
Journal of Intelligent Manufacturing (2021) 32:855–876

https://doi.org/10.1007/s10845-020-01612-y

Designing an adaptive production control system using reinforcement
learning

Andreas Kuhnle1 · Jan-Philipp Kaiser1 · Felix Theiß1 · Nicole Stricker1 · Gisela Lanza1

Received: 21 February 2020 / Accepted: 22 June 2020 / Published online: 14 July 2020

© The Author(s) 2020

Abstract

Modern production systems face enormous challenges due to rising customer requirements resulting in complex production
systems. The operational efficiency in the competitive industry is ensured by an adequate production control system that
manages all operations in order to optimize key performance indicators. Currently, control systems are mostly based on static
and model-based heuristics, requiring significant human domain knowledge and, hence, do not match the dynamic environment
of manufacturing companies. Data-driven reinforcement learning (RL) showed compelling results in applications such as board
and computer games as well as first production applications. This paper addresses the design of RL to create an adaptive
production control system by the real-world example of order dispatching in a complex job shop. As RL algorithms are
“black box” approaches, they inherently prohibit a comprehensive understanding. Furthermore, the experience with advanced
RL algorithms is still limited to single successful applications, which limits the transferability of results. In this paper, we
examine the performance of the state, action, and reward function RL design. When analyzing the results, we identify robust
RL designs. This makes RL an advantageous control system for highly dynamic and complex production systems, mainly
when domain knowledge is limited.

Keywords Reinforcement learning · Production control · Adaptivity · Semiconductor industry

Introduction

Manufacturing companies face ever-increasing complexity
in their internal operational processes driven by versatile
and fast changing market environments (Abele and Rein-
hart 2011). These external conditions require manufacturing
companies to create flexible production and logistics pro-
cesses in order to remain competitive (Mönch et al. 2013).
The usage of data collected along the entire value chain is one
promising technological enabler to address these challenges
(Henke et al. 2016). Autonomous systems and learning-based
algorithms provide tools to exploit and leverage these poten-
tials and, eventually, optimize the operational performance
(Monostori et al. 2016). Thereby, the focus of manufac-
turing is shifting from knowledge-based to data-driven and
knowledge-based manufacturing (Tao et al. 2019).

B Andreas Kuhnle
andreas.kuhnle@kit.edu

1 Institute of Production Science, Karlsruhe Institute of
Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany

The application of machine learning (ML) gains relevance
in research and practice due to the increased computing
capacity and availability of information in the production
processes (Schuh et al. 2017). Reinforcement learning, in
particular, offers the potential to solve complex and dynamic
decision-making problems as an alternative to prevailing
methods such as heuristics and mathematical optimization
by training agents that learn a generalizing strategy (Wasch-
neck et al. 2016; Silver et al. 2017).

However, the degree of freedom when modeling a real-
world decision-making problem as RL-problem and applying
an RL solution algorithm raises numerous issues (Kuhnle
et al. 2019). Questions that need to be clarified in advance
concern the type of learning algorithm, the configuration
of the actual decision-making agent as well as the way in
which information is integrated from the environment so that
the agent learns a desired behavior. Furthermore, the trade-
off between exploration, i.e., exploring new knowledge, and
exploitation, i.e., strengthening existing assumptions, and the
design of the reward function are essential features. In gen-
eral, RL has been applied in recent years to a variety of control
tasks, such as playing video and board games (Mnih et al.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-020-01612-y&domain=pdf
http://orcid.org/0000-0001-7380-7276

856 Journal of Intelligent Manufacturing (2021) 32:855–876

2013). However, a methodical approach for modeling RL-
agents and their environment is not or only partially known.

The relevant fundamentals and literature are summarized
in Sect. 2, and the RL-modeling and design are explained
in Sect. 3. The evaluation of the methodical approach and
various RL-modeling alternatives is based on a simulation
framework, representing a generic job shop manufacturing
system. Finally, the real-world example of a semiconductor
manufacturer is applied in Sect. 4. Conclusively, this paper
contributes to the research of combining digital twins and
cyber-physical systems towards the vision of smart manu-
facturing (Tao et al. 2019; Singh et al. 2019).

Fundamentals and literature review

This section starts with an overview of production planning
and control fundamentals. By the example of a semicon-
ductor manufacturing system, the properties of complex
manufacturing systems are explained. The following out-
lines the theoretical background of advanced RL-algorithms.
Finally, related research work is summarized in an overview
of the state of the art.

Production planning and control

Production planning and control involves the planning, con-
trol and administration of all processes necessary for the
production of goods (Günther 2005). It plays a central role
for any manufacturing company in order to manage the
utilization of their production factors in the best way pos-
sible, optimizing the operational performance (Schuh 2006).
According to Wiendahl (1997), four performance indica-
tors are suitable for evaluating the operational performance:
capacity utilization, delivery time, adherence to due dates,
and stock levels. These are also called logistical performance
measures (Lödding 2016).

Nowadays, manufacturing systems are broadly seen as
complex systems due to various unprecedented challenges
such as globally spread manufacturing operations (e.g., the
number of partners, communication), volatile future devel-
opment (e.g., dynamic changes), and uncertain influencing
factors (e.g., limited information) (ElMaraghy et al. 2012).
The semiconductor industry investigated in this paper is, in
particular, characterized by a high degree of complexity due
to complex manufacturing operations related to the wafer
fabrication that strives for ever-miniature structures (Mönch
et al. 2013).

A reference model by Bischoff (1999) and Wiendahl
(1997) structures the production planning and control activ-
ities according to their time horizon. The result of the first
planning phase is a production schedule that covers a period
from weeks to months. It contains the type, amount, and

due date of orders and is based on the available resource
capacity, inventory levels, and available demand (forecast)
information. The second phase starts when the production
orders are released and the production is started. Hence, it
mainly focuses on the control of the operations with respect
to the schedule determined in the previous phase. The control
operations are of particular interest due to their direct effect
on the operational performance (Lödding 2016). Moreover,
a wide range of activities and real-time decision-making are
required in order to react to disturbances such as machine
breakdowns or material shortages (Nyhuis 2008).

Simple heuristic approaches such as priority rules are
the standard prevailing in practice, particularly in the semi-
conductor industry (Sarin et al. 2011; Mönch et al. 2013;
Waschneck et al. 2016). Their advantage in terms of compu-
tational efficiency, simplicity, and real-time ability leads to a
broad application. They are, for instance, carried out by the
so-called “Real-Time Dispatcher”, which allows easy pro-
gramming of multi-level priority rules (Mönch et al. 2013;
Waschneck et al. 2016). It determines which job is processed
or transported next. Widespread examples of priority rules
are: First In First Out (FIFO), Earliest Due Date (EDD),
Shortest Setup Time (SST), etc. They are listed and described
by the following authors Panwalkar and Iskander (1977),
Blackstone et al. (1982), Haupt (1989), Mönch et al. (2013)
and Klemmt (2012). Significant disadvantages of priority
rules are their static nature and the required domain knowl-
edge to implement them in the best way (Stricker et al. 2018).

Order dispatching problem

The production control problem that is considered in this
paper is described by Brucker and Knust (2012) as an opti-
mization problem to optimize a set of l performance measures
K1, . . . , Kl . Thereby, n orders O1, . . . , On have to be dis-
patched to m machines M1, . . . , Mm . Each order O j consists
of k j operations Si, j (i = 1, . . . , k j) that have to be exe-
cuted in a defined sequence S1, j → S2, j → . . . → Sk j , j .
Each operation must be performed on an assigned machine
μi, j ∈ {M1, . . . , Mm} with a processing time of pi, j > 0.
Two consecutive operations must always be carried out on
different machines.

Reinforcement learning

Reinforcement learning is applicable to optimization prob-
lems that can be modeled as sequential decision-making
processes, i.e., Markov Decision Processes (MDP). There-
fore, they are applicable as an adaptive control system in
manufacturing setups (Stricker et al. 2018). The following
fundamental descriptions of RL are based on the formula-
tions of Sutton and Barto (2018) and we refer to it for further
definitions and detailed explanation.

123

Journal of Intelligent Manufacturing (2021) 32:855–876 857

Fig. 1 Interaction of a reinforcement learning agent with an environ-
ment

In general, RL does not necessarily require a model of the
environment system’s dynamics and, hence, they are called
model-free. By interacting with the environment in a closed-
loop, an RL-agent learns to optimally solve the underlying
MDP (see Fig. 1). Based on the state st ∈ S (S is the set
of all possible states) of the environment observed in time
period t , the agent selects an action at ∈ A (A is the set
of all possible actions) according to its strategy π . Carrying
out this action transforms the environment into a subsequent
state st+1, according to the dynamics of the underlying MDP.
The agent then receives a reward rt+1, which is dependent on
the observed state st , the taken action at , and the subsequent
state st+1 of the environment. Through repeated interaction
with the environment, the agent’s learning algorithm tries to
maximize the discounted sum of rewards, which is called the
long-term return G t , and adapts the strategy π accordingly.
A strategy π∗ that maximizes G t is called the optimal strat-
egy. This strategy optimally solves the MDP according to the
given reward function R(St , At , St+1) which determines the
reward rt+1.

Model-free RL algorithms can be divided into value-based
and policy-based approaches. In general, both exhibit dif-
ferent characteristics that match specific problem domains.
While policy-based approaches like REINFORCE (Williams
1992) can naturally handle continuous state and action spaces
and learn stochastic policies (Wang et al. 2016b; Sutton
et al. 1999; Kober et al. 2013), they are sample inefficient
and show poor robustness (Nachum et al. 2017; Schulman
et al. 2017). Basic off-policy value-based approaches like
Q-Learning (Mnih et al. 2013; Watkins and Dayan 1992)
show better sample efficiency but are often unstable when
integrated with function approximators (Kober et al. 2013;
Nachum et al. 2017).

In recent years, algorithmic advances have been made to
address the above-mentioned deficits. The development of

the so-called TRPO (Schulman et al. 2015) and PPO (Schul-
man et al. 2017) algorithms led to further improvement of
sample efficiency and robustness when using policy-based
approaches. Several attempts to boost the performance of
DQN (Mnih et al. 2013), the most common value-based
algorithm, have also seen successful results. To combine
the advantages of policy-based and value-based methods
while minimizing their shortcomings, current research efforts
include actor-critic methods (Haarnoja et al. 2018; Wang
et al. 2016b).

According to Sutton and Barto (2018), RL-problems have
the following two main characteristics: First, the agent gains
knowledge about the environment and its dynamics solely by
performing actions that change the state of the environment,
which again gets observed by the agent. Second, an action
impacts the reward received in the future, e.g., winning at the
end of a game. Both characteristics need to be addressed in
practice.

The first is also known as exploitation-exploration trade-
off (Sutton and Barto 2018). At each time step, the agent has
two kinds of actions to perform. The agent can either execute
the so far best-known action based on the learned strategy,
which presumably gains the highest reward. However, there
might be an even better action, which has not been discovered
(learned) yet. Therefore, the alternative kind of action is to
explore and deliberately execute suboptimal actions. Second,
due to the various and unknown lengths of an action’s impact
on the rewards observed in future interactions, the agent faces
the so-called Credit-Assignment-Problem (Sutton and Barto
2018). Only some of the actions may be the actual reason
for the resulting reward. Hence, the agent has to learn to
distinguish between actions performed in specific states that
are beneficial to achieving high rewards and those that have
no significant impact.

Application of RL in production control

Table 1 gives an overview of RL approaches that are rel-
evant to the present work. The approaches are compared
based on the following requirements: job shop manufac-
turing system as considered use case with its degrees of
freedom, highly volatile environment conditions in terms of
high volume and many product variants, complex internal
material flow due to the job shop setup, stochastics such as
machine breakdowns are considered, order dispatching with
respect to transport or processing, adaptive production con-
trol system, near real-time decision-making, multi-objective
target system for optimization, dynamic evaluation of per-
formance, order- or resource-related performance indicators,
RL as solution algorithm, discrete-event simulation for vali-
dation, and recommendations of the RL-design.

From this literature review, it can be seen that there is
previous work dealing with the control of complex job shop

123

858 Journal of Intelligent Manufacturing (2021) 32:855–876

Table 1 Overview of relevant research approaches for the adaptive production control by means of reinforcement learning

manufacturing systems as well as approaches in which RL
has been successfully implemented in exemplary investiga-
tions. The research deficit can thus be summarized as follows:
A complex real-world application has hardly been consid-
ered for RL-methods. Existing adaptive control approaches
use a state-dependent rule selection or rule parameteriza-
tion and, thus, the adaptivity is only partially implemented,
i.e., to changing parameters of static rules. Heuristics and
mathematical optimization are static, model-based produc-
tion control approaches and require much adaptation in case

of changes. Approaches that analyze the comprehensibility
of the RL-agent behavior as well as the direct comparison
with a benchmark procedure have not been carried out yet.
A methodological procedure that supports the RL design for
applications in production planning and control is not yet
available, and authors often provide only a few details on
their RL design.

123

Journal of Intelligent Manufacturing (2021) 32:855–876 859

Methodical approach for designing an
adaptive production control system

When applying RL, a learning data generation process is
required. Performing this in real production environments
is uneconomical and takes far too much time, as it is lim-
ited by the actual speed of production processes. Moreover,
the operational performance is directly affected by the ini-
tial worse performance of the RL-agent. Hence, a simulation
environment representing the behavior of the real produc-
tion system with sufficient accuracy is used in this paper to
train RL-agents and, thereby, speed up their learning process.
Discrete-event simulations are commonly used in produc-
tion planning and control to evaluate production systems and
identify the potential of improvement measures (Law 2014;
Rabe et al. 2008). Therefore, this section first deals with the
overall architecture of the discrete-event simulation and, sec-
ond, continues with the modeling and implementation of the
RL-based adaptive production control system.

Simulation of the production environment

One central element of the simulated job shop production
system is production orders. They enter the system via entry
resources called sources. Each order is processed on a single
processing resource called machine, and leaves the produc-
tion system afterward again via a sink. Hence, an order can be
in one of the three states: waiting, in-transport, or in-process.
Each state corresponds to a specific type of production
resource. Processing is done by machines, and transporta-
tion is handled by a dispatching resource called dispatcher.
While orders are waiting, they are placed in buffers, which
can be intermediate buffers such as entry or exit buffers of
machines. Every machine has an entry and an exit buffer.

During the simulation, actions are carried out on orders.
These decision-making points are related to the release,
transport, or processing of orders. As a result, buffer lev-
els change, e.g., when machines are done with processing
or the dispatcher finishes transportation. For such a change,
all production resources currently not in use are triggered to
decide on their next action to perform, given the new pro-
duction state (see Fig. 2). In particular, these decisions are
the object of interest of this paper. While machines select the
next order to be processed according to a FIFO-rule, i.e., the
order waiting longest in the entry buffer, an RL-agent is used
to decide which order to dispatch next. After each resource
has decided on its next action, these are carried out by the
simulation to continue the ongoing production processes.

To exhibit real-world production characteristics, the discrete-
event simulation model is parameterized with historical data
and assumptions on stochastic probability distributions. The
following characteristics and assumptions are considered:

• Machines are organized in groups, where each machine in
a group has similar order processing capabilities. There-
fore, an order assigned to one specific machine can, in
fact, be processed by each machine of the respective
group.

• Order release and machine assignement are performed
based on a predefined probability distribution, and orders
are released in the sources.

• The processing time of an order incorporates setup
times and is also stochastically determined based on the
machine’s specific probability distribution. Every order
is of the same type, i.e., no further order-specific dis-
tinction is considered and no prioritization scheduling of
orders is required.

• No batching processes are considered and, hence, a
machine can only process one order at a time.

• The production system is subjected to random machine
failures, which lead to limited availability of machines.
Again the machine failures are stochastically determined
according to two parameters: mean time between failures
(MTBF) and mean time off-line (MTOL).

• The number of dispatching agents is fixed and a single
agent can carry just one order at the time.

• The buffer capacities at the machines as well as the queue
of incoming orders are limited.

Modeling the RL dispatching agent

To obtain an adaptive production control system, a single
RL-agent is determining the next action of the dispatcher.
Hence, the agent is the decision-maker of the dispatcher
and, hereinafter, also called RL dispatching agent. Note that
the modeling is independent of the number of dispatchers
(instances) because the decision-making process is, in prin-
ciple, identical for any dispatcher, also if there are more
than one. In any case, the decision-relevant state information
and evaluation in terms of the reward signal are identical.
This assumption was already introduced by Crites and Barto
(1998).

Whereas in most use cases of RL that are not related to
production control, the definition of the action space is rather
apparent, e.g., the allowed moves in a game. For the examined
dispatching agent, this is a design choice. The following defi-
nition is used in this paper, based on the available resources in
the production environment: An action consists of the source
and destination resource of the transport to perform by the
dispatcher. Such action is denoted with aI→J , where I is
the source and J the destination of that action. If the dis-
patching agent is not yet located at resource I , the agent first
has to move to I from the current location to pick up the
order. This activity is included implicitly in aI→J . As this
definition does not distinctively determine the unique produc-
tion order, this is subsequently determined by the resource,

123

860 Journal of Intelligent Manufacturing (2021) 32:855–876

Fig. 2 Schematic control flow chart of the production process to ensure a continuous production process

Table 2 Available action subsets for the RL dispatching agent in the
production environment

i.e., it determines which order to release for transport. Here
again, a FIFO-rule is assumed as decision-making heuristic,
and always the longest waiting order is released from the
resource. It is important to have a static rule in place to not
increase the stochastic dynamics within the production pro-
cesses and possibly cause artificial effects that are not related
to the RL dispatching agent’s actions.

The set A of all possible actions of the dispatching agent
is separated into pairwise disjoint subsets (see Table 2). The
subsets are divided by the type of source and destination
resource. There are machines M and sources and sinks, which
are both denoted with S as they are located in the real-world
production system in the same place. It is important to note
that a source resource can only be an action’s source as well
as a sink can only be an action’s destination. However, some
actions, such as waiting or moving without transporting an
order, do not have an actual source or destination and, thus,
∅ is also an option. The subset AS→M denotes actions trans-
porting an order from a source to a machine. The opposite
direction to a sink is given by AM→S , and transports between
two machines are represented by AM→M . Actions from a
source to a sink are not allowed, because at no time such a
transport would be possible due to the processing required

by every order. As the source of an action specifies where to
pick up an order, an action with the source ∅ instructs the
dispatcher to move to the given destination without transport-
ing any order. The subset Aempty is the collection of those
actions. In case the destination equals to ∅, the dispatcher
would pick up an order but not put it anywhere. Thus, this
kind of action is not available in A. Finally, Awaiting contains
a single action with both source and destination being empty.
This action results in no movement of the dispatcher but the
waiting at its current position for a defined amount of time
tw. The waiting time is a parameter that needs to be speci-
fied. All in all, the available actions are not all value-adding,
as the waiting action. Hence, the RL-agent needs to learn to
distinguish the action subsets or make use of waiting actions
tactically, i.e., waiting for an order that finishes processing
soon.

The overall learning process of the RL-agent is equivalent
to Sect. 2.3. To determine the next action, the RL dispatching
agent is given information on the current production state.
This state st can contain various data such as the number
of available orders, their location, and where they can be
transported. Based on the given state, the RL dispatching
agent determines an output scalar ot according to its strategy,
which is then mapped to an executable action at . According to
the chosen action and the production state, the agent receives
a reward rt+1 in the next iteration, which is determined by
the reward function.

The RL-agent is implemented in a modular manner. Thus,
it can be configured at the beginning of each run. The modules
and their relationships are shown in Fig. 3. The following
subsections describe them in detail.

123

Journal of Intelligent Manufacturing (2021) 32:855–876 861

Fig. 3 Internal structure of the RL-agent with configurable sub-modules

Action module

Of the previously mentioned subsets of actions (see Table 2),
not all are directly affecting the operations of the production.
Thus, the set Aexec is defined as the union of the relevant sub-
sets. AS→M and AM→S are always part of Aexec to ensure
that orders are actually processed. Additionally, Aempty and
Awaiting are relevant in this paper. Due to just a single pro-
cess step needed for each order in the considered production
scenario, AM→M is ignored hereinafter.

The output of the RL algorithm is a discrete value. To inter-
pret this, the output value needs to be uniquely mapped to one
of the executable actions. The action module implements this
mapping. Two alternative action mappings are considered:

• The first mapping type, which we call direct mapping,
enumerates every single action of Aexec. The RL-agent
is accordingly configured to output a discrete action value
in the range of 0 to n = |Aexec| discrete action values.
This value can easily be mapped to one distinctive action.

• In the second mapping type, the so-called resource map-

ping, the RL-agent is configured to output a pair of two
discrete values. These pairs are directly interpreted as the
source and destination resource, which define the action
to execute.

Each time the agent has to choose an action, not neces-
sarily every single action of Aexec can be performed. This
depends on the current state of the production system at the
time of decision-making t . For example, the action aI→J

from source I to machine J can be performed only if there
is an order at source I that can be processed next at machine
J and if there is free space in the entry buffer of machine
J . Thus, each action is either valid or invalid at time t

and accordingly At
valid ⊂ Aexec and At

invalid ⊂ Aexec are
defined.

Both types of action mapping do not prohibit the RL-
algorithm to output an invalid action. To handle this, a
maximum recursion parameter is introduced. Immediately

after selecting an invalid action, the RL-agent is given a zero-
valued reward and called again for a new decision. This is
repeated up to a maximum recursion count. If the decision
is still an invalid action, the waiting action Awaiting is per-
formed instead.

State module

Providing information on the current production state enables
the RL-agent to make decisions and choose actions that
maximize the reward. The state module combines different
parts of the theoretically available information in an ideal-
istic scenario, which contains all information. In general, a
simulation environment allows any type of information to
process. Therefore, note that only data that is available in
the real-world can be integrated into the state representa-
tion to ensure the transferability of the simulated production
system to the real system. The decision-relevant informa-
tion is combined to a single numeric state vector, which the
RL-algorithm can interpret. Hence, the reasoning for deter-
mining an adequate state vector is an important question and
investigated in the following. If the state vector contains too
much information, the RL-agent might not be able to capture
the relevant parts and not converge.

The elements of the state vector are calculated based on the
simulation state at simulation time t . However, for improved
readability, the following formulas neglect the time reference
t if not explicitly needed. The rest of the sections list possible
state elements that are investigated in Sect. 4.

First of all, the state always contains information indicat-
ing for every available action ai ∈ Aexec whether it is valid
or not. The information is represented by the binary variables
asi and the state is named SAS :

asi :=

{

1 ai ∈ At
valid

0 else
(1)

Next, the state can provide information on the dis-
patcher’s current position within the production system. This

123

862 Journal of Intelligent Manufacturing (2021) 32:855–876

is encoded by a one-hot vector for the each resource and the
state is named SL . Thus, there is a binary variable li for every
resource in the production system.

li :=

{

1 if the dispatcher is at resource i

0 else
(2)

As machines break down, the state may contain SM F with
information on the current failure state of each machine Mi .
The according variables m fi are defined as follows:

m fi :=

{

1 if Mi has a failure

0 else
(3)

Apart from the machine’s state, it is also of interest
whether the machine is currently processing an order or not
and if it is processing, what the remaining processing time
is. SR PT summarizes r pti for every machine Mi . The value
represents the remaining processing time R PTi divided, i.e.,
scaled, by the average processing time APTi at machine Mi .
As R PTi is 0 if no order is at the machine, the state value
automatically equals 0:

r pti :=
R PTi

APTi

(4)

Next, SB E N indicates for every machine Mi the remain-
ing free buffer spaces in its entry buffer. The information
is derived from its capacity C AP E N

i and the number of
occupied buffer spaces OCC E N

i . Analogously, the same
information is available for the exit buffers in SB E X and cal-
culated based on C AP E X

i and OCC E X
i .

beni := 1 −
OCC E N

i

C AP E N
i

(5)

bexi := 1 −
OCC E X

i

C AP E X
i

(6)

In addition to the number of loaded buffer spaces, the
total processing time of the orders waiting in front of the
machine is provided as state information SB PT with the val-
ues bpti . They are scaled by APTi multiplied with the entry
buffer’s capacity and shifted by −1 to be negative if the sum
of processing times is below the average. PT k

i denotes the
actual processing time of every order k in the entry buffer of
machine Mi .

bpti :=

∑

k PT k
i

C AP E N
i APTi

− 1 (7)

The state information SW T deals with the waiting times
of orders that are waiting for transport. For every source and

machine, it represents the longest waiting time W T max
i of an

order in the respective exit buffer. Two normalizers take the
average and standard deviation of the waiting time of orders
being transported from a source or machine into account.
W T mean

i and W T std
i refer to those values.

wti =
W T max

i − W T mean
i

W T std
i

(8)

To allow the agent to get a grasp of the temporal effects of
an action selection, the state information on the action time
SAT is introduced. It contains one value for each action of
Aexec, indicating the time that passes by when the specific
action is chosen. For any invalid action, the value is 0. The
other values are calculated based on the time it takes to walk
from the agent’s current location to the resource where the
order to be transported is currently located t→O as well as
the time it takes subsequently to transport the order to its
destination tO→D . Additionally, loading tload and unloading
times tunload are considered. Finally, all values are divided
by atmax , which is the maximum of those values, to achieve
a scaled value range from 0 to 1.

ati :=

{

t→O+tO→D+tload+tunload

atmax
ai ∈ At

valid

0 else
(9)

Reward module

In order to learn the desired behavior that fulfills the oper-
ational performance indicators and to continuously evaluate
the performed actions, an RL-agent is given feedback in
the form of a numeric reward signal. Looking at the reward
frequency, there are two categories of reward signals to differ-
entiate: a reward can either be given after every step (dense
reward) or after an episode of steps (sparse reward). Note
that hereinafter the term step refers to a full iteration of state,
action, and reward. Sparse and dense rewards have different
effects on the RL-agent’s learning, their own specific advan-
tages and disadvantages and, hence, are evaluated in Sect. 4.

The designer, who wants to apply an RL-agent, can influ-
ence the agent’s behavior with the reward function, as it
directs the behavior of the agent in any decision situation
towards the objectives. Some objectives are long-term, which
means that their evaluation in every step is not useful. A
sparse reward setting focuses on such scenarios. The agent
is provided with feedback when enough time has passed to
reevaluate the objective. In doing so, the agent has to find a
way to achieve the objective over multiple steps entirely on its
own. While this may enable the agent to learn an unknown
behavior strategy performing better than, e.g., any human
player (Silver et al. 2017), it is, at the same time, a tough
challenge due to its complexity.

123

Journal of Intelligent Manufacturing (2021) 32:855–876 863

By rewarding the agent after every step, additional domain
knowledge can be incorporated, the complex task can be sim-
plified and the agent can be directed step-by-step towards the
objective. However, by using domain knowledge, the risk
arises that the agent can no longer find the optimal strategy,
as that is usually not known by any domain expert. In this
paper, both alternatives are evaluated.

Dense reward functions: To examine the influence of
rewarding the main action subsets AS→M and AM→S differ-
ently, Rconst is introduced. The agent receives the constant
reward values ω1 and ω2 dependent on the subset of the cho-
sen action.

Rconst (St , At) =

⎧

⎪

⎨

⎪

⎩

ω1 At ∈ AS→M

ω2 At ∈ AM→S

0 else

(10)

While Rconst depends the reward on the selected action,
the functions Ruti and Rwt directly target operational per-
formance indicators. Ruti rewards the agent with respect to
the current average utilization U when carrying out a valid
action. The exponential function is applied to incorporate
an increasing gradient towards the optimal point with the
maximum utilization. This modeling choice facilitates the
learning process of RL-algorithms (Sutton and Barto 2018).
Moreover, two discrete values are added to align the Ruti to
the expected performance level.

Ruti (St , At) =

{

e
U
1.5 − 1 At ∈ At

valid

0 else
(11)

To reduce the throughput time of orders in the produc-
tion system, one has to minimize the average waiting time of
the orders. Note that the processing times are stochastically
determined and fixed, as the agent is not able to influence it
e.g., by alternative machines with varying processing times.
We, therefore, design reward function Rwt to reward the
agent based on the waiting time of the order transported.
Actions transporting no order are rewarded with the value 0.
To account for the fact that orders entering the system have
by default a lower waiting time than orders leaving the sys-
tem, the waiting times W Ti are already normalized by the
resource group (source or machine).

Rwt (St , At) =

{

e−0.1W Ti − 0.5 At ∈ At
valid

0 else
(12)

The reward functions Rw−util and Rw−wt combine the
ideas behind the reward functions Rconst with Ruti and Rwt ,

respectively. The resulting reward functions might utilize the
advantages of both single reward functions.

Rw−util(St , At) =

⎧

⎪

⎨

⎪

⎩

ω1 Ruti (St , At) At ∈ AS→M

ω2 Ruti (St , At) At ∈ AM→S

0 else

(13)

Rw−wt (St , At) =

⎧

⎪

⎨

⎪

⎩

ω1 Rwt (St , At) At ∈ AS→M

ω2 Rwt (St , At) At ∈ AM→S

0 else

(14)

Sparse reward functions: A sparse reward function is
defined by two independent characteristics. First of all, it is
assumed in this paper that the sparse reward is always given
at the end of an episode. The explanation of an episode is
given in the following Secti. 3.2.4. The second characteris-
tic is the actual value of the reward. As a matter of fact, we
designed the sparse to be very similar to the dense reward
functions already introduced above.

Analogously to Rconst the function Rconst−ep rewards with
a constant value:

Rconst−ep(St , At) =

{

1 if At ends episode

0 else
(15)

Next, there are Ruti−ep and Rwt−ep as the sparse coun-
terparts of Ruti and Rwt . While the function definitions are
very similar, there are different calculations of the values
of utilization and waiting time. In the sparse version, U is
calculated for the completed episode, instead of the last step.
Likewise, W T is defined as the average waiting time of orders
that have been transported to a sink in the past episode.

Ruti−ep(St , At) =

{

e
U
1.5 − 1 if At ends episode

0 else
(16)

Rwt−ep(St , At) =

{

e−0.1W T − 0.5 if At ends episode

0 else

(17)

However, due to the computational results of Rconst−ep

described in the evaluation section, Ruti−ep and Rwt−ep are
not used explicitly. Nonetheless, we show that there are
numerous aspects when designing a reward function that
needs to be considered.

Last but not least, it is possible to combine different reward
functions in a weighted sum with weighting factors αn to
allow for multi-criteria optimization. This also enables the
combination of dense and sparse reward functions.

RRes(St , At) =
∑N

n=0
αn Rn (18)

123

864 Journal of Intelligent Manufacturing (2021) 32:855–876

Agent module

The agent module implements substitutions of different RL-
algorithms and their respective parameter configurations.
Available RL-algorithms are policy-gradient-based meth-
ods like TRPO by Schulman et al. (2015) and taken from
the implementations of the Python framework tensorforce

(Kuhnle et al. 2017).
Some RL-algorithms require the definition of episodes to

optimize the strategy. Due to the nature of production opera-
tion processes as continuous processes, a fixed definition of
episodes is not possible and, therefore, it represents another
modeling design choice. Note that this is a fundamental dif-
ference comparing to well-known applications of RL in board
or computer games. In order to examine the influence of the
episode design choice, time-based and action-based defini-
tions are proposed in this work.

The time-based nature of the production process, such as
shifts or a working day, represents the most intuitive variant
of episode definition. An episode is given by a time period of
a fixed length. The action-based episode definition refers to a
fixed number of actions carried out. As actions can belong to
different subsets, this definition can also be detailed on action
subsets. Investigated in this paper are episodes denominated
by a fixed number of actions belonging to the following sub-
sets:

• AS→M : source to machine actions, also called entry

actions

• AM→S : machine to source actions, also called exit actions

• At
valid : valid actions

Rule-based benchmark heuristics

In the already mentioned production system simulation, sev-
eral heuristic dispatching approaches are implemented for
benchmarking purposes. Their concept is described in the
following section.

The RANDOM heuristic is the most simple dispatching
approach, choosing any action randomly from Aexec. The
actions chosen are not necessarily valid. Because of this, the
VALID heuristic is considered as an enhancement, selecting
randomly from At

valid and, by this, ensuring the selection of
only valid actions.

A more sophisticated heuristic is based on the orders’
waiting times. The FIFO heuristic determines the order to
be transported as the one with the highest total waiting time
within the production system. Depending on its location, the
action’s source is determined. From that source, the order is
transported to the machine with the lowest entry buffer level
of all machines being able to process that order. For trans-
porting a processed order from a machine, the nearest sink is
selected as the destination.

Additionally, the nearest job fist (NJF) heuristic is imple-
mented. It selects the nearest order being ready for transport
and determines the destination based on the order’s desti-
nation. If the order has not yet been processed, it is being
transported to the machine the next process step is intended.
Again, the nearest sink is selected as the destination for all
complete orders.

Use case description and computational
results

Especially in the semiconductor industry and wafer fabs, the
material handling system fulfills a critical function (Sturm
2006; Mönch et al. 2013). Nowadays, automated material
handling systems are broadly established and responsible
for the material flow between work centers and inside a
work center between the machines (Lin et al. 2001). An effi-
cient material handling directly influences the cycle time and
machine utilization.

Currently, a rule-based real-time dispatching system is
used, and the rules are developed by engineers and reflect
specific work center requirements under certain production
scenarios. However, these rules such as FIFO and NJF are too
rigid (Waschneck et al. 2016). Therefore, an adaptive order
dispatching optimizing material handling routes under con-
sideration of machine utilization and order throughput time
is required that, at the same time, does not require a consider-
able amount of domain expertise. The previously described
approach to design RL-agents is applied and investigated in
the following section. It extends the research presented in
Kuhnle et al. (2019).

Use case description

The production system considered in this paper represents
one work center of a wafer frontend fab and consists of eight
machines M1, . . . , M8 as well as three sources S1, S2, S3

which simultaneously serve as sinks. Each source Si is
assigned to one of three work areas Wi , representing sep-
arated areas in the manufacturing building. These work
areas group the machines as follows: W1 = {M1, M2},
W2 = {M3, M4, M5}, and W3 = {M6, M7, M8}. Addi-
tionally, those machines being able to perform the same
operations are grouped in machine groups G1 = {M1},
G2 = {M2, M3, M4, M5} and G3 = {M6, M7, M8}.

Orders released in the system are generated with a specific
machine intended for processing and get assigned randomly
to any source that has the intended machine’s group in its
responsible work area. Therefore, S1 provides orders for both
G1 and G2, while S2 and S3 serve only G2 and G3. Thus,
transports between work areas are possible.

123

Journal of Intelligent Manufacturing (2021) 32:855–876 865

Fig. 4 Schematic layout of the simulated job shop production system

Table 3 Available action subsets according to the real-world use case

The actual layout of the production system is depicted in
Fig. 4. The bold lines indicate the transportation routes on
which the dispatching agent can move. Thin lines cover the
work areas. Based on the layout, the four relevant subsets of
actions mentioned in Sect. 3.2 are specifically made up of
the following actions:

1. AS→M = {aS1→M1 , …, aS1→M5 , aS2→M2 , …, aS2→M5 ,
aS3→M6 , …, aS3→M8 } (12 actions)

2. AM→S = {aM1→S1 , aM2→S1 , aM3→S2 , aM4→S2 , aM5→S2 ,
aM6→S3 , aM7→S3 , aM8→S3} (8 actions)

3. Aempty = {a∅→S1 , a∅→S2 , a∅→S3 , a∅→M1 , …, a∅→M8 }
(11 actions)

4. Awaiting = {a∅→∅} (1 action)

Thus, the use case-specific version of the generic Table 2
is shown in Table 3.

Evaluation and computational results

For the majority of the computational evaluations, only a lim-
ited number of parameters are varied, keeping most of them
fixed. By doing this, we are able to examine the influence of
those varied parameters on the agent’s behavior and perfor-
mance. When not stated differently, the used configuration is
summarized by Table 4.

Default RL-agent configuration

Due to the broad scope of evaluations and the high opera-
tional performance, we chose the TRPO agent because of its
robustness (Schulman et al. 2015). The remaining parameters

Table 4 Default configuration parameters of the used RL dispatching
agent when not noted otherwise

Parameter Default configuration

Agent TRPOa

Learning rate l 0.001

Discount rate γ 0.9

Network fb x 128 x 128 x ec

Network activation tangens hyperbolicus

Episode design 100 valid actions

Action mapping direct mapping

Valid actions AS→M , AM→S

Maximum recursion count 5

Waiting time tw 2

aSchulman et al. (2015)
bFront layer size depending on state size
cEnd layer size depending on action mapping

of the default configuration are selected with the intention
to enable a fast and reliable convergence. The maximum
recursion number and waiting time are set to be 5 and 2,
respectively. Both parameters support the agent in distin-
guishing between valid and invalid actions and have almost
no effect on the production environment in the state when the
agent converged because then the number of invalid actions
is negligible. The last two parameters prevent the agent from
getting trapped in a loop of choosing invalid actions over and
over again.

Performance indicators

A simulation experiment run contains many stochastic pro-
cesses. To ensure the reproducibility of the results, every
random number is controlled by a seed value. However, some
randomness still remains due to the “black box” behavior of
the RL-agent that cannot be controlled. Therefore, multiple
simulation runs with the same configuration are performed.
Preliminary studies showed that three runs per configuration
result in a sufficiently small confidence interval, allowing
quantitative comparisons. During each simulation run, char-
acteristic performance indicators are recorded. Once the
simulation experiment is finished, these recordings are ana-
lyzed for comparison and evaluation. The key figures include
the following:

• Reward given to the agent
• Average utilization of the machines ignoring downtimes

(U)
• Average waiting time of orders (WT)
• Utilization of the dispatching agent
• Throughput of the entire production system

123

866 Journal of Intelligent Manufacturing (2021) 32:855–876

• Average inventory level (I)
• Alpha value (α)

The α value has its origins in the operating curve man-
agement theory (Boebel and Ruelle 1996), which in return
references Kingman’s Equation and Little’s Law. For the
theoretical background and mathematical calculation of the
alpha value, we refer to the related literature (Schoemig
1999). For the understanding of this paper, it suffices to
understand the basic concept as follows: The main denomi-
nators are the flow factor and machine utilization. The flow
factor is a value describing by which factor an order’s cycle
time is higher than its raw process time. Alpha is proportional
to the flow factor and to the inverse of the machine utilization.
By combining multiple performance indicators, alpha can be
used to evaluate the performance of the production system,
where a small alpha value means better performance.

However, to understand the actual reasoning for the
achieved performance, one has to examine the key figures
in detail. In order to do this, the raw values of the recording
are processed and summarized. This includes the calculation
of a moving average and standard deviations for every per-
formance indicator of every single simulation run as well
as the combination of all three runs, as before via mean
and standard deviation values. Additionally, the time of the
agent’s convergence is calculated. In this paper, convergence
is defined as the point in time, in which the moving average
of the reward signal varies in a range specified by a threshold
relative to the value of the moving average of the reward.
The finale performance evaluation values are derived from
convergence onward and, hence, the training period is not
considered. These are the values mainly used for comparing
different configurations.

Furthermore, the course of the performance indicators are
plotted and visualized, which can be seen in Fig. 5. The raw
utilization data as well as a moving average, the simulation
step in which the convergence of the agent is assumed, the
moving average and standard deviation, and a Box-plot of
the utilization data after the state of convergence are shown
as example. However, for means of readability and compre-
hensiveness, we try to limit the plots to a minimum and focus
the evaluations of the converged performance values.

Evaluation setup

To optimize the operational performance, the agent has to
solve two types of problems summarized under the term order
dispatching: These are order sequencing and route planning.
This is important to state, as the dispatching agent is not
only deciding where to move next but also to which machine
to take the order (out of the possible machines in the same
machine group). Depending on the actual production sce-
nario, the importance of those two problems shifts from one

Fig. 5 Visual performance indicator analysis by the example of
machine utilization of an exemplary RL-agent simulation run

to the other. If the transport resource is the limiting factor
(bottleneck) of the entire system, it is crucial to utilize this
resource by an optimized route planning effectively. On the
other hand, if the transport resource’s capacity is not limited
and the machines are the bottleneck, the importance shifts to
an effective order sequencing.

To examine both scenarios, each RL-agent configuration is
tested in two different production scenarios focusing on one
problem each. In the first scenario, the dispatching agent, i.e.,
the system’s transport resource, has a relatively slow speed
(factor 0.3) and the machine entry and exit buffers are small
(factor 0.5). This puts the focus on route planning, as the
transport agent is the limiting factor. Inversely, the second
scenario features a relatively fast agent (factor 1.0) and large
buffers (factor 1.0). The aim in the second scenario is to
sequence the orders in a way that the machines are optimally
utilized.

Table 5 shows the performance indicators of the rule-based
benchmark heuristics mentioned in Sect. 3.3 for both sce-
narios. The performance is evaluated based on the average
machine utilization U , average order waiting time W T in
an arbitrary time unit T U , average inventory level I , and
the α-factor. In general, the average inventory is lower in
Scenario 1 due to the slower agent and the limited buffer
capacity. Accordingly, there are fewer orders in the system
and in front of the machines, which results in lower average
machine utilization. However, on the other hand, the average
waiting time is lower, because the orders do not have to wait
that long to be processed and transported.

Moreover, the performance gives further insights into the
behavior of the benchmark heuristics. It is not surprising that
the RANDOM heuristic performs worst in both scenarios. A
better heuristic is the VALID heuristic, but FIFO and NJF

123

Journal of Intelligent Manufacturing (2021) 32:855–876 867

Table 5 Results for different
rule-based heuristic dispatching
approaches in both production
production scenarios

Heuristic Scenario 1 Scenario 2

U (%) WT I α U (%) WT I α

RANDOM 41.8 182.2 8.5 27.6 38.7 180.4 15.7 16.2

VALID 56.5 86.5 6.1 3.74 83.9 115.6 20.2 0.69

FIFO 69.0 81.8 6.9 1.94 84.5 115.0 19.9 0.56

NJF 81.7 92.2 12.3 0.73 84.7 123.9 23.2 0.62

Bold values indicate the best, i.e. highest or lowest value in the column

achieve an even better performance in both scenarios. As the
FIFO heuristic performs the transport of the longest waiting
order, it achieves the lowest average waiting time in both
scenarios. In Scenario 2, where the waiting times tend to
be higher due to the large inventory, FIFO also performs
best, as indicated by the α value. In Scenario 1, however, the
NJF heuristic achieves the best results, because it minimizes
empty walks and, thereby, the bottleneck transport resource
is used efficiently. This results in higher machine utilization.

However, it can be seen that the heuristics suffer from
the trade-off between the performance indicators. The higher
machine utilization of the NJF comes with an increase in the
average waiting time, while, on the other hand, lowering the
average waiting time by applying a FIFO heuristic conse-
quently lowers the machine utilization. This represents the
intention of using an RL-agent, as described in the intro-
duction of this paper. The aim of the RL-agent is to use
the available information to enable multi-criteria optimiza-
tion and simultaneously minimize conflicts arising due to the
inherent trade-off.

When learning an optimal order dispatching strategy, the
RL-agent has to solve the two problems mentioned above,
i.e., order sequencing and route planning, and in addition to
that, perform a two-phased learning process: First, it must
learn to distinguish valid and invalid actions to choose only
the former ones. Next, the agent has to learn the interplay
between state information, the selected action, and the reward
received from those three elements to optimize the perfor-
mance indicators.

Evaluation results

Distinction between valid and invalid actions

Dense reward: To determine first whether an RL-agent is
able to distinct between valid and invalid actions, the exam-
ined agents receive only the action state SAS as information.
The dense reward function Rconst with different values for
ω1 and ω2 is used. The results are presented in Table 6 for
both scenarios.

The results show that even for changing weight factors,
the agents are able to identify and select valid actions. Espe-
cially noteworthy are the extreme cases of agents 1 and 5,

in which only one particular subset of actions is rewarded.
Nonetheless, these agents are not neglecting the actions from
the subset that is not rewarded and, thus, keep the produc-
tion running. At the beginning of a simulation run, each
agent selects on average 1.5 to 3 invalid actions per actu-
ally performed action. Note that, because of the implemented
recursion, only after the selection of six consecutive invalid
actions, the waiting action is performed. The rate of invalid
actions decreases fast and continuously. Within the last one
million steps, the average count of selected invalid actions
per 100 valid actions is shown in the column At

invalid . It
varies in the range of 0.09 to 0.25, whereas the agents of
the extreme cases have higher rates due to the more com-
plex credit-assignment problem. Due to the recursion, only a
small effect on the performance indicators can be observed.

When looking at the performance indicators U , W T , and
I , we can show that shifting the reward between action
subsets directly affects them. By emphasizing entry actions
with a higher weighting factor ω1, these actions are carried
out by the agent preferably. As a consequence, the average
inventory level increases and together with the lower pref-
erence of exit actions, the waiting times increase as well.
Additionally, higher inventory levels have two effects on the
machines. First, it is less likely that an entry buffer is empty
and the machine has no order to process. Second, it is more
likely that an exit buffer is full and the machine has to wait
until it can unload a processed order. Despite those oppos-
ing effects, higher inventory levels always come along with
higher machine utilization. Analogous considerations can be
made in the opposite case, where exit actions are rewarded
by a higher ω2 value. In this case, the average levels of inven-
tory and waiting times decrease and, accordingly, does the
machine utilization.

This shifting of the reward from ω1 to ω2 is similar to the
transition from a push to a pull production principle.

Sparse reward: We also train an agent rewarded with the
sparse reward function Rconst−ep to distinguish between
valid and invalid actions. This, however, did not succeed.
While the count of selected invalid actions for agents 1 to 5
diminishes down to 0.1 per 100 valid actions, the sparsely
rewarded agents still have way higher counts. Agents simi-

123

868 Journal of Intelligent Manufacturing (2021) 32:855–876

Table 6 Performance indicators for RL-agents receiving state information SAS and reward signal Rconst with varying factors ωi

Agent Reward signal Scenario 1 Scenario 2

U (%) WT I At
invalid (%) U (%) WT I At

invalid (%)

1 Rconst ω1 = 1 ω2 = 0 66.5 139.2 18.4 0.18 85.4 124.1 24.4 0.25

2 Rconst ω1 = 0.75 ω2 = 0.25 66.5 136.6 18.0 0.11 86.0 124.9 24.5 0.09

3 Rconst ω1 = 0.5 ω2 = 0.5 64.3 97.5 10.0 0.16 83.7 119.2 22.0 0.07

4 Rconst ω1 = 0.25 ω2 = 0.75 60.8 76.8 5.9 0.10 79.3 107.4 19.0 0.11

5 Rconst ω1 = 0 ω2 = 1 60.3 73.4 5.7 0.18 78.8 107.3 18.9 0.21

Bold values indicate the best, i.e. highest or lowest value in the column

lar to 1, 3, and 5 rewarded every 100th valid action, do not
achieve a counter below 100, which means that the agent
selects exclusively invalid actions for over 1 million steps.
By rewarding the agents more frequently, the counts show
a positive, declining trend. However, they are still signifi-
cantly higher than the ones of their dense counterparts and
the agents still show an inferior performance.

All in all, we observe that a sparse reward function,
although theoretically well-suited, comes with significant
disadvantages when investigating the learning performance.
Due to these facts and especially because of an increased
training effort requiring significantly more computation time,
we decide not to investigate the sparse reward functions any
further.

Relationship between state information and reward

function

In contrast to the basic RL-agents in the previous section,
we now introduce more complex agents with additional state
information and reward functions Ruti and Rwt . These agents
are designed to incentivize the agent in the desired way
according to the performance indicator.

In the first part of Table 7, the results are shown for agents
9 and 10, which are extensions of agent 3 with additional
state information. Agent 9 receives SAT , containing infor-
mation on the execution times of actions, whereas the new
state information SW T for agent 10 represents the waiting
times of orders in the production system.

First, one can see that additional state information leads
to a decrease in machine utilization for both scenarios when
comparing agents 9 and 10 to agent 3. On the other hand,
agent 10 manages to decrease the average order waiting times
as well as the average inventory levels in both scenarios. State
information SAT (agent 9) leads to worse overall performance
in Scenario 1 and comparable performance in Scenario 2
relative to agent 3 regarding W T , I , and α. We, therefore,
conclude that an agent does not necessarily benefit from addi-
tional state information when it does not directly assist the

agent to exploit the given reward function and collect higher
long-term returns.

To evaluate this hypothesis, we train further agents with
additional state information and the reward function Ruti

aiming to increase machine utilization and Rwt to minimize
the average order waiting time. The results are shown in
the lower part of Table 7. To bring the conclusion first, we
can show that optimizing a specific performance indicator
by designing an accordingly reward function is possible in
both scenarios. This can easily be seen by comparing the
performance of agents 3 and 11, where the latter is again an
extension of the former by the reward signal Ruti . Additional
data in the state that does not provide any information towards
the performance indicator on that the reward is based, again,
reduces the performance of the RL-agent. This is shown by
agent 12, whose performance in both scenarios is worse than
the one of agent 11. In addition, it can be noted that, in contrast
to the other agents, it requires significantly more simula-
tion interactions for this agent to converge. We attribute this
to the fact that the agent gets somehow “confused” by the
state information. This restrains the learning and results in
reduced performance. On the other hand, state information
with a more obvious relation to the reward function enables
the agent to optimize the respective performance indicator
(cf. agents 13 and 14). Analogous observations can be made
in both scenarios for agents trained with Rwt .

When comparing agents trained with Ruti and Rwt , we
can see that both agents suffer from conflicting objectives.
While agents rewarded with Ruti , in both scenarios, operate
on a higher inventory level and subsequently higher order
waiting times, the agents rewarded with Rwt were not able
to reduce the latter without a significant drop in machine
utilization.

Evaluating the overall performance based on the α value,
we conclude that a matching choice of reward and state repre-
sentation for an RL-agent leads to a significant performance
increase (cf. agents 3, 11, and 14). However, there is the risk
that agents designed to aim at one optimizing performance
indicator specifically may do so on a disproportionate cost
of other indicators (cf. agents 15 and 16). This problem is,

123

Journal of Intelligent Manufacturing (2021) 32:855–876 869

Table 7 Results for RL-agents with varying state information and reward signals, aiming to optimize specific production performance indicators.
Ruti aims to maximize the average machine utilization and Rwt aims to lower the average waiting time of orders in the production system

Agent State Reward Scenario 1 Scenario 2

U (%) WT I α U (%) WT I α

3 SAS Ra
const 64.3 97.5 10.0 2.81 83.7 119.2 22.0 0.69

9 SAS, SAT Ra
const 60.6 109.6 11.0 3.81 82.6 119.1 22.1 0.69

10 SAS, SW T Ra
const 60.9 90.1 7.8 2.72 78.7 108.0 19.4 0.83

11 SAS Ruti 76.5 102.0 12.7 1.39 86.1 122.6 23.0 0.58

12 SAS, SW T Ruti 73.8 105.2 13.0 1.57 83.9 119.9 22.5 0.65

13 SAS, SAT Ruti 76.5 98.6 12.6 1.28 86.3 122.3 23.2 0.59

14 SAS, SB E N , SB E X Ruti 78.0 101.6 12.7 1.28 86.7 119.6 22.4 0.51

15 SAS Rwt 54.7 80.2 8.2 2.73 79.2 110.9 20.8 0.78

16 SAS, SW T Rwt 55.7 76.0 6.9 2.45 78.7 106.6 19.1 0.83

Bold values indicate the best, i.e. highest or lowest value in the column
aω1 = 0.5, ω2 = 0.5

Table 8 Results for RL-agents with fixed state information and reward functions Ruti and Rwt when varying the episode design

Agent State Reward Episode design Scenario 1 Scenario 2

U (%) WT I α U (%) WT I α

17 Sa Ruti 100 valid actions 79.5 96.3 12.9 1.05 87.1 120.3 23.1 0.53

18 Sa Ruti 100 entry actions 80.0 90.0 11.7 0.88 86.6 119.7 22.6 0.52

19 Sa Ruti 100 exit actions 81.4 95.3 13.2 0.88 87.0 123.4 24.0 0.52

20 Sa Ruti �tsim = 100 79.3 95.0 12.5 1.08 86.9 120.2 22.8 0.54

21 Sb Rwt 100 valid actions 52.8 80.9 7.7 2.88 77.6 106.3 19.4 0.83

22 Sb Rwt 100 entry actions 54.4 72.8 6.2 2.61 77.5 107.2 18.9 0.83

23 Sb Rwt 100 exit actions 52.6 83.8 8.6 3.02 78.2 106.7 20.0 0.83

24 Sb Rwt �tsim = 100 57.4 76.6 7.3 2.48 79.4 109.3 20.1 0.83

Bold values indicate the best, i.e. highest or lowest value in the column
a SAS, SAT , SB E N , SB E X
bSAS, SAT , SW T

in particular, addressed by the domain of multi-criteria opti-
mization, which is investigated in Sect. 4.4.5.

Influence of episode design and action mapping on the

RL-agent’s performance

In this section, we test the influence of basic configuration
parameters different from the default setup given in Table 4.
In particular, agents with an adjusted episode definition and
action mapping are examined. The results are displayed in
Table 8 and Table 9.

First of all, we observe that regardless of the episode defi-
nition, all agents converge (see Table 8). Thus, the dynamics
of a dispatching control system can be learned with different
episode designs. As discovered in the previous section, agents
rewarded with Ruti come with higher waiting times and the
ones rewarded with Rwt reach a lower machine utilization.
Nonetheless, there are minor differences regarding the per-

formance indicators when looking deeper into it. Recall that,
because of the episode-wise characteristic, the agent’s goal
is to collect as much reward as possible within one episode.
The agent has no incentive to collect a lower reward in this
episode, just to increase its reward in the next one. Accord-
ingly, when the episode ends, e.g., after 100 entry actions, the
agent collects additional reward by performing exit actions
without getting closer to the episode end. These actions, how-
ever, decrease the inventory level and average order waiting
time. Vice versa holds true if the episode ends after 100 exit
actions, an increase in machine utilization can be observed.
As there is no direct link between the passed simulation time
and the reward, no apparent influence of a time-based episode
definition can be discovered.

In contrast to the episode definition, the agents show a sig-
nificant behavior change when the action mapping is altered.
Again, all agents converge regardless of the action mapping
used (see Table 9). The resource mapping is, by nature, harder

123

870 Journal of Intelligent Manufacturing (2021) 32:855–876

Table 9 Results for RL-agents with fixed state information and reward signal when varying the action mapping as well as the set of actions Aexec

the agent can execute

Agent State Reward Mapping Aexec Scenario 1 Scenario 2

U (%) WT I α U (%) WT I α

17 Sa Ruti Direct AS→M , AM→S 79.5 96.3 12.9 1.05 87.1 120.3 23.1 0.53

25 Sa Ruti Direct AS→M , AM→S,

Aempty , Awaiting

80.6 95.0 12.6 0.95 87.0 120.5 22.8 0.54

26 Sa Ruti Resource AS→M , AM→S 66.4 84.8 8.7 1.97 85.0 113.0 19.8 0.62

27 Sa Ruti Resource AS→M , AM→S,

Aempty , Awaiting

64.4 82.7 8.9 1.96 85.0 115.4 20.1 0.60

21 Sb Rwt Direct AS→M , AM→S 52.8 80.9 7.7 2.88 77.6 106.3 19.4 0.83

28 Sb Rwt Direct AS→M , AM→S,

Aempty , Awaiting

48.9 83.1 7.3 4.1 77.1 106.4 19.2 0.89

29 Sb Rwt Resource AS→M , AM→S 53.1 73.4 5.0 3.29 78.6 108.8 18.5 0.89

30 Sb Rwt Resource AS→M , AM→S,

Aempty , Awaiting

52.4 71.9 5.1 3.61 77.5 105.9 18.2 0.94

Bold values indicate the best, i.e. highest or lowest value in the column
a SAS, SAT , SB E N , SB E X
bSAS, SAT , SW T

to learn, which contributes to the worse overall performance
of agents 26 and 27, as indicated by the α value. Further-
more, this mapping allows the agent to select actions, which
are not even in Aexec. Agents 26 and 27 can select 12 x
12 distinctive actions (11 resources and 1 empty option for
both source and destination), while agent 25 has 32 options
and agent 17 only 20. Due to that fact, the agents with
resource mapping need significantly longer to distinguish
valid and invalid actions. Therefore, fewer order transports
are performed, which results in lower inventory levels and
subsequent effects on the other performance indicators.

By enabling the execution of empty walks and waiting
actions, we obtain agents 25 and 27 from their respective
counterparts. These perform better with regard to α in both
production scenarios, with the only exception of agent 25 in
Scenario 2. Hence, the agents learn to perform empty walks
and waiting actions in favor of the operational performance
indicators’ fulfillment. However, this slightly better perfor-
mance resulted in a slower converging speed of the agent. We
can state that giving the RL-agent more freedom in the action
selection by using the resource mapping comes with a signif-
icantly more extended learning period, and adding irrelevant
actions to Aexec increases the performance slightly and, at
the same time, slows down the convergence.

Directing the reward on a specific action type

Next, we combine the weighting of the reward for the dif-
ferent action types like in Rconst (see Sect. 4.4.1) with the
reward signals Ruti and Rwt to get the reward Rw−util and
Rw−wt . By doing so, either entry or exit actions are rewarded
with a higher value. The aim is to actively influence the

inventory level, being of central importance for any pro-
duction system (Wiendahl et al. 2014), and subsequently
the other performance indicators, as observed in Sect. 4.4.1.
Additionally, an extended state representation with sufficient
information is applied in the following investigations. The
RL-agents rewarded with Rw−wt receive all state informa-
tion described in Sect. 3.2.2. The ones rewarded with Rw−util

do get the same state information except for SW T . This is
because agent 12, which is rewarded with Ruti and has this
state information, requires significantly longer to converge.
The computational results are summarized in Table 10.

Due to the identical weighting factors for both action types
for agents 32 and 35, the resulting reward signal is identical
to Ruti and Rwt scaled by the factor 0.5. In comparison to
their counterpart agents 17 and 21, which are provided with
less state information, we observe for both a superior perfor-
mance in both scenarios. Thus we conclude that the additional
state information in total is used in a positive way.

The expected behavior regarding the achieved inven-
tory level can also be observed. By increasing the reward
weight ω2 for exit actions, the agent performs these actions
preferably, which results in a lower inventory level and
subsequently lower waiting times. When entry actions are
relatively more rewarded than exit actions, inverse behavior
can be observed.

The effect on the machine utilization performance indi-
cator is not that straightforward. For the agents trained with
Rw−util , the highest machine utilization is achieved in both
scenarios when both action types are rewarded equally. This
is because the prioritization of one action type above the other
results in a higher chance of empty entry buffers or full exit

123

Journal of Intelligent Manufacturing (2021) 32:855–876 871

Table 10 Results for RL-agents with fixed state information and the reward functions Rw−uti and Rw−wt while varying weighting factors of the
action subsets

Agent State Reward Weighting factor Scenario 1 Scenario 2

U (%) WT I α U (%) WT I α

31 Sa Rw−uti ω1 = 0.25, ω2 = 0.75 77.1 69.4 4.8 0.93 84.8 109.5 18.8 0.57

32 Sa Rw−uti ω1 = 0.5, ω2 = 0.5 82.0 88.1 11.2 0.73 86.9 119.7 22.3 0.47

33 Sa Rw−uti ω1 = 0.75, ω2 = 0.25 78.1 120.7 19.7 1.54 86.1 123.7 24.4 0.51

34 Sb Rw−wt ω1 = 0.25, ω2 = 0.75 51.5 71.8 4.2 3.4 78.7 106.7 18.7 0.86

35 Sb Rw−wt ω1 = 0.5, ω2 = 0.5 53.7 80.0 7.7 2.93 78.1 108.1 20.2 0.76

36 Sb Rw−wt ω1 = 0.75, ω2 = 0.25 58.3 157.7 20.8 5.12 86.6 125.9 24.9 0.56

Bold values indicate the best, i.e. highest or lowest value in the column
a SAS, SL , SM F , SR PT , SB E N , SB E X , SB PT , SAT
bSAS, SL , SM F , SR PT , SB E N , SB E X , SB PT , SAT , SW T

buffers, respectively. Both situations reduce machine utiliza-
tion.

Due to the typically low inventory level when using
Rw−wt , agents rewarded with this signal achieve only a rela-
tively low machine utilization. By putting the focus on entry
actions, the agent increases the inventory level significantly
and, thus, the machine utilization rises, too. It is noticeable
that agent 33 in both scenarios and agent 31 in Scenario 1
achieve a lower average order waiting time than their coun-
terparts, agents 34 and 36.

Overall, the agents rewarded with Rw−util achieve supe-
rior performance in terms of α. We are not able to identify
the exact reason for that, but there are many possibilities. For
instance, the fact that the reward signal or the state infor-
mation or even both are not well designed to achieve an
optimization of waiting time per se. Also, there might be rea-
sons intrinsic to the production system, which have not been
accounted for. Nonetheless, we further investigate these hin-
drances by applying multi-criteria optimization in the next
section.

Multi-criteria optimization

In Sect. 4.4.2, we find that training an agent to optimize a sin-
gle performance indicator might result in poor performance
regarding the other indicators. For this reason, we examine
multi-criteria optimization in this section.

The previously used reward functions Ruti and Rwt are
combined into a single one. By using weighting factors, as
shown in Eq. 18, we are able to shift the focus between the two
basic reward functions and, thus, emphasize one above the
other. The simulation results are presented in Table 11. Again,
we provide the agents with all state information described in
Sect. 3.2.2.

Although the usage of Rwt by itself comes with relatively
low inventory levels in the experiments before, the addition
of Rwt to Ruti results for all three agents 37, 38, and 39 in

increased inventory levels and order waiting times in Sce-
nario 1 (cf. agent 32). With an increasing weight of Rwt , the
inventory level and average order waiting time decrease only
in Scenario 2 and for Scenario 1 the inverse can be observed.
However, by increasing the weight of Rwt , the utilization
always rises. This might be due to the fact that the agent is not
able to find the correct correlation between state information
and reward signal in this scenario. Hence, its optimization is
based on false assumptions.

In comparison to the agents of Table 8, it can be stated
that the multi-criteria reward signal does not help to achieve
a better performance, although the agents received additional
state information. The multi-criteria agents achieve α values
between the ones of agents 32 and 35, but not below. By
increasing the weight of Ruti , the α value is closer to the
one of agent 32 and vice versa. While this may indeed result
from multi-criteria optimization, it cannot be generalized.
As mentioned before, it is hard for the RL-agent to grasp the
elements of the reward function. In the case of combining
three or more reward signals, it is, therefore, concluded that
the training of an agent would be not possible.

Behavior of agent and heuristics when changing scenarios

Figure 6 summarizes the performance indicators utilization
and waiting time of all RL-agents and benchmark heuristics
in a two-dimensional scatter plot. Herein, the aforementioned
results are visualized, and one can clearly see the potential
of RL-agents in comparison to rule-based heuristics. Firstly,
RL enables far more and more detailed adjustments of the
desired performance, i.e., more different operation states of
the production system can be achieved. Secondly, the perfor-
mance of the heuristics varies largely when the scenario is
changed. Note that not only the location in the scatter plot
changes but also the ranking of the heuristics, as for instance,
VALID and FIFO are spread in the first scenario, whereas in
the second scenario, they are close to each other. This is also

123

872 Journal of Intelligent Manufacturing (2021) 32:855–876

Table 11 Results for RL-agents
with fixed state information and
a multi-criteria reward functions
when varying weighting factors
of the multi-criteria reward
function

Agent State Reward Scenario 1 Scenario 2

U (%) WT I α U (%) WT I α

37 Sa 0.75 ∗ Ruti + 0.25 ∗ Rwt 80.4 91.4 11.8 0.88 86.3 118.8 22.1 0.54

38 Sa 0.5 ∗ Ruti + 0.5 ∗ Rwt 77.9 91.7 11.7 1.07 86.0 118.6 22.0 0.58

39 Sa 0.25 ∗ Ruti + 0.75 ∗ Rwt 66.5 97.7 11.7 2.14 82.5 114.1 20.8 0.72

Bold values indicate the best, i.e. highest or lowest value in the column
a SAS, SL , SM F , SR PT , SB E N , SB E X , SB PT , SAT , SW T

Fig. 6 The scatter plot summarizes the waiting time and utilization performance of all heuristics and RL-agents presented in this paper. RL-Agents
31 and 32 are highlighted to show their superior performance in both scenarios

due to the fact that the rule-based heuristics do not take into
account the bottleneck of the systems. That is enforced by
the poor performance of NJF in Scenario 2 comparing to
Scenario 1. Finally, the highlighted RL-agents 31 and 32 are
almost robust when changing the scenario. Additionally, they
show an overall superior performance when looking at both
performance indicators and comparing it to all heuristics as
well as other RL-agents.

So far, the two scenarios are only considered separately.
Figure 7 shows the course of the moving average of the
machine utilization U and the average waiting time W T

of the orders over the simulated environment steps for the
heuristics FIFO and NJF as well as for agent 17. Agent 17
was chosen due to its simplicity and excellent performance
in both scenarios. The rule-based heuristics and the RL-agent
first operate in a production system that is parametrized as in
Scenario 1, before the scenario changes to the second after
10 million steps.

After the scenario changed, both, the heuristics and the
agent reach performance values of U and W T that are char-
acteristic for Scenario 2 (see Table 8). This is what one would

expect from the static heuristics, since they always select
deterministically, which action is executed next. However,
agent 17 reaches almost identical performance values com-
pared to a separated training in Scenario 1 and 2. Only the
waiting times are slightly better in the case of changing sce-
narios.

We, therefore, conclude that RL-agents can adapt to
changing production conditions. No significant training
phase is required, because the performance indicators of the
RL-agent in Fig. 7 are adjusted over the same amount of steps
as the heuristics need to adjust their performance. Addition-
ally, it has to be noted that training the agent in Scenario 1
and then changing to Scenario 2 has a negligible effect on
the final performance.

Comparison of time consumption when training RL-agents

Our experiments were conducted on a Linux system with an
Intel Xeon E5-2698 v4 CPU with 20 cores running at 2.2
GHz, 256 GB RDIMM DDR4 system memory, and an SSD
for storage. The simulation environment as well as the RL-

123

Journal of Intelligent Manufacturing (2021) 32:855–876 873

Fig. 7 Machine utilization and average waiting time of orders when changing from Scenario 1 to Scenario 2 after 10 million simulation steps.
Displayed are the heuristics NJF and FIFO as well as Agent 17

agents are implemented in Python 3.6 using the packages
simpy and tensorforce.

For agents rewarded with a dense reward function, the
computation of one million simulation steps requires approx-
imately 1 h. The longer a simulation runs, a slight decrease in
the computation speed can be observed due to an increased
effort of data handling and recording. Sparse agents, on the
other hand, require approximately three times the computa-
tion time, as the updates of the neural network are far more
complex.

In general, the RL-agents converge in Scenario 2 faster
than in Scenario 1. Simple agents like the ones in the Tables 6
and 7 require in Scenario 1 three to five million simulation
steps, while in Scenario 2 it is achieved after one to three
million steps. Adding additional state information and using
more complex reward functions entails increased time con-
sumption. Complex agents shown in the Tables 11 and 10
require 20 to 25 million simulation steps in Scenario 1 and
10 to 13 million steps in Scenario 2 to converge.

The only exception to these general statements is agent
12, which needed 45 million simulation steps to converge.
The reason for this is in the combination of state and reward.
While the agent received state information on the current
waiting time of orders, this is not related to the reward signal
Ruti . Nonetheless, the agent eventually found a correlation.

Conclusion and outlook

Achieving operational excellence in the competitive environ-
ment of manufacturing companies, conventional production
control methods are no longer sufficient. With increas-
ing digitization, reinforcement learning offers an alternative
approach to control production systems. In this paper, we
comprehensively present and apply a methodology for the
design of an adaptive production control system that is based

on reinforcement learning. Thereby, existing challenges in
the application of reinforcement learning methods are iden-
tified and addressed: First, designing the state information
passed to the agent and based on which the agent makes
the decision has an influence on the learned performance.
Second, the modeling of the reward signal is of central impor-
tance as it represents the optimization objective.

All presented modeling choices are analyzed based on two
real-world production scenarios taken from the semiconduc-
tor industry. The results reveal that RL-agents are able to
perform adaptive control strategies successfully and can be
flexibly adapted to different objectives, and thus to differ-
ent application scenarios. “Simple” RL-agents, e.g., with a
constant reward function, achieve a performance superior to
random heuristics. Specific RL-agents are able to outper-
form existing rule-based benchmark heuristics. Moreover,
an extended state representation clearly improves the perfor-
mance if there is a relation between it and the objectives.
The reward signal can be designed in such a way to enable
the optimization of multiple objectives more easily. Finally,
specific RL-agent configurations reach a high performance
independent of the production scenario.

Further research is required in order to analyze and under-
stand the performance, and in particular, the strategy the
RL-agents learn in more detail. This will offer a huge advan-
tage in building trust and enlarging the acceptance of “black
box” learning algorithms such as reinforcement learning.
Furthermore, the transferability of the results in further pro-
duction systems needs to be evaluated.

Acknowledgements Open Access funding provided by Projekt DEAL.
We extend our sincere thanks to the German Federal Ministry of
Education and Research (BMBF) for supporting this research project
02P14B161 “Empowerment and Implementation Strategies for Indus-
try 4.0”.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-

123

874 Journal of Intelligent Manufacturing (2021) 32:855–876

tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix

All readers that are eager to extend this research are referred
to the open source repository SimRLFab

(Kuhnle 2020). This repository contains the simulation as
well as RL-agent framework for order dispatching in a com-
plex job shop manufacturing system as described in the
present work. The scenario parameters are set to arbitrary
default numbers.

References

Abele, E., & Reinhart, G. (2011). Zukunft der Produktion. München:
Carl Hanser Verlag.

Arviv, K., Stern, H., & Edan, Y. (2016). Collaborative reinforce-
ment learning for a two-robot job transfer flow-shop scheduling
problem. International Journal of Production Research, 54(4),
1196–1209.

Aydin, M., & Öztemel, E. (2000). Dynamic job-shop scheduling using
reinforcement learning agents. Robotics and Autonomous Systems,
33(2–3), 169–178.

Bischoff, J. (1999). Ein Verfahren zur zielorientierten Auftragsein-

planung für teilautonome Leistungseinheiten. Berlin, Heidelberg:
Springer.

Blackstone, J. H., Phillips, D. T., & Hogg, G. L. (1982). A state-of-
the-art survey of dispatching rules for manufacturing job shop
operations. International Journal of Production Research, 20(1),
27–45.

Boebel, F. G., & Ruelle, O. (1996). Cycle time reduction program at acl.
In IEEE/SEMI 1996 advanced semiconductor manufacturing con-

ference and workshop. Theme-innovative approaches to growth in

the semiconductor industry. ASMC 96 Proceedings (pp 165–168).
IEEE

Brucker, P., & Knust, S. (2012). Complex scheduling (2nd ed.). Heidel-
berg and New York: GOR publications, Springer.

Chen, C., Xia, B., Zhou, Bh, & Xi, L. (2015). A reinforcement learning
based approach for a multiple-load carrier scheduling problem.
Journal of Intelligent Manufacturing, 26(6), 1233–1245.

Crites, R. H., & Barto, A. G. (1998). Elevator group control using mul-
tiple reinforcement learning agents. Machine Learning, 33(2/3),
235–262.

ElMaraghy, W., ElMaraghy, H., Tomiyama, T., & Monostori, L.
(2012). Complexity in engineering design and manufacturing.
CIRP Annals, 61(2), 793–814.

Freitag, M., & Hildebrandt, T. (2016). Automatic design of schedul-
ing rules for complex manufacturing systems by multi-objective
simulation-based optimization. CIRP Annals, 65(1), 433–436.

Gabel, T. (2009). Multi-agent reinforcement learning approaches for

distributed job-shop scheduling problems. Ph.D. thesis, University
of Osnabruck, Osnabruck

Gabel, T., & Riedmiller, M. (2008). Adaptive reactive job-shop schedul-
ing with reinforcement learning agents. International Journal of

Information Technology and Intelligent Computing, 24(4), 14–18.
Günther, H. O. (2005). Produktion und Logistik (6th ed.). Berlin:

Springer-Lehrbuch.
Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-

critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. In J. Dy, & A. Krause (Eds.), Proceedings of

the 35th International Conference on Machine Learning, PMLR,

Stockholmsmässan, Stockholm Sweden, proceedings of machine

learning research (Vol. 80, pp. 1861–1870)
Haupt, R. (1989). A survey of priority rule-based scheduling. OR Spek-

trum, 11(1), 3–16.
Heger, J. (2014). Dynamische Regelselektion in der Reihenfolgepla-

nung. Wiesbaden: Springer Fachmedien Wiesbaden.
Heger, J., Branke, J., Hildebrandt, T., & Scholz-Reiter, B. (2016).

Dynamic adjustment of dispatching rule parameters in flow shops
with sequence-dependent set-up times. International Journal of

Production Research, 54(22), 6812–6824.
Henke, N., Bughin, J., Chui, M., Manyika, J., Saleh, T., Wiseman, B.,

& Sethupathy, G. (2016). The age of analytics: Competing in a
data-driven world. New York: McKinsey Global Institute.

Kim, G. H., & Lee, C. (1998). Genetic reinforcement learning approach
to the heterogeneous machine scheduling problem. IEEE Trans-

actions on Robotics and Automation, 14(6), 879–893.
Klemmt, A. (2012). Ablaufplanung in der Halbleiter- und Elektron-

ikproduktion. Wiesbaden: Vieweg+Teubner Verlag.
Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learn-

ing in robotics: A survey. The International Journal of Robotics

Research, 32(11), 1238–1274.
Kuhnle, A. (2020). SimRLFab: Simulation and reinforcement learn-

ing framework for production planning and control of complex
job shop manufacturing systems. GitHub. https://github.com/
AndreasKuhnle/SimRLFab

Kuhnle, A., Schaarschmidt, M., & Fricke, K. (2017). Tensorforce: a ten-
sorflow library for applied reinforcement learning. GitHub. https://
github.com/tensorforce/tensorforce

Kuhnle, A., Schäfer, L., Stricker, N., & Lanza, G. (2019). Design, imple-
mentation and evaluation of reinforcement learning for an adaptive
order dispatching in job shop manufacturing systems. Procedia

CIRP, 81, 234–239.
Law, A. M. (2014). Simulation modeling and analysis. McGraw-Hill

series in industrial engineering and management science (5th ed.).
New York: McGraw-Hill Education.

Lin, J. T., Wang, F. K., & Yen, P. Y. (2001). Simulation analysis of dis-
patching rules for an automated interbay material handling system
in wafer fab. International Journal of Production Research, 39(6),
1221–1238.

Lödding, H. (2016). Verfahren der Fertigungssteuerung. Berlin, Hei-
delberg: Springer.

Mahadevan, S., & Theocharous, G. (1998). Optimizing production man-
ufacturing using reinforcement learning. In Proceedings of the

eleventh international florida artificial intelligence research soci-

ety conference (pp 372–377). AAAI Press
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,

Wierstra, D., et al. (2013). Playing atari with deep reinforcement
learning. NIPS Deep Learning Workshop, 2013, 1–9.

Mönch, L., Fowler, J. W., & Mason, S. J. (2013). Production planning

and control for semiconductor wafer fabrication facilities, opera-

tions research/computer science interfaces series (Vol. 52). New
York, NY: Springer.

Monostori, L., Csáji, B., & Kádár, B. (2004). Adaptation and learning
in distributed production control. CIRP Annals, 53(1), 349–352.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/AndreasKuhnle/SimRLFab
https://github.com/AndreasKuhnle/SimRLFab
https://github.com/tensorforce/tensorforce
https://github.com/tensorforce/tensorforce

Journal of Intelligent Manufacturing (2021) 32:855–876 875

Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S.,
Reinhart, G., et al. (2016). Cyber-physical systems in manufactur-
ing. CIRP Annals, 65(2), 621–641.

Monostori, L., Váncza, J., & Kumara, S. (2006). Agent-based systems
for manufacturing. CIRP Annals, 55(2), 697–720.

Nachum, O., Norouzi, M., Xu, K., & Schuurmans, D. (2017). Bridging
the gap between value and policy based reinforcement learning. In
Proceedings of the 31st international conference on neural infor-

mation processing systems (NIPS’17) (pp. 2772–2782). Curran
Associates Inc, USA.

Niehues, M. R. (2017). Adaptive Produktionssteuerung für Werkstat-

tfertigungssysteme durch fertigungsbegleitende Reihenfolgebil-

dung, Forschungsberichte IWB (Vol. 329). Herbert, München: Utz.
Nyhuis, P. (2008). Beiträge zu einer Theorie der Logistik. Berlin:

Springer.
Panwalkar, S. S., & Iskander, W. (1977). A survey of scheduling rules.

Operations Research, 25(1), 45–61.
Paternina-Arboleda, C. D., & Das, T. K. (2001). Intelligent dynamic

control policies for serial production lines. IIE Transactions (Insti-

tute of Industrial Engineers), 33(1), 65–77.
Qu, S., Wang, J., Govil, S., & Leckie, J. O. (2016). Optimized adap-

tive scheduling of a manufacturing process system with multi-skill
workforce and multiple machine types: An ontology-based, multi-
agent reinforcement learning approach. Procedia CIRP, 57, 55–60.

Rabe, M., Spieckermann, S., & Wenzel, S. (2008). Verifikation und

Validierung für die Simulation in Produktion und Logistik: Vorge-

hensmodelle und Techniken. Dordrecht: Springer.
Riedmiller, S., & Riedmiller, M. (1999). A neural reinforcement learn-

ing approach to learn local dispatching policies in production
scheduling. In Proceedings of the 16th international joint con-

ference on artificial intelligence (IJCAI’99) (Vol. 2, pp 764–769).
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Sarin, S. C., Varadarajan, A., & Wang, L. (2011). A survey of dispatch-
ing rules for operational control in wafer fabrication. Production

Planning & Control, 22(1), 4–24.
Schoemig, A. K. (1999). On the corrupting influence of variability in

semiconductor manufacturing. In P. A. E. Farrington (Ed.), 1999

Winter simulation conference proceedings (vol 1, pp. 837–842).
IEEE

Scholz-Reiter, B., & Hamann, T. (2008). The behaviour of learning
production control. CIRP Annals, 57(1), 459–462.

Schuh, G. (2006). Produktionsplanung und -steuerung: Grundlagen,

Gestaltung und Konzepte (3rd ed.). Berlin: VDI-Buch, Springer.
Schuh, G., Reuter, C., Prote, J. P., Brambring, F., & Ays, J. (2017).

Increasing data integrity for improving decision making in pro-
duction planning and control. CIRP Annals, 66(1), 425–428.

Schulman, J., Levine, S., Moritz, P., Jordan, MI., & Abbeel, P. (2015).
Trust region policy optimization. arXiv:1502.05477

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov,
O. (2017). Proximal policy optimization algorithms.
arXiv:1707.06347

Shah, P., Gosavi, A., & Nagi, R. (2010). A machine learning approach
to optimise the usage of recycled material in a remanufacturing
environment. International Journal of Production Research, 48(4),
933–955.

Shahrabi, J., Adibi, M. A., & Mahootchi, M. (2017). A reinforcement
learning approach to parameter estimation in dynamic job shop
scheduling. Computers & Industrial Engineering, 110, 75–82.

Shiue, Y. R., Lee, K. C., & Su, C. T. (2018). Real-time scheduling for a
smart factory using a reinforcement learning approach. Computers

& Industrial Engineering, 125, 604–614.
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A.,

Guez, A., et al. (2017). Mastering the game of go without human
knowledge. Nature, 550(7676), 354–359.

Singh, S., Barde, A., Mahanty, B., & Tiwari, M. K. (2019). Digital
twin driven inclusive manufacturing using emerging technologies.
IFAC-PapersOnLine, 52(13), 2225–2230.

Stegherr, F. (2000). Reinforcement-Learning zur dispositiven Auf-

tragssteuerung in der Variantenreihenproduktion. Materialfluss,
Logistik, Utz, Wiss, München: Fördertechnik.

Stricker, N., Kuhnle, A., Sturm, R., & Friess, S. (2018). Reinforce-
ment learning for adaptive order dispatching in the semiconductor
industry. CIRP Annals, 67(1), 511–514.

Sturm, R. (2006). Modellbasiertes Verfahren zur Online-

Leistungsbewertung von automatisierten Transportsystemen

in der Halbleiterfertigung, IPA-IAO Forschung und Praxis (Vol.
450). Stuttgart and Heimsheim: Univ and Jost-Jetter-Verl.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An intro-

duction, second (edition ed.). Adaptive computation and machine
learning: The MIT Press, Cambridge, Massachusetts.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (1999). Policy
gradient methods for reinforcement learning with function approx-
imation. In Proceedings of the 12th international conference on

neural information processing systems (NIPS’99) (pp 1057–1063).
Cambridge, MA, USA: MIT Press.

Tao, F., Qi, Q., Wang, L., & Nee, A. Y. (2019). Digital twins and cyber–
physical systems toward smart manufacturing and industry 4.0:
Correlation and comparison. Engineering, 5(4), 653–661.

Wang, J., Li, X., & Zhu, X. (2012). Intelligent dynamic control of
stochastic economic lot scheduling by agent-based reinforcement
learning. International Journal of Production Research, 50(16),
4381–4395.

Wang, X., Wang, H., & Qi, C. (2016a). Multi-agent reinforcement learn-
ing based maintenance policy for a resource constrained flow line
system. Journal of Intelligent Manufacturing, 27(2), 325–333.

Wang, Y. C., & Usher, J. M. (2004). Learning policies for single machine
job dispatching. Robotics and Computer-Integrated Manufactur-

ing, 20(6), 553–562.
Wang, Y. C., & Usher, J. M. (2005). Application of reinforcement learn-

ing for agent-based production scheduling. Engineering Applica-

tions of Artificial Intelligence, 18(1), 73–82.
Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu,

K., & de Freitas, N. (2016b) Sample efficient actor-critic with
experience replay. arXiv:1611.01224

Waschneck, B., Altenmüller, T., Bauernhansl, T., & Kyek, A. (2016).
Production scheduling in complex job shops from an industrie 4.0
perspective: A review and challenges in the semiconductor indus-
try. In R. Kern, G. Reiner, O. Bluder (Eds.), Proceedings of the

1st international workshop on science, application and methods

in industry 4.0, CEUR workshop proceedings (pp. 1–12)
Waschneck, B., Reichstaller, A., Belzner, L., Altenmuller, T., Bauern-

hansl, T., Knapp, A., & Kyek, A. (2018). Deep reinforcement learn-
ing for semiconductor production scheduling. In 29th annual SEMI

advanced semiconductor manufacturing conference (ASMC) (pp
301–306)

Watkins, C., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3–
4), 279–292.

Wauters, T., Verbeeck, K., Berghe, G. V., & de Causmaecker, P. (2011).
Learning agents for the multi-mode project scheduling problem.
Journal of the Operational Research Society, 62(2), 281–290.

Wiendahl, H. P. (1997). Fertigungsregelung: Logistische Beherrschung

von Fertigungsabläufen auf Basis des Trichtermodells. München:
Carl Hanser Verlag.

Wiendahl, H. P., Reichardt, J., & Nyhuis, P. (2014). Handbuch Fabrik-

planung. München: Carl Hanser Verlag.
Williams, R. J. (1992). Simple statistical gradient-following algorithms

for connectionist reinforcement learning. Machine Learning, 8(3–
4), 229–256.

123

http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1611.01224

876 Journal of Intelligent Manufacturing (2021) 32:855–876

Zeng, Q., Yang, Z., & Lai, L. (2009). Models and algorithms for
multi-crane oriented scheduling method in container terminals.
Transport Policy, 16(5), 271–278.

Zhang, W., & Dietterich, T. G. (1996). High-performance job-shop
scheduling with a time-delay TD(λ) network. In D. S. Touretzky,
M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in Neural Infor-

mation Processing Systems 8 (pp. 1024–1030). Cambridge: MIT
Press.

Zhang, Z., Zheng, L., Hou, F., & Li, N. (2011). Semiconductor final
test scheduling with Sarsa(λ, k) algorithm. European Journal of

Operational Research, 215(2), 446–458.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Designing an adaptive production control system using reinforcement learning
	Abstract
	Introduction
	Fundamentals and literature review
	Production planning and control
	Order dispatching problem
	Reinforcement learning
	Application of RL in production control

	Methodical approach for designing an adaptive production control system
	Simulation of the production environment
	Modeling the RL dispatching agent
	Action module
	State module
	Reward module
	Agent module

	Rule-based benchmark heuristics

	Use case description and computational results
	Use case description
	Evaluation and computational results
	Default RL-agent configuration
	Performance indicators

	Evaluation setup
	Evaluation results
	Distinction between valid and invalid actions
	Relationship between state information and reward function
	Influence of episode design and action mapping on the RL-agent's performance
	Directing the reward on a specific action type
	Multi-criteria optimization
	Behavior of agent and heuristics when changing scenarios
	Comparison of time consumption when training RL-agents

	Conclusion and outlook
	Acknowledgements
	Appendix
	References

