
Designing actuation systems for animatronic figures via globally
optimal discrete search

SIMON HUBER, ETH Zürich, Switzerland

ROI PORANNE, University of Haifa, Israel

STELIAN COROS, ETH Zürich, Switzerland

We present an algorithmic approach to designing animatronic �gures – ex-

pressive robotic characters whose movements are driven by a large number

of actuators. The input to our design system provides a high-level speci-

�cation of the space of motions the character should be able to perform.

The output consists of a fully functional mechatronic blueprint. We cast the

design task as a search problem in a vast combinatorial space of possible

solutions. To �nd an optimal design in this space, we propose an e�cient

best-�rst search algorithm that is guided by an admissible heuristic. The

objectives guiding the search process demand that the design remains free

of singularities and self-collisions at any point in the high-dimensional

space of motions the character is expected to be able to execute. To identify

worst-case self-collision scenarios for multi degree-of-freedom closed-loop

mechanisms, we additionally develop an elegant technique inspired by the

concept of adversarial attacks. We demonstrate the e�cacy of our approach

by creating designs for several animatronic �gures of varying complexity.

CCS Concepts: •Computingmethodologies→Motion processing;Col-

lision detection; Shape analysis.

Additional Key Words and Phrases: fabrication, animatronics, multi-motor,

many-motor

ACM Reference Format:

Simon Huber, Roi Poranne, and Stelian Coros. 2021. Designing actuation

systems for animatronic �gures via globally optimal discrete search . ACM

Trans. Graph. 40, 4, Article 1 (August 2021), 10 pages. https://doi.org/10.1145/

3450626.3459867

1 INTRODUCTION

Animatronic �gures are electro-mechanical systems that are meticu-

lously engineered to generate lifelike motions. As can be witnessed

in theme parks, museums and special e�ects studios around the

world, these robotic characters can be made to convincingly re-

semble a vast array of creatures, real or imagined. Needless to say

though, the process of designing such marvels of engineering is

time-consuming, error-prone, and demands a great deal of experi-

ence and domain speci�c knowledge. In this paper, we therefore

tackle the challenge of automating some of the most tedious design

tasks that arise while creating animatronic �gures.

In its most basic incarnation, as shown in Fig. 2, the bare-bones

structure of an animatronic �gure consists of an articulated armature,

Authors’ addresses: Simon Huber, ETH Zürich, Switzerland; Roi Poranne, University
of Haifa, Israel; Stelian Coros, ETH Zürich, Switzerland.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2021/8-ART1 $15.00
https://doi.org/10.1145/3450626.3459867

Fig. 1. An animatronic face. Our algorithm assists in finding optimal motor

placement that avoid collisions and has e�icient force transmission.

a set of actuators, and various mechanical structures that act as

force transmission mechanisms. The articulated armature de�nes

the desired range of motion of the robotic character, and it can be

seen as a direct analogue to a traditional animation rig. As such, we

model it as a hierarchical arrangement of rigid components that are

connected to each other via joints. The individual rigid components

in the armature can represent limb segments, miscellaneous body

parts such as ears, eyeballs and eyelids, or auxiliary appendages used

to drive the motions of a character’s lips or eyebrows, for example.

Actuators – commonly just o�-the-shelf servomotors – bring

animatronic �gures to life. The number of actuators embedded in

a design de�nes the set of unique functions (i.e. raise/lower left

eye-brow, open/close jaw, etc) it has; the more actuators, the richer

a space of motions the animatronic �gure can generate. The com-

putational design framework we present is speci�cally developed

for animatronic characters that feature a large number of actuated

degrees of freedom.

Force transmission mechanisms are used to propagate the move-

ments generated by each actuator to the underlying articulated

armature. More speci�cally, they assign servomotors to individual

functions of the animatronic character, both conceptually and phys-

ically. In this work, the elements we consider when designing force

transmission mechanisms are rigid push/pull tie rods and bellcranks,

though other options – gears, belts, etc. – are also possible. Our

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459867
https://doi.org/10.1145/3450626.3459867
https://doi.org/10.1145/3450626.3459867

1:2 • Simon Huber, Roi Poranne, and Stelian Coros

choice is motivated by common practices in animatronic �gure de-

sign, where, as shown in Fig 2, these two type of elements can be

combined to great e�ect. We further note that tie rods are often

endowed with swivel ends – spherical bearing joints which enable

the design of spatial (i.e. non-planar) mechanisms that are highly

versatile and have a large range of motion.

With the anatomy of a typical animatronic �gure exposed, we can

now de�ne the challenging design problem that we address in this

work. The input to our design algorithm consists of an articulated

armature. To specify the desired range of motion of the design, each

joint of the armature is given the min and max angles it should be

able to achieve. Also given as input is a set of candidate actuators;

the number of elements in this set must be greater than or equal to

the number of functions of the envisioned animatronic character.

Our design algorithm decides how to optimally assign actuators

from the input set to each target function, and it automatically gen-

erates force transmission mechanisms for each assignment. The

latter task demands that tie rods are instantiated in the design and

physically connected, possibly via bellcranks, to appropriate attach-

ment points on armature and on the horns of the servomotors. The

objectives driving the design process demand that the synthesized

force transmission mechanisms remain singularity free and do not

collide with the armature or with each other at any point in the

high-dimensional space of motions the character is expected to be

able to execute.

We cast the task of designing animatronic �gures as a tree search

problem over a vast combinatorial space of possible discrete so-

lutions. To e�ciently explore this space in pursuit of an optimal

design, we propose a novel best-�rst search algorithm that is guided

by an admissible heuristic. We demonstrate the e�cacy of our ap-

proach by designing a diverse set of animatronic �gures. Our most

complex example features 18 functions, and it was automatically

designed in under 20 minutes. For comparison, naively evaluating

every possible design would take years of compute time.

Succinctly, our technical contributions are:

• Casting the design of high degree-of-freedom animatronic

�gures as a search problem in a discretized combinatorial

space of possible solutions

• An e�cient algorithm to �nd optimal designs in the vast

space of possible solutions

• A technique inspired by the concept of adversarial attacks to

identify worst-case self-collision scenarios in multi-degree-

of-freedom closed-loop mechanisms.

2 RELATED WORK

The past decade has witnessed a signi�cant number of research

projects dedicated to the development of computation-driven design

methodologies for various classes of physical artifacts [Bermano

et al. 2017]. Closest to the problem we focus on here is the body of

work addressing the design of mechanical devices that are able to

produce choreographed movements. Roughly speaking, this body

of work can be divided into techniques that synthesize novel mech-

anisms [Megaro et al. 2014; Thomaszewski et al. 2014], and methods

used to �ne-tune or re-purpose existing designs using continuous

or stochastic optimization techniques [Bächer et al. 2015; Ha et al.

Fig. 2. Internal structure of an animatronic head created by master creature

FX artist Gustav Hoegen.

2018b; Song et al. 2017; Zhang et al. 2017]. Of course, these two con-

cepts can naturally be combined as well [Bharaj et al. 2015; Coros

et al. 2013; Zheng et al. 2016; Zhu et al. 2012].

The method we propose synthesizes functional mechanisms from

scratch. However, rather than employing a template-based approach

where fully-functionalmechanisms are used as building blocks [Coros

et al. 2013; Zhu et al. 2012], our method operates directly on basic

components, tie rods and bellcranks, which are computationally

assembled to form complex mechanical structures. From this point

of view, our work is closest related to that of Thomaszewski and

his colleagues [Thomaszewski et al. 2014]. However, while their

method is tailored to designing planar, single degree of freedom

structures, our method speci�cally targets spatial (i.e. non-planar)

mechanisms driven by a large number of actuators that must oper-

ate in concert. This new problem setting drastically increases the

complexity of the design process and therefore necessitates a dif-

ferent algorithmic approach. For example, an appropriate design

must ensure that self-collisions are avoided throughout the anima-

tronic �gure’s targeted range of motion. This is very challenging.

For one degree of freedom mechanisms, a simple monotonic search

along the actuation parameter su�ces to identify con�gurations

where self collisions occur, and simple analytic formulas have also

been developed [Zheng et al. 2016]. In the multi-motor setting, we

instead propose to formulate the task of identifying self collisions

as a numerical optimization problem. To determine if a given de-

sign is free of self collisions, we �nd the values of the motor angles

that minimize the distance between selected pairs of mechanical

components. This approach is inspired by the concept of adversarial

attacks, where the aim is to explicitly �nd worst-case scenarios that

break a given system [Huang et al. 2017].

Prior work has tackled design problems for robotic systems with

multiple actuated degrees of freedom, typically in the context of

locomotion or �ight [Du et al. 2016; Geilinger et al. 2018; Jelisavcic

et al. 2017; Leger et al. 1999; Megaro et al. 2015]. Some of these works

formulate the design task as tree or graph search problems [Ha et al.

2018a; Zhao et al. 2020], as we do. However, prior methods gener-

ally assume tree-like serial structures for the robotic designs they

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

Designing actuation systems for animatronic figures via globally optimal discrete search • 1:3

can generate. Designs for animatronic �gures, on the other hand,

are much more mechanically complex. As they are speci�cally de-

signed to resemble living creatures, their underlying articulated

armatures are slim and it is not possible to place motors directly

at the joints. Mechanical force transmission elements are there-

fore a necessity, and they turn animatronic �gures into complex

multi-degree-of-freedom closed-loop mechanisms. Our novel de-

sign algorithm, which is cast as an e�cient search process driven

by an admissible heuristic, is speci�cally developed for these types

of mechatronic systems.

We also note that there are several recent projects that are closely

related, but complementary to our work. For example, Desai and

her colleagues developed a framework for assembly-aware design

of electro-mechanical devices [Desai et al. 2018]. The designs they

target contain no moving parts, but the techniques they propose

could be used to automatically prepare the designs generated with

our method for fabrication. Computational issues related to the

design of soft skins for animatronic characters have also been in-

vestigated [Bickel et al. 2012; Feng et al. 2019]. The animatronic

designs generated with our method could also be used to drive the

motion of such soft skins, although ensuring that the force trans-

mission mechanisms are designed to be su�ciently strong remains

an avenue for future work. We would also like to note that tech-

niques developed to model [Geilinger et al. 2020; Hahn et al. 2019],

design [Bern et al. 2017; Ma et al. 2017; Megaro et al. 2017; Tang et al.

2020] and control [Bern et al. 2019; Hoshyari et al. 2019] compliant

mechanisms and soft robots could also be used in conjunction with

the algorithmic methodology we present in order to create increas-

ingly lifelike animatronic characters that are composed of a mix of

rigid and deformable materials.

3 OVERVIEW

Given an animatronic �gure with multiple articulated components,

our goal is to optimally place, assign and attach motors to actuate

these components. Each component can be made out of several

mechanical parts. We refer to the motors as drivers and to the me-

chanical parts they are connected to as followers. As input to the

algorithm, the user speci�es a range of motion for each component.

In addition, the user de�nes a region of space where the drivers are

allowed to reside. Usually, this will be a plate within the body of the

mechanism that the drivers can be mounted on. This region is over-

sampled with drivers, i.e. more drivers than the necessary degrees

of freedom are placed, from which a subset that globally optimizes a

certain performance objective is automatically picked, as discussed

in sec. 3.1. In other words, we assign a driver to each follower. An

assignment is physically made by connecting the followers to the

drivers with tie rods. This can be done in many di�erent ways, e.g.

attachment points on the driver and follower, or via bellcrank mech-

anisms, all of which are considered during optimization. See Fig. 3

for an illustration.

Our algorithm employs a Branch-and-Bounds approach, and the

general idea is as follows. A complete assignment is an assignment

of all followers to drivers such that all degrees of freedom are ac-

counted for, while a partial assignment only treats some of the

followers. Every partial or complete assignment has a certain cost,

M
o
to
rs

Unused

Motor

Driver

Fol
low
er if

ks

ip
jq,jr

jdTie-rod

Fig. 3. Overview of the system and the terminology used. To visualize the

motions of the followers, we trace a single points on them (shown as spheres

in the figure). The highlighted frame in the middle shows two poses of the

same follower. There is a single, unused motor visible, as determined by the

algorithm, but there are other unused ones hidden behind the mechanism.

and thus our goal is to search all possible complete assignments for

the one with minimal cost. Partial assignments can be organized in

a tree structure, where children of a node contain the same partial

assignment, appended with an additional single assignment (see Fig.

4). The leaves of the tree are the complete assignments, and there-

fore what we seek is to �nd the leaf with the minimal cost. Based

on this observation, for each partial assignment we propose two

heuristics that underestimate the minimal cost of a leaf of the partial

assignment’s subtree. This can be used, for example, as the basis

for the �∗ algorithm, a particular instance of Branch-and-Bound,

which we discuss in Sec. 4.1.

3.1 Problem statement

Input. The animatronic �gure is a mechanism, which consists of a

set of rigid bodies or links that are connected by joints. In our setting,

we distinguish between three types of links: Drivers are the horns,

the exposed rotating part, of the motors, and their pose is directly

determined by the motors’ angles. Followers are the rigid parts of

the articulated components, which are intended to be actuated by

the motors. Drivers and followers can be attached to tie-rods, the

third type of link, at various points on their surfaces using ball and

socket joints. An assignment of a driver to follower is physically

ful�lled by directly connecting them together with a tie-rod. Note

that in sec. 4.2 we also discuss assignments utilizing bellcranks, for

better force transmission.

The state of the mechanism (excluding drivers and tie-rods) is

de�ned by a vector s containing the poses of the rigid bodies. The

space of possible states is determined by the set of constraints in-

duced by the joints. Each articulated component C: has multiple

degrees of freedom, and once the poses of all of its designated fol-

lowers parts are �xed, the entire state of the component s: can be

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:4 • Simon Huber, Roi Poranne, and Stelian Coros

Follower 1

1f 2f

1d 2d 3d 4d 5d

1f 2f

1d 2d 3d 4d 5d

1f 2f

1d 2d 3d 4d 5d

1f 2f

1d 2d 3d 4d 5d

Follower 2

Fig. 4. A subset of the tree structure we use for assignments. In this example, there are 2 followers and 5 drivers. The first column show all 5 assignments

of one follower to all drivers. From these, we expand the tree for two of the assignments. Each of these has 4 other assignment for the second follower, as

depicted in the image.

uniquely determined. Fixing a follower is achieved in practice by

connecting it to a driver by a tie-rod. This essentially adds more con-

straints and reduces the number of degrees of freedom. Assuming

that all degrees of freedom are accounted for, that is, all followers

are connected to drivers, we can uniquely de�ne the state of the

entire mechanism by s(q) where q is a vector containing the angles

of all of the drivers. This is, of course, dependant on the speci�c

assignment as we discuss next. See sec. 4.2 on how we determine

the state.

To de�ne the input, we let the user interact with a virtual model

of the animatronic �gure, and specify a sample of desired possible

states for each articulated component. This can also be done by

specifying the min/max angles each joint should be able to achieve.

We denote the sampled states of the component by s:; where ; is

some index. The user can also specify which parts of the mechanism

are to be considered as followers, which we denote by F = {58 },

8 = 1, . . . ,< and a set of candidate attachment points on the surface

of the followers (in local coordinates) p8 which will be considered

for connecting tie-rods. While this can be done automatically, many

choices can be ruled out immediately by the informed user, due to

considerations such as aesthetics and fabrication limitations. Ad-

ditionally, our algorithm requires a list of candidate motor poses,

denoted by D = {3 9 }, 8 = 9, . . . , = which also provides the range of

poses for the drivers. Again, this list can be either generated auto-

matically, by sampling a region in space where drivers are allowed

to be placed, as provided by the user, or speci�c locations, based

on the user’s informed guess. Finally, a set of possible attachment

points on the drivers and initial motor angle are to be provided,

which we denote by A 9 and q9 , respectively.

Local costs. We de�ne a single assignment of a follower to a driver

as a pair a8 9 = (58 , 3 9). This assignment means that there is a tie-

rod connecting a point from p8 on the follower, to a point from

A 9 on the driver. In order to decide which two speci�c points we

should connect, we compute a cost for each choice, and pick the

two points with the lowest cost. We term this cost L(a8 9) as the

local cost associated with a8 9 . This cost measures properties that

can be inferred from a8 9 alone, without considering others pairs.

For example, we can measure the ability of reach target poses and

the torque required to actuate the follower, and penalize collisions

between the tie-rod and the static components of the mechanism.

More detail appears in Sec. 4.2.

Assignments. A partial assignment is commonly de�ned as an

injective function, which in our case would be A : F̃ ⊂ F → D.

Herein, a more useful representation is as a set of pairs. With this,

a partial assignment A is also a set, where each driver and each

follower appear at most once. A complete assignment is a partial

assignment where all followers appear once. Partial assignments

can be organized in a tree structure, where children of a node A

contain the same partial assignment, appended with an additional

single assignment, e.g. A ∪ {a8 9 }. The leaves of the tree correspond

to all complete assignments. We discuss a speci�c structure for this

tree and how to utilize it in sec. 4.1.

Global costs. A partial or complete assignment A has a global

cost G(A) associated with it, that evaluates the performance of the

assignment as a whole. Di�erent considerations can be taken into

account here, related to the distribution of motors, for example.

The global cost we employ aims to eliminate collisions between the

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

Designing actuation systems for animatronic figures via globally optimal discrete search • 1:5

tie-rods that connect di�erent driver-follower pairs. We develop

an approach inspired by adversarial attacks to �nd worst-case self-

collision con�gurations, as described in sec. 4.2.

The total cost. With the global cost de�ned, we can �nally for-

mulate our optimization problem. Our goal is to �nd a complete

assignment that globally minimizes the total cost C(A), that we

de�ne as the sum of local costs and global cost. Formally,

min
A∈A

C(A) = G(A) +
∑

a8 9 ∈A

L(a8 9) (1)

where A is the set of all complete assignments. In the next sec-

tions we describe the algorithms for optimizing (1), and the various

aspects of the costs in more details.

4 METHOD

4.1 Branch-and-bound

The A* algorithm. We begin this section by describing the the

optimization approach �rst, followed by a detailed description of

the local and global costs and how we compute them. As mentioned,

the main idea is to organize partial assignments in a tree structure.

We let the root be the empty assignment. Then, each level 8 of the

tree is dedicated to a single follower 58 . In the �rst level, i.e., all the

children of the root, each node represents the assignment of 51 to

one drivers. That is the �rst level contain the nodes a19 = (51, 3 9)

for all 9 ’s. Let A be an assignment of the (8 − 1)-th level. We de�ne

its children to be all valid assignments A ∪ {a8 9 }, that is, for all 3 9 ’s

that are not already part ofA. With this structure, all possible partial

assignments appear in the tree exactly once. We note however, that

di�erent orderings of the followers will produce di�erent trees.

We can naively traverse the leaves of the tree (all <!
(<−=)!

node),

but of course this approach is not scalable. Instead, the branch-

and-bound approach calls for bounding the cost of of each node’s

subtree. A subtree that has lower bound higher than the current

upper bound for the solutionwill not be traversed, potentially saving

considerable amount of resources. To this end, we note the C(A) for

a node is already a lower bound on the cost of A’s subtree. Indeed,

by appending A the cost can only increase. Thus, if we do encounter

such a node, we prune the node’s subtree and proceed with the next

node in our traversal order. Furthermore, it is possible to devise

a hueristic, which never overestimate the cost of the subtree, also

known as an admissible heuristic. This also informs the preferred

order in which the tree should be traversed, which leads to the

standard A* algorithm. In the common A* notation, we seek an

evaluation function 5 (A) = 6(A) +ℎ(A), where 6(A) = C(A) is the

cost of the current node, and ℎ(A) is the admissible heuristic.

The heuristic. For the A* algorithm to run e�ciently, ℎ(A) should

be quick to evaluate, and provide a tight lower bound. A good

balance between these criteria is detrimental to the performance

of A*. In our case, the de�nition of C(A) strongly suggests of a

particular heuristic: We can quickly and accurately compute the

optimal complementary assignment to A (that is, the assignment

the completes A) in terms of local costs only. In other words, given

A, we propose to de�ne ℎ(A) as

ℎ(A) = min
A2∪A∈A
A2∩A=∅

∑

a8 9 ∈A2

L(a8 9). (2)

Eq. (2) is nothing more than a standard assignment problem which

can be solved in cubic time using the Hungarian algorithm. To boost

the performance, we can precompute all<×= local costs beforehand,

and recall the values when required.

The Hungarian algorithm can still be costly to run for every node

visited. As an alternative, we propose a greedy approach, which

allows multiple assignments to the same driver in (2). We denote

the resulting heuristic by ℎ̃(A). Of course, the optimal assignments

predicted ℎ̃(A) are not legal assignments, but they do serve the

purpose of achieving an underestimating heuristic quickly. Clearly,

ℎ̃(A) ≤ ℎ(A), and computing ℎ(A) is done in linear time. We sum-

marize the algorithm in Algorithm 1. It is important to note that

the choice of heuristic has no in�uence on the �nal result but on

the number of nodes visited in the tree. See Table 1 in the results

Section to see how the two di�erent heuristics in�uence the number

of nodes visited.

A* alternatives. The main drawbacks of the A* algorithm are the

fact the it does not produce intermediate results, and that the entire

frontier must be stored in a priority queue, leading to high memory

consumption. Many alternatives have been proposed in the past

(see e.g. [Hansen and Zhou 2007; Sun and Koenig 2007]) We experi-

mented with yet another alternative more tailored to our problem.

The approach is to reach candidate solutions early, so subtrees can

be pruned more e�ectively. With this approach, at a node A, we

prioritize its children based on ℎ or ℎ̃. In contrast to A*, we fully

traverse the �rst child of A before proceeding with the second one,

and so on. We maintain the current best solution, and use it to prune

the tree. That is, if the heuristic for the currently visited node A is

greater than the current best solution, we prune the tree at A. We

initialize this algorithm with a solution obtained by the Hungarian

algorithm. This approach, which requires $ (<=) memory, provides

a suboptimal solution quickly, and then �nds better solutions over

time. We summarize this approach in Algorithm 2, and discuss the

practical di�erences between the two strategies in Sec. 5.

4.2 Cost evaluation

Computing states. As mentioned in Sec. 3.1, the computation of

the various states of the mechanism has a central role, both for

specifying the input and evaluating the costs. We use two di�erent

approaches – symbolic kinematics and Newton’s method – for di�er-

ent parts of the algorithm, both with their own strengths and weak-

nesses. For symoblic kinematics, we follow the approach presented

in [Bächer et al. 2015]. With this approach, we can �nds closed form

expressions the pose of the follower as a function of the angles of

the motor alone. We note that, originally, the paper discussed only

2D mechanisms, but the extension to 3D is straightforward. The ad-

vantage of this approach is it extremely fast and reliable compared

to constraint based evaluation, i.e. Newton’s method. The main

limitation of this approach is that it cannot treat mechanism with

kinematic loops. This is not an issue when computing local costs,

since for these, we �x the entire mechanism except for the driver

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:6 • Simon Huber, Roi Poranne, and Stelian Coros

projection plane
Perpective view Side view

Fig. 5. The mechanism in a specific state s:; , displaying the hinge plane

corresponding to the highlighted follower.

High cost Low cost

Fig. 6. Di�erent assignment incur di�erent costs. In this example, the assign-

ment on the le� has the two vectors almost parallel, which means that the

mechanism is at a singular point. That is, the motor will struggle actuating

the follower. On the right, they are almost orthogonal, indicating a close to

optimal configuration.

and follower in question, as we explain below. In order to compute

global costs, we employ Newton’s method. With Newton’s method,

we cast the problem of �nding valid states as an optimization prob-

lem. This provides us with added �exibility which we leverage as

discuss discussed below.

Computing local costs. To determine the local cost of the single

assignment a8 9 assigning 58 to 3 9 , we recall that 58 belongs to a

speci�c articulated component C: , and that the user speci�ed a

list of desired states for this component, denoted by s:; , where

; = 1, . . . ;: . Out of all possible pairs of tie-rod attachment points

p ∈ ?8 and A ∈ A 9 on 58 and 3 9 , we must �nd the most suitable

ones, in the sense that they can e�ciently allow driver to actuate

the component and achieve the target poses. To measure e�ciency,

we examine three points: pF , AF and bF which are the point p, A

and the base joint of 58 , in world coordinates. Then, we de�ne two

vectors: (= pF − bF , and) = pF − AF and the smooth measure

of e�ciency as
�

�

�
(̂ · ˆ?A> 9 ())

�

�

�
, where ?A> 9 ()) is the projection of)

on the plane spanned by the hinge axis at point 1F . This measure

calculates the moment arm which tells you if the tie-rod is pushed

or pulled how much of this force is applied to the joint axis. See

Figure 5 for an illustration of the speci�c elements of the local cost

in a speci�c state.

The position pF is given by the pose of the component, but

AF depends on the motor angle. To �x an angle, we consider the

additional degree of freedom of our problem, that is, the initialmotor

angle q̄ ∈ q9 . To that angle, we can w.l.o.g. assign the �rst state s:1
to q̄. Given these parameters, e.g. p, A and q̄, and the pose s:1, which

for conciseness we stack in a vector U we can compute the length

Fig. 7. Using via points in the form of a bellcrank, can assist in overcoming

obstacles, obtaining more e�icient force transmission and reducing the cost.

ℓ = ℓ (U) of the required tie-rod. Next, we can examine the rest of

the poses s:; . Using symbolic kinematics we can compute, for each

pose, the unique motor angle q; = q(U, ℓ ; s:;) for the driver (noting

that U and ℓ are �xed), or conclude that one does not exist. In case

q; exists, we can calculate the e�ciency measure as described above.

Let it be denoted by E(U, ℓ ; s:;). Then, we de�ne the cost of the pair

p and A and the angle q̄ to be

E(p, A , q̄) =

;:
∑

;=1

E(U, ℓ ; s:;) (3)

In case q; does not exist, we set E to an arbitrarily high value.

Finally, the local cost of a8 9 is de�ned as the minimum over all pairs

of attachment and initial angles, namely

L(a8 9) = min
p,A ,q̄

E(p, A , q̄) (4)

Force transmission. To allow for greater �exibility, we can ex-

tend the mechanism by adding via points, which we denote by vC .

These are additional rigid bodies that are connected attached to

the mechanism by a hinge joint, and allow for force transmission.

Via point are useful in order to

avoid collisions, and in order to re-

duce the local costs in some cases

(Fig. 7 and the inset). For every a8 9 ,

we additionally check the cost of

attaching 3 9 to 58 via vC . The cost

is simply the sum of the cost of

attaching 3 9 to vC , treating vC as

a follower, and the cost of attach-

ing EC to 58 , treating vC as a driver.

Adding via point to the algorithm

multiplies the number of nodes in the tree. In this paper we only

experimented using up to one via point per pair, but allowing for

more is a simple extension.

Computing global costs. As mentioned, global costs can have sev-

eral use cases. In this work we use it to prevent designs that lead to

self-collisions between the mechanical elements used to transmit

forces from motors to the armature. We identify worst-case colli-

sion con�gurations using an approach inspired by the concept of

adversarial attacks. More precisely, we actively drive the mechanism

towards con�gurations where the internal components get as close

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

Designing actuation systems for animatronic figures via globally optimal discrete search • 1:7

as possible to each other. We do so using Newton’s method, mini-

mizing an objective that measures the distance between individual

pairs of tie rods. If a state is found where this distance is less then

7mm between the centers of the two tie-rods, that is, a collision is

possible, we set the global cost of the assignment to an arbitrarily

high value. Otherwise, the cost of the pair is zero. We sum up all the

pairwise costs to obtain the non-smooth global cost itself. We note

that the same pair a81 91 , a82 92 is likely to appear in several assign-

ments, several times throughout the optimization. To save time, we

store the cost of each pair that was encountered and recall it when

necessary. Finally, we note that, when only considering pairwise

costs, the problem can be cast as a quadratic assignment problem,

which is known for its high complexity [Burkard et al. 1998].

Algorithm 1: Assignment A*

Input: Desired �gure poses

Output: Optimal assignment

priority-queue.push(new RootNode())

while node not leaf do

for child of node do
cost = child.localCost() + child.globalCost()

cost += child.heuristic() (Eq. 2)

priority-queue.push(child, cost)

end

node = priority-queue.pop()

end

return node

5 RESULTS

In this section we evaluate our algorithm and demonstrate di�erent

designs. We refer the reader to the accompanying video for further

demonstrations, and to the gallery of models is shown in Fig. 11.

In all of our experiments we used the A* approach with the greedy

heuristic ℎ̃(A). That is, the heuristic that does not use the Hungarian

algorithm. We compare our method of choice with these approaches

in this section as well.

Algorithm e�ciency. The overall performance of the algorithm

and its di�erent stages are detailed in 1. The tree search algorithm

highly depends on the problem and how tight the heuristic is. In

terms of computation reuse, as mentioned, we compute all of the

local costs in a preprocessing step, but pairwise collision for the

global costs is computed on-the-�y, and then stored. The reason is

that not all pairs of single assignments necessarily appear during

the search. As can be seen from the table, the timing is dominated

by the computation of bar-bar collisions. This indicates that there is

a considerable potential for improvement, by creating a customized

procedure for these types of collisions. We also provide in the ta-

ble the total number of leaves, which are equivalent to complete

assignments, vs the number of nodes our algorithm visited. Note

that the number of leaves is just a fraction of the total number of

nodes in the tree, and that the number of nodes visited is generally

many orders of magnitude smaller, indicating that our heuristic is

e�ective

Algorithm 2: Assignment B&B

Input: Desired �gure poses

Output: Optimal assignment

/* Initialize current best using the Hungarian

algorithm */

node = hungarian()

upperBound = node.localCost + node.globalCost

bestNode = node

stack.push(root)

while stack not empty do
vector = []

node = stack.pop()

for child of node do
cost = child.localCost() + child.globalCost()

cost += child.heuristic() (Eq. 2) if

2>BC < D??4A�>D=3 then

if node.isLeaf() then
upperBound = cost

bestNode = child
end

vector.push(child, cost)

end

end

vector.sort()

stack.extend(vector)
end

return bestNode

E�cacy. Generally, the designer of a animatronic has a good in-

tuition on regions where motors should reside. The main challenge

is to avoid collision that are di�cult to predict in a complex system.

The typical use-case we envision is for the designer to designate

a large set of likely positions, and let the algorithm �nd the op-

timal solution. Our experiments indicate that our algorithm can

achieve that goal in seconds to minutes for typical sized problems.

Nevertheless, the goal we set for ourselves is to �nd the optimal

assignment from a highly redundant set of motors. As a stress test,

we optimized a common model (baby animatronic) with 8 follow-

ers, and 100 potential drivers. The input and the solution, which

was computed in 10 hours, is shown in Fig. 8. As mentioned, we

believe the performance can still be vastly improved by developing

a dedicated solver for bar-bar collisions. Additionally, we show a

moderately sized problem with 21 drivers and 6 followers in Fig. 9.

A* vs. Branch-and-Bound. We compared the performances of A*

and branch and bound over some of the designs, and the results are

summarized in Table. 1. In general, both algorithms reach the same

designs, but A* seem to outperform Branch-and-Bound. However,

as mentioned in Sec. 4.1, Branch-and-Bound outputs intermedi-

ate results as it �nds them. Additionally, the memory footprint of

Branch-and-Bound is genenally insigni�cant in comparison to A*.

In Fig. 10 we illustrate the progression of Branch-and-Bound by

displaying the cost as a function of time. The vertical broken line

represent the time it took for A* to reach the solution. As can be

seen, A* does conclude before Branch-and-Bound, but can provide

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:8 • Simon Huber, Roi Poranne, and Stelian Coros

Table 1. Performance statistics.

Model Method Heuristic Drivers Followers
Local cost

total time

Bar-bar

collision time
Total time

Nodes

evaluated

Leaves

total

Face A* Greedy 16 14 38 s 662s 827s 33697 10.4×1012

Face A* Hungarian " "" " 576s 670s 14445 "

Face B&B Greedy " " " 822s 1168s 55863 "

Baby (designed) A* Greedy 10 10 167s 514s 773s 36024 -

Baby (Oversampled) A* Greedy 100 8 300m 9h48m 10h6m 3.6×106 7.5×1015

Hand A* Greedy 6 6 0.8 s 10s 11s 94 720

Hand A* Hungarian " " " 9s 9.7s 66 "

Hand B&B Greedy " " " 115s 12s 88 "

Hand (Oversampled) A* Greedy 21 6 6 s 130s 137s 685 39×106

Hand (Oversampled) B&B Greedy " " " 339.3s 350.5s 2399 "

Hexapod A* Greedy 18 14 30s 1412s 1702s 77506 266 "

Input Result

Input

Result

Fig. 8. A stress test result, running our algorithm on a baby animatronic

with 100 drivers, and 8 followers.

Input

Result

Fig. 9. A hand example, with 21 motors and 6 followers.

arguably acceptable results. The choice between the two depends

on the situation. Under a strict time budget, Branch-and-Bound is

preferable since it can provide early suboptimal results. Otherwise,

use of A* is suggested.

Heuristics comparison. The choice of heuristic is pivotal for the

performance of the algorithm. A good heuristic balances between

its computation time, and how e�ective it is in prioritizing nodes.

We experimented with the greedy and Hungarian approaches, and

the results can be seen in Table. 1. Our current conclusion is that

for smaller scale problems, the Hungarian heuristic outperform the

Face animatronicHexapod animatronic

C
o
st

Time[s]0 03500 700Time[s]

Fig. 10. A convergence plot of Branch-and-Bound, with a comparison to

A*. The blue line shows the progression of Branch-and-Bound over time,

while the broken green line indicates the point in time where A* returned

the global minimum. While Branch-and-Bound gradually improves the

candidate solution over time, before finally returning the global minimum,

A* outputs only the global minimum, as soon as it is found.

greedy one. However, the situation changes for larger problems.

The explanation for this could be related to how the Hungarian

algorithm scales; while e�ective for prioritization, the algorithm

scales cubically. As a result, the �rst levels of the tree require an

excessive amount of time to run, which is not balanced by the im-

proved prioritization. One future avenue of investigation, is whether

we can use results from similar assignments to speed up the Hun-

garian algorithm’s runtime, which could potentially improve its

performance over more complex designs.

Local vs Global Costs. The local costs tell if between a speci�c

motor and follower a connection is possible. But just relying on

the local costs to guide the search will often result in not desirable

designs. See Figure 12 for examples when searching for the global

optimum when ignoring vs not ignoring global costs.

Shoulder Mechanism. Figure 13 shows a recreated shoulder mech-

anism. It needs multiple motors working together and uses two

universal joints. It has 4 degrees of freedom with all the motors

placed on the rib cage and additionally leverages multiple via -

components.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

Designing actuation systems for animatronic figures via globally optimal discrete search • 1:9

Fig. 11. A gallery showing di�erent results and poses. From le� to right, we show a baby model, a hexapod, a hand and a face designs. Note that the motor

assignments for the hexapod are asymmetric due to the di�erent ranges of motion specified for each leg.

Fig. 12. a) The solution reached when ignoring global costs. b) The solution

reached when using global and local costs.

Fig. 13. The le� image shows the shoulder mechanism and the right shows

possible displacements.

6 CONCLUSIONS AND FUTURE WORK

We presented a computational approach to designing high degree-

of-freedom animatronic characters based on range of motion spec-

i�cations. Given an input set of candidate motors, our algorithm

automatically generates an optimal blueprint by reasoning about

the following types of design decisions:

• Which of the candidate motors is best suited to drive each

function (i.e. movement of the underlying armature)

• In synthesizing force transmission mechanisms that connect

the selected actuator to the articulated armature, which at-

tachment point on the motor’s horn should be used?

• Which attachment point on the armature should be used?

• Should a bellcrank be used as an intermediate structure be-

tween the motor and the armature?

Seen under this light, the design process boils down to a sequence of

discrete decisions that must be taken. As such, we cast it as a search

problem in the combinatorial space of all possible designs. The

objectives driving the search process demand that the synthesized

mechanisms remain singularity free and do not collide with the

armature or with each other at any point in the high-dimensional

space of motions the character is expected to be able to execute.

As evidenced through our results, the best-�rst search method

we propose, which is guided by an admissible heuristic, is able

to e�ciently �nd globally optimal designs. We therefore believe

algorithms like ours can play an important role in the development

of personalized physical embodiments for future generations of

intelligent agents. Nevertheless, before this vision can be realized,

we see exciting avenues that need to be investigated. We would

like, for example, to include in the design process elements that

are not rigid. Flexible wires could be used to recreate the motion

of lips or eyebrows; spring-damper systems or soft materials could

be employed to make the overall designs compliant and safe to

interact with; soft skins could give the �nal result an organic look, if

that is desired. For each of these types of elements, the mechanical

structure of the animatronic character would have to be designed

while properly accounting for interactions with soft materials.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

1:10 • Simon Huber, Roi Poranne, and Stelian Coros

It would also be interesting to increase the diversity of elements

used to design force transmissions. It is currently unclear, for exam-

ple, how our algorithm would scale as we increase the number of

ways in which a motor can be connected to the articulated arma-

ture. To gracefully handle the growth of the design space, additional

heuristics or approximations are likely to be needed. As an alterna-

tive, continuous optimization techniques applied to the �nal designs

could drastically reduce the set of discrete choices that must be eval-

uated using our current approach.

Lastly, we would like to explore ways of making it even more

intuitive to specify the desired repertoire of motions an animatronic

character should possess. We envision, for example, a system that

starts with an animated character (full body, face only, etc) per-

forming a variety of motions. Co-designing internal mechanisms,

actuator layouts and soft skins in order to faithfully recreate those

motions is particularly exciting as a long term vision.

Acknowledgment. This work has received funding from the Euro-

pean Research Council (ERC) (grant agreement No. 866480).

REFERENCES
Moritz Bächer, Stelian Coros, and Bernhard Thomaszewski. 2015. LinkEdit: interactive

linkage editing using symbolic kinematics. ACM Trans. Graph. 34, 4 (2015), 99:1–99:8.
https://doi.org/10.1145/2766985

Amit H. Bermano, Thomas A. Funkhouser, and Szymon Rusinkiewicz. 2017. State of
the Art in Methods and Representations for Fabrication-Aware Design. Comput.
Graph. Forum 36, 2 (2017), 509–535. https://doi.org/10.1111/cgf.13146

James M. Bern, Pol Banzet, Roi Poranne, and Stelian Coros. 2019. Trajectory Optimiza-
tion for Cable-Driven Soft Robot Locomotion. In Robotics: Science and Systems XV,
University of Freiburg, Freiburg im Breisgau, Germany, June 22-26, 2019, Antonio
Bicchi, Hadas Kress-Gazit, and Seth Hutchinson (Eds.). https://doi.org/10.15607/
RSS.2019.XV.052

JamesM. Bern, Kai-Hung Chang, and Stelian Coros. 2017. Interactive design of animated
plushies. ACMTrans. Graph. 36, 4 (2017), 80:1–80:11. https://doi.org/10.1145/3072959.
3073700

Gaurav Bharaj, Stelian Coros, Bernhard Thomaszewski, James Tompkin, Bernd Bickel,
and Hanspeter P�ster. 2015. Computational design of walking automata. In Proceed-
ings of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation,
SCA 2015, Los Angeles, CA, USA, August 7-9, 2015, Jernej Barbic and Zhigang Deng
(Eds.). ACM, 93–100. https://doi.org/10.1145/2786784.2786803

Bernd Bickel, Peter Kaufmann,Mélina Skouras, Bernhard Thomaszewski, Derek Bradley,
Thabo Beeler, Philip Jackson, Steve Marschner, Wojciech Matusik, and Markus H.
Gross. 2012. Physical face cloning. ACM Trans. Graph. 31, 4 (2012), 118:1–118:10.
https://doi.org/10.1145/2185520.2185614

Rainer E. Burkard, Eranda Çela, Panos M. Pardalos, and Leonidas S. Pitsoulis. 1998.
The Quadratic Assignment Problem. Springer US, Boston, MA, 1713–1809. https:
//doi.org/10.1007/978-1-4613-0303-9_27

Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira For-
berg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Computa-
tional design of mechanical characters. ACM Trans. Graph. 32, 4 (2013), 83:1–83:12.
https://doi.org/10.1145/2461912.2461953

Ruta Desai, James McCann, and Stelian Coros. 2018. Assembly-aware Design of
Printable Electromechanical Devices. In The 31st Annual ACM Symposium on
User Interface Software and Technology, UIST 2018, Berlin, Germany, October 14-17,
2018, Patrick Baudisch, Albrecht Schmidt, and Andy Wilson (Eds.). ACM, 457–472.
https://doi.org/10.1145/3242587.3242655

Tao Du, Adriana Schulz, Bo Zhu, Bernd Bickel, and Wojciech Matusik. 2016. Com-
putational multicopter design. ACM Trans. Graph. 35, 6 (2016), 227:1–227:10.
http://dl.acm.org/citation.cfm?id=2982427

X. Feng, J. Liu, Y. Yang, H. Wang, H. Bao, B. Bickel, and W. Xu. 2019. Computational
Design of Skinned Quad-Robots. IEEE Transactions on Visualization Computer
Graphics 01 (dec 2019), 1–1. https://doi.org/10.1109/TVCG.2019.2957218

Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski,
and Stelian Coros. 2020. ADD: analytically di�erentiable dynamics for multi-body
systems with frictional contact. ACM Trans. Graph. 39, 6 (2020), 190:1–190:15.
https://doi.org/10.1145/3414685.3417766

Moritz Geilinger, Roi Poranne, Ruta Desai, Bernhard Thomaszewski, and Stelian Coros.
2018. Skaterbots: optimization-based design and motion synthesis for robotic

creatures with legs and wheels. ACM Trans. Graph. 37, 4 (2018), 160:1–160:12.
https://doi.org/10.1145/3197517.3201368

Sehoon Ha, Stelian Coros, Alexander Alspach, James M Bern, Joohyung Kim, and Katsu
Yamane. 2018a. Computational design of robotic devices from high-level motion
speci�cations. IEEE Transactions on Robotics 34, 5 (2018), 1240–1251.

Sehoon Ha, Stelian Coros, Alexander Alspach, Joohyung Kim, and Katsu Yamane. 2018b.
Computational co-optimization of design parameters and motion trajectories for
robotic systems. Int. J. Robotics Res. 37, 13-14 (2018). https://doi.org/10.1177/
0278364918771172

David Hahn, Pol Banzet, James M. Bern, and Stelian Coros. 2019. Real2Sim: visco-
elastic parameter estimation from dynamic motion. ACM Trans. Graph. 38, 6 (2019),
236:1–236:13. https://doi.org/10.1145/3355089.3356548

Eric A. Hansen and Rong Zhou. 2007. Anytime Heuristic Search. J. Artif. Int. Res. 28, 1
(March 2007), 267–297.

Shayan Hoshyari, Hongyi Xu, Espen Knoop, Stelian Coros, and Moritz Bächer. 2019.
Vibration-minimizing motion retargeting for robotic characters. ACM Trans. Graph.
38, 4 (2019), 102:1–102:14. https://doi.org/10.1145/3306346.3323034

Sandy H. Huang, Nicolas Papernot, Ian J. Goodfellow, Yan Duan, and Pieter Abbeel. 2017.
Adversarial Attacks on Neural Network Policies. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop
Track Proceedings. OpenReview.net. https://openreview.net/forum?id=ryvlRyBKl

Milan Jelisavcic, Matteo de Carlo, Elte Hupkes, Panagiotis Eustratiadis, Jakub Orlowski,
Evert Haasdijk, Joshua E. Auerbach, and A. E. Eiben. 2017. Real-World Evolution
of Robot Morphologies: A Proof of Concept. Arti�cial Life 23, 2 (2017), 206–235.
https://doi.org/10.1162/ARTL_a_00231 PMID: 28513201.

Chris Leger et al. 1999. Automated synthesis and optimization of robot con�gurations:
an evolutionary approach. Carnegie Mellon University USA.

Li-Ke Ma, Yizhonc Zhang, Yang Liu, Kun Zhou, and Xin Tong. 2017. Computational
design and fabrication of soft pneumatic objects with desired deformations. ACM
Trans. Graph. 36, 6 (2017), 239:1–239:12. https://doi.org/10.1145/3130800.3130850

Vittorio Megaro, Bernhard Thomaszewski, Damien Gauge, Eitan Grinspun, Stelian
Coros, and Markus H. Gross. 2014. ChaCra: An Interactive Design System for
Rapid Character Crafting. In The Eurographics / ACM SIGGRAPH Symposium on
Computer Animation, SCA 2014, Copenhagen, Denmark, 2014, Vladlen Koltun and
Eftychios Sifakis (Eds.). Eurographics Association, 123–130. https://doi.org/10.2312/
sca.20141130

Vittorio Megaro, Bernhard Thomaszewski, Maurizio Nitti, Otmar Hilliges, Markus H.
Gross, and Stelian Coros. 2015. Interactive design of 3D-printable robotic crea-
tures. ACM Trans. Graph. 34, 6 (2015), 216:1–216:9. https://doi.org/10.1145/2816795.
2818137

Vittorio Megaro, Jonas Zehnder, Moritz Bächer, Stelian Coros, Markus H. Gross, and
Bernhard Thomaszewski. 2017. A computational design tool for compliant mecha-
nisms. ACM Trans. Graph. 36, 4 (2017), 82:1–82:12. https://doi.org/10.1145/3072959.
3073636

Peng Song, Xiaofei Wang, Xiao Tang, Chi-Wing Fu, Hongfei Xu, Ligang Liu, and Niloy J.
Mitra. 2017. Computational design of wind-up toys. ACM Trans. Graph. 36, 6 (2017),
238:1–238:13. https://doi.org/10.1145/3130800.3130808

Xiaoxun Sun and Sven Koenig. 2007. The Fringe-Saving A* Search Algorithm: A
Feasibility Study. In Proceedings of the 20th International Joint Conference on Arti�cal
Intelligence (Hyderabad, India) (IJCAI’07). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2391–2397.

Pengbin Tang, Jonas Zehnder, Stelian Coros, and Bernhard Thomaszewski. 2020. A
harmonic balance approach for designing compliant mechanical systems with non-
linear periodic motions. ACM Trans. Graph. 39, 6 (2020), 191:1–191:14. https:
//doi.org/10.1145/3414685.3417765

Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, Eitan Grin-
spun, and Markus H. Gross. 2014. Computational design of linkage-based characters.
ACM Trans. Graph. 33, 4 (2014), 64:1–64:9. https://doi.org/10.1145/2601097.2601143

Ran Zhang, Thomas Auzinger, Duygu Ceylan, Wilmot Li, and Bernd Bickel. 2017.
Functionality-aware retargeting of mechanisms to 3D shapes. ACM Trans. Graph.
36, 4 (2017), 81:1–81:13. https://doi.org/10.1145/3072959.3073710

Allan Zhao, Jie Xu, Mina Konakovic-Lukovic, Josephine Hughes, Andrew Spielberg,
Daniela Rus, and Wojciech Matusik. 2020. RoboGrammar: graph grammar for
terrain-optimized robot design. ACM Trans. Graph. 39, 6 (2020), 188:1–188:16.
https://doi.org/10.1145/3414685.3417831

Changxi Zheng, Timothy Sun, and Xiang Chen. 2016. Deployable 3D linkages with
collision avoidance. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, Zurich, Switzerland, July 11-13, 2016, Barbara Solenthaler,
Matthias Teschner, Ladislav Kavan, and Chris Wojtan (Eds.). Eurographics Associa-
tion / ACM, 179–188. http://dl.acm.org/citation.cfm?id=2982843

Lifeng Zhu, Weiwei Xu, John Snyder, Yang Liu, Guoping Wang, and Baining Guo.
2012. Motion-guided mechanical toy modeling. ACM Trans. Graph. 31, 6 (2012),
127:1–127:10. https://doi.org/10.1145/2366145.2366146

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

https://doi.org/10.1145/2766985
https://doi.org/10.1111/cgf.13146
https://doi.org/10.15607/RSS.2019.XV.052
https://doi.org/10.15607/RSS.2019.XV.052
https://doi.org/10.1145/3072959.3073700
https://doi.org/10.1145/3072959.3073700
https://doi.org/10.1145/2786784.2786803
https://doi.org/10.1145/2185520.2185614
https://doi.org/10.1007/978-1-4613-0303-9_27
https://doi.org/10.1007/978-1-4613-0303-9_27
https://doi.org/10.1145/2461912.2461953
https://doi.org/10.1145/3242587.3242655
http://dl.acm.org/citation.cfm?id=2982427
https://doi.org/10.1109/TVCG.2019.2957218
https://doi.org/10.1145/3414685.3417766
https://doi.org/10.1145/3197517.3201368
https://doi.org/10.1177/0278364918771172
https://doi.org/10.1177/0278364918771172
https://doi.org/10.1145/3355089.3356548
https://doi.org/10.1145/3306346.3323034
https://openreview.net/forum?id=ryvlRyBKl
https://doi.org/10.1162/ARTL_a_00231
https://doi.org/10.1145/3130800.3130850
https://doi.org/10.2312/sca.20141130
https://doi.org/10.2312/sca.20141130
https://doi.org/10.1145/2816795.2818137
https://doi.org/10.1145/2816795.2818137
https://doi.org/10.1145/3072959.3073636
https://doi.org/10.1145/3072959.3073636
https://doi.org/10.1145/3130800.3130808
https://doi.org/10.1145/3414685.3417765
https://doi.org/10.1145/3414685.3417765
https://doi.org/10.1145/2601097.2601143
https://doi.org/10.1145/3072959.3073710
https://doi.org/10.1145/3414685.3417831
http://dl.acm.org/citation.cfm?id=2982843
https://doi.org/10.1145/2366145.2366146

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	3.1 Problem statement

	4 Method
	4.1 Branch-and-bound
	4.2 Cost evaluation

	5 Results
	6 Conclusions and Future Work
	References

