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Designing accurate emulators for scientific
processes using calibration-driven deep models
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Predictive models that accurately emulate complex scientific processes can achieve speed-

ups over numerical simulators or experiments and at the same time provide surrogates for

improving the subsequent analysis. Consequently, there is a recent surge in utilizing modern

machine learning methods to build data-driven emulators. In this work, we study an often

overlooked, yet important, problem of choosing loss functions while designing such emula-

tors. Popular choices such as the mean squared error or the mean absolute error are based

on a symmetric noise assumption and can be unsuitable for heterogeneous data or asym-

metric noise distributions. We propose Learn-by-Calibrating, a novel deep learning approach

based on interval calibration for designing emulators that can effectively recover the inherent

noise structure without any explicit priors. Using a large suite of use-cases, we demonstrate

the efficacy of our approach in providing high-quality emulators, when compared to widely-

adopted loss function choices, even in small-data regimes.
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B
uilding functional relationships between a collection of
observed input variables x= {x1, ⋯ , xd} and a response
variable y is a central problem in scientific applications—

examples range from estimating the future state of a molecular
dynamics simulation1 to searching for exotic particles in high-
energy physics2 and detecting the likelihood of disease progres-
sion in a patient3. Emulating complex scientific processes using
computationally efficient predictive models can achieve sig-
nificant speedups over traditional numerical simulators or con-
ducting actual experiments, and more importantly provides
surrogates for improving the subsequent analysis steps such as
inverse modeling, experiment design, etc. Commonly referred to
as supervised learning in the machine- learning literature, the
goal here is to infer the function f: x ↦ y using a training sample
fðxi; yiÞg

n
i¼1, such that the expected discrepancy between y and f

(x), typically measured using a loss function Lðy; f ðxÞÞ, is mini-
mized over the joint distribution p(x, y).

With the availability of modern representation-learning
methods that can handle complex, multivariate datatypes, the
response variable y can now correspond to quantities ranging
from a collection of scalars, to images, multivariate time-series
measurements, and even symbolic expressions, or combinations
thereof4–7. In particular, the success of deep neural networks
(DNN) in approximating scientific processes involving different
types of response variables has generated significant research
interest toward improving the accuracy and reliability of emula-
tors8–11. This includes the large body of recent works on incor-
porating known scientific priors as constraints into predictive
modeling12, designing custom neural network architectures that
can systematically preserve the underlying symmetries13, inte-
grating uncertainty quantification methodologies to improve
model reliability9, and devising novel learning techniques that can
handle the inherent data challenges in scientific problems (e.g.,
small data, underdetermined systems)8. However, a fundamental,
yet often overlooked, aspect of this problem is the choice of the
loss function L. Denoting y= f(x)+ n, where n denotes the
inherent noise in the observed data, the loss function used to
measure the discrepancy y− f(x) is directly linked to the
assumptions made on the noise distribution.

Despite the importance of L in determining the fidelity of f, in
practice, simple metrics, such as the ℓ2-metric, ∣∣y − f(x)∣∣2, are
used, mostly for convenience but also due to lack of priors on the
distribution of residuals. However, this disregards the inherent
characteristics of the training data and more importantly the fact
that choosing a metric implicitly defines a prior for n. Yet,
appropriately accounting for noise is crucial to robustly estimate f
and to create high-fidelity predictions for unseen data. However,
this assumption can be easily violated in real-world data. For
example, the ℓ2 metric is known to be susceptible to outliers14 and
cannot handle fast-state dynamics such as jumps in the state
values15. A potential solution is to resort to other symmetric loss
functions, e.g., Huber14 or the Vapnik’s ϵ—insensitive loss16, that
are known to be more robust. However, even those variants can be
insufficient when data are more heterogeneous, for example, due
to heteroscedastic variance or other forms of non-location-scale
covariate effects17. With heterogeneous data, merely estimating
the conditional mean is insufficient, as estimates of the standard
errors are often biased. This has led to the design of different
parameterized, asymmetric loss functions, e.g., quantile17 or
quantile Huber18,19, that enable one to explore the entire condi-
tional distribution of the response variable p(y∣x) instead of only
the conditional mean. Though quantile regression has been found
to be effective in handling heterogeneous data and being robust to
outliers, determining the appropriate quantile parameter that
reflects the expected degree of asymmetry in the distribution of
residuals is challenging. This becomes even more intractable when

the response variable y is multivariate, and one needs to determine
the parameter τ for each of the response variables.

In this paper, we present Learn-by-Calibrating (LbC), a non-
parametric approach based on interval calibration for building
emulators in scientific applications that are effective even with
heterogeneous data and are robust to outliers. The notion of
interval calibration comes from the uncertainty quantification
literature20,21 and can be formally defined as follows: let us assume
that the model f is designed to produce prediction intervals, in lieu
of simple point estimates, for the response y, i.e., ½ŷ � δl; ŷ þ δu�.
Suppose that the likelihood for the true response y to be contained
in the prediction interval is pðŷ � δl ≤ y ≤ ŷ þ δuÞ, the intervals are
considered to be well-calibrated if the likelihood matches the
expected confidence level. For a confidence level α, we expect the
interval to contain the true response for 100 × α% of realizations
from p(x). Though calibration has been conventionally used for
evaluating and correcting uncertainty estimators, this paper
advocates for utilizing calibration as a training objective in
regression models. More specifically, LbC uses two separate
modules, implemented as neural networks, to produce point
estimates and intervals, respectively, for the response variable, and
poses a bilevel optimization problem to solve for the parameters of
both the networks. This eliminates the need to construct priors on
the expected residual structure and makes it applicable to both
homogeneous and heterogeneous data. Furthermore, by effectively
recovering the inherent noise structure, LbC leads to highly robust
models.

Figure 1 provides an illustration of a simple 1D regression
experiment using a single-layer neural network with 100 neurons
and rectified linear units (ReLU) nonlinear activation. We find
that LbC is consistently superior to the widely adopted ℓ2 and
Huber loss functions, under both symmetric and asymmetric
noise models, as well as in the presence of outliers. Note that the
evaluation metric in each of the examples (and throughout the
paper) remains the traditional MSE and the R-squared (R2) sta-
tistic. The only difference is the loss function used during train-
ing. We attribute this improvement to the data-driven noise
model of the LbC objective that generalizes better to unseen data.

We evaluated the proposed approach using a large suite of use
cases, which require the design of accurate emulators for the
underlying scientific processes. These benchmarks represent a
broad range of real-world scenarios including different sample
sizes, varying input dimensionality, and the need to handle
response variable types ranging from single/multiple scalar
quantities and multivariate time-series measurements to multi-
modal outputs. Our empirical studies clearly demonstrate the
effectiveness of calibration-based training in inferring high-
fidelity functional approximations to complex scientific pro-
cesses. We find that it consistently outperforms several state-of-
the-art baselines, including different variants of DNN and
ensemble techniques, such as random forests and gradient-
boosting machines, trained with the widely adopted MSE and
Huber loss functions. Furthermore, when compared to deep
networks trained with the symmetric losses, we find that LbC can
operate reliably even in small-data regimes (as low as 1000),
producing higher-quality models than even ensemble methods. In
summary, LbC is a simple, yet powerful, approach to design
emulators that are robust, reflect the inherent data characteristics,
generalize well to unseen samples, and reliably replace accurate
(expensive) simulators in scientific workflows.

Results
The primary focus of this study is to investigate the impact of
using a calibration-driven training objective, in lieu of widely
adopted loss functions, on the quality of emulators. The problems
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that we consider encompass a broad range of applications,
response types, and data sizes, and enable us to rigorously
benchmark the proposed approach. Table 1 provides a descrip-
tion of datasets used in each of the use cases. For evaluation, we
use two standard metrics, namely root mean-squared error (lower
is better) and the R-squared statistic (R2), which measures the
proportion of variance in the response variable that is predictable
from the input variable (higher is better).

Data description. We consider a large suite of scientific problems
and design emulators using state-of-the-art predictive modeling

techniques, namely predicting the critical temperature of a
superconductor based on its chemical formula22, airfoil self-noise
estimation in aeronautical systems23, estimating compressive
strength of concrete based on its material composition24,
approximating a decentralized smart grid control simulation that
characterizes the stability of an energy grid25, mimicking the
clinical scoring process from biomedical measurements in Par-
kinson patients26, emulating a semi-analytical 1D simulator
(JAG) for inertial confinement fusion that produces multiple
diagnostic scalars27, emulating a 2D simulator for inertial con-
finement fusion that produces multimodal outputs, and
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Fig. 1 Illustration with a 1D regression example. Comparing models trained using the symmetric ℓ2 loss and Learn-by-Calibrating (LbC). aWhen the noise

model for the observed data is symmetric (Gaussian in this case), even the standard MSE loss can recover the true function. b When the noise model is

asymmetric (positive skew), symmetric losses lead to poor approximations. In contrast, LbC can produce higher-fidelity predictions by not enforcing a

symmetric residual structure. c When there are outliers in addition to an asymmetric (negative skew) noise model, the nonrobustness of the squared error

metric becomes clearly evident, while LbC is found to be robust.
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emulating a reservoir simulator that provides estimates for oil-
and-water production over time28.

Superconducting materials, which conduct current with zero
resistance, are an integral part of magnetic resonance imaging
(MRI) systems and utilized for designing coils to maintain high
magnetic fields in particle accelerators. A superconductor exhibits
its inherent zero-resistance property only at or below its critical
temperature (Tc). Developing scientific theory or a model to
predict Tc has been an open problem, since its discovery in 1911,
and hence empirical rules are used in practice. For example, it has
been assumed that the number of available valence electrons per
atom is related to Tc, though there is recent evidence that this rule
can be violated29. Hence, building statistical predictive models,
based on a superconductor’s chemical formula, has become an
effective alternative22. This dataset relates 81 elemental properties
of each superconductor to the critical temperature on a total of
21,263 samples.

Controlling the noise generated by an aircraft, in particular the
self-noise of the airfoil itself, is essential to improving its
efficiency. The self-noise corresponds to the noise generated
when the airfoil passes through smooth nonturbulent inflow
conditions. The so-called Brooks model, a semiempirical
approach for self-noise estimation, has been routinely used over
3 decades, though it is known to underpredict the noise level in
practice. In recent years, data-driven models are being used
instead23, and it is crucial to improve the fidelity of such an
emulator. This dataset consists of 1503 cases and 5 features,
including the frequency, angle of attack, and chord length to
predict self-noise.

The key objective of the popular UCI benchmark Concrete is to
estimate the compressive strength of concrete, which is known to
be a highly nonlinear function of its age and material
composition. Similar to many other problems in engineering,
machine-learning approaches have been found to be superior to
heuristic models for estimating the target function24. This falls
under the class of small-data problems, by containing only
1030 samples in 8 dimensions representing the material
composition, e.g., amount of cement and fly ash etc.

The Decentralized Smart Grid Control (DSGC) system is a
recently developed approach for modeling changes in electricity
consumption in response to electricity-price changes. A key
challenge in this context is to predict the stability, i.e., whether the
behavior of participants in response to price changes can
destabilize the grid. This dataset contains 10,000 instances
representing local stability analysis of the 4-node star system,
where each instance is described using 12 different features25.

Parkinsons is the second most common neurodegenerative
disorder after Alzheimers. Though medical intervention can
control its progression and alleviate some of the symptoms, there
is no available cure. Consequently, early diagnosis has become a

critical step toward improving the patient’s quality of life26. With
the advent of noninvasive monitoring systems in healthcare, their
use for early diagnosis in Parkinson patients has gained
significant interest. The goal of this use case is to predict the
severity of disease progression, quantified via the Unified
Parkinsons Disease Rating Scale (UPDRS), from speech signals
(vowel phonotations). The dataset comprises 5875 patients
represented using 16 different speech features.

ICF JAG27 is a semianalytical 1D simulator for inertial
confinement fusion (ICF), which models a high-fidelity mapping
from the process inputs, e.g., target and laser settings, to process
outputs, such as the ICF-implosion neutron yield. The physics of
ICF is predicated on interactions between multiple strongly
nonlinear physics mechanisms that have multivariate dependence
on a large number of controllable parameters. Despite the
complicated, nonlinear nature of this response, machine-learning
methods such as deep learning have been shown to produce high-
quality emulators8. This dataset contains 10,000 samples with 5
input parameters and 15 scalar quantities in the response.

ICF Hydra is a 2D physics code used to simulate capsule-
implosion experiments30. This has the physics required to
simulate National Ignition Facility (NIF0 capsules, including
hydrodynamics, radiation transport, heat conduction, fusion
reactions, equations of state, and opacities). It consists of over a
million lines of code and takes hours to run a single simulation.
In terms of sample size, this is a fairly large-scale data with about
93 K simulations, where each sample corresponds to nine input
parameters and a multimodal response (2-channel X-ray images,
28 scalar quantities, FNADS). In our experiments, we consider
two different variants, one with only the multivariate scalar
response and another with the entire multimodal response.
Following the protocol in ref. 8, in the case of multimodal
responses, we first build an encoder–decoder-style neural network
that transforms the multimodal response into a joint latent space
of 32 dimensions and repose the surrogate-modeling problem as
predicting from the input parameters into the low-dimensional
latent space. We can recover the actual response using the
decoder model on the predicted latent representations.

The reservoir simulator that we used models a two-well
waterflood in a reservoir containing two stacked-channel
complexes. The model represents a deep-water-slope channel
system, in which sediment is deposited in channel complexes as a
river empties into a deep basin. A high-quality surrogate is
required to solve the crucial task of history matching, an ill-posed
inverse problem for calibrating model parameters to real-world
measurements. The dataset contains 2000 simulations with 14
input parameters and 3 time histories corresponding to injection
pressure, oil-, and water- production rates. Similar to the ICF
Hydra case, we use an autoencoder model to transform the
multivariate time-series response into a 14-dimensional latent
space. Note that we use the network architecture in ref. 31 for
designing the autoencoder.

Performance evaluation. To provide statistically meaningful
results, we performed fivefold cross-validation, carried out under
three different random seeds (to create train-test splits for cross-
validation), for each of the use cases, and report the average
performance (along with standard deviations). For our empirical
analysis, we consider the following baseline methods: Random
forests (RF) with 100 decision trees trained using the ℓ2 metric;
Gradient-boosting machines with 100 decision trees, trained
using the ℓ2 loss function; DNN with 5 fully connected layers; a
final prediction layer with dimensions corresponding to the
response variable (details can be found in the Methods section).
Note that we used the ReLU nonlinear activation after every

Table 1 Data description.

Test case # Inputs # Outputs # Samples

Superconductivity 81 1 21,263

Airfoil self-noise 5 1 1503

Concrete 8 1 1030

Electric grid stability 12 1 10,000

Parkinsons 16 1 5875

ICF JAG (scalars) 5 15 10,000

ICF Hydra (scalars) 9 28 92,965

ICF Hydra (multi) 9 32 92,965

Reservoir model 14 14 2000

Use cases considered in our study for benchmarking the proposed approach.
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hidden layer and optimized for minimizing the ℓ2 metric; a var-
iant of the DNN model, referred as DNN (drp), wherein we
introduce dropout-based epistemic uncertainty estimation during
training (details can be found in the Methods section).

The RMSE and R2 scores achieved using the different
approaches are reported in Tables 2 and 3, respectively. We find
that LbC consistently produces higher-quality emulators in all
cases, and comparatively lesser variance across different trials. In
terms of the R2 statistic, we find that LbC achieves an average
improvement of ~8% over the popular ensemble methods,
namely random forests and gradient-boosting machines, trained
using the ℓ2 loss. On the other hand, when compared to the two
deep-learning baselines, the average improvement in R2 is about
4%. Interestingly, with challenging benchmarks such as the
Superconductivity and Parkinsons datasets, the standard neural
network-based solutions (DNN, DNN (drp)) do not provide any
benefits over conventional ensemble methods. This can be
attributed to the overfitting behavior of overparameterized neural
networks in small-data scenarios. In contrast, LbC is highly
robust even in those scenarios and produces higher R2 scores (or
lower RMSE). This is also apparent from the analysis in Fig. 2,
where we find that even with a reduced number of parameters
(number of layers), the proposed calibration-driven learning
outperforms a standard deep model with 6 layers. This clearly
emphasizes the discrepancy between the true data characteristics
and the assumptions placed by the ℓ2 loss function. With
simulators such as ICF Hydra and the reservoir model, which
maps to complex response types, our approach makes accurate
predictions in the latent space (from the autoencoder) and when

coupled with the decoder accurately matches the true responses
(Fig. 3). Interestingly, we find that LbC produces well-calibrated
prediction intervals, when compared to widely adopted
uncertainty-estimation methods, including Monte–Carlo drop-
out32, concrete dropout33, Bayesian neural networks (BNN)34,
and heteroscedastic neural networks (HNN)35. Details of this
comparison can be found in Supplementary Note 4.

In contrast to existing loss functions, LbC does not place any
explicit priors on the residual structure, and hence it is important
to analyze the characteristics of errors obtained using our
approach. Using the synthetic function from Fig. 1, we varied
the percentage of positive noise components in the observed data
(50% corresponds to the symmetric noise case) and evaluated the
prediction performance using the R2 statistic. As shown in Fig. 4a,
while LbC outperforms the MSE loss in all cases, with increasing
levels of asymmetry, the latter approach produces significantly
lower-quality predictions. This clearly evidences the limitation of
using a simple Gaussian assumption or even a more general
symmetric noise assumption, when the inherent noise distribu-
tion is actually asymmetric. From Fig. 4b, where we plot the
skewness of residual distributions, we find that LbC effectively
captures the true noise model, thus producing high-fidelity
predictors. Furthermore, we make similar observations on the
different use cases (see Fig. 4d–f)—the maximal performance
gains (measured as the difference in MSE between the DNN
baseline and LbC models with the same network architecture) are
obtained when the skewness of the residuals from LbC is large,
indicating the insufficiency of MSE loss in modeling real-world
scientific data.

Table 2 Surrogate model performance evaluation using root mean-squared error.

Test case Methods

RF GBT DNN DNN (drp) LbC

Grid stability 0.063 ± 0.002 0.075 ± 0.003 0.057 ± 0.002 0.048 ± 0.002 0.021 ± 0.003

Concrete 0.074 ± 0.04 0.081 ± 0.03 0.065 ± 0.016 0.065 ± 0.011 0.046 ± 0.008

Parkinsons 0.068 ± 0.03 0.071 ± 0.04 0.063 ± 0.03 0.06 ± 0.04 0.049 ± 0.03

Superconductivity 0.053 ± 0.02 0.064 ± 0.03 0.057 ± 0.02 0.048 ± 0.02 0.039 ± 0.02

Airfoil self-noise 0.052 ± 0.018 0.069 ± 0.021 0.046 ± 0.015 0.041 ± 0.013 0.031 ± 0.011

ICF JAG (scalars) 0.007 ± 4E-04 0.009 ± 8E-04 0.01 ± 1E-03 0.008 ± 5E-04 0.007 ± 3E-04

ICF Hydra (scalars) 0.012 ± 4E-03 0.016 ± 8E-03 0.011 ± 5E-03 0.01 ± 3E-03 0.008 ± 2E-03

ICF Hydra (multi) 0.045 ± 5E-03 0.08 ± 9E-03 0.032 ± 4E-03 0.028 ± 3E-03 0.019 ± 3E-03

Reservoir model 0.06 ± 6E-03 0.06 ± 7E-03 0.042 ± 2E-03 0.038 ± 2E-03 0.029 ± 3E-03

The results were obtained over fivefold cross-validation, carried out using three different random seeds, on each of the use cases using emulators designed with different approaches. We report the mean

and standard deviation across different trials, and the best performance in each case is denoted in bold.

Table 3 Surrogate model performance evaluation using R-squared statistic.

Test case Methods

RF GBT DNN DNN (drp) LbC

Grid stability 0.89 ± 0.008 0.85 ± 0.007 0.94 ± 0.006 0.96 ± 0.003 0.97 ± 0.002

Concrete 0.84 ± 0.22 0.82 ± 0.21 0.88 ± 0.13 0.89 ± 0.14 0.91 ± 0.09

Parkinsons 0.71 ± 0.12 0.69 ± 0.14 0.7 ± 0.11 0.71 ± 0.13 0.75 ± 0.11

Superconductivity 0.84 ± 0.17 0.79 ± 0.15 0.84 ± 0.19 0.86 ± 0.21 0.89 ± 0.13

Airfoil self-noise 0.89 ± 0.11 0.81 ± 0.19 0.88 ± 0.12 0.9 ± 0.11 0.94 ± 0.06

ICF JAG (scalars) 0.995 ± 0.002 0.983 ± 0.003 0.975 ± 0.005 0.991 ± 0.002 0.998 ± 0.001

ICF Hydra (scalars) 0.88 ± 0.015 0.81 ± 0.019 0.88 ± 0.08 0.89 ± 0.09 0.94 ± 0.08

ICF Hydra (multi) 0.87 ± 0.011 0.81 ± 0.03 0.91 ± 0.01 0.95 ± 0.006 0.97 ± 0.008

Reservoir 0.89 ± 0.004 0.87 ± 0.008 0.91 ± 0.01 0.93 ± 0.005 0.96 ± 0.006

The results were obtained over fivefold cross-validation, carried out using three different random seeds, on each of the use cases using emulators designed with different machine-learning approaches.

We report the mean and standard deviation across different trials, and the best performance in each case is denoted in bold.
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Discussion
The intricate interactions between data sampling, model selec-
tion, and the inherent randomness in complex systems strongly
emphasize the need for a rigorous characterization of ML
algorithms36,37. In conventional statistics, uncertainty quantifi-
cation (UQ) provides this characterization by measuring how

accurately a model reflects the physical reality, and by studying
the impact of different error sources on the prediction35,38,39.
Consequently, several recent efforts have proposed to utilize
prediction uncertainties in deep models to shed light onto when
and how much to trust the predictions35,40–43. These uncertainty
estimates can also be used for enabling safe ML practice, e.g.,
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Calibrating (LbC) uses an additional network for estimating the intervals during training, at inference time, the predictions are obtained using only the

network f whose number of parameters are exactly the same as that of the DNN baseline.
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identifying out-of-distribution samples, detecting anomalies/out-
liers, delegating high-risk predictions to experts, and defending
against adversarial attacks etc.

In recent years, a variety of estimators have been proposed in
the literature for measuring these uncertainties in DNN, most
often with classification models. For example, Bayesian neural
nets34, Monte–Carlo dropout32, concrete dropout33, and ensem-
bling techniques44 are commonly utilized to estimate the epis-
temic uncertainty (or model uncertainty). Similarly, Tagasovska
et al. recently developed a conditional quantile-based estimator
for measuring aleatoric uncertainties45. Due to the lack of suitable
evaluation mechanisms for validating the quality of these esti-
mates, it is common to utilize empirical calibration as a quality
metric20,46–49. Interestingly, it has been reported in several studies
that these estimators are not inherently well-calibrated47. Con-
sequently, a large class of techniques that are aimed at calibrating
pretrained models has been developed50–53. While these methods
can produce well-calibrated prediction intervals in regression
tasks, the estimated uncertainties cannot be directly utilized to
update the model parameters. In contrast, this work proposes to
utilize interval calibration to learn the model parameters and does
not require a separate recalibration step. Using empirical studies
with a number of benchmark problems in science and engi-
neering, we find that LbC produces predictive models that are

both accurate and well-calibrated (see Supplementary Note 4),
when compared to existing uncertainty-estimation methods.

Methods
Formulation. LbC is a prior-free approach for training regression models via
interval calibration. We begin by assuming that our model produces prediction

intervals instead of simple point estimates, i.e., ½ŷ � δl ; ŷ þ δu�, for an input sample
x. More specifically, our model comprises two modules f and g, implemented as
DNN, to produce estimates ŷ ¼ f ðx; θÞ and (δl, δu)= g(x; ϕ). We design a bilevel
optimization strategy to infer θ and ϕ, i.e., parameters of the two modules, using
observed data fðxi; yiÞg

n
i¼1 :

min
θ

Lf θ; fðxi; yiÞg
n
i¼1; gðϕ

�Þ
� �

s:t:ϕ� ¼ argmin
ϕ

Lg ϕ; fðxi; yiÞg
n
i¼1; f ðθÞ

� �

:
ð1Þ

Here Lf and Lg are the loss functions for the two modules. In practice, we use an

alternating optimization strategy to infer the parameters. LbC utilizes interval
calibration from uncertainty quantification to carry out this optimization without
placing an explicit prior on the residuals. We attempt to produce prediction
intervals that can be calibrated to different confidence levels α and hence the
module g needs to estimate (δl,α, δu,α) corresponding to each α. In our formulation,
we use α 2 A, A ¼ ½0:1; 0:3; 0:5; 0:7; 0:9; 0:99�. Note that while the choice of A is
not very sensitive, we find that simultaneously optimizing for confidence levels in
the entire range of [0, 1] is beneficial. However, considering more fine-grained
sampling of α’s (e.g., {0.05, 0.1, ⋯ }) did not lead to significant performance gains,
but required more training iterations. The loss function Lg is designed using an
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cases considered in our study, c we find that the residuals are highly asymmetric and heavy-tailed. Interestingly, from figures d–f, we observe that, in cases

where the performance gains are significant (difference between MSEs of deep neural networks (DNN) and LbC), the corresponding skewness of the

residual distribution is high. This clearly evidences the ability of our approach to reveal the inherent noise structure in the data.
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empirical calibration metric similar to20

Lg ¼
X

α2A

α�
1

n

X

n

i¼1

1½ŷi � δl;αi ≤ yi ≤ ŷi þ δu;αi �

�

�

�

�

�

�

�

�

�

�

 

þ λ1jyi � ðŷi � δl;αi Þj þ λ2jðŷi þ δu;αi Þ � yij
�

:

ð2Þ

Here, ðδl;αi ; δu;αi Þ represents the estimated interval for sample index i at confidence
level α, 1 is an indicator function, and λ1, λ2 are hyperparameters (set to 0.05 in our
experiments). The first term measures the discrepancy between the expected
confidence level and the likelihood of the true response falling in the estimated
interval. Note that the estimates ŷ ¼ f ðx; θÞ are obtained using the current state of
the parameter θ, and the last two terms are used as regularizers to penalize larger
intervals so that trivial solutions are avoided. In practice, we find that such a
simultaneous optimization for different α0s is challenging and hence we randomly
choose a single α from A in each iteration, based on which the loss Lg is computed.

Since LbC relies entirely on calibration, there is no need for explicit discrepancy
metrics like ℓ2 or Huber for updating the model f. Instead, we employ a hinge-loss
objective that attempts to adjust the estimate ŷ such that the observed likelihood of
the true response to be contained in the interval increases:

Lf ¼
X

n

i¼1

wi maxð0; ðŷi � δl;αi Þ � yi þ γÞ þmaxð0; yi � ðŷi þ δu;αi Þ þ γÞ
h i

: ð3Þ

Here, ðδl;αi ; δu;αi Þ ¼ gðxi; ϕ; αÞ is obtained using the recent state of the parameter ϕ
and the randomly chosen α in the current iteration, γ is a predefined threshold (set

to 0.05), and the weights wi ¼ ðδl;αi þ δu;αi Þ=
P

jðδ
l;α
j þ δu;αj Þ penalize samples with

larger intervals. When compared to a competitive optimization algorithm, e.g.,
adversarial learning, in LbC, both models are working toward the common
objective of improving interval calibration. In general, one can improve the
calibration of predictions by adjusting the mean estimate to move closer to the true
target, or by suitably widening the interval to include the true target even when the
mean estimate is bad. Consequently, when the predictor model improves the mean
estimates (for a fixed-interval estimator), the current interval estimates become
overly optimistic, i.e., even at lower confidence levels, it will produce higher
empirical confidence. Hence, in the subsequent iteration, the interval estimator will
sharpen the intervals to make the estimates more underconfident, i.e., at higher
confidence levels (say 0.9 or 0.99), it might provide lower empirical confidence.
Consequently, LbC alternatively adjusts the predictor and interval estimator
models to produce predictive models that are both accurate (good-quality mean
estimates) and well-calibrated (at all confidence levels). This synergistic
optimization process thus leads to superior quality predictions, which we find to be
effective, regardless of the inherent residual structure. Figure 5 illustrates the
proposed approach and the convergence curves for the two models f and g obtained
for the synthetic example in Fig. 1.

Architecture. In our implementation, both f and g are implemented as neural
networks with fully connected layers and ReLU nonlinear activation. For use cases
with at least 5000 samples, we used 5 fully connected layers and the number of
hidden units fixed at [64, 128, 512, 256, 32], respectively, and a final prediction
layer. Whereas, we used shallow 3-layer networks for the smaller datasets
([64, 256, 32]). While the final layer in f corresponds to the dimensionality of the

response variable, the final layer in g produces δl and δu estimates for each
dimension in y at every α 2 A.

Training. The networks were trained using the Adam optimizer with the learning
rates for the two modules fixed at 1e− 5 and 1e− 4, respectively, and mini-batches
of size 8. The alternating optimization was carried out for about 1000 iterations
with a training schedule of (2,1), i.e., in each iteration, the predictor model is
trained for two epochs, while the interval estimator is trained for one epoch.
Though both models can be updated using the entire training dataset, in some
cases, we find that improved test performance can be achieved by using separate
data partitions. Similar ideas are used in meta-learning algorithms (e.g., MAML54)
in order to implicitly measure the validation performance during training. In our
experiments, we randomly split the data into two 50% partitions and used them for
training the predictor and interval estimator models. Details of the hyperparameter
choices and strategies for improved convergence of this alternating optimization
are discussed in Supplementary Note 1.

Baselines. Model ensembles constructed using random forests and gradient-
boosting machines are known to be a strong baseline in regression problems55.
Hence, we chose those two baselines to benchmark the performance of LbC. In
addition, we considered standard DNN trained with the ℓ2 loss and a stae-of-the-
art variant that incorporates Monte–Carlo dropout-56 based uncertainty estima-
tion. Dropout is a popular regularization technique that randomly drops hidden
units (along with their connections) in a neural network. Following56, for each
sample, we make T forward passes with the dropout rate set to τ and obtain the
final prediction as the average from the T runs. This is known to produce more
robust estimates in regression problems20. In our experiments, we set T= 20 and
the dropout rate τ= 0.3.

Data availability
All datasets used in this study, except for the ICF Hydra and reservoir model datasets, are

publicly available and we have provided appropriate references to obtain them. The two

proprietary datasets will be made available in the future.

Code availability
The software codes associated with this paper will be hosted through a public code

repository, https://github.com/jjayaram7/learn-by-calibrating.
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