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Abstract: In many practical scenarios, image encryption has to be conducted prior to image compression. This has led 

to the problem of how to design a pair of image encryption and compression algorithms such that compressing the 

encrypted images can still be efficiently performed. In this paper, we design a highly efficient image encryption-then-

compression (ETC) system, where both lossless and lossy compressions are considered. The proposed image 

encryption scheme operated in the prediction error domain is shown to be able to provide a reasonably high level of 

security. We also demonstrate that an arithmetic coding-based approach can be exploited to efficiently compress the 

encrypted images. More notably, the proposed compression approach applied to encrypted images is only slightly 

worse, in terms of compression efficiency, than the state-of-the-art lossless/lossy image coders, which take original, 

unencrypted images as inputs. In contrast, most of the existing ETC solutions induce significant penalty on the 

compression efficiency. 
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I. INTRODUCTION 

    Consider an application scenario in which a content 

owner Alice wants to securely and efficiently transmit an 

image I to a recipient Bob, via an untrusted channel 

provider Charlie. Conventionally, this could be done as 
follows. Alice first compresses I into B, and then encrypts 

B into Ie using an encryption function EK (*), where K 

denotes the secret key, as illustrated in Fig. 1(a). The 

encrypted data Ie is then passed to Charlie, who simply 

forwards it to Bob. Upon receiving Ie, Bob sequentially 

performs decryption and decompression to get a 

reconstructed image Î. 

    Even though the above Compression-then-Encryption 

(CTE) paradigm meets the requirements in many secure 

transmission scenarios, the order of applying the 

compression and encryption needs to be reversed in some 
other situations. As the content owner, Alice is always 

interested in protecting the privacy of the image data 

through encryption. Nevertheless, Alice has no incentive 

to compress her data, and hence, will not use her limited 

computational resources to run a compression algorithm 

before encrypting the data. This is especially true when 

Alice uses a resource-deprived mobile device. In contrast, 

the channel provider Charlie has an overriding interest in 

compressing all the network traffic so as to maximize the 

network utilization. It is therefore much desired if the 

compression task can be delegated by Charlie, who 

typically has abundant computational resources. A big 
challenge within such Encryption-then-Compression 

(ETC) framework is that compression has to be conducted 

in the encrypted domain, as Charlie does not access to the 

secret key K. This type of ETC system is demonstrated in 

Fig. 1(b). The possibility of processing encrypted signals 

directly in the encrypted domain has been receiving 

increasing attention in recent years [2]–[6]. At the first 

glance, it seems to be infeasible for Charlie to compress 

the encrypted data, since no signal structure can be 

exploited to enable a traditional compressor. Although 

counter-intuitive, Johnson et. al showed that the stream  

 

cipher encrypted data is compressible through the use of 

coding with side information principles, without 

compromising either the compression efficiency or the 

information-theoretic security [7]. In addition to the 
theoretical findings, [7] also proposed practical algorithms 

to losslessly compress the encrypted binary images. 

Schonberg et. al later investigated the problem of 

compressing encrypted images when the underlying 

source statistics is unknown and the sources have memory 

[8], [9]. By applying LDPC codes in various bit-planes 

and exploiting the inter/intra correlation, Lazzeretti and 

Barni presented several methods for lossless compression 

of encrypted grayscale/color images [11]. Furthermore, 

Kumar and Makur applied the approach of [7] to the 

prediction error domain and achieved better lossless 
compression performance on the encrypted grayscale/color 

images [12]. Aided by rate-compatible punctured turbo 

codes, Liu et. al developed a progressive method to 

losslessly compress stream cipher encrypted 

grayscale/color images [13]. More recently, Klinc et al. 

extended Johnson‟s framework to the case of compressing 

block cipher encrypted data [10].  

    To achieve higher compression ratios, lossy 

compression of encrypted data was also studied [14]–[20]. 

Zhang et. Al proposed a scalable lossy coding framework 

of encrypted images via a multi-resolution construction 

[14]. In [15], a compressive sensing (CS) mechanism was 
utilized to compress encrypted images resulted from linear 

encryption. A modified basis pursuit algorithm can then be 

applied to estimate the original image from the 

compressed and encrypted data. Another CS-based 

approach for encrypting compressed images was reported 

in [16]. Furthermore, Zhang designed an image encryption 

scheme via pixel-domain permutation, and demonstrated 

that the encrypted file can be efficiently compressed by 

discarding the excessively rough and fine information of 

coefficients in the transform domain [17]. Recently, Zhang 

et. al suggested a new compression approach for encrypted 



ISSN (Online) 2321-2004 
ISSN (Print) 2321-5526 

 
        INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING 
                        Vol. 3, Issue 3, March 2015 

 

Copyright to IJIREEICE                    DOI  10.17148/IJIREEICE.2015.3321               99 

images through multi-layer decomposition [18]. 

Extensions to blind compression of encrypted videos were 

developed in [19], [20].  

 
       Fig. 1. (a) Traditional Compression-then-Encryption 

(CTE) system; 

(b) Encryption-then-Compression (ETC) system. 
    Despite extensive efforts in recent years, the existing 

ETC systems still fall significantly short in the 

compression performance, compared with the state-of-the-

art lossless/lossy image and video coders that require 

unencrypted inputs. The primary focus of this work is on 

the practical design of a pair of image encryption and 

compression schemes, in such a way that compressing the 

encrypted images is almost equally efficient as 

compressing their original, unencrypted counterparts. 

Meanwhile, reasonably high level of security needs to be 

ensured. If not otherwise specified, 8-bit grayscale images 
are assumed. Both lossless and lossy compression of 

encrypted images will be considered. Specifically, we 

propose a permutation-based image encryption approach 

conducted over the prediction error domain. A context-

adaptive arithmetic coding (AC) is then shown to be able 

to efficiently compress the encrypted data. Thanks to the 

nearly i.i.d property of the prediction error sequence, 

negligible compression penalty (< 0.1% coding loss for 

lossless case) will be introduced. Furthermore, due to the 

high sensitivity of prediction error sequence against 

disturbances, reasonably high level of security could be 

retained.  
    The rest of this paper is organized as follows. Section II 

gives the details of our proposed ETC system, where 

lossless compression is considered. Extension to the case 

of lossy compression is given in Section III. In Section IV, 

we present the security analysis and evaluation of the 

compression performance. Experimental results are 
reported in Section V to validate our findings. We 

conclude in Section VI. 

II. PROPOSED ETC SYSTEM 

    In this section, we present the details of the three key 

components in our proposed ETC system, namely, image 

encryption conducted by Alice, image compression 

conducted by Charlie, and the sequential decryption and 

decompression conducted by Bob. 

 
Fig. 2. Schematic diagram of image encryption 

 
A. Image Encryption Via Prediction Error Clustering 

and Random Permutation: 

    From the perspective of the whole ETC system, the 

design of the encryption algorithm should simultaneously 

consider the security and the ease of compressing the 

encrypted data. To this end, we propose an image 

encryption scheme operated over the prediction error 

domain. The schematic diagram of this image encryption 

method is depicted in Fig. 2. For each pixel Ii, j of the 

image I to be encrypted, a prediction Īi,j is first made by 

using an image predictor, e.g. GAP [21] or MED [22], 
according to its causal surroundings. In our work, the GAP 

is adopted due to its excellent de-correlation capability. 

The prediction result Īi,j can be further refined to Īi,j 

through a context-adaptive, feedback mechanism [21]. 

Consequently, the prediction error associated with Ii, j can 

be computed by 

 
Although for 8-bit images, the prediction error ei, j can 

potentially take any values in the range [−255, 255], it can 

be mapped into the range [0, 255], by considering the fact 

that the predicted value Īi,j is available at the decoder side. 
From (1), we know that ei, j must fall into the interval [−Ĩi,j 

, 255,- Ĩi,j ], which only contains 256 distinct values. More 

specifically, if   Ĩi,j ≤ 128, we rearrange the possible 

prediction errors each of which is sequentially mapped to a 

value between 0 to 255. If   Ĩi,j > 128, a similar mapping 

could be applied. Note that, in order to reverse the above 

mapping, the predicted value Ĩi,j  needs to be known. In the 

sequel, let us denote the mapped prediction error by ei,j , 

which takes values in the range [0, 255]. 

    Our proposed image encryption algorithm is performed 

over the domain of the mapped prediction error êi, j. 

Instead of treating all the prediction errors as a whole, we 
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divide the prediction errors into L clusters based on a 

context-adaptive approach. The subsequent randomization 

and compression will be shown to be benefited from this 
clustering operation. To this end, an error energy estimator 

originally proposed in [21] is used as an indicator of the 

image local activities. More specifically, for each pixel 

location (i, j ), the error energy estimator is defined by 

 
and ei−1, j is the prediction error at location (i − 1, j ). The 

design of the cluster should simultaneously consider the 

security and the ease of compressing the encrypted data. In 

an off-line training process, we collect a set of samples ( ê, 

Δ ) from appropriate training images. A dynamic 

programming technique can then be employed to get an 

optimal cluster in minimum entropy sense, i.e., choose 0 = 

q0 < q1 < . . . . < qL = ∞ such that the following 
conditional entropy measure is minimized 

 
Where H(・) is the 1-D entropy function taking logarithm 

in base 2. It can be seen that the term H( ˜e|qi ≤  Δ < qi+1) 

denotes the entropy of the prediction error sequence in the 

i th cluster, and hence, (4) becomes an approximation of 

the bit rate (in bpp) of representing all the prediction 

errors. Therefore, the cluster designed by minimizing (4) 

is expected to achieve optimal compression performance. 

Also, the selection of the parameter L needs to balance the 
security and the encryption complexity. Generally, larger 

L could potentially provide higher level of security 

because there are more possibilities for the attacker to 

figure out. However, it also incurs higher complexity of 

encryption. We heuristically find that L = 16 is an 

appropriate choice balancing the above two factors well. 

Note that the cluster configurations, i.e. the values of all qi 

, are publicly accessible. For each pixel location (i, j ), the 

corresponding cluster index k can be determined by 

 
The algorithmic procedure of performing the image 

encryption is then given as follows: 

Step 1: Compute all the mapped prediction errors  êi, j  of 

the whole image I. 
Step 2: Divide all the prediction errors into L clusters Ck , 

for 0 ≤ k ≤ L − 1, where k is determined by (5), and each 

Ck is formed by concatenating the mapped prediction 

errors in a raster-scan order. 

Step 3: Reshape the prediction errors in each Ck into a 2-D 

block having four columns and |Ck |/4 rows, where |Ck| 

denotes the number of prediction errors in Ck . 

Step 4: Perform two key-driven cyclical shift operations to 

each resulting prediction error block, and read out the data 

in raster-scan order to obtain the permuted cluster Ck .  

    Let CSk and RSk be the secret key vectors controlling 

the column and the row shift offsets for Ck . Here, CSk and 

RSk are obtained from the key stream generated by a 
stream cipher, which implies that the employed key 

vectors could be different, even for the same image 

encrypted at different sessions. The random permutation is 

also illustrated in Fig. 3 for an input sequence S = s1s2 . . . 

s16, where the numbers within the blocks denote the 

indexes of the elements of S. Before permutation, the first 

row becomes (1, 2, 3, 4), the second row becomes (5, 6, 7, 

8), etc. The column shifts are specified by a key vector CS 

= [2 3 0 1], with each column undergoing a downward 

cyclical shift in accordance with the key value associated 

with that column. The procedure is then repeated using 

another key vector RS = [1 3 1 2] for each of the rows. 
Note that such permutation operations can be realized via 

circular shifts, which are easily implemented in either 

hardware or software. 

 

 
Step 5: The assembler concatenates all the permuted 

clusters Ck, for 0 ≤ k ≤ L − 1, and generates the final 

encrypted image  

 
in which each prediction error is represented by 8 bits. As 

the number of prediction errors equals that of the pixels, 
the file size before and after the encryption preserves. 

Step 6: Pass Ie to Charlie, together with the length of each 

cluster |Ck |, for 0 ≤ k ≤ L − 2. The values of |Ck| 
enable Charlie to divide Ie into L clusters correctly. In 

comparison with the file size of the encrypted data, the 

overhead induced by sending the length |Ck | is 

negligible. 

B. Lossless Compression of Encrypted Image Via 

Adaptive AC: 

    The compression of the encrypted file Ie needs to be 

performed in the encrypted domain, as Charlie does not 
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have access to the secret key K. In Fig. 4, we show the 

diagram of lossless compression of Ie. Assisted by the side 

information |˜Ck |, for 0 ≤ k ≤ L−2, a de-assembler can 

be utilized to parse Ie into L segments ˜C0, ˜C1, . . . , ˜CL−

1 in the exactly same way as that done at the encryption 

stage. An adaptive AC is then employed to losslessly 

encode each prediction error sequence ˜Ck into a binary 

bit stream Bk . Note that the generation of all Bk can be 

carried out in a parallel manner to improve the throughput. 

Eventually, an assembler concatenates all Bk  to produce 

the final compressed and encrypted bit stream B, namely, 

 
Similar to the encryption stage, the length of Bk, i.e. |Bk |, 

for 0 ≤ k ≤ L−2, needs to be sent to Bob as side 
information. The compressibility of each ˜Ck relies on the 

fact that random permutation only changes the locations, 

while not the values of the prediction errors. This leads to 

the preservation of the probability mass function (PMF) of 

prediction error sequence, which drives the adaptive AC. 

The length of the resulting compressed bit stream can then 

be computed by 

 
Where |B| is measured by bits, and the second term 

denotes the overhead induced by sending the side 

information |Bk |, for   0 ≤ k ≤ L − 2. 

Remark: In predictive coding such as the benchmark 

codec CALIC [21], over 50% of the computations come 

from the entropy coding part, assuming that the adaptive 

AC is adopted. This implies that if Alice has to compress 

the prediction errors via adaptive AC, the computational 

burden will at least be doubled. 

C. Sequential Decryption and Decompression: 

    Upon receiving the compressed and encrypted bit 

stream B, Bob aims to recover the original image I . The 
schematic diagram demonstrating the procedure of 

sequential decryption and decompression is provided in 

Fig. 5. According to the side information |Bk |, Bob 

divides B into L segments Bk , for 0 ≤ k ≤ L − 1, each of 

which is associated with a cluster of prediction errors. For 

each Bk , an adaptive arithmetic decoding can be applied 

to obtain the corresponding permuted prediction error 

sequence ˜Ck . As Bob knows the secret key K, the 

corresponding de-permutation operation can be employed 

to get back the original Ck . 

 
Fig. 5. Schematic diagram of sequential decryption and 

decompression. 

With all the Ck , the decoding of the pixel values can be 

performed in a raster-scan order. For each location (i, j ), 

the associated error energy estimator Δi, j and the predicted 
value Ii, j can be calculated from the causal surroundings 

that have already been decoded. Given Δi, j , the 

corresponding cluster index k can be determined by using 

(5). The first ‘unused’ prediction error in the kth cluster is 

selected as ˜ei, j, which will be used to derive ei, j according 

to Ii, j and the mapping rule described in Section II-A. 

Afterwards, a „used‟ flag will be attached to the processed 

prediction error. The reconstructed pixel value can then be 

computed by 

 
As the predicted value Ii,j and the error energy estimator Δi, 

j  are both based on the causal surroundings, the decoder 

can get the exactly same prediction ˜ Ii, j . In addition, in 

the case of lossless compression, no distortion occurs on 

the prediction error ei, j , which implies ˆ Ii, j = Ii, j , i.e., 

error-free decoding is achieved. 

III.  EXTENSION TO LOSSY COMPRESSION 

    In this section, we discuss the extension of our 
framework to provide lossy compression of encrypted 

images. A seemingly straightforward solution to this end is 

to let Charlie perform uniform scalar quantization on each 

element of Ck, for 0 ≤ k ≤ L− 1, and then apply adaptive 

AC over quantized prediction errors. Unfortunately, this 

straightforward method leads to the undecodable problem, 

because the prediction ˜Ii, j is based on the original, 

unquantized surrounding pixels that are not available to 

the decoder side in the case of lossy compression. 

    To remedy this problem, quantization on prediction 

errors needs to be conducted by Alice. In other words, 
Alice has to be cooperative in order to gain the 

compression ratios. More specifically, after getting each 

prediction error ei, j via (1), Alice applies the following 

uniform scalar quantization on ei, j with a parameter τ 

 
where ẽi, j denotes the quantized version of ei, j . 

Meanwhile, Alice maintains a reconstruction 

 
which will be used to predict the subsequent pixels and 

establish the context models. In other words, the 

prediction and context modeling are now based on the 

causal reconstructed values Ii, j , rather than the original Ii, j 
. To achieve better compression performance, a similar 

mapping as that described in Section II-A will be 

conducted to narrow the range of ˇei, j . For simplicity, we 

still use ẽi,j to represent the mapped version of ˇei, j . In 

addition, the optimal cluster used to partition the error 

energy space needs to be re-designed in accordance to 

different τ . More specifically, for each τ , the training 

samples become (ẽ, Δ), where ẽ is the mapped version of ẽ 

quantized with parameter τ and Δ is calculated with the 

reconstructed surrounding pixels. A dynamic 

programming technique can be similarly employed to get 
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the optimal cluster 0= q0(τ )< q1(τ ) < ・ ・ ・ < qL(τ 

)=∞, where the cluster configurations now depend on τ . 

As in the lossless case, all the values of q0(τ ), q1(τ ), . . . , 

qL(τ ) are publicly accessible. The encrypted image is 

eventually constructed by concatenating the L clusters of 
quantized, permuted prediction error sequences, in a very 

similar fashion as that done in the lossless case. 

    Upon receiving the encrypted image, Charlie can 

retrieve the L clusters of quantized, permuted prediction 

errors. An adaptive AC can then be applied to encode the 

prediction errors in each cluster in a lossless way. Within 

the above framework of lossy compression of encrypted 

image, given fixed distortion, the lowest bit rate 

achievable R is determined by Alice through setting the 

quantization parameter τ. This is because the entropy of 

the prediction error sequences is fixed for given τ , which 
limits the lowest bit rate achievable. However, Charlie still 

enjoys the flexibility of adjusting the bit rate, which also 

depends on the compression algorithm applied, in addition 

to the parameter τ . For instance, Charlie may employ a 

non-adaptive Huffman coding to compress the prediction 

errors. Certainly, the resulting bit rate will be higher than 

that of the case when adaptive AC is used, while the 

complexity is lowered. In fact, Charlie may also select an 

even higher bit rate by compressing partial prediction 

errors and leaving the others in the uncompressed format, 

with even lowered complexity. Note that Charlie is not 
privileged to set a rate lower than R, because this results in 

lossy representation of the prediction error sequence. As 

will be discussed shortly in the next Section, tiny 

mismatch of the prediction error sequence still leads to 

severe degradation of the decoded image, causing it to be 

worthless. The ability of controlling the lowest achievable 

rate by the content owner may be treated as an 

advantageous feature of the proposed ETC scheme, since 

the quality of the decoded image at receiver side is 

guaranteed, though the manipulation of the encrypted data 

is completely andled by an untrusted party. In contrast, in 

many existing systems, e.g., [14] and [17], such guarantee 
cannot be offered, as Charlie can arbitrarily reduce the bit 

rate. Furthermore, in the case of lossy compression, the 

computational overhead at Alice‟s side will not be 

materially increased, as the uniform scalar quantization 

can be efficiently implemented. Noticing the fact that the 

dynamic programming operations for the optimal cluster 

design are performed completely off-line, the overall 

complexity of computation by Alice is not very high, and 

should be similar to that of some existing systems, e.g., 

[11] and [12], which are also operated over the prediction 

error domain. 

IV.  SECURITY AND PERFORMANCE ANALYSIS 

    In this section, we present the analysis regarding the 

security of the proposed permutation-based image 

encryption method and the efficiency of compressing the 

encrypted data. 

A. Security Analysis 

    Recall that the key stream controlling the random 

permutation of Ck is generated by using a stream cipher. 

This implies that the key stream could be different even 

for the same image encrypted at different sessions. Hence, 

the only attack model applicable to our proposed 

encryption scheme is the ciphertext-only attack [23], in 
which the attacker can only access the ciphertext and 

attempts to recover the original image.  

 
Fig. 6. (a) original Lena; (b) encrypted Lena;  

(c) original Baboon; (d)encrypted Baboon. 

    As the AC module is completely public and invertible, 

the attacker can obtain the encrypted image Ie, which is 

formed by concatenating L clusters of prediction error 
sequences. With Ie, the following statistical attack could 

be applied. As the length of each ˜Ck is publicly known, Ie 

can be straightforwardly partitioned into L segments ˜Ck, 

for 0 ≤ k ≤ L − 1. For each ˜Ck , the empirical probability 

mass function (EPMF) can be calculated 

 
where #i denotes the number of i in ˜Ck and i ∈ [0, 

255]. The following conditional entropy quantity obtained 

by averaging 

over L clusters can be used to measure the complexity of 

the input image 

 
where N is the number of pixels in I . Clearly, images with 

intensive fine details would result in bigger values of h, 

while images with large portion of smooth regions would 

give smaller values. In other words, some statistical 

information of the input image leaks. However, it should 

be noted that statistical information leakage is inevitable 

for any feasible ETC systems. The feasibility of 
compressing the encrypted image without secret key 

allows any attacker to apply the same compression 

strategy on the encrypted data, and the size of  the 

resulting file has already been a statistical indicator of the 

original image. For example, the Baboon image having 

more intensive statistical activities would lead to a larger 

file than Lena image. 

    Despite the statistical information leakage, it is 

practically intractable to figure out the permutation, due to 

the large number of distinct ways of performing the 

permutation. Specifically, the number of distinct ways of 
permutation for each Ck can be approximately calculated 

by 



ISSN (Online) 2321-2004 
ISSN (Print) 2321-5526 

 
        INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING 
                        Vol. 3, Issue 3, March 2015 

 

Copyright to IJIREEICE                    DOI  10.17148/IJIREEICE.2015.3321               103 

 
In practice, the number given by (14) is extremely large, 

precluding practical brute-force attack. For instance, the 

number of distinct ways of permuting the first cluster of 

Lena image is significantly larger than 2256. 

 
Fig. 7. Ten test images, each of which is assigned with an 

ID ranging from 1-10, in the raster-scan order.  

(a) Lena. (b) Peppers. (c) Goldhill. (d) Boat.(e) Man. (f) 

Harbor. (g) Airplane. (h) Barbara. (i) Bridge. (j) Tank. 

 
Fig. 8. Reconstruction results of directly decoding the 

compressed and encrypted images. 

    Alternatively, the attacker may attempt to decode the 

encrypted file Ie directly. For correct decoding of Ii, j , the 

attacker needs to get both the prediction error ẽi, j and the 

associated predicted value ˜Ii, j . One way of guessing ẽi, j 

is to first estimate the cluster index k according to the 

decoded neighboring pixels, and then select one element 

from ˜Ck. Recall that the cluster index is determined 

according to the error energy estimator Δi, j calculated by 

using the casual surrounding pixels. This implies that the  

 
Fig. 9. Decoding performance of the case by assuming that 

bounded errors  

only occur in the prediction errors of the first two rows. 

 

 
casual pixels have to be correctly decoded, and any 

previous decoding error may cause error propagation, 

influencing the correct determination of the cluster index 
k. Furthermore, the accurate estimation of the predicted 

value ˜ Ii, j also depends on the correct reconstruction of 

the casual surrounding pixels. In this sense, the error 

propagation effect inherent in predictive coding helps 

improve security. Even if k can somehow be correctly 

estimated, the attacker still needs to decide the value of ẽi, j 

within ˜Ck . As the distribution of the prediction errors is 

peaked at zero, the optimal estimation of  ẽi, j in maximum 

likelihood (ML) sense is then zero. Unfortunately, setting 

all ẽi,j = 0 does not lead to a semantically meaningful 

image. Another way of recovering the original image is to 

explicitly explore the spatial correlation of natural images 
when estimating the prediction errors. Suppose the 

attacker can somehow correctly estimate all the pixels up 

to Ii, j . Certainly, the prediction ˜ Ii, j+1 and the cluster index 

k for the pixel location (i, j + 1) can be perfectly known, as 

all the casual surroundings are decoded without error. The 

attacker then needs to select one prediction error from the 

kth cluster. Due to the spatial correlation, if the selected 

˜ei, j+1 makes the reconstruction ˆ Ii, j+1 deviate too much 

from Ii, j, the attacker has high confidence to reject this 

selection. In other words, the spatial correlation helps the 

attacker narrow the set where the true prediction errors lie 
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in. To evaluate the feasibility and efficiency of this type of 

attack strategy, we actually consider a more general 

scenario, which is more advantageous for the 
attacker. It is now assumed that the attacker can perfectly 

estimate 99% of the prediction errors for the first two 

rows. We further assume that the estimation error is 

bounded by a small integer constant €, namely, | ˆei, j − ˜ei, 

j| ≤ €, for all (i, j ) in the first two rows, where ˆei, j 

denotes the estimation of ˜ei, j . All the other prediction 

errors in the remaining rows are assumed to be perfectly 

available. The above assumption, though impractical, 

offers us an opportunity to get an upper bound of the 

reconstruction performance that the attacker can achieve. 

As will be experimentally verified in the next Section, the 

PSNR values of the reconstructed images are still too low 
(around 10 dB), even under such favorable conditions. 

Therefore, the proposed permutation-based image 

encryption approach is still practically useful in those 

scenarios where perfect secrecy is not required. 

B. Compression Performance 

    As a well-known fact, image predictors, e.g., GAP [21] 

and MED [22], have strong de-correlation capability, thus 

making the prediction error sequence nearly i.i.d. In other 

words, only small amount of inter-dependence exists in the 

prediction error sequence. Compared with the traditional 

predictive coding system in which the compression is 
conducted over the original, unpermuted prediction error 

sequences, the compression task of Charlie has to be 

performed over the permuted ones. From the perspective 

of information theory, a sequence with inter-dependence, 

which is caused by redundancy, is more compressible than 

its i.i.d counterpart. As the permutation operations in the 

prediction error domain destroy the inter-dependence, the 

resulting ˜Ck is less compressible than its original, 

unpermuted version Ck . Fortunately, the inter-dependence 

left in each Ck is rather limited, thanks to the superior de-

correlation capability of image predictors. Hence, it is 

intuitively expected and will be verified by our 
experiments that the coding penalty caused by prediction 

error permutation is very small. 

V. EXPERIMENTAL RESULTS 

    In this section, the security of our proposed image 

encryption and the compression performance on the 

encrypted data are evaluated experimentally. Fig. 6 

illustrates the Lena and Baboon images, together with their 

encrypted versions, from which we can see that our 

encryption approach is effective in destroying the semantic 

meaning of the images. In addition, it can be observed that 

the encrypted Baboon image looks „brighter‟ than the 
encrypted Lena image. This is because the Baboon image 

contains large portion of texture regions that are difficult 

to compress, resulting in more large-valued prediction 

errors. 

    We implement the attack strategy of directly decoding 

the encrypted file Ie, as described in Section IV-A. Ten 

images of size 512 × 512 shown in Fig. 7 are used as the 

test set. In Fig. 8, we give the PSNR results of the 

reconstructed images, where x-axis represents the image 

ID. It can be observed that all the PSNR values are around 

10 dB, which is too low to convey any useful semantic 

information. We also evaluate the reconstruction 

performance under the assumption that the bounded errors 
only occur in the prediction errors of the first two rows, 

while all the remaining ones are perfectly known. Here the 

estimation error bound ε is set to be 5. Fig. 9 illustrates the 

PSNR values of the reconstructed images, where each 

point is the averaged result of 10 realizations. It can be 

seen that, even under such favorable conditions, the 

attacker still cannot obtain any useful visual information 

of the source images, because all the PSNR values are too 

low (around 10 dB). 

    In Table I, the compression efficiency of our proposed 

method applied to the encrypted images is compared with 

the lossless rates given by the latest version of CALIC, a 
benchmark of practically good lossless image codecs, and 

the method in [13], a state-of-the-art lossless compression 

approach on encrypted images. The test set is composed of 

100 images with various characteristics, 10 of which are 

shown in Fig. 7. Here „B‟ and „bpp‟ denote bytes and bit 

per pixel, respectively. In the rightmost two columns, Sc 

and S[13] stand for the bit rate saving of our proposed 

method over the CALIC and the method in [13], 

respectively. All the results of the proposed method are 

obtained by averaging over 10 random trials. The last row 

gives the averaged results over the 100 images in the test 
set. It can be seen that the coding penalty incurred by our 

method is consistently lower than 0.1% when comparing 

with the results of the CALIC. Meanwhile, the bit rate 

saving over the method in [13] can be up to 36.3%, which 

is achieved by the image Airplane. The lossy compression 

performance of the proposed method for different 

quantization parameters τ = 1, τ = 3, τ = 5, and τ = 7 is 

presented in Table II through V. The results of the near-

lossless version of the CALIC (CALIC, in abbreviation) 

are also tabulated in these tables for comparison purpose. 

It can be observed that the coding penalty of our proposed 

method is less than 2%, compared with the CALIC. In 
addition, for fixed τ , both methods give the same PSNR 

values, as the distortion only depends on the prediction 

approach and the quantization strategy. We also notice that 

the coding penalty tends to increase for larger τ . Due to 

the employment of the uniform scalar quantizer, the l∞ 

bound associated with the reconstructed image ‖I − Î‖∞ = τ 

still holds. This implies that further PSNR improvement 

can be retained by using our recently proposed soft 

decoding technique [24], at the cost of doubled _∞ bound. 

For simplicity, the results are omitted here. 

    In Fig. 10, we also compare the rate-PSNR performance 
of our compression method with JPEG 2000 and the 

method in [14]. For bit rates above 2 bpp, our method 

achieves even higher PSNR values than JPEG 2000. The 

gain in PSNR over JPEG 2000 can be significant for high 

bit rates. For instance, for the image Lena, the gain is more 

than 2 dB. As bit rate drops, the PSNR gain over JPEG 

2000 decreases. When the bit rate is below 2 bpp, the 

PSNR gain over JPEG 2000 diminishes and starts to 

become negative. It can also be seen that the PSNR gain of 

our method over the one in [14] is quite remarkable. When 

the bit rate is around 2.50 bpp, the PSNR gain can be over 
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10 dB for the Lena image. We also notice that the method 

of [14] seems to suffer from the problem of performance 

saturation for images with intensive activities such as 
Harbor, Barbara, and Bridge.  

 
Fig. 10. Comparison of the rate-PSNR performance. 

 
    The rate-distortion behavior of our proposed scheme is 

mainly due to the nature of the coding structure, which 

essentially is a predictive coding. As a well-known fact, 

predictive coding always outperforms transform coding, 

not just JPEG 2000, as bit rate gets sufficiently high. This 
is because for high rate, bits will be allocated to code 

small high frequency coefficients in transform domain, 

and hence, the energy packing advantage of transform 

coding will be lost. When bit rate reduces, these small 

high frequency coefficients in transform domain will be 

quantized to zero, which can be very efficiently coded, 

making the energy packing advantage of transform coding 

apparent. For predictive coding, however, the quantizer is 

necessarily embedded in the prediction loop and this 

causes quantization errors to propagate. Error propagation 

occurs because future predictions are based on previously 
reconstructed values that are contaminated by quantization 

errors, resulting in prediction biases. Biased predictions 

can in turn generate even greater prediction errors, and so 

forth. The adverse effect of quantization error propagation 

becomes more complex if context-adaptive prediction is 

performed, in which case quantization errors would affect 

not only prediction but also context formation. 

VI.  CONCLUSION 

    In this paper, we have designed an efficient image 

Encryption-then-Compression (ETC) system. Within the 

proposed framework, the image encryption has been 

achieved via prediction error clustering and random 
permutation. Highly efficient compression of the 

encrypted data has then been realized by a context-

adaptive arithmetic coding approach. Both theoretical and 

experimental results have shown that reasonably high level 

of security has been retained. More notably, the coding 

efficiency of our proposed compression method on 

encrypted images is very close to that of the state of-the-

art lossless/lossy image codecs, which receive original, 

unencrypted images as inputs. 
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