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Abstract— In this paper, we introduce the main components
comprising the action-perception loop of an overarching frame-
work implementing artificial attention, designed to fulfil the
requirements of social interaction (i.e., reciprocity, and aware-
ness), with strong inspiration on current theories in functional
neuroscience. We demonstrate the potential of our framework,
by showing how it exhibits coherent behaviour without any
inbuilt prior expectations regarding the experimental scenario.
Current research in cognitive systems for social robots has
suggested that automatic attention mechanisms are essential
to social interaction. In fact, we hypothesise that enabling
artificial cognitive systems with middleware implementing these
mechanisms will empower robots to perform adaptively and
with a higher degree of autonomy in complex and social
environments. However, this type of assumption is yet to be
convincingly and systematically put to the test. The ultimate
goal will be to test our working hypothesis and the role of
attention in adaptive, social robotics.

I. INTRODUCTION

In the past decades, robotics has drawn a substantial

deal of inspiration from neuroscience and psychology in the

attempt to properly address the action-perception loop, in

particular with “theory of mind" and evolutionary and de-

velopmental approaches [1], [2], which in turn have brought

attention to the limelight. The underlying rationale is as

follows: by developing attentional systems with some of the

functionalities found in the human brain, robots will not only

be able to exhibit behaviours that resemble those of their

interlocutors, but also gain additional advantages such as

being able to respond adaptively to the environment [3]. This

is important in order to be able to launch the foundations

of processes such as empathy, mirroring and reciprocity,

given that the human interlocutor will most certainly build

his/her own mirrored representation of the robot actions and

intentions [4], [5], [6]. Consequently, recent research lines

have suggested that automatic attentional mechanisms are

a fundamental foundation for implementing robotic intel-

ligence in the development of social robots [3], [6], [5].

As opposed to tailor-made solutions mostly focussed on

solving very specific cognitive tasks, lacking the traits of

adaptive behaviour that would allow robots to function in

open-ended scenarios, we advocate an approach for attention

system design that incorporates as much of what is known
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of attentional processes in the brain as possible to adaptively

deal with uncertain scenarios.

The primary purpose of this paper is to provide a general

unified design of the robotic attentional mechanism by bring-

ing together various elements of previous works in neuropsy-

chology and robotics theories and applications. Furthermore,

we provide details on some of its most important modules,

and discuss overall functionality. Computational modelling

has been tackled by resorting to probabilistic techniques such

as hierarchical Bayesian programming [7] and probabilistic

state machines [8]. The probabilistic framework allows the

robot to deal with the uncertainty inherent to the action-

perception loop, fundamentally relating to recent studies

about how the human brain deals with these processes [9],

additionally providing an implicit methodology for signal

fusion and modulation, and also for adaptive interaction.

Moreover, the proposed framework assumes attention as a

multisensory process - it is currently designed for visuoau-

ditory perception, but is intended to be generalisable to other

important senses, such as touch or olfaction.

The remainder of this paper is structured as follows. Sec-

tion II describes the main motivations of this work, analysing

key theories from neuroscience. Section III presents re-

lated work already available in current robots and artificial

cognitive systems. Section IV proposes an architecture for

attention, provides details of some of its most important

components and their mathematical foundation. Section V

analyse by simulation and experimentation the current im-

plementation of the attentional system. Finally, section VI

discusses the potential benefits of using the proposed design

and possible alternatives and improvements.

II. BIOINSPIRED FOUNDATIONS

When analysing human cognitive impairments or disor-

ders, attention appears to be one of the most important

skills to achieve correct social interaction [10], because it

enables activities such as learning, visual search, non-verbal

and verbal interaction, and is also one of the key processes

underlying intentional inference. Currently, however, cog-

nitive systems in robots have not yet tackled this problem

comprehensively and generally enough [3]. Consequently, in

terms of attention, robots should simultaneously be capable

of:

1) behaving in a socially reciprocal fashion, by attending

to important social cues as a human would when

directly interacting within his/her social space, and

by maintaining sequences of attentional behaviours

regulating basic interaction activities such as joint

attention;
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2) attending to unexpected stimuli that will help maintain

a high degree of adaptability and responsiveness to

changes in the current context that bear behavioural

relevance.

Attention is the process whereby an agent allocates percep-

tual resources to analyse a subset of the surrounding world in

detriment of others [3]. It is, therefore, a strategic and rather

complex data-handling process that allows the processing

of an unmanageable amount of information (sensory and

otherwise) to become tractable. Several key theories from

neuroscience, in favour of which a considerable amount

of evidence has been amassed, have served as the main

motivations for the proposed framework:

• Neurophysiologists have identified two highly intercon-

nected attentional processes in the human brain: (1)

a top-down (i.e., goal-oriented) modulation of bottom-

up (i.e., stimulus-driven - e.g., saliency) attentional

capture by targets versus distractors that is believed to

be implemented by what has been called the dorsal

attention system. [11], [12], [13]; and (2) a coordinated

attentional process consisting of bottom-up attentional

capture by behaviourally relevant distractors (e.g., un-

expected stimuli) that is believed to be implemented by

the ventral attention system of the human brain, and

is filtered by behavioural valences to reorient attention

by resetting the current attentional set accordingly [12],

[13].

• Graziano et al. [14], [15] have proposed the “awareness

theory", in which the brain is suggested to possess func-

tional sites devoted to building a simplified, schematic

model of the current state of the complex data-handling

process of attention, which would serve as a model

of awareness. Awareness would therefore allow the

brain to understand attention, its dynamics, and its

consequences. Moreover, they posit that more than a

single schematic model of this sort, which they named

the “attention schema", may be built using the same

“machinery", namely for attributing an attentional state

to oneself or to others. These simplified representations

can be used to infer and predict intention and goals

for both the self and others, serving as a support to

cognitive processes such as those described by theories

such as the “theory of mind". The “attention schema

machinery" would build its simplified representation of

an attentional state of an agent by using (accessed or

inferred) knowledge of cues such as gaze direction,

facial expression, body language, prior knowledge on

the agent, location of salient objects, etc.

• Joint attention (JA) is a primal non-verbal interactive

and cyclic process established between humans [3],

which we believe is an integral part of the attentional

process as a whole, by attributing to it its social trait.

The JA interaction can be described, using an example,

as follows: while playing with his father, a child stares

at his parent when shown a toy (“initiate joint attention”

– IJA – by the father), then will gaze a toy (“respond

to joint attention” – RJA – by the child) and then again

to his father in order to acknowledge that the other has

understood that both are “talking about the same object"

(“acknowledge joint attention” – AJA);

• Spivey, Richardson and Fitneva [16] stated that eye

fixations serve as cognitive links, in the form of lists

of deictic pointers bonded to spatial indices, between

internal and external objects and events, suggesting that

attention is used for organising relatively high-level

cognitive processes. We propose that these lists could

take an integral part in organising the set salient objects

processed by the “attention schema" of Graziano et al.

III. RELATED WORK IN ROBOTICS

Automatic attention hides multiple challenges that have

been approached from different points of view. The most

common approach is to basically model only the stimulus-

driven, bottom-up aspect of attention using a saliency map

that codifies the relevance of each location or entity based

on the local contrast of low-level features [17], [5], [18], and

then making this model compete with other goal-directed

behaviours modelled separately [3]. Another approach, still

focussing on bottom-up attention, is information theoretic

modelling, where entropic or surprise measures provide the

most probable locations [19], [20]. However, as mentioned

in section II, attention is also known to be modulated by

goal-directed signals, which has spurred new research efforts

attempting to tackle this issue [21], [22], [23]. Attentional

goals are also known to be informed by the environmental

context, leading to research such as [24], and also by the

object of interest for a specific task, leading to solutions that

include modulation of attention via feedback through object

segmentation and tracking [22], thereby closing the action-

perception loop. Additionally, overt attention (i.e. active

perception) is still a challenging task in terms of design

and quantitative evaluation, due to its scene-dependent nature

[25], [26].

On the other hand, defining the cognitive architecture or

the computational model of a robot for general-purpose HRI

is a difficult task, although developmental robotics give us

the methodology to build cognitive abilities incrementally.

Instead of defining specific solutions for each task, current

research has favoured holistic solutions that build on sets

of atomic functionalities [27]. The “theory of mind” applied

to robots [2] opened the window for multiple biologically-

inspired cognitive models. Surveys such as [28], [1] describe

the latest approaches in cognitive developmental robotics.

The role played by attention architectures in these holistic

approaches, however, while having been assumed to be

essential (as seen in the plethora of attention-related research

in robotics summarised above), has yet to be convincingly

and systematically demonstrated as such [3], [6].

IV. ATTENTIONAL ARCHITECTURE

Figure 1 shows the overall framework for the proposed

system. There are four overarching interconnected modules,

which will be detailed in the following subsections: (1) the
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focus of attention 

(FOA) 𝐺𝑘 

T o p - d o w n  c o n t r o l l e r  

W o r k i n g  m e m o r y  

S t i m u l i  

S e g m e n t a t i o n  

sensorial information 𝑍𝑘 = {𝑧1, … , 𝑧𝑛} 

Gaze shift 

(saccade, smooth pursuit) 

behavioral valence Ω𝑘 = {𝑤1, … , 𝑤𝑛} 

BVM/spatial saliency 𝑆𝑘 

O r i e n t a t i o n  c o n t r o l l e r  

A c t i o n  m o d u l e  P e r c e p t i o n  m o d u l e  

A c t u a t o r s  W o r l d  

attentional set Θ𝑘 = {𝑜1, … , 𝑜𝑛} 

attended proto-objects 𝑃𝑂𝑘  

compact description of 

self attentional state 

(𝑃𝑂𝑘, 𝐺𝑘, …) 

simplified (“what”) 
ventral pathway 

(𝑃𝑂𝑘, 𝐺1𝑘, …) 

B e h a v i o u r a l  R e o r i e n t i n g  

novelty detection 𝑁𝑘 

attentional set 

switching 

D e c i s i o n  m a k i n g  

Fig. 1. Attentional system design. The perception module processes sensory signals to build an egocentric representation of the environment (i.e. a spatial
saliency map, and a list of spatially-indexed proto-objects) and maintains it in working memory. The top-down controller generates, according to current
goals, control signals and sets of relative weights that modulate responses to different features (i.e. the attentional set and behavioural valences). The action
module sends commands to actuators according to the attentional map and the gaze shift behaviour informed by the top-down controller. The reorienting
module checks for unexpected and behaviourally relevant stimuli, overriding the current attentional set if necessary.

(a) protoobjects (b) faces (c) dynamics (d) auditory

(e) colour bias (f) intensity (g) final saliency (h) memory

Fig. 2. Perception module. (a) shows proto-object (PO) segmentation. Each PO is represented using its average colour (bounding boxes are also plotted
for better visualisation); (b, c, d, e, f) show different features associated with the POs (colour contrast, which is not shown, is also used). The top-down
modulation will modify the importance of the features as well as the colour bias (i.e., in this case the one used is the pure red); (g) is the final 2D saliency
map and the selected PO (blue circle); finally, (h) shows POs (coloured rectangles) stored in working memory by means of deictic pointers.

perception module, which takes input signals provided by

sensors and constructs an egocentric representation of the

perceived environment that will in turn serve to select the

next focus of attention (FOA) according to relevance encoded

as saliency; (2) the top-down controller, which ensures that

the next selected FOA will be influenced by current goals and

context; (3) the action module, that selects the next fixation

location by deciding based on the input from the perception

module and provides the control signals to the actuators,

according to the current exploration behaviour (i.e. the type

of gaze shift strategy, for example, smooth pursuit or saccade

generation); (4) the behavioural reorienting module, that is in

charge of detecting novel and behaviourally-relevant stimuli

that should result in interrupting and resetting the attentional

process as an action-perception loop.

A. Perception module

This module incorporates working memory that stores

two different types of information: a list of attended proto-

objects, using a solution similar to [22], and a 3D log-

spherical inference map associating saliency to occupied

spatial locations developed in previous work [29], [30], [31].
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T o p - d o w n  c o n t r o l l e r  

Attention  

Schema self/other 

(𝑃𝑂𝑘 , 𝐺0𝑘 , 𝐺1𝑘 , …) 

attentional set Θ𝑘 = {𝑜1, … , 𝑜𝑛} 

elementary goal 

Task-to-Goal Manager Joint attention state-machine 

{WAIT, IJA, RJA, AJA} 
 

Environmental context 

(gist) 
 

Social context 

(intentional inference) 

task parameters Τ𝑘 = {𝑡1, … , 𝑡𝑛} 

elementary goal Γ𝑘𝜖 {𝐹𝑉, 𝐸𝑁, 𝐺𝐹, 𝐷𝐹} 

intended focus-of-attention 𝐹𝑂𝐴𝑘𝜖 {𝑖𝑛𝑡𝑒𝑟𝑙𝑜𝑐𝑢𝑡𝑜𝑟, 𝑃𝑂1, … , 𝑃𝑂𝑛} 

behavioral valence Ω𝑘 = {𝑤1, … , 𝑤𝑛} 

Simplified egocentric 

representations 

Fig. 3. Top-down controller. The task management module manages
high level information about the process, and includes joint attention state
machine and a contextual information manager. The attention schema,
a simplified model of an underlying attentional process, is in charge
of infering/predicting/deciding on the current/next focus of attention and
abstract goals of the robot and its interlocutors – refer to main text for
more details.

A preliminary processing stage segments sensor information

into pre-attentional volatile perceptual units called proto-

objects [3]. Feature contrasts are weighted to form the final

saliency map Sk at instant k by means of the so-called

attentional set [11], represented as Θ. This set is provided

by the top-down controller, thereby modulating what would

be a stimulus-driven process by influence of current goals

and context. The sensors observe the world providing the

signals Z, which are then transformed into spatial conceptual

features F that are filtered by the proto-object set PO and

fused into the saliency map S,

Z →Θ PO →Θ F →Θ S, (1)

representing the relevance of a specific region in space.

Each proto-object (PO) is defined as a subset of similar and

connected pixels, and its saliency for a specific feature f ∈ F

is defined by a bivariate normal density function ∼ N(µ =
POcentre-of-mass,Σ = diag([POheight, POwidth])). This

ensures that fixations will be drawn to the centre of the PO,

as has been proven to generally happen with human attention

[32]. Figure 2 shows a few examples of outputs generated

by the perception module, from PO segmentation (Fig. 2(a))

to deictic pointers to POs in working memory (Fig. 2(h)).

Proto-objects and their respective deictic pointers, POk =
{PO1, · · · , PON} are stored in working memory, since they

have been (and may be in the near future) FOA. These

pointers, besides storing spatial coordinates, associate each

PO to its characteristic properties, namely those related to

saliency features (e.g. colour). According to neurological

studies, humans can keep covert attention (i.e. track without

needing to fixate) on 5 objects simultaneously [16].

Stored proto-object information as well as the esti-

mated gaze direction of potential interlocutors Gk =
{G1, · · · , GM} are provided to the top-down controller with

other useful information to allow inference of the own’s state

and the other’s intention.

WAIT 

IA RA 

SHARE VS 

AJA 

𝛿  
𝑃  

𝑃𝐴: State transitions 𝛿𝐴: Alphabet transitions 

IJA RJA 

Fig. 4. Joint Attention State Machine. The agent switch between states
driven by its own state transition probabilities (P ), the possible transitions
given the input alphabet (δ) and the current observation of other’s state (O).

B. Top-down controller

The top-down controller is depicted in Figure 3 with two

representative layers: (1) the task-to-goal manager that is the

core of high-level decision making, and (2) the simplified

representation of the attentional state in egocentric represen-

tation called the “attention schema”, as defined in section II.

We consider each interlocutor agent (human/robot) as entities

capable of knowing and predicting their own internal state

and estimating the other’s state. Therefore the task-to-goal

manager is basically in charge of: generating own state

according to current goals and an estimate of the other’s state

by means of a probabilistic state machine, and estimating

the other’s state by using the set of high-level signals that

describe other’s hidden process. The module outputs the

set of parameters that modulates the attentional process

and the behavioural valences that define the importance of

unexpected stimuli, according to current goals and task.

For generating the robot’s own state, we define the Joint

Attention State Machine (JASM) as an extension of the

probabilistic finite state automata1[8], for which the input

sequence of the alphabet is the predicted other’s state. The

JASM is described by (see Fig. 4)

A =< Q,ΣA,ΣΓ, δ, I, P,O,Ω,Γ >, (2)

Notation is as follows:

• Q = {WAIT, IA, SHARE, RA, VS, AJA} - set of states

in the joint attention process. WAIT represents that the

agent is not interacting but is waiting for a signal input

(e.g., a human not engaging but passing through the

social space). IA and SHARE are two states derived

from the IJA process due to differences on their at-

tentional parameters values. The former represents any

type of engaging or initiating the interaction while the

latter corresponds to the action of sharing an object

with the other. RA and VS (Visual Search) are two

substages of the RJA process, the former describe the

1It differs from the standard probabilistic automata because the appear-
ance of the alphabet symbols is an observation process subject to uncertainty
and there are not final probabilities. Besides, as the signals are outputted
when the automata is in a specific state, it can also be considered an
extension of a hidden Markov model [8].
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initial response to other’s IJA and the latter is the action

of searching the object that the other want to share.

Finally, AJA is the last stage of the triadic relation

where the agent communicates that understands that the

sharing is complete (e.g., engaging the other after the

VS or SHARE state). It is important to highlight that

while WAIT and AJA can be overlapped in both agents,

when one of them is in the set (IA, SHARE) the other

should correspond with the set (RA, VS).

• ΣA = {WAIT, IA, SHARE, RA, VS, AJA} - alphabet ac-

cepted by the automata that matches the other’s state.

• ΣΓ = {FV,EN,GF,DF} - alphabet of the emissions pro-

duced in each state defined as the high level action

to be performed. FV means free view of the agent;

EN represents engaging the other; GF describes gaze

following; and DF means deictic fixation of an object.

• O ∈ ΣA - observations by estimating other’s state.

• δ ⊆ Q×ΣA×Q - transitions depending on the alphabet.

• I : Q → R
+ - initial state probabilities.

• P : δ → R
+ - transition probabilities given the input

alphabet.

• Ω : O × Q → R
+ - set of conditional observation

probabilities.

• Γ : ΣΓ ×Q → R
+ - state emission probability function.

The generative nature of the probabilistic automata is used

as the central core of the top-down controller that will switch

states for itself and depending on the other’s state. Given

the variable AQk
i , the pre-superscript A represents the agent

and k denotes the instant, and the subscript i indexes the

state in the set. In order to model how much time an agent

can remain in one state we include a random variable T that

has an exponential density function P (T k
i |Q

k
j ) = exp(−λk),

where λ ∈ [0, 1]. This makes that the probability of being in

a particular state decreases with the time, forcing the agent

to switch between states.

We solve the automata state selection by Maximum A

Posteriori (MAP) estimation over a Bayesian filter. Thus,

in order to select the current own state (AQk) given the

observation of the other state (BQk) we use the following

question:

P (AQk|Ok,BQk,BT k) ≃

≃ P (Ok|BQk)P (AT k|AQk)
∑

i∈Q

P (AQk
i |

AQk−1
i ) (3)

We model this hidden process given the attentional cues

and the observed other’s goals by a dynamic Bayesian

network (i.e. an adapted hidden Markov model) where the

observations are given by soft evidence. These observations

describe the nature of the other’s attention and taking into

account that transiting from one state to another is affected

by own’s actions, we can estimate the current other’s state by

means of its observed emissions BΓ ∈ {FV,EN,GF,DF},

and the current own’s goals emissions AΓ. Thus, other’s state

estimation is updated by Ok:

P (BQk|BΓk) ≃ P (Ok|BQk)P (BQk) (4)

The dynamics of the process is captured by means of the

probability of the other’s transiting from one state to another

given the probability of remaining in that state when our own

state is emitting a particular signal Γ:

P (BQk+1|BQk,AΓk) =

=
∑

j∈Q

P (BQk+1|BQk,AΓk)P (BT k|BQk)P (BQk) (5)

Note that we need to estimate or learn the forward model

defined by P (BQk+1|BQk,AΓk) experimentally [33].

Following the awareness model of the human brain (see

section II) we designed a simplified representation atten-

tion, similar to a framework proposed by Gilet et al. for

handwriting analysis and reproduction [34]. The attentional

cues that arrive from the perception module are used to

infer the intended focus of attention and goals of the other

by means of the self goals provided by the task-to-goal

manager in the form of JASM emissions Γk, and also to

predict the consequences of the robot’s next FOA according

to current goals and as such select the next parameter set that

will modulate attention. This simplified model provides the

needed abstraction from the complications of the underlying

attentional processes, in a very tractable yet effective fashion.

The FOA of the self or the other are referred to in this model

in the robot’s egocentric point-of-view, thereby integrating

spatial cues into a common reference. The predictive trait

of this model resembles the efferent copy mechanism of the

human brain enacted by mirror neurons [34], [3].

C. Behavioural Reorienting

This module is in charge of overriding the attentional set

when an unexpected stimulus with behavioural relevance is

sensed, therefore resetting the attentional process. The be-

havioural valence modulates the importance of the different

stimuli in face of current context and goals, as imposed by

the top-down controller. For instance, most auditory onsets

should not distract the robot from attention-demanding tasks

such as engaging with the current interlocutor; however,

a sudden/loud/unexpected noise, especially if coming from

outside of the field of view, should promote breaking the

robot’s concentration so as to enable it to attend to a potential

danger. Novelty can be computed using Bayesian surprise

theory [20] to analyse the importance of changes in the

distributions of the 3D inference map in two consecutive

instants.

D. Action module

This module is in charge of deciding the final FOA and

the best control actions to attend the specified location taking

into account the current agent state. For the orientation

controller we distinguish two different modes of operation:

saccadic behaviour, in which the robot performs a quick gaze

shift to the desired FOA; and smooth pursuit, in which the

robot smoothly tracks the current object of interest, making

it a persistent FOA. As the perceptual representations of the

system are in egocentric coordinates, the orientation module

includes a feedback controller that uses as input the current
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(a) JASM (b) self FOA given goal=GF (c) other’s goal (d) other’s FOA

Fig. 5. Top-down controller simulation. (a) The robot (at the JASM) is switching towards visual search (VS) because the human has transited from IA
to SHARE phase. The estimated distribution of other’s state still reflects the transition. The continuous / discontinuous lines show own state and other’s
estimation respectively. (b,c,d), show the corresponding intentions inferred by the attentional schema.

FOA and as output the control signals for the actuators.

During saccadic behaviour, next FOA selection is performed

through selecting the location with maximum saliency in a

process similar to what is described in [31], while for smooth

pursuit the fixation location for the current FOA is computed

by adding to this process a “sharp” probability distribution

centred on the object of interest, therefore promoting fixa-

tions on regions of high saliency in close proximity to the

tracked object.

V. RESULTS

A robotic attentional system must deal with real-time

processing of sensory signals, as well as the integration and

synchronisation of several state-of-the-art components. In our

case, this means correctly dealing with signal segmentation,

3D egocentric saliency representation [29], gaze inference

(e.g., head pose inference and pupil detection), working

memory management, FOA selection, saccade control, top-

down modulation (own and other’s state estimation), etc. In

this paper, we report on the current implementation of the

perception and action modules through experimental online

validation, and on the top-down controller in simulation.

We are currently working on the definitive and complete

version of the proposed attentional system implementation,

for which the main missing link is currently the gaze

inference module. Preliminary work on robust Bayesian gaze

estimation has just been finished, exhibiting satisfactory and

robust performance, and we are currently concluding a real-

time implementation.

The current implementation, developed using the Robotic

Operating System (ROS), operates at 12 fps for PO seg-

mentation, 8 fps for saliency computation, and from 8 to 20

fps (when tracking a PO) for working memory management.

This means that we can achieve the same performance as the

human saccade-generation system – just under 500 ms on av-

erage between fixations [3]. The top-down controller timing

is non-critical and therefore computational time analysis is

not needed. Additionally, the auditory saliency is computed

by using open source robot audition system HARK [35],

the reorientation module currently only takes into account

auditory signals, and the PO tracker is an adapted version

of [36] for multiple objects. A detailed specification of the

robot head and its sensors can be found in [37].

A. Top-down module

We have tested the JASM by simulating the interlocutor

intentional state, and analysing its outputs. Results show

that the robot is able to behave coherently with the other’s

intentional state (the mirroring response is 67% and the

number of completed joint attention tasks when the human

initiates and completes the behaviour is 78.40%) and even to

spontaneously initiate joint attention (the 47.21% of the total

IAs is performed by the robot for a 10000 transitions simu-

lation) – see Figure 5(a). On the other hand, by simulating

the signals provided by the perception module, we show how

the attentional schema computes the intention probabilities

of own and other’s state (those output distributions feed the

JASM – see Figure 5(b) and 5(c)). In the example depicted in

the figure, the robot is following the interlocutor’s gaze, and

he/she is inferred to most probably be intentionally looking

at an object (i.e. DF state). Therefore, the most probable PO

to fixate is the most salient PO within the interlocutor’s line-

of-sight, in this case PO5, in that moment already stored in

working memory.

B. Perception and action modules

The experimental set-up used to test these modules in

realistic conditions is depicted in Fig. 6(a), where an inter-

locutor is in front of a set of distinct objects over a table.

First we evaluated the overt attention system response in free

view, and then we emulated a simple behaviour of the top-

down controller that would promote the following sequence

of events: (1) the system is in free view until it discovers

the interlocutor; (2) the interlocutor shows an object to the

robot; (3) the robot acknowledges the object and set its colour

as a bias for perception; (4) the robot performs a visual

search until it finds an object with similar characteristics.

It is important to highlight that the system will only use

indirect colour bias modulation and tracking to onset these

events. To perform the statistical evaluation of the interaction

behaviour, we record several individuals interacting with the

robot and then classify the behaviours of both according to

their respective reactions.

Figure 6(b) shows a stitched image of the scene with

a visual attention heatmap of the free view experiment

superimposed. The most attended locations correspond to

the interlocutor’s face and objects with a high red colour

component (i.e. in this way, we model human phylogenetic
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(a) set-up (b) attention heatmap

(c) state 0 (d) state 1 (e) state 2

Fig. 6. Perception experiments. (a) the set-up is compound by a robot provided with an active head in front of a table with a set of objects. (b) attentional
map in free view. Study case experiment sequence: (b) the robot is in free view where it has added an object and later detected the interlocutor; (c)
afterwards, the human shows an interesting object to the robot, that it is acknowledged by the robot. (d) the object colour is used as a bias to initiate the
visual search until it finds one similar object. Correct acknowledgement of the task is demonstrated if the fixated object matches expectations.

bias towards red). Yellow objects also attract robot’s attention

due to proximity to red in colour space and their relatively

high intensity contrast. Figures 6(c), 6(d) and 6(e) show an

experiment using our simple model of “intelligence” to test

the attentional system. The robot performs an interesting and

coherent behaviour despite of the reactive underpinning of

the perception and action modules.

Finally, we evaluated reciprocal human-robot interaction

[38] by analysing the robot’s expected behaviour when faced

with different individuals. For each trial the interlocutor is

asked to pick up a red, yellow or blue object. The evaluation

scenario, which although relatively controlled is already

open-ended and challenging, can be characterised as follows:

(1) the system had no internal prior expectations, neither over

the objects nor the interlocutors; (2) interaction could occur

anywhere within 1 to 4 metres from the robot; (3) apart from

the general task, no other indication or scripting, spatial or

temporal, was given to the interlocutor.

Table I shows the number of times fixation behaviour

occurred as expected given the total of key fixation instants.

Expectations were considered to be met whenever the system

was deemed by visual assessment to be enacting the be-

haviours labelled in the top row of the table, in correct order.

A high percentage of success was found in engagement, vi-

sual search and acknowledgement. Conversely, a low success

rate was found in shifting gaze towards the interlocutor’s

FOA result mainly from the lack of gaze inference and gist

modulation. The low realization in VS at the “red" colour

is due to the similar response of the saliency to yellow (i.e.,

after biasing to “red", sometimes, the next selected object

was yellow).

TABLE I

ANALYSIS OF EXPECTED ROBOT BEHAVIOUR

Trial conditions Engage % Fixate Object % Visual Search % Acknowledge %

Red 76.81 34.30 42.15 65.10
Yellow 79.00 50.15 60.14 76.66
Blue 73.50 22.54 55.88 66.13

Total 76.44 35.66 52.72 69.30

VI. DISCUSSION

We have presented an overarching framework implement-

ing artificial attention, designed to fulfil the requirements of

social interaction (i.e. reciprocity and awareness), with strong

inspiration on current theories in functional neuroscience,

described in section II.

The emergence of an inkling of intelligent behaviour due

to the interconnection of multiple independent elements,

even in its current open-loop operation mode, has shown

the potential of the perception and action modules. The

top-down controller has been shown to operate as expected

under simulation, suggesting that, indeed, system behaviour

will be significantly improved when the perception and

action modules become ready to be modulated by top-down

influences. This will introduce meaningful repeatability, and

consequently the expectation of the interlocutor can be

effectively fulfilled. Moreover, we believe that the JASM and

the attentional schema offer exciting new insights on how

non-deterministic probability states machines that could give

the robot a more conceptual sense of adaptive behaviour and

even free will. Additionally, a great challenge is involved in

correctly learning the actual transition probabilities using hu-

man interaction data. In terms of the action module, although
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the FOA selection using a heuristic function seems to work

as expected, approaches such as decision-making methods

for autonomous agents perception and control [39], could

be interesting in order to maximize the obtained information

during visual search. Finally, we are currently designing an

experimental paradigm to use this system to evaluate the

influence of attention on HRI, the foundation of which is

based on the already published methodologies of [6], [40].
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