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Abstract. Spoken dialogue systemperformance canvary widely fordifferentusers, aswell for the
sameuser during different dialogues.This paper presents the design and evaluation ofan adaptive
version of TOOT, a spoken dialogue system for retrieving online train schedules. Based on rules
learned from a set of training dialogues, adaptive TOOT constructs a user model representing
whether the user is having speech recognition problems as a particular dialogue progresses.
Adaptive TOOT then automatically adapts its dialogue strategies based on this dynamically
changing user model. An empirical evaluation of the system demonstrates the utility of the
approach.
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1. Introduction

Most spoken dialogue systems do not try to improve performance by dynamically
adapting the system’s dialogue behaviors to an individual user during the course
of a particular dialogue. But the performance of a spoken dialogue system can vary
signi¢cantly for different users and even for the same user across dialogues. This
paper presents the design and experimental evaluation of a spoken dialogue system
that applies learned rules for modeling whether a user is having speech recognition
problems, and adapts its dialogue behaviors accordingly.
Figures 1 and 2 show two example dialogues with an adaptive version of TOOT, a

spoken dialogue system for retrieving train schedules from the web.1 In Figure 1,
TOOT successfully acquires all of the information that it needs from the user within
just one interaction. In Figure 2, however, the same system takes much longer to
obtain the same information from a different user, due to repeated automatic speech
recognition (ASR) errors (U1, U4, U5, U7).2 Thus, TOOT’s initial con¢guration of

1 These examples are taken from the experimental corpus described below.
2 The last column showsASRconfidence, as explainedbelow.Note that theASRinterpretation

(‘ASR’) is only shown for misrecognitions.
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dialogue strategies (user initiative and no con¢rmation, as will be detailed below)
seems well matched to the user in Figure 1 but poorly matched to the user in
Figure 2. In fact, the second dialogue only starts to make real progress after TOOT
(twice) adapts its behavior to use more conservative dialogue strategies. After
the ¢rst adaptation, TOOT starts to preface its utterances with ‘I heard you say’
(S5, S8), in order to implicitly con¢rm the most recent ASR hypothesis. When this
adaptation still doesn’t seem to help the user, the system takes the initiative by asking
the user a series of directed questions (e.g., S9, S11, S13, S15), and asking the user to
explicitly con¢rm each ASR hypothesis (e.g., S10, S12, S14, S16). After this second
adaptation, the ASR misrecognitions are ¢nally eliminated and the dialogue is
successfully completed. Examples such as these suggest that it will be dif¢cult to
de¢ne a single ‘best’ initial dialogue con¢guration for all users in all situations,
and that a system should also be able to dynamically adapt its initial
dialogue strategies.
In previous research, we demonstrated that the use of an adaptable spoken

dialogue system can indeed increase system performance (Litman and Pan, 1999).
We developed an adaptable version of TOOT, where users were given instructions
on how to use voice commands to change TOOT’s dialogue strategies at any points
in a dialogue. Results from an empirical evaluation showed that an adaptable
version of TOOT outperformed a non-adaptable version. Unfortunately, a
user-controlled adaptation system is not ideal for many applications, as it requires
an initial (although minimal) training session for users.

Figure 1. A dialogue where the system does not adapt.
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Figure 2. A dialogue where the same system adapts twice, based on user modeling.
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Thus, a natural extension of this approach is to design an adaptive spoken dialogue
system, where the system rather than the user automatically controls the adaptation
process. Recently, several machine learning approaches have been developed for
detecting problematic dialogue situations with users that might warrant global
dialogue strategy changes (Litman et al., 1999; Walker et al., 2000a). To date,
however, none of these algorithms for constructing a model of whether a user’s inter-
action is problematic have actually been used to trigger an automatic adaptation
process.
In this paper we show how to combine the above lines of research, by building an

adaptive spoken dialogue system based on a learned model of whether a user’s inter-
action with the system is problematic, and empirically evaluating its utility. We ¢rst
present the design of adaptive TOOT, which uses empirically learned rules to auto-
matically infer and react to a model of user ASR problems in an online manner.
We then present the design of an experiment which compares the performance
of adaptive TOOT to a comparable non-adaptive version. The results of our
experimental evaluation show that by adapting the dialogue strategies of TOOT
based on a user model regarding repeated ASR misrecognitions, we signi¢cantly
improve the task success rate. We also quantify the relative importance of multiple
evaluation measures to performance.

2. An Adaptive Spoken Dialogue System

We have developed both adaptive and non-adaptive versions of TOOT, a
voice-enabled dialogue system for accessing train schedules from the web via a
telephone conversation. TOOT is implemented using a spoken dialogue system
platform that combines automatic speech recognition (ASR), text-to-speech
synthesis (TTS), a phone interface, and modules for specifying a dialogue manager
and application functions (Kamm et al., 1997). ASR in our platform is
speaker-independent, grammar-based and supports barge-in (which allows users
to interrupt the system). The dialogue manager uses a ¢nite state machine to control
the interaction, based on the current system state and ASR results. The TOOT
dialogue manager consists of 168 states, each of which is associated with one of
12 different grammars; these grammars specify the ASR language model at that
point in the dialogue.
This section details our methodology for designing an adaptation component for

use within the dialogue manager of the adaptive version of TOOT. First, we de¢ne
the types of dialogue strategy choices that are allowed in TOOT. Second, we
illustrate how we instantiate (Litman et al., 1999) in order to learn a problematic
dialogue classi¢er from previous dialogues with TOOT, thus providing our user
model with a strong empirical basis. Third, we describe the adaptation algorithm
that we have developed which uses the learned user modeling component to predict
and react to repeated ASR misrecognitions. Finally, we illustrate how our adap-
tation algorithm generates the dialogue behavior shown in Figure 2
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2.1. DIALOGUE STRATEGIES FOR INITIATIVE AND CONFIRMATION

We allow TOOT to use one of three possible initiative dialogue strategies (‘system’,
‘mixed’ or ‘user’) and one of three con¢rmation strategies (‘explicit’, ‘implicit’,
or ‘no’), at any point in a dialogue. The initiative strategy speci¢es who has control
of the dialogue, while the con¢rmation strategy speci¢es how and whether the system
lets the user know what it just understood.3

Consider the use of user initiative with no con¢rmation, the initial dialogue con-
¢guration used in Figures 1 and 2. This approach is the most natural approach
in human^human conversation, and is feasible for human^machine conversations
when the user knows what can be said at any points of a dialogue, and the system
has good recognition performance for the user. By allowing users to specify any
number of attributes in a single utterance and by not informing users of every poten-
tial misrecognition, this approach can lead to very short and effective dialogues, as in
Figure 1.
In contrast, consider the use of system initiative with explicit con¢rmation, our

most conservative parameterization of dialogue strategies. Although this con¢gur-
ation is cumbersome and typically increases total dialogue length (Walker et al.,
1998a; Danieli and Gerbino, 1995), it is sometimes effective as in the third portion
of Figure 2. Giving the system the initiative about what to ask for next helps to
reduce ASR misrecognitions (Walker et al., 1998a), by helping to keep the user’s
utterances within the system’s vocabulary and grammar. The use of explicit con¢r-
mation also helps increase the user’s task success (Danieli and Gerbino, 1995),
by making it easy for users to correct misrecognitions when they do occur.
A middle setting of dialogue strategies is illustrated in the second portion of

Figure 2, where TOOT uses mixed initiative with implicit con¢rmation. In contrast
to no con¢rmation, implicit con¢rmation makes the user aware of ASR errors;
in contrast to explicit con¢rmation, it is more dif¢cult for users to correct ASR errors
after an implicit con¢rmation (Krahmer et al., 1999). In mixed but not system
initiative mode, the system can ask both speci¢c questions and open-ended questions
(e.g. ‘How may I help you?’). However, in user but not in mixed initiative mode, the
system will let the user ignore the speci¢c questions (e.g., after the prompt ‘On which
day of the week do you want to leave?’, the user can say ‘I want a train at 8:00.’)
In the non-adaptive version of TOOT, the initiative and con¢rmation strategies

are speci¢ed once at the beginning of a dialogue, and cannot be changed until
the next dialogue. To allow TOOT to dynamically change its strategies within a
dialogue, we have augmented the non-adaptive version with a new adaptation
component. Whenever the adaptation component predicts that the user is having
repeated ASR problems during the course of a dialogue, the system changes to
a more conservative setting of dialogue strategies.

3 All other dialogue strategies (e.g. the response strategy for presenting the results of the web
query) are fixed in advance, to control the factors in the experimental evaluation described below.
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2.2. MODELING PROBLEMATIC USER DIALOGUES: A MACHINE LEARNING APPROACH

One major functionality of the new adaptation component is that it needs to model
whether a user is having problems during a dialogue, in order to trigger the dialogue
strategy adaptations. Previous evaluations of a variety of spoken dialogue systems
have suggested that ASR accuracy is one of the most signi¢cant predictors of
dialogue system performance (Walker et al., 1998a; Litman and Pan, 1999), and
that it is possible to improve ASR accuracy by changing dialogue strategies (Walker
et al., 1997a). In our work,we have thus chosen to use poor ASR performance as our
adaptation criterion. Following (Litman et al., 1999), we employ a machine learning
approach to automatically derive rules for classifying a dialogue as problematic with
respect to ASR. Given a set of features that can be automatically monitored during
the course of a dialogue, our approach allows us to learn from training data which
subset of features to incorporate into the user model, and rules for predicting
problematic ASR based on these features.
Our corpus consists of 120 dialogues collected from previous experiments with

TOOT (Litman and Pan, 1999). The dialogues illustrate many different dialogue
strategy con¢gurations, and were collected in interactions with novice users
(undergraduate and graduate students). Prior to the current research, each utterance
in our corpus was labeled for semantic accuracy, by listening to the recordings and
comparing them to the logged ASR results. For example, if the user said ‘I want
to go to Baltimore on Saturday at ten o’clock’ but the result of ASR was ‘Go
to Boston on Saturday’, the semantic accuracy score for this turn would be 0.33.
Furthermore, when the semantic accuracy score was less than 1, i.e. when ASR
did not correctly capture the task-related information, the utterance was also labeled
as a semantic misrecognition (e.g., the example just given, and also U1, U4, U5, and
U7 in Figure 2). Note that since the labeling is semantically based, if U9 had been
recognized as ‘New York’ then it still would have been labeled as a correct
recognition. Also note that although the labeling was done manually, it was based
on objective criteria.4

We ¢rst classify each dialogue in our corpus as ‘good’ or ‘bad’ with respect to ASR
performance, by thresholding on the percentage of user utterances that were pre-
viously labeled as semantic misrecognitions. Following (Litman et al., 1999), our
threshold for percentage of semantic misrecognitions in a dialogue is set to 11%,
yielding 45 good dialogues and 75 bad dialogues.5 For example, the dialogue in
Figure 2 would have been classi¢ed as ‘good’ because there were no misrecognitions,

4 While word accuracy would have been another way of evaluating ASR success, semantic ac-
curacy is a more appropriate measure for dialogue adaptation, because it does not penalize for
word errors that are unimportant to overall utterance interpretation.
5 A threshold of11% was used in (Litman et al., 1999) because it roughly balance the classes in

their corpus, which consisted of data fromTOOTand two other spoken dialogue systems. 11%
was also consistent with a threshold inferred from human judgements (Litman,1998). Note, how-
ever, that this same threshold yields a less balanced class distribution for our current corpus.

116 DIANE J. LITMAN AND SHIMEI PAN



while the portion of the dialogue in Figure 2 would have been classi¢ed as ‘bad’
because 24% (4 out of 17) of the user utterances were misrecognitions.
We also extract a set of prediction features that represent high-level properties of

the dialogue history, and that are automatically computable from the system log
¢les generated for each dialogue. Again following (Litman et al., 1999), we computed
a set of 23 features that characterized dialogues along ¢ve dimensions: acoustic con-
¢dence, dialogue ef¢ciency (e.g. number of system and user turns), dialogue quality
or naturalness (e.g. number of user requests for help), experimental parameters (e.g.
initial dialogue strategy con¢guration), and lexical (e.g. lexical items in ASR output).
However, since (as will be seen below) our best learned rule set uses only a single
acoustic feature, only that feature is detailed here.
As shown in the last column of Figure 2, one source of acoustic information

directly available in the system log is a per-utterance log-likelihood score from ASR,
representing its ‘con¢dence’ in its interpretation of the user’s utterance (Zeljkovic,
1996). These acoustic con¢dence measures are typically used to decide whether
the system believes it has correctly understood the user’s utterance. In our
implementation, when the con¢dence score falls below a prede¢ned threshold for
each dialogue state, TOOT generates a rejection utterance such as ‘Sorry, I can’t
understand you. Please repeat your answer.’
Unfortunately, the use of these con¢dence scores is not trivial, so the rejection

process often either rejects correctly recognized utterances, or does not reject
misrecognitions. On the one hand, there is no simple one-to-one mapping between
low con¢dence scores and incorrect recognitions, and the setting of a rejection
threshold is thus a matter of trial and error (Bouwman et al., 1999). On the other
hand, the presence of word errors should not necessarily lead to a rejection, since
some incorrect word recognitions do not necessarily lead to misrecognition at
the semantic level that we are concerned with. The TOOT thresholds were set such
that TOOT tended to incorrectly recognize utterances rather than incorrectly reject
them, hence the need to detect when the user is experiencing a high level of
misrecognitions.
To predict this type of situation, four versions of a feature called

predictedMisrecs% (predicted percentage of misrecognized utterances) were derived
from the utterance con¢dence scores as follows. First, a threshold (independent of
dialogue state) was used to predict whether each non-rejected utterance in the
dialogue was a misrecognition; thresholds used for the four versions of the feature
were �2;�3;�4;�5, and were chosen by hand from the entire dataset to be
informative. The four thresholds represent different (coarse) approximations to
the distribution of log-likelihood scores in the dialogue. Note that unlike the con-
¢dence score thresholds, the predictedMisrecs% thresholds are used to predict
misrecognition rather than rejection, and are ¢xed across all dialogues rather than
being dependent on system state. The version of the feature learned in the results
described below uses a threshold of �4, and thus predicts that if a non-rejected
utterance has a con¢dence score below �4 then it is a misrecognition. Second,the
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percentage of user utterances in the dialogue that corresponded to these predicted
misrecognitions was computed. (Recall that our dialogue classi¢cations were deter-
mined by thresholding on the percentage of manually labeled actual
misrecognitions.) Thus for the excerpt in Figure 1, utterances U1, U4, and U7 would
(correctly) be predicted as misrecognitions, and predictedMisrecs% would thus be
18% (3 out of 17 utterances). Note that U5 is (incorrectly) predicted to be a correct
recognition.
Finally, once each dialogue in our corpus is represented in terms of its features and

class value, we employ the machine learning program RIPPER (Cohen, 1996) to auto-
matically learn a poor ASR classi¢cation model from the training data. The classi-
¢cation model can be used to predict the class of future examples from their
features, and is expressed as an ordered set of if-then rules. The best learned dialogue
classi¢er for our data uses only the single feature predictedMisrecs%:

if (predictedMisrecs% > 3%) then ‘bad’
default is ‘good’

The ¢rst rule says that if the percentage of user utterances that are predicted to be
misrecognitions (using a con¢dence score threshold of �4) is greater than 3%, then
classify the dialogue as ‘bad’. The second rule says otherwise, classify the dialogue
as ‘good’.6

To evaluate our user modeling component’s accuracy, the error rate of the learned
ruleset is estimated using the resampling method of cross-validation (Weiss and
Kulikowski, 1999). In 10-fold cross-validation, the total set of examples is randomly
divided into 10 disjoint test sets, and 10 runs of the learning program are performed.
Thus, each run uses the examples not in the test set for training and the remaining
examples for testing. An estimated error rate is obtained by averaging the error rate
on the testing portion of the data from each of the 10 runs. Based on the results of
10-fold cross validation, our learned rule set successfully classi¢es almost 80% of
the dialogues in our corpus.This performance is better than a majority-class baseline
(classify all dialogues as ‘bad’) of 62%. The next section describes how we use this
classi¢cation model in our adaptation component.

2.3. PREDICTING AND REACTING TO ASR PROBLEMS ONLINE

Intuitively, the automatic adaptation component regularly monitors the conver-
sation with respect to the features in the learned rule set, and adapts to a more con-
servative dialogue strategy whenever the rules predict that the user is having
repeated ASR problems. The top portion of Figure 3 provides a pseudo-code sketch
of the general adaptation algorithm, while the lower portion shows how we

6 While in this experiment RIPPER learned only a single if-then rule and used only a single fea-
ture, when the same data was combined with data from two other spoken dialogue systems
(Litman et al., 1999), RIPPER learned 5 rules and used 7 of the 23 features.
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instantiate the system-dependent components of the algorithm for our experiments.
In particular, the values of AdaptFreq, Ruleset, and CurStrat, as well as the algo-
rithm for MakeConservative(CurStrat), are speci¢ed at system initialization
and represent parameters that potentially can be tuned to improve the performance
of the algorithm.
The system ¢rst checks the classi¢cation model Ruleset after the number of user

utterances speci¢ed by AdaptFreq. In our implementation, Ruleset corresponds

Figure 3. Adaptation algorithm.
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to the learned classi¢cation model described above, and AdaptFreq is set to 4 because
humans took approximately 4 utterances on average to initiate adaptation in
(Litman and Pan, 1999). Given our learned classi¢cation model, this means that
the system will adapt if it detects at least one misrecognition in this window of
4. Note that although our rules were learned by analyzing full dialogues, our adap-
tation algorithm starts applying the rules after only 4 utterances.7

Since in general there is more than one rule in a classi¢cation model,
CheckRuleset(Ruleset) sequentially checks the precondition of each rule until
it ¢nds the ¢rst rule that is applicable. (Recall that rules in RIPPER are ordered. Thus
if multiple if-then rules are applicable, the ¢rst rule in the ordering determines the
class; if no if-then rules are applicable, the default rule is used.) When the ¢rst appli-
cable rule is found, if the rule also classi¢es the dialogue as ‘bad’, dialogue strategy
adaptation will be triggered before processing the next user utterance. Otherwise,
no adaptation is performed.
Speci¢cally, in order to test the precondition of a rule, CheckPre(R) parses the

system log ¢le in order to compute the value for each prediction feature presented
in the classi¢cation rule. Note that each time the features are computed, the system
uses only the portion of the log ¢le since the last adaptation (i.e. from the beginning
of the dialogue only if there have been no adaptations), because only this part
of the dialogue re£ects the appropriateness of the current dialogue strategy. If
the precondition of the rule is true when it is instantiated with the computed values
CheckPre(R) == ‘‘TRUE’’ and the rule gets ¢red; then, if the ¢red rule classi¢es
the current dialogue status as ‘‘bad’’, AdaptStrategy(CurStrat) is activated
to change the value of the current dialogue strategy (CurStrat) to a more con-
servative one. Once a rule has been ¢red and the dialogue classi¢ed (and the strategy
possibly adapted, depending on the value of the right hand side of the rule), the
system continues the monitoring process as the dialogue progresses.
In our speci¢c instantiation of the algorithm, only one feature is employed in the

classi¢cation model (predictedMisrecs%). First, the system parses the log ¢le to
extract the ASR con¢dence score for each user utterance since the last adaptation.
Following the de¢nition of predictedMisrecs%, the system tests whether each con-
¢dence score is less than�4:0, and if so, categorizes the corresponding user utterance
as a predicted misrecognition. Then it computes, among all the user utterances con-
sidered, the percentage of user utterances just predicted to be misrecognitions. Once
predictedMisrecs% is calculated, CheckPre(R) checks whether this value is greater
than 3% (the precondition of the ¢rst rule in Ruleset). If so, since the portion of the
dialogue since the last adaptation is classi¢ed as ‘bad’ (RightHandSide(R)==‘bad’),

7 Althoughwe have not investigated the impact this change would have made to the classifica-
tion accuracy results described above, using only the first two utterances rather than the full dia-
logue to predict problematic dialogues in the experiments of (Walker et al., 2000a) onlydegraded
classification acucracy from 87% to 80%. However, it should be noted that (Walker et al., 2000a)
classified dialogues as problematic with respect to task success, while our definition of proble-
matic was based on ASRmisrecognition.
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AdaptStrategy(CurStrat) is called. Note that AdaptStrategy(CurStrat) is not
called when the if-then rule is not applicable, since the next and last rule will classify
the dialogue as ‘good’ by default. AdaptStrategy(CurStrat) in turn calls the simple
version of MakeConservative(CurStrat) shown in Figure 3, which changes user
initiative to mixed initiative and mixed initiative to system initiative. Similarly,
no con¢rmation is always changed to implicit con¢rmation and implicit con¢r-
mation to explicit con¢rmation. Note that when the current dialogue strategy is
already the most conservative one (system initiative and explicit con¢rmation),
no further changes are possible.

2.4. EXAMPLE

We now detail how the dialogue strategy adaptations in Figure 2 are automatically
generated using the adaptation algorithm in Figure 3. In our experiments, TOOT
is always initialized with the dialogue strategy con¢guration user initiative with
no con¢rmation, because these are the most ‘natural’ initiative and con¢rmation
strategies in human^human conversation, and this con¢guration was shown to ben-
e¢t most from user-controlled adaptation (Litman and Pan, 1999).
Because of the user initiative setting, TOOT begins the dialogue in Figure 2 with

the open question ‘How may I help you?’ The user’s response U1 is then
misrecognized by ASR. Because of the no con¢rmation setting, TOOT does not
con¢rm its interpretation of U1 but instead asks the user for a new piece of infor-
mation (S2). The user thus doesn’t realize the misrecognition until S3, when TOOT
asks the user if it should query the web database. (Since this query is an expensive
operation, TOOT always tells the user the values that will be used for the query
^ independently of the con¢rmation strategy.) Since the user now realizes that there
was an earlier misrecognition, the user tells TOOT not to query the web (U3).
In turn, this causes TOOT to again try to get the information it needs from the
user (S4). Since the adaptation frequency is initialized to 4 (AdaptFreq in
Figure 3), TOOT does nothing with respect to adaptation from U1^U3.
After U4, however, for the ¢rst time TOOT checks whether the current dialogue

history satis¢es the precondition of the adaptation condition, namely the ¢rst rule
in Ruleset in Figure 3. First, TOOT calculates the value of predictedMisrecs%
for the dialogue segment U1^U4. Because the ASR con¢dence scores for U1 and U4
are less than the threshold of �4:0, predictedMisrecs% is 50%. As a result, the
adaptation rule is ¢red, the dialogue is classi¢ed as ‘bad’ and TOOT adapted to
a more conservative con¢guration of dialogue strategies (mixed initiative with
implicit con¢rmation, following MakeConservative in Figure 3).
After the ¢rst adaptation, the dialogue still doesn’t go very well, as TOOT

misrecognizes U5 and U7. After U8 (4 turns since the last CurStrat assignment),
TOOT checks the classi¢cation model for the second time, but only with respect
to these last 4 turns. That is because U5^U8 is the only portion of the dialogue
obtained using the current strategies. Since the ASR con¢dence score for U7 is less
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than �4:0, predictedMisrecs% for the new dialogue segment is 25%. This value
triggers another adaptation, this time to the most conservative con¢guration in
our implementation (system initiative with explicit con¢rmation).
After this second adaptation, TOOT next checks the adaptation condition after

U12 (for the dialogue history U9^U12). This time the predicted misrecognition per-
cent is 0, so the default rule is applicable and no adaptation is triggered. (Given
our simple MakeConservative algorithm, even if a third adaptation had been tri-
ggered, there would have been no more conservative strategies to switch to.) Also,
unlike after U4 and U8, the number of turns since the last adaptation does not return
to 0. TOOT thus continues to check the adaptation condition with each subsequent
utterance (e.g. after U13 the relevant dialogue history is U9^U13), since pre-

dictedMisrecs% is always 0. Thus, after the second adaptation, the dialogue ¢nally
proceeds smoothly and the user’s task is successfully completed.

3. Experimental Design

In order to empirically verify that our automatic adaptation algorithmcan actually
improve spoken dialogue system performance, we evaluated the adaptive and
non-adaptive versions of TOOT discussed in the previous sections. Our experiment
was designed to test if adaptive TOOT performed better than non-adaptive TOOT,
and whether any differences depended on the user’s task. Our design thus consisted
of two factors: adaptability and task scenario. In particular, six users carried
out four tasks with adaptive TOOT, while six different users carried out the same
fourtasks with non-adaptive TOOT. The four task scenarios are shown in
Figure 4, and were performed in sequence. The dialogues in Figures 1 and 2 were
generated by users performing Task 2. Our experiment yielded a corpus of 48
dialogues (727 user turns).
Subjects were twelve undergraduate and graduate students from different

universities. Subjects were not involved with the design or implementation of TOOT,
and were novice users of spoken dialogue systems in general. Six of the subjects were
randomly assigned to adaptive TOOT and six to non-adaptive TOOT.
Subjects used the web to read a set of experimental instructions, then called TOOT

from a phone. The experimental instructions included a brief description of TOOT’s
functionality, hints for talking to TOOT, and links to four task pages. Each task page
contained one of the task scenarios shown in Figure 4 the hints, instructions for
calling TOOT, and a web survey designed to ascertain whether the user solved
the task and to measure user perceptions of system usability. The experimental
instructions and the task page for scenario 2 are shown in the Appendix, while
the web survey is described below.
We used the data that we experimentally obtained to compute a number of

measures relevant for spoken dialogue evaluation. Following PARADISE (Walker
et al., 1997b; Walker et al., 1998b), we organize our evaluation measures along four
performance dimensions, as shown in Figure 5. First, by logging the dialogue
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manager’s behavior on entering and exiting each state in the ¢nite state machine, we
automatically calculated the total number of Turns per dialogue. The log was also
used to calculate the percentage of user turns per dialogue that were Timeouts (when
the user doesn’t say anything within a speci¢ed time frame, TOOT provides sugges-
tions about what to say), and ASR Rejections (when the con¢dence level of
ASR is too low, TOOT asks the user to repeat the utterance). In addition, by listening
to recordings of the dialogues and comparing them to the logged ASR results, we
manually labeled whether or not each user turn was an ASR (semantic)
misrecognition. This allowed us to compute the percentage of Misrecognitions
per dialogue.
Users also ¢lled out a web survey after each dialogue. Users ¢rst speci¢ed the

departure and travel times that they obtained via the dialogue. Given that there
was a single correct train to be retrieved for each task scenario, this allowed us
to manually compute an objective measure representing whether users successfully
achieved their task goal or not (Task Success). Task success is 1 if both the exact
departure time and the total travel time (written down by the user at the conclusion
of the experiment) are correct, 0.5 if only one value is correct, and 0 if neither

Figure 4. Task scenarios.

Figure 5. Evaluation measures.
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is correct. In addition, users responded to the questionnaire shown in Figure 6 after
each dialogue, which was used to assess users’ subjective evaluation of TOOT’s
performance. Each question measured a particular usability factor, e.g. TTS
Performance. Responses ranged over n pre-de¢ned values (e.g. almost never, rarely,
sometimes, often, almost always), and were mapped to an integer in 1 . . . 5 (with 5
representing optimal performance). A comprehensive User Satisfaction measure
was then computed by summing each question’s score, and thus ranged in value
from 8 to 40. Questionnaire-based user satisfaction ratings have been frequently
used in the spoken dialogue literature as an external indicator of system usability
(Polifroni et al., 1992; Shriberg et al., 1992).

4. Evaluation Results

In Section 4.1, we use analysis of variance (ANOVA) (Cohen, 1995) to determine
whether the adaptive version of TOOT yields signi¢cant improvements for any
of the evaluation measures used in our experiment. In Section 4.2 we use the
PARADISE evaluation framework (Walker et al., 1997b; Walker et al., 1998b)
to understand which of our evaluation measures best predicts overall performance
in TOOT.

4.1. ADAPTABILITY EFFECTS

Recall that our mixed experimental design consisted of 2 factors: the within-in group
factor adaptability (with values adaptive, non-adaptive) and the between-groups
factor task scenario (with values one through four). Each of our evaluation measures

Figure 6. Usability survey.
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is analyzed using a two-way ANOVA for these factors. The ANOVA computes
whether any main (task-independent) effects of adaptability are statistically signi¢-
cant (probability p < :05) or show a trend (probability p < :1). As we will see,
our ANOVAs demonstrate a main effect of adaptability for the task success
dimension of performance and show a trend for the system usability dimension.
The ANOVA also tests whether there are any main effects of task, or any interaction
effects between adaptability and task. In contrast to main effects, interaction effects
of adaptability are not independent of the task scenario (i.e. the effects of adapta-
bility and task scenario are not additive). In our data, there are no signi¢cant main
effects of task and no signi¢cant interaction effects.
Table 1 summarizes the dialogue means for each of our evaluation measures, for

both adaptive and non-adaptive TOOT, and also presents several measures for
analyzing these results.8 The raw data from the experiment is available in
Appendix C. As discussed above, the probability value is used to determine whether
the differences in the means are statistically signi¢cant. The effect size (here
measured using omega-squared) gives the percentage of the total variability that
is due to changing the adaptability of the system, while the power represents the
percentage of experiments that when replicated with the same design, number of
subjects, and effect size, would produce results with the same signi¢cance (Chin,
2001). In the social sciences, effect sizes of 0.01, 0.06, and 0.15 are typically con-
sidered to be small, medium and large, respectively; for power, 0.8 is the level that
experimental psychologists are told to aim for, while 0.5 is the more typical level
reported in publications.
As shown in the table, our data shows a signi¢cant main effect of adaptability for

Task Success, and a trend for perceived ASR Performance and User Expertise.
From the means in column 2 and 3, we can see that adaptive TOOT on average
has a higher task success rate than non-adaptive TOOT. In particular, task
completion increases from 23% in the non-adaptive version to 65% in the adaptive
version. This veri¢es that adaptation can signi¢cantly improve TOOT’s
performance, in our case by helping users to better achieve their task goals. The
p-value in column 4 indicates that the improvement in the task success rate for
the adaptive version of TOOT is statistically signi¢cant (p ¼ 0:01). Task Success
also has a large effect size, as well as a high power rating. In addition, the improve-
ments for two of the usability measures ^ ASR Performance and User Expertise
^ show a trend towards statistical signi¢cance (pW 0:1). Users perceive ASR per-
formance to be more accurate for adaptive TOOT, and also have a better idea

8 As noted in Section 2.4, forour first attempt at automatic adaptation, we focused on adapting
only the user initiativewith no confirmation initial dialogue strategy.Thiswasbecause in our pre-
vious work, which also considered the experimental factor initial dialogue strategy, the utility of
user-controlled adaptationwasgreatest for user initiativewith noconfirmationTOOT (Litman and
Pan, 1999).That is, our previous results showed both main effects of adaptabiliy, and interaction
effects of adaptability and initial dialogue strategy.We have since extended the scope of this pre-
viouswork, and have again found the same pattern ofmain and interaction effects of adaptability.
We have also found a few minor effects of initial dialogue strategy.
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of what they should say throughout the dialogues with adaptive TOOT. ASR Per-
formance and User Expertise have medium effect sizes, although the latter measure
has high power.
The adaptive version of TOOT also outperforms the non-adaptive version for

most of our other measures, although these results are currently not statistically
signi¢cant. With respect to dialogue quality, the percentage of user turns where
(1) the user times out and says nothing; (2) ASR rejects the user’s utterance;
and (3) ASRmisrecognizes the user’s utterance9, are lower for adaptive TOOT.With
respect to ef¢ciency, the dialogues with adaptive TOOT are shorter, taking an aver-
age of 27 turns as opposed to 34 turns with non-adaptive TOOT. With respect
to system usability, users of adaptive TOOT have higher levels of overall user
satisfaction, perceive the pace of the interaction to be better, feel that the system
responds more quickly and in a more predictable manner, and would be more likely
to use the system regularly. Note that for most of these measures the power is low,
suggesting that there may not have been enough subjects to determine whether
the improvements were signi¢cant.
There are only two (usability) measures for which non-adaptive TOOT performs

better than adaptive TOOT (again, however, these results are currently not statisti-
cally signi¢cant). In particular, users of non-adaptive TOOT feel that it is easier
to both understand TOOT’s utterances and to ¢nd the train schedules, compared
to users of adaptive TOOT.

Table 1. Dialogue means for adaptive and non-adaptive versions of TOOT

Evaluation Adaptive Non-Adaptive
Measure ðn ¼ 24Þ ðn ¼ 24Þ Probability E¡ect Size Power

Task Success 0.65 0.23 **0.01 **0.17 **0.92

Timeouts 0.00 0.03 0.11 0.10 *0.69
Rejections 0.09 0.10 0.63 0.02 0.07
Misrecognitions 0.30 0.38 0.34 0.01 0.23

Turns 27.3 34.1 0.32 0.02 0.27

User Satisfaction 25.6 21.6 0.02 *0.07 *0.54
TTS Performance 1.5 2.4 0.19 *�0.11 *0.73
ASR Performance 3.2 2.4 *0.10 *0.08 *0.58
Task Ease 3.5 4.3 0.20 *�0.07 *0.53
Interaction Pace 4.0 3.8 0.64 0.00 0.15
User Expertise 4.0 3.2 *0.09 *0.13 **0.82
System Response 3.6 3.3 0.56 0.00 0.15
Expected Behavior 3.0 2.0 0.20 0.05 0.41
Future Use 2.5 1.9 0.25 0.03 0.33

**Signi¢cant at a 95% con¢dence level ðpW 0:05Þ; *trend at a 90% con¢dence level ðpW 0:1Þ.
**Large e¡ect size of X 0:15; *medium e¡ect size of X 0:06.
**Ideal power of X 0:8; *typical power of X 0:5.

9 The adaptive version of TOOTalso increases the mean semantic accuracy score per utter-
ances (recall Section 2.2), from 64% to 74%.
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It is also interesting to more informally examine how adaptation varies across
both dialogues and users. For the 24 dialogues with the adaptive version of TOOT,
Table 2 shows the number of times that the system adapted per dialogue.10 The
table shows that TOOT didn’t adapt at all in 5 dialogues, and adapted at least once
in the remaining 19 dialogues. Furthermore, if we break down the 0.65 overall task
success rate (Table 1) by these two conditions, we ¢nd that the average task success
rate was 0.60 when TOOT chose not to adapt, and 0.66 when TOOT decided to
adapt. Thus, adaptive TOOT does indeed seem to keep the initial dialogue strategy
con¢guration only when appropriate, and adapts otherwise. This is in contrast
to the non-adaptive version of TOOT, where the success rate for the initial con¢gur-
ation is only 0.23 (Table 1). Table 2 also shows that the frequency of adaptation
differs across subjects: for 3 subjects, TOOT adapted in all 4 dialogues; for 1 subject,
TOOT adapted in 3 out of 4 dialogues; for the remaining 2 subjects, TOOT adapted
for only 2 dialogues. It is particularly interesting to compare the only two subjects
who successfully completed all 4 tasks. For one of these subjects TOOT always
adapted twice, while for the other the number of adaptations was either 1 or 0,
decreasing as the user gained experience. Observations such as these strengthen
our belief that a ¢xed dialogue strategy will not be ideal for different users, and
that even for the same user, different dialogue strategies may be needed in different
circumstances.

4.2. CONTRIBUTORS TO PERFORMANCE

To quantify the relative importance of our multiple evaluation measures to
performance, we use the PARADISE evaluation framework to derive a performance
function from our data (Walker et al., 1997b; Walker et al., 1998b). The PARADISE
model posits that performance can be correlated with a meaningful external criterion
of usability such as User Satisfaction. PARADISE then uses stepwise multiple linear
regression to model User Satisfaction from measures representing the performance
dimensions of task success, dialogue quality, and dialogue ef¢ciency:

User Satisfaction ¼
Xn

i¼1

wi � N ðmeasureiÞ

Linear regression produces coef¢cients (i.e. weights wi) describing the relative con-
tribution of predictor factors in accounting for the variance in a predicted factor.
In PARADISE, the task success and dialogue cost measures are predictors, while
User Satisfaction is predicted.11 The normalization function N guarantees that
the coef¢cients directly indicate the relative contributions.

10 Recall that given the system-dependent settings shown in Figure 3, the number of possible
adaptations per dialogue ranges from only 0 (blank in our table) to 2.
11 Linear regression does not assume that predictors are independent, only that they are not

highly correlated (e.g. because correlations above 0.70 can affect the coefficients, deletion of re-
dundant predictors is advised (Monge and Cappella, 1980)).
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The application of PARADISE to the TOOT data shows that the most signi¢cant
contributors to User Satisfaction (USat) are Misrecognitions (Misrecs), Turns,
Rejections (Rejs), and Timeouts, respectively. In addition, PARADISE shows that
the following performance function provides the best ¢t to our data, accounting
for 71% of the variance in User Satisfaction:

USat ¼ �0:67NðMisrecsÞ � 0:39NðTurnsÞ � 0:33NðRejsÞ � 0:19NðTimeoutsÞ

Misrecognitions and Turns are signi¢cant at p ¼ 0, Rejections at p < 0:0003, and
Timeouts at p < 0:032. Our performance function demonstrates that TOOT per-
formance (estimated using subjective usability ratings) can be best predicted using
a weighted combination of objective measures of dialogue quality and dialogue
ef¢ciency. In particular, fewer misrecognized user utterances, fewer total turns,
fewer rejected user utterances, and fewer user timeouts all contribute to increasing
perceived performance in TOOT.
Our performance equation helps explain the lack of a signi¢cant main effect of

adaptability for User Satisfaction in Table 1. Recall that only our ANOVA for Task
Success showed a signi¢cant adaptability effect. Our PARADISE analysis, however,
shows that TaskSuccess is not a signi¢cant factor in explaining the variance in User
Satisfaction. On the other hand, while the ef¢ciency and quality measures did
not show signi¢cant adaptability effects, they are signi¢cant factors in explaining
User Satisfaction. Interestingly, the current PARADISE analysis yields a very dif-
ferent set of performance predictors compared to our previous evaluations of TOOT
and other spoken dialogue systems, where measures of task success and dialogue
quality were the most important predictors (Litman et al., 1998; Walker et al., 1998a;
Kamm et al., 1998; Walker et al., 2000b). Understanding the reason for these dif-
ferences is an area for future work.

5. Current Directions

We view our current results as a baseline demonstrating the utility of our approach,
and hope to increase future system performance by tuning the current
implementation. First, our automatic adaptation algorithm is currently extremely
simple. For example, MakeConservative generates only two adaptations, while

Table 2. Number of system adaptations per dialogue (Adaptive TOOT)

Task 1 Task 2 Task 3 Task 4

Subject 1 1 2 2 1
Subject 2 1 1
Subject 3 2
Subject 4 2 2 2 2
Subject 5 2 2 1 1
Subject 6 1 2 2
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many other initiative and con¢rmation con¢gurations are possible (e.g. user
initiative with implicit con¢rmation, user initiative with explicit con¢rmation, mixed
initiative with no con¢rmation, . . .). In addition, adaptive TOOT only adapts in
one direction, and never adapts back to less conservative dialogue strategies. Also,
adaptive TOOT always waits for four utterances before adapting again, while a dif-
ferent and/or changing adaptation frequency might be more optimal. All of these
more sophisticated adaptation behaviors are in fact observed when humans control
adaptation (Litman and Pan, 1999).
One plan for enhancing our system is to look to our previous work on

user-controlled adaptation for guidance. Table 3 compares our current results with
the comparable subset of results from our previous experiment with user-adaptable
TOOT (Litman and Pan, 1999), in which users could switch to a different initiative
and/or con¢rmation strategy using voice commands, as shown in the excerpt below:

. . .

U: Change strategy.
S: You are using the user initiative.Which initiative do you want to change to? System, mixed,

or user?
U: System initiative please.
S: You are using the no con¢rmation strategy.Which con¢rmation strategy do you want

to change to? No con¢rmation, implicit con¢rmation, or explicit con¢rmation?
U: Implicit please.
S: I heard you say . . .

Surprisingly, even with its current limitations, adaptive TOOT performs statisti-
cally comparably to user-adaptable TOOT for most performance measures. For
the case of Timeouts and System Response, adaptive TOOT even outperforms
the user-adaptable version (and a trend is shown for Interaction Pace). Nonetheless,
users are signi¢cantly more likely to use user-adaptable TOOT in the future (Future
Use), and show a trend for preferring user-adaptable TOOT with respect to overall
system usability (User Satisfaction). Our comparison thus suggests that we need
to focus on making adaptive TOOT more usable in the future.
Other plans for improving our adaptation algorithm include trying to optimize the

adaptation frequency, by examining how the classi¢er’s accuracy depends on the
number of utterances used for prediction (Walker et al., 2000a), speci¢c users,
and users’ increasing experience over time. We also plan to explore the impact
of using a sliding window rather than all the utterances since the last adaptation
to compute predictedMisrecs%.

6. Related Work

While previous work in the area of spoken dialogue suggested that a user’s repeated
problems with a system might warrant global dialogue strategy changes, our work
is the ¢rst that both fully automates and empirically evaluates such an approach.
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While (Litman et al., 1999) and (Walker et al., 2000a) had already shown how to
learn rules for predicting problematic dialogue situations (poor speech recognition
performance, and transfers to a human operator, respectively), neither of the learned
rule sets were ever incorporated back into a working system or evaluated with respect
to adaptation. Conversely, while (Litman and Pan, 1999) empirically demonstrated
that globally adapting dialogue strategies could improve system performance,
the issues involved in modeling whether a user’s dialogues were problematic and
using the user model in an automated adaptation component were bypassed,
due to the use of a human-controlled adaptation process.
While our work focuses on predicting and adapting to problems at the

(sub)dialogue-level, other research has focused on modeling user problems at the
utterance level, and investigating the types of dialogue strategy changes that might
be warranted after a single problematic utterance. An adaptive approach to reg-
ulating initiative is described but not evaluated in (van Zanten, 1999), where the
system uses a more conservative reprompt whenever a model of the user has been
changed in response to a previous system prompt and an ASR error. A
machine-learning approach for designing a spoken dialogue system that automati-
cally adapts initiative based on participant roles, features of the current utterance
and dialogue history is presented in (Chu-Carroll, 2000). An empirical evaluation
shows that the adaptive system outperforms a non-adaptive version in terms of
usability and ef¢ciency (Chu-Carroll and Nickerson, 2000). Strategies for
dynamically deciding whether to con¢rm each user utterance during a task-oriented
dialogue are evaluated in (Smith, 1998). Simulation results suggest that adaptation

Table 3. Dialogue means for adaptive and user-adaptable versions of TOOT

Adaptive User-Adaptable
Evaluation Measure ðn ¼ 24Þ ðn ¼ 24Þ P

Task Success 0.65 0.90 0.30

*Timeouts 0.00 0.02 0.00
Rejections 0.00 0.10 0.81
Misrecognitions 0.30 0.19 0.16

Turns 27.3 39.1 0.32

þUser Satisfaction 25.6 30.2 0.07
TTS Performance 1.5 2.2 0.17
ASR Performance 3.2 3.5 0.25
Task Ease 3.5 2.9 0.24
þInteraction Pace 4.0 3.4 0.09
User Expertise 4.0 3.7 0.50
*System Response 3.6 2.1 0.02
Expected Behavior 3.0 3.8 0.20
*Future Use 2.5 3.7 0.02

*Signi¢cant at a 95% con¢dence level ðpW 0:05Þ.
þTrend at a 90% con¢dence level ðpW 0:1Þ.
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strategies can improve performance, especially when the system has greater
initiative. Although not yet used for adaptation, machine learning approaches
for predicting single ASRmisrecognitions have been developed based on the analysis
of acoustic-prosodic features (Levow, 1998; Litman et al., 2000a). Also, descriptive
analyses have shown differences in content and duration of user responses to correct
and incorrect system con¢rmations (Hirasawa et al., 2000), and potential uses of
(hand-labeled) positive and negative user feedback (Bell and Gustafson, 2000).
Finally, in contrast to the above spoken dialogue work, which focuses on adap-

tation at the (sub)dialogue and utterance levels, reinforcement learning has been
used to adapt to more optimal initial dialogue strategies after training on multiple
dialogues (Levin and Pieraccini, 1997; Litman et al., 2000b).
The empirical evaluation of an adaptive interface in a commercial software system

(Strachan et al., 1997) is also similar to our work. Adaptive and non-adaptive
versions of the same system were evaluated in experiments with human users. Analy-
sis of variance demonstrated that an adaptive interface based on minimal user
modeling improved subjective user satisfaction ratings.

7. Summary

We have designed and implemented a fully-automated adaptive version of TOOT,
and have empirically veri¢ed improved levels of system performance compared
to a non-adaptive version. Using a user modeling component learned from training
data, our system incrementally predicts whether a user is having ASR problems
as a dialogue progresses, and adapts to a more conservative set of dialogue strategies
whenever the user model predicts that the user’s dialogue is problematic. By using
analysis of variance to examine how a set of evaluation measures differ as a function
of adaptability, we elaborate the conditions under which adaptability leads to
greater performance. Our main result is that adaptive TOOT outperforms
non-adaptive TOOT for novice users, by signi¢cantly increasing the task success
rate from 23% to 65%. By using PARADISE to derive a performance function from
data, we also show that measures of dialogue quality and dialogue ef¢ciency best
predict a user’s overall satisfaction with TOOT.
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Appendix

A. Experimental Instructions

TOOT (THE AT&T AMTRAK TRAINS SCHEDULE SYSTEM):
TASKS AND SURVEYS

GENERAL DESCRIPTION

TOOT, the AT&TAmtrak train schedule system, is an experimental spoken dialogue
system that allows you to access train schedules from the web via a telephone con-
versation. You will be asked to call TOOT to do four different tasks. You should
try to do each task as ef¢ciently as you can and avoid listening to messages
unecessarily. Please make brief notes about the train departure time as well as
the total travel time when you listen to the schedules.
Instructions for calling TOOT can be found at each task scenario. Please read

through the instructions before calling. At the end of the task (after you hang
up the phone), there are a few brief questions for you to answer. Even if TOOT
aborted before you could complete the task, please ¢nish the survey and continue
to the next task. Thanks for participating!

HINTS FOR USING TOOT

^ If you don’t know what to say or don’t understand what TOOT is doing, say Help to hear a
help message.

^ If TOOT misunderstands you, say Cancel to try your utterance again.
^ If you wait too long to tell TOOT what to do, TOOTwill tell you what you can say.
^ You can interrupt TOOTat any time. For example, if you’ve heard enough or if you know

what you want to do, you don’t have to wait for TOOT to ¢nish talking. If you don’t hear
everything whenTOOT presents the train schedules, sayRepeat to hear the schedules again.

^ If you want to abort your current attempt at the task before ¢nishing, say I’m done here to
start the dialogue again.

^ When you are ¢nished with a task, say Goodbye to end the dialogue.

TASKS SCENARIOS

You have four tasks to try in this experiment. You should do one task at a time. After
you ¢nish each task, hang up the phone and ¢nish the survey.

^ TASK 1: Click here to try task one.
^ TASK 2: Click here to try task two.
^ TASK 3: Click here to try task three.
^ TASK 4: Click here to try task four.

Thank you for participating in this experiment!
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B. Task Page for Scenario 2

TASK 2 SCENARIO AND SURVEY

SCENARIO DESCRIPTION

Try to ¢nd a train going toNew York City from Baltimore on Sunday at 8:30 pm. If
you cannot ¢nd an exact match, ¢nd the one with the closest departure time. Please
write down the exact departure time of the train you ¢nd as well as the total travel
time.

HINTS FOR USING TOOT

^ If you don’t know what to say or don’t understand what TOOT is doing, say Help to hear a
help message.

^ If TOOT misunderstands you, say Cancel to try your utterance again.
^ If you wait too long to tell TOOT what to do, TOOT will tell you what you can say.
^ You can interrupt TOOTat any time. For example, if you’ve heard enough or if you know

what you want to do, you don’t have to wait for TOOT to ¢nish talking.
^ If you don’t hear everything whenTOOT presents the train schedule, say Repeat to hear the

schedule again.
^ If you want to abort your current attempt at the task before ¢nishing, say I’m done here to

start the dialogue again.
^ When you are ¢nished with a task, say Goodbye to end the dialogue.

CALLING TOOT

^ Wait for Diane Litman to call you and connect you toTOOT.Then go ahead and do the task.
^ Hang up and complete the survey below.
^ Even if TOOT ‘‘spaces out’’ on you part way through and you are unable to complete the

scenario, please complete the survey.

TASK 2 USER SURVEY

Please make sure your answers to the survey re£ect this conversation with TOOT.
Please try to answer all the questions, and when ¢nished, click the submit button
at the bottom of the ¢eld.

Please enter the questions you found below.

^ Exact Departure Time:
^ Total Travel Time:

. . . THE 8 SURVEY QUESTIONS IN FIGURE 6 , . .
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C. Raw Data
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