to find a partially persistent method that provides the same
query efficiency for bitemporal queries on transaction-time intervals as for queries on transaction-
time instants. Bitemporal joins are also of great interest; various possible optimizations using the
presented methods must be examined. Another open area of research is to find bitemporal access
methods to suppoldranchingtransaction time evolution. As we mentioned, this implies making
the chosen ephemeral data structure fully persistent. A good starting point is the work in [LM91]
where B-trees are made fully persistent, and [LST95] where branching transaction-time issues for

transaction-time databases are addressed.

Acknowledgments

We would like to thank B. Seeger for kindly providing us with the R* and MVB-tree code, and R. Snodgrass
and C. Jensen for their suggestions for a 3-part bitemporal query terminology. We also thank the anonymous
referees whose very insightful comments improved this paper.

References
[A92] G. Ariav, “Information Systems for Managerial Planning and Control: a Conceptual Examination of their
Temporal StructureJournal of MIS Vol.9, No.2, pp.77-98, 1992.

[AV96] L. Arge, J.S. Vitter, “Optimal Dynamic Interval Management in External MemoryPrat. 37th IEEE
Symp. on Foundations of Computer Scieamont, Oct. 1996.

[B77] J.L. Bentley, “Algorithms for Klee’s Rectangle Problems”, Computer Science Department, Carnegie-Mel-
lon University, Pittsburgh, 1977.

[BGO+93IB. Becker, S. Gschwind, T. Ohler, B. Seeger, P. Widmayer, “On Optimal Multiversion Access Structures”,
in Proceedings of Symposium on Large Spatial Databa$€8. Published ihecture Notes in Computer
ScienceVol 692, pp. 123-141, Springer-Verlag (1993).

[BKKS90]N. Beckmann, H.P. Kriegel, R. Schneider, B. Seeger, “The R*-tree: An efficient and Robust Access Meth-
od for Points and Rectangle®toc. ACM SIGMODpp 322-331, 1990.

[C86] R. Cole, “Searching and Storing Similar List$”of AlgorithmsVol 7, pp. 202-220, 1986.
[CLR90] T.H. Cormen, C.E. Leiserson, R.L. Rivdstroduction to AlgorithmsMIT Press, Cambridge, MA, 1990.

[DSST89]J.R. Driscoll, N. Sarnak, D. Sleator, R.E. Tarjan, “Making Data Structures PersidteftComp. and Syst.
Sci, Vol 38, pp 86-124, 1989.

[E83] H. Edelsbrunner, “A new Approach to Rectangle Intersections, Part 1&tI"Journal of Computer Math-
ematics Vol. 13, pp 209-229, 1983.

[EWK90] R. Elmasri, G. Wuu, Y. Kim, “The Time Index: An Access Structure for Temporal Dtat, of16th
Conf. on Very Large Databasqsp 1-12, 1990.

[F72] J.F.Fries, “Time-oriented Patient Records and a Computer Datadankhal of Am.Med. Assqdvol.
222, No. 12, 1972.

[G84] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searchifrgt. ACM SIGMOD, Conf. on
the Management of Datpp 47-57, 1984.

[HRU96] V. Harinarayan, A. Rajaraman, J. D. Ullman, “Implementing Data Cubes EfficieRtlgt. ACM SIG-

36



MOD, Conf. on the Management of Dapp 205-216, 1996.

[J+94] C.S.Jensen, editor et al., “A Consensus Glossary of Temporal Database CoAGMISIGMOD Record
Vol. 23, No. 1, pp. 52-64, 1994.

[JMR91] C.S.Jensen, L. Mark, N. Roussopoulos, “Incremental Implementation Model for Relational Databases with
Transaction Time”|[EEE Trans. on Knowledge and Data Engéol. 3, No 4, pp 461-473, 1991.

[KRVV9O3]P.C. Kanellakis, S. Ramaswamy, D.E. Vengroff, J.S. Vitter, “Indexing for Data Models with Constraints
and Classes’Proc.12th ACM Symp. on Principles of Database Systems (PQip)33-243, 1993.

[KS89] C. Kolovson, M. Stonebraker, “Indexing Techniques for Historical Databa®ex?, of IEEE Data Engi-
neering Conf.pp 127-137, 1989.

[KS91] C. Kolovson, M. Stonebraker, “Segment Indexes: Dynamic Indexing Techniques for Multi-dimensional In-
terval Data”,Proc. ACM SIGMODpp 138-147, 1991.

[KTF95] A. Kumar, V.J. Tsotras, C. Faloutsos, “Access Methods for Bitemporal Databmdesiational Work-

shop on Temporal Databasés.Recent Advances in Temporal Databade€lifford, A. Tuzhilin (eds.),

pp. 235-254, Springer-Verlag, 1995. An extended version appears as AT&T TR:#112530-950926-11-TM.
[LM91] S. Lanka, E. Mays, “Fully Persistent Brees”,Proc. ACM SIGMODpp 426-435, 1991.

[LM93] T.Y.C. Leung, R.R. Muntz, “Stream Processing: Temporal Query Processing and Optimization”, in
A.Tansel, J. Clifford, S.K. Gadia, S. Jajodia, A. Segev, and R.SnodgrassTengpral Databases: The-
ory, Design, and ImplementatioBenjamin/Cummings, pp 329-355, 1993.

[LS89] D.Lomet, B. Salzberg, “Access Methods for Multiversion Daabc. ACM SIGMODpp 315-324, 1989.

[LST95] G.M. Landau, J.P. Schmidt, V.J. Tsotras, “On Historical Queries along Multiple Lines of Time Evolution”,
Very Large Data Bases Journalol. 4, No. 4, pp. 703-726, Oct. 1995.

[M84] K. Mehlhorn,Data Structures and Algorithn® Multi-Dimensional Searching and Computational Geom-
etry, Springer-Verlag, Berlin, 1984.

[Mc85] E.M. McCreight, “Priority Search Trees3JAM Journal of Computing/ol.14, No 2, pp 257-276, 1985.

[MK90] Y.Manolopoulos, G. Kapetanakis, “Overlapping B+ Trees for Temporal Datat,. of5th JCIT Conf,
Jerusalem, Israel, Oct.22-25, pp 491-498, 1990.

[0S95] G. Ozsoyoglu, R. Snodgrass, “Temporal and Real-Time Databases: A SUE&Ey Trans. on Knowledge
and Data Engineeringvol. 7, No. 4, pp 513-532, Aug. 1995.

[S87] M. Stonebraker, “The Design of the Postgres Storage Sydeeat’,VLDB Conf. pp 289-300, 1987.
[S89] H. SametThe Design and Analysis of Spatial Data Structubeklison-Wesley, 1989.

[S+94] R. Snodgrass et. al., “TSQL92 Language Specificath@M SIGMOD Recor®3 (1), pp. 65-86, 1994.
[SA86] R. Snodgrass, I. Ahn, “Temporal Databas#sEE ComputerVol.19, No.9, pp 35-42, 1986.

[SG89] A. Segev, H. Gunadhi, “Event-Join Optimization in Temporal Relational Datab&ses”,VLDB Conf.
pp 205-215, Aug. 1989.

[SJ96] R. Snodgrass, C.S. Jensen, private communication, 1996

[SRF87] T. Sellis, N. Roussopoulos, C. Faloutsos, “ThélRee: A Dynamic Index for Multi-Dimensional Objects”,
Proc. VLDB Conf.Sept. 1987.

[ST94] B. Salzberg, V.J. Tsotras, “A Comparison of Access Methods for Time-Evolving Data”, to app€al at
Computing Surveyslso available as a technical report from Polytechnic University (CATT-TR-94-81),
or, Northeastern University (NU-CCS-94-21), 1994.

[TGH95] V. J. Tsotras, B. Gopinath, G.W. Hart, “Efficient Management of Time-Evolving DatabHsSE&’ Trans.
on Knowledge and Data Engineeringpl. 7, No. 4, pp 591-608, Aug. 1995.

[TK95] V.J.Tsotras, N. Kangelaris, “The Snapshot Index, an 1/O-Optimal Access Method for Snapshot Queries”,
Information Systems, An International Journdbl. 20, No. 3, pp 237-260, 1995.

[VV95] P.J. Varman, R.M. Verma, “An Efficient Multiversion Access Structure”, Tech. Rep. TR-9518, Dept. of
Electr. and Comp. Engineering, Rice Univ. To appeHtiE Trans. on Knowledge and Data Engineering

37



[W82] R. Weber, “Audit Trail System Support in Advance Computer-based Accounting Systdras&ccount-
ing ReviewVOI. LVII, No. 2, pp 311-325, 1982.

APPENDIX A: Making an ordered list partially persistent and fully paginated

Consider the initial staté(0) of an ordered, time evolving liX{(t). We need a representationp) that satisfies the
following performance requirements:

(i) good paginationlf X(0) hasi elements the representation should occDfikb) pages.

(ii) fast updatingFast additions/deletions should be supported anywhe{@)n

(i) fast queryingThek first elements oK(0) should be accessed@tk/b)page I/O’s.
Satisfying the first requirement is easy: we simply sK{f§ elements sequentially in pages. Each page keepsta
page pointer. This creates the list of pagepéginatedist) PX(0). Each element insideRX(0) page has two times-
tamps. The first timestamp corresponds to the time this element is addésléments oK(0) havet=0); the second
timestamp is initially empty and is used if this element is deleted froiX [izir the second requirement we facilitate
an ephemeral B+ tree on topRX(0), such that: (a) copies of 2(0) elements are stored in the leaf pages of the tree
and, (b) each such element copy points to the pag¥(0) that stores the corresponding elemen{(6j. For the third

requirement (searching) we simply keep a pointer to the first page BK(i3} and then follow next page pointers.

As time evolves, so doegt) and its representatid®X(t). We need to guarantee the same three requirements for
everyt. For good pagination it suffices to show that at @éamrery page ifPX(t) has enough number of “alive” ele-
ments (i.e. enough elements frof(t)). This is guaranteed if updates BX(t) are performed using the merging/
splitting policies of [BGO+93] or [VV95]. As before,RX page is called “alive” as long as it contains at Iqadive
elementsd<b), otherwise it is a “dead” page. Additions of element&(ih are represented by a physical addition of
the new element iRX(t). Deletions of elements froid(t) are represented as logical deletion®X{(t). The deleted
element is found iPX(t) and its second timestamp is updated with the element’s deletion time. If a deletion at some
t causes the number of alive elements in a page to go belowhiteshold, the pagetisne-split a new page is created
that carries (copies) the remaining alive elements of the previous page. The new page is considered ag ansetrted at
is added in the curre®X(t). The previous page is considered “dead” and is taken dfX{ilist. Hence at each time

t, PX(t) is the list of the currently alive pages.

Since updating is always performed on the elements of the most X¢emte need access to these elements in
PX(t). This is performed through the ephemeral B+ tree. When an element addition/deletion o¥¢y)yshenB+ tree
will locate the page dPX(t) where this update is to be applied. Afe{(t) is updated, the B+ tree is updated.

The use oPX(t) enables a crucial problem reduction: instead of dealing with element insertions/delefiihs in
we deal with page insertions/deletiongPiK(t). It remains to show how the fast query time is provided, i.e., how to
access the pages of a gi@X(t)in element order. We present a solution where each page insertion/deleti@d(1akes
amortizedtime, the space used®k/b) (k is the total number of page insertions/deletionBX's evolution and is
bounded byO(n/b) and the firsta pages oPX(t) are accessed i0 (log k+a)  page I/Os. At eadte size of the
ephemeral B tree isO(my/b) wheremy is the number of alive elements in the curdé(i). Updating the tree takes

O (log,m,) 1/O’s and thus the overall update processk list and B+ tree) is logarithmic (in the amortized sense).
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The description of the solution follows. First, there is an dffBthat indicates the first (top) pageRX(t) as time
proceeds. An entry iIHT has the form: & pid> and specifies that at tiniethe page with page id (addrepg) became
the top page d?X Entries are incrementally addedHi when the top oPX changes. If at sontePX(t) ceases having
alive pages (i.e., there is no elemenX{t)) an entry & ->is added itHT. In addition, for a given (alive) pagemX(t)
we need to keep which is the next (alive) pageX(t). We thus associate with each page ever addBXia table
called Next TabldNT. The structure is similar witHT: an entry in the Next Table of some p#gis of the form<t,
pid> wherepid is the address of the page that bécame the next page affem PX(t). If a pageB is deleted from
PX at somet' , the Btree provides the previous and next pageB afft' , sayA, C, and an entry & C> is added on

NT(A) TheNT tables are not explicitly implemented but are embedded in their corresponding list pages.

Using theHT and theNT's we have an obvious way to search through the histd?)Xoh search is first performed
on HT for the entry which contains the largest tige  that is less or equalhen the page whogd is recorded
next totg is accessed. A new search is performed oNTreeray associated with that page and so on, until all pages
of PX(t) are accessed. Each table search takes logarithmic time on the number of table entries (as table entries are time
ordered). While simple, this approach is not efficierk.iff the total number of page insertions/deletiorRXis evo-

lution, a query that asks for the fiespages fronPX(t) is answered i0 (alog k)  1/O’s.

To avoid searching in each table encountered, we use a variationbaicitveard updatingechnique [TGH95].
This technique was used in [C86] for solving computational geometry problems in main memory. The islga is to
chronizethe next tables among pages in exlt). Here we adapt this idea in a paginated environment. For example
consider theNT's of two sibling page# andB, whereA proceeds in PX(t). After a number o€, entries (wher€,
is a constant greater or equal to 2) are addeédT¢B), a “ghost” entry is added NT(A) (the sibling on the left) with
the time of the latest of the changes and a pointer to the currently last éiti{Bdfinstead of the addressBftself).

Such backward updating may continue untillfids reached (for more details we refer to the TR version of [KTF95]).

The total number of the extra ghost entries is still linear to the total number of regular array entries. The number
of regular array entries is cleai®(n/b) since there is an entry when a page is added or deleted. There are at most
1/ (C,-1) extra ghost entries per regular entry. The technique guarantees that during query processing, the entry with
the largest time that is less or equal taside a table provides a pointer to an entry of the right sibling’s table that is
at mostCy away fromt. SinceCg is a constant, this means that no new search is needed for |acatthg sibling’s
Next Table. In a paginated environment, a natural choiCy tf a page or a good portion of it. Larggymeans less

extra space but slower search.
The auxiliary structure and the backward updating technique are embedded inBX@dges. A special area of
sizeCy = pb table entries is reserved inside each list page, whdrep<1 . When the reserved s paja
gets full (because the next sibling list page changes too often) this list page is logically delefx(fy@md a new
copy of it (with all the alive elements of the deleted page and an empty reserved space) is created. Such a change is
termed an “artificial” deletion since it is due to backward updating. An artificial deletion is still triggere®@fjer

element additions/deletions
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At worst, if the reserved areas of all page®X{t) are full, an element change in the B3i(t) page may cause
the artificial deletion of all pages currentlyRX(t). This happens because the change on the last page overflows the
reserved area of the last page which in turn (due to backward updating) overflows the previou®Kégyard so
on. However, this will not happen often (if ever). It can be proved that the update processing pe©¢h}riy ithe

amortizedsense.

APPENDI X B: Updating in the Bitemporal R-tree

Algorithm Insert(rt)
(Insert a new recordat transaction tim#g.
1. Find leaf pagé for insertingr;
(this search is similar as with an ephemeral R-tree but it follows pages that aretjlive at
2. InsertRecord(r,A,t)

Algorithm InsertRecad(r,A.t)
(Insert the new recondat transaction timein pageA).
1. Insert the new record into page
2. If page-overflow ofA then
copy the records of pagethat are alive atinto a new pagg;
if strong-version-overflow oB (i.e., number of alive records greater thag then
split the pagd into two page® andC using one of the splitting algorithms (see section 6.2);
elseif strong-version-underflow Bf(i.e., number of alive records is less tlge) then
Merge(B)
3. Update the paremt of A (which is also the parent of any n&wor C).
If no new page is created by the insertion but the bounding rectanfyis ohanged, adjust the index recoad
P that points t@\, to the new rectangle (see section 6.1). If a new page is created by the insertion, update the dele-
tion time of index recordfromnowtot and insert a new index recgrith F for B (and possiblC). Note that this
could lead to further structural changes in the tree but all these changes are at levels above thg teB: IO

Algorithm Merge(B)
(Merge page with a sibling. This result to one or two pages depending on the number of red®misdrits sib-
ling).
1. Find a siblingD of B to be merged. Use one of the sibling finding methods (see section 6.2);
2. Copy the entries iB which are alive at timeinto B.
3. If strong-version-overflow d8 then
split pageB into paged andC using one of the splitting algorithms (see section 6.2).

Algorithm Delete(it)
(At transaction timé delete record).
1. Find leaf pagé that contains recondthat is alive at;
(this search is similar as with an ephemeral R-tree but it follows pages that are tlive at
2. DeleteRecord(r,A,t)

Algorithm DeleteRecat(r.A.t)
(Delete alive record from pageA at transaction timg.
1. Update the deletion-time of recarffom nowtoft;
2. If weak-version-underflow @ (i.e., number of alive records is less tlgguthen
copy the entries of pagethat are alive atinto a new page;
Merge(B)
3. Update the parent pageof A (which is also the parent B).
If no new page was created no update is needed (see section 6.1). If a new page is created update the index record
i of P that points téA by changing its deletion time fronowto t; insert a new index recojdn P pointing to the
new pageB. This may trigger further structural changes in the tree in a manner sinmiaettRecord
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