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a b s t r a c t

This paper presents a fine-scale (30 meter resolution) regional land cover modeling system, based on the

SLEUTH cellular automata model, that was developed for a 257000 km2 area comprising the Chesapeake

Bay drainage basin in the eastern United States. As part of this effort, we developed a new version of the

SLEUTH model (SLEUTH-3r), which introduces new functionality and fit metrics that substantially

increase the performance and applicability of the model. In addition, we developed methods that expand

the capability of SLEUTH to incorporate economic, cultural and policy information, opening up new ave-

nues for the integration of SLEUTH with other land-change models. SLEUTH-3r is also more computation-

ally efficient (by a factor of 5) and uses less memory (reduced 65%) than the original software. With the

new version of SLEUTH, we were able to achieve high accuracies at both the aggregate level of 15 sub-

regional modeling units and at finer scales. We present forecasts to 2030 of urban development under

a current trends scenario across the entire Chesapeake Bay drainage basin, and three alternative scenarios

for a sub-region within the Chesapeake Bay watershed to illustrate the new ability of SLEUTH-3r to gen-

erate forecasts across a broad range of conditions.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The objective of this paper is to describe a regional urban land

cover modeling system that was developed for the Chesapeake

Bay watershed, which is located in the eastern United States

(Fig. 1). We developed a fine-scale (30 meter � 30 meter or 0.09

hectare cell size) regional modeling system, based on the SLEUTH

urban land-cover change model (Clarke, Hoppen, & Gaydos,

1997; US Geological Survey, 2007) and applied it to forecast

growth up to the year 2030 for the Chesapeake Bay watershed

(CBW) and adjacent counties, an area covering 257,000 km2.

SLEUTH is one of a class of models known as cellular automata

(CA), where the land surface is conceptually divided into cells using

a regular grid. SLEUTH then associates with each cell an automa-

ton, an entity that independently executes its own state-transition

rules, taking into account the states of the automata associated

with nearby cells. Given its success with regional scale urban sim-

ulation, its ability to incorporate different levels of protection for

different areas, the relative ease of computation and implementa-

tion, and the fact that it is public domain software, we adopted the

SLEUTH model (Clarke et al., 1997; Clarke & Gaydos, 1998) to form

the basis for this work. SLEUTH incorporates spatial data through a

link with geographic information systems (GIS) and, like many re-

cently developed CAs (e.g. Van Vliet, White, & Dragicevic, 2009), re-

laxes many of the assumptions of classic CA theory, such as

homogeneity of space, uniformity of neighborhood interactions,

and universal transition functions, to more realistically simulate

real urban systems. Because they are interactive, modified CAmod-

els like SLEUTH are attractive in applied settings as planning tools

(Batty, 1997). Potential outcomes can be visualized and quantified,

the models can be closely linked with GIS, and raster based spatial

data derived from remote sensing platforms can be easily incorpo-

rated into the model.

The utility of CA models for simulating complex systems,

including urban systems, has been well documented (Couclelis,

1997; O’Sullivan & Torrens, 2000; Silva & Clarke, 2005; Torrens,

2006; Torrens & O’Sullivan, 2001; Van Vliet et al., 2009). For regio-

nal scale modeling, CA models have proven to be effective plat-

forms for simulating dynamic spatial interactions among

biophysical and socio-economic variables associated with land-

cover change (White & Engelen, 1997). For example, Li and Liu
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(2006) develop a modeling approach that relaxes traditional CA

transition rules with case-based reasoning and explicitly accounts

for the influence of proximity and distance between urban clusters.

They have used this CA modeling system to accurately simulate

fine-scale (30 m � 30 m) urbanization patterns and interactions

between hierarchically organized urban centers in the Pearl River

Delta in southeastern China, an area of over 41,000 km2. Most

notably, Soares-Filho et al. (2006) use the SimAmazonia CA model-

ing system to integrate factors driving deforestation in the Amazon

basin, including market forces, road construction, and government

regulations. SimAmazonia was applied over a very large region,

more than 8 million km2 at a resolution of 1 km � 1 km cells.

We addressed two main challenges in this work. First, because

of the size of the watershed and the fine grain of the analysis,

application of the model posed significant logistical and computa-

tional challenges; this application required more memory than any

previously published analysis of which we are aware. Second,

urbanization patterns and patterns of urban land-cover change

are extremely heterogeneous across the watershed (Jantz, Goetz,

& Jantz, 2005). In overcoming these challenges, this application

represents a significant contribution to the software infrastructure

for simulation of urban growth and the development of decision

support tools for regional ecosystem management. This work

was undertaken in close partnership with the Chesapeake Bay Pro-

gram, providing a direct link between the science of land-cover

change modeling and applications for ecosystem management.

The US Environmental Protection Agency has listed the Chesa-

peake Bay as impaired due mainly to non-point source loads of

Fig. 1. Study area. The Chesapeake Bay drainage basin is outlined in black. Our study area, shown in gray, includes all the counties that are contained within or that intersect

the watershed boundary. The small watersheds colored white in southeast Pennsylvania represent a case study area that will be presented in this paper.
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nutrients and sediment. The Chesapeake Bay Program (CBP), a fed-

eral and state agency partnership established to restore the health

of the Chesapeake Bay, has agreed to over one hundred different

restoration objectives in the areas of living resources, habitat,

water quality, stewardship and sound land use (Chesapeake Bay

Program, 2000). Future land use forecasts will inform many of

these objectives. Knowing the probability of land conversion from

agriculture, wetland or forest (resource lands) to residential, com-

mercial, or industrial use (built) will guide the development of

practical alternatives and contingency plans related to Bay trends

and indicators (Jantz & Goetz, 2007).

The objective was to create an adaptive modeling system capa-

ble of producing dynamic and fine-scale forecasts of urban land-

change through the year 2030 within the CBW. In order to achieve

this objective, these four problems had to be solved:

1. How to modify and adapt the SLEUTH model. Several mod-

ifications were made to the SLEUTH model and calibration

methodology to address scale sensitivity and the inability

of SLEUTH to consider factors that attract and resist devel-

opment. Also, SLEUTH’s performance was enhanced by a

set of code modifications that substantially reduced the

model’s memory requirements and increased processing

speed.

2. How to subdivide the Chesapeake Bay watershed. Because

of the heterogeneity of urban patterns and urban land-cover

change patterns we divided the Chesapeake Bay into 15

sub-regions, ranging from roughly 7,000 km2 to 23,000

km2 in size, within which urbanization patterns are rela-

tively homogeneous. These subdivisions comprised the spa-

tial framework of our regional modeling system.

3. How best to calibrate our revised version of the SLEUTH

model. We calibrated SLEUTH separately for each of the 15

sub-regions.

4. How to select alternative futures for the CBW. A Bay-wide

forecast of future urbanization in 2030 under a ‘‘current

trends” scenario was completed. We also developed two

additional policy and growth scenarios to assess the utility

of this modeling approach. We illustrate the use of these

alternative scenarios using results for a generally represen-

tative sub-region, southeast Pennsylvania (Fig. 1).

2. Methods

2.1. Overview of the SLEUTH model

SLEUTH simulates urban dynamics through the application of

four growth rules: spontaneous new growth, which simulates the

random urbanization of land; new spreading center growth, or

the establishment of new urban centers; edge growth; and road

influenced growth. Each type of growth is controlled by an area-

wide coefficient (diffusion, breed, spread, road growth) that can

range in value from 0 to 100, reflecting the relative contribution

of a particular growth type to urban dynamics within a study area.

The resistance of development to slope is also controlled by a cal-

ibrated parameter, the slope coefficient, which ranges from 0 to

100 (0 indicating low slope resistance, 100 indicating high slope

resistance). The user can specify additional resistance rules in an

excluded layer, which indicates areas that are partially or com-

pletely excluded from development.

Implementation of the model occurs in two general phases: cal-

ibration, where historic growth patterns are simulated; and predic-

tion, where historic patterns of growth are projected into the

future. For calibration, the original SLEUTH model requires inputs

of historic urban extent for at least four time periods, a historic

transportation network for at least two time periods, slope, and

an excluded layer.

2.2. Modifications to the SLEUTH model

In our previous work with the SLEUTHmodel, we identified sev-

eral limitations. First, when fine resolution data are used, SLEUTH

is not always able to generate an appropriate level of dispersed

growth because of SLEUTH’s bias towards edge growth (Jantz &

Goetz, 2005).

Second, most of the fit statistics that have commonly been used

to calibrate the model are least squares regression scores (r2) mea-

suring the relationship between a particular simulation of urbani-

zation and actual (historic) observed urbanization. Thus the

historic input data sets used in calibration must cover at least four

points in time: one to initialize the model and three additional con-

trol points to calculate the regression equation. In addition, use of

the r2 statistic alone can result in an under- or over-fitting of the

model. Without additional information, such as the y-intercept of

the linear regression equation, a user may identify a simulation

that appears to perform well but is actually over- or under-esti-

mating growth rates or patterns.

Third, SLEUTH utilizes computer memory inefficiently. For lar-

ger data sets, Unix or Linux based parallel computing is typically

used to calibrate the model, but the Chesapeake Bay data set ex-

ceeded the memory capacity of our available computing resources

(memory requirements ranged from 1.4 GB to more than 5 GB),

even when divided into sub-regions.

Finally, SLEUTH usually only incorporates factors that constrain

development (Jantz, Goetz, & Shelley, 2004). Providing an ability to

identify areas where growth ismore likely to occur will increase the

utility of the model, both in terms of improving SLEUTH’s ability to

simulate historic patterns and in developing scenarios of future

development.

The first three points presented above were addressed through

direct modification of SLEUTH’s source code (written in the C pro-

gramming language), resulting in a new version of SLEUTH,

SLEUTH 3.0beta_p01 Version R (referred to here as SLEUTH-3r).

The fourth point (attracting growth) was addressed methodologi-

cally during calibration, as discussed below in Section 2.3.

The source code changes discussed in this section thus consist

of three primary modifications to: (i) address scale sensitivity,

(ii) calculate new fit metrics, and (iii) decrease SLEUTH’s memory

requirements and optimize processing speed. A general discussion

of these changes is presented here. Technical descriptions are

available with the model’s source code, which can be downloaded

from the USGS Eastern Geographic Science Center’s (EGSC) High-

Performance Computing Cluster (HPCC) website (http://egscbeo-

wulf.er.usgs.gov/geninfo/downloads/). We emphasize that

SLEUTH-3r represents added functionality to SLEUTH; the original

functions of SLEUTH are completely retained, as are the original

theoretical underpinnings.

2.2.1. Modifications to address scale sensitivity

SLEUTH’s inability to capture dispersed settlements patterns

and its tendency to allow edge growth to dominate the system

are both related to the number of pixels that the model selects

for potential new spontaneous development in any time step. In

the original code, the number of spontaneous urbanization at-

tempts (the dispersion value) depends on the calibrated value for

the diffusion coefficient, a constant multiplier, and the number of

pixels in the image diagonal, a convention embedded in the origi-

nal source code (US Geological Survey, 2007):

DV ¼ DC � DM �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
þ C2

q
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where DV is the dispersion value, DC is the diffusion coefficient, DM

is the diffusion coefficient multiplier (a constant equal to 0.005 in

the original version of SLEUTH), R is the number of rows and C is

the number of columns.

In SLEUTH-3r, DM is no longer a constant, allowing the user to

change this multiplier value interactively. When the multiplier is

increased or decreased, the number of urbanization attempts for

diffusion growth changes accordingly. DM must be set prior to

beginning calibration. To discover an appropriate multiplier value,

SLEUTH-3r’s growth coefficients were set to produce the maximum

level of spontaneous new growth (i.e. diffusion was set to 100 and

all other growth coefficients set to 0) (Jantz & Goetz, 2005). Then,

several simulations are performed with SLEUTH-3r in calibration

mode to test different values for DM, simulating growth over the

length of the historic urban time series. When DM is set such that

SLEUTH-3r is able to capture, or even over-estimate, the number

of urban clusters (as measured by the cluster fractional difference

metric, a new pattern metric discussed below), normal calibration

procedures can be initiated (see Section 2.3) to identify the best

values for SLEUTH-3r’s growth coefficients.

2.2.2. New calibration statistics

In addition to the ability to interactively set the diffusion coef-

ficient multiplier, SLEUTH-3r now also creates new tabular files

that include difference and ratio metrics that directly compare

the modeled variable (e.g. number of urban clusters) with the ob-

served variable for all control dates. Specifically, SLEUTH-3r calcu-

lates (i) the algebraic difference between the observed value and

modeled value, (ii) the ratio of the modeled value to the observed

value, and (iii) the fractional change in the modeled value relative

to the observed value. It does this for most of the original fit statis-

tics, for each run, and for each control year.

When at least four control points are available, these new fit

metrics can be used in conjunction with the r2 values to enhance

the calibration procedure. When fewer than three control points

are available, the new metrics can be the principal means for cali-

brating SLEUTH-3r. Table 1 presents a list of the new fit metrics

available in SLEUTH-3r.

2.2.3. Decreasing memory requirements and improving processing

speed

The final set of modifications made to SLEUTH’s source code

addressed the model’s memory requirements and computational

speed. SLEUTH requires space in RAM for numerous internal cell

arrays, each with the same dimensions as the modeling unit; our

applications required about 18 of these internal cell arrays, so

the largest modeling unit in our study area would require space

in RAM for more than 1.4 billion cells. Because available versions

of SLEUTH required 4 bytes of RAM for each cell, our largest sub-

region would require more than 5.6 Gigabytes of RAM, which

exceeded the 2.0 Gigabyte maximum program size under the 32-

bit computer operating systems used by the vast majority of users.

Calibrating with the existing versions of SLEUTH was a compu-

tationally intensive process for which the required computer pro-

cessing time was roughly proportional to the size of the modeling

unit. Our relatively large sub-regional modeling units would thus

require extensive and lengthy calibration computations.

A review of the SLEUTH source code revealed that only one byte

of RAM per cell was actually required in any of the internal cell ar-

rays (grids) because the largest number required to be stored for

any one cell was 255 or less. Since all integers between 0 and

255 can be represented by a single 8-bit byte of computer storage

(using the C-language ‘‘unsigned char” data type), in SLEUTH-3r we

could use a single byte per cell in the SLEUTH internal arrays in-

stead of the four-byte value which had been allocated in standard

SLEUTH. We incorporated this change into SLEUTH-3r and success-

fully tested it to insure that the change did not introduce any spu-

rious artifacts. With this change in place, we were able to use

SLEUTH-3r with our relatively large modeling units.

Additional improvements in SLEUTH’s processing speed were

also desirable, and processing statistics produced by SLEUTH

showed that the single most time-consuming activity in our

growth simulations was the road growth algorithm. The original

road-search algorithm proceeds stepwise from the location of a

new-growth cell within the internal roads array, starting with

the square of eight cells immediately surrounding the new-growth

cell. The algorithm begins with the northwest cell (topmost and

leftmost) and proceeds counter-clockwise around the square,

checking each cell to see if it is a road cell (Fig. 2). If no road cell

is found, the algorithm steps out to the next square of cells and re-

peats this process. The road-search ends when the first road cell is

found. This is inefficient because it requires that each cell within a

potentially large square area be checked every time a road-search

is conducted. Furthermore, since the algorithm does not remember

from one search to another where the roads are located it performs

an inordinate amount of repetitive processing. The algorithm is

also biased because it systematically selects road cells to the north-

west even if there are equally close road points to the south, east,

or northeast.

The key to speeding up the road-search was to prevent the algo-

rithm from ‘‘forgetting” where the roads are. We created a new,

compressed data structure that contains only the coordinates of

the points in the road grid that are road cells. This structure is

much smaller than the source grid because only a small proportion

of any area will be covered by roads. Based on this data structure,

we created a new road-search algorithmwhich sequentially checks

the rows of cells above and below the new-growth cell until the

closest road cell is found or it is determined that there is no

Table 1

New fit metrics available in SLEUTH-3r. For each of the metrics described below, SLEUTH-3r writes the following three quantities to a ratio. Log file: (i) the algebraic difference

between the observed value and modeled value (diff), (ii) the ratio of the modeled value to the observed value (ratio), and (iii) the fractional change in the modeled value relative

to the observed value (fract). Measurements derived from the modeled data are averaged over the set of Monte Carlo trials. It does this for each run, and for each control year.

Fit statistic Definition

Pixels (pix) Modeled urban pixels compared to actual urban pixels for each control year. Referred to as ‘‘population” and as ‘‘area” in SLEUTH’s output files

Edges (edges) Modeled urban edge pixels compared to actual urban edge pixels for each control year

Clusters (clusters) Modeled number of urban clusters compared to actual urban clusters for each control year. Urban clusters are areas of contiguous urban land.

In cell space, clusters can consist of a single pixel or multiple, contiguous urban pixels. Contiguity is determined using the eight-neighbor rule

Cluster size

(mn_cl_sz)

Modeled average cluster size compared to actual average urban cluster size for each control year. This is not an area-weighted mean

Slope (avg_slope) The average slope for modeled urban pixels compared to actual average slope for urban pixels for each control year

% Urban (pct_urba) The percent of available pixels urbanized during simulation compared to the actual urbanized pixels for each control year

X-mean (xmean) Average x-axis values for modeled urban pixels compared to actual average x-axis values for each control year

Y-mean (ymean) Average y-axis values for modeled urban pixels compared to actual average y-axis values for each control year

Radius (radius) Average radius of the circle that encloses the simulated urban pixels compared to the actual urban pixels for each control year
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close-by road. Because this algorithm uses the new, compact data

structure for roads, it does not perform any repetitive, cell-by-cell

checking and so it is much faster than the old algorithm. The new

algorithm also corrects the biases of the old one. When the new

algorithm finds a closest road cell, there is no closer cell in the

sense of a Pythagorean distance metric, although on occasion there

may be another equally close cell.

Having found that SLEUTH processes many of its internal grids

in a cell-by-cell sequence, looking for non-zero cells, in our final

code modifications we created new data structures for several

grids which list coordinates for just the non-zero cells and we

modified the procedures which process these grids so they would

skip the now unnecessary checking of zero-valued cells and pro-

cess only the non-zero cells.

2.3. Sub-dividing the Chesapeake Bay watershed

As noted in Section 1, one of the main objectives of this project

was to develop an urban modeling system that could be applied

across the Chesapeake Bay watershed while maintaining the high

spatial resolution of the available urban land cover maps. The ur-

ban land cover data consist of maps of impervious surface cover,

derived from Landsat TM and ETM + imagery, which captured

urbanization patterns between 1990 and 2000 (Goetz et al.,

2004; Jantz et al., 2005). Urbanization in the region, as character-

ized in the Landsat maps, was primarily associated with existing

urban centers, such as Washington, DC, Baltimore, MD, and Nor-

folk, VA. In many exurban counties, however, rates of change ex-

ceed those in urban areas (Jantz et al., 2005). In addition,

urbanization patterns in urban and suburban counties tend to be

characterized by clustered, high-density development. In exurban

counties development patterns tend to be more dispersed.

Because SLEUTH’s growth coefficients are applied globally with-

in a study area, the heterogeneous urbanization patterns observed

across the Chesapeake Bay watershed, as well its size, required that

the study area be subdivided; an analogous problem was faced by

Soares-Filho et al. (2006) in the Amazon region. We used k-means

cluster analysis, a robust method for identifying groupings within a

data set where within-group variability is minimized and be-

tween-group variability is maximized (Aldenderfer & Blashfield,

1984), to characterize rural, suburban and urban landscapes at

the county scale. These broad groups were then subdivided further

into smaller intermediate sub-regions, based on a combination of

political boundaries, rural–urban commuting patterns, and physio-

graphic provinces.

The cluster analysis was performed using the 208 counties that

intersect the Chesapeake Bay watershed and each county was

categorized as being rural, suburban or urban based on several

variables, which are briefly discussed here and summarized in

Table 2. Fragstats (version 3.3, build 4) (McGarigal & Marks,

1995), a pattern analysis software package, was used to calculate

county-level pattern metrics from the 2000 urban land cover

map: percent area developed, area-weighted mean urban cluster

(patch) size, urban edge pixel density and urban cluster density.

Population density was derived from US Census data (US Bureau

of the Census, 2000). The following measures of change between

1990 and 2000 were also included: change in percent area devel-

oped, change in urban cluster density, change in area-weighted

mean urban cluster size, change in urban edge pixel density and

the percent change in population.

We also used the level-III EPA ecoregions (US Environmental

Protection Agency, 2003) that comprise the Chesapeake Bay

Fig. 2. Illustration of the search algorithm in the original SLEUTH Program.

Table 2

Input variables for multivariate k-means clustering. Variables were calculated for each county.

Variable Data source

Percent developed area in 2000 Derived from 2000 impervious surface map (Goetz et al., 2004; Jantz et al., 2005) using FRAGSTATS (McGarigal &

Marks, 1995)

Area-weighted mean urban cluster size in 2000 Derived from 2000 impervious surface map (Goetz et al., 2004; Jantz et al., 2005) using FRAGSTATS (McGarigal &

Marks, 1995)

Urban cluster density in 2000 Derived from 2000 impervious surface map (Goetz et al., 2004; Jantz et al., 2005) using FRAGSTATS (McGarigal &

Marks, 1995)

Urban edge pixel density in 2000 Derived from 2000 impervious surface map (Goetz et al., 2004; Jantz et al., 2005) using FRAGSTATS (McGarigal &

Marks, 1995)

Population density in 2000 US Bureau of the Census (2000)

Dominant rural–urban commuting classification

in 2000

USDA Economic Research Service (2000)

1990–2000 Change in percent developed area Derived from 1990 and 2000 impervious surface maps (Goetz et al., 2004; Jantz et al., 2005) using FRAGSTATS

(McGarigal & Marks, 1995)

1990–2000 Change in area-weighted mean

cluster size

Derived from 1990 and 2000 impervious surface maps (Goetz et al., 2004; Jantz et al., 2005) using FRAGSTATS

(McGarigal & Marks, 1995)

1990–2000 Change in urban cluster density Derived from 1990 and 2000 impervious surface maps (Goetz et al., 2004; Jantz et al., 2005) using FRAGSTATS

(McGarigal & Marks, 1995)

1990–2000 Change in urban edge pixel density Derived from 1990 and 2000 impervious surface maps (Goetz et al., 2004; Jantz et al., 2005) using FRAGSTATS

(McGarigal & Marks, 1995)

1990–2000 Change in population density US Bureau of the Census (1990), US Bureau of the Census (2000)

Dominant ecoregion US Environmental Protection Agency (2003)
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watershed and gave each one of the seven ecoregions a numerical

identifier. The counties were then labeled with the ecoregion code

that comprised the majority of the county area.

Finally, we incorporated a simplified rural–urban commuting

classification based on the United States Department of Agriculture

(USDA) Economic Research Service (ERS) rural–urban commuting

area (RUCA) codes (USDA Economic Research Service, 2000).

Defined at the Census tract-level, RUCA codes are derived from

Census measurements of population density, and daily commuting

patterns to identify urban areas and the adjacent economically and

functionally integrated areas. These tract-level codes were aggre-

gated to the county scale to identify urban, suburban, and rural

counties, based on the dominant commuting patterns.

Using these input variables, the k-means analysis was then used

to identify rural, suburban and urban counties within the CBW.

However, these initial subdivisions resulted in regions that were

still too large to be modeled as individual units. Fifteen sub-

regions, ranging from roughly 7100 km2 to 23,000 km2, were

therefore identified using the initial k-means groupings as a basis

for splitting the initial subdivisions. Finally, a 10-km buffer was

applied to each of the 15 sub-regions, creating an overlap area

between adjacent sub-regions to minimize edge effects that might

otherwise result from different growth parameters being applied

to each sub-region.

2.4. Calibration of the SLEUTH-3r model

The goal of SLEUTH calibration is to find a set of values for the

five parameters (discussed in Section 2.1) that can accurately

reproduce actual past land-cover change within the study area.

Calibration is typically undertaken using what is referred to as a

‘‘brute force” methodology. That is, a large number of combina-

tions of parameter values are tested automatically and the user

evaluates the results, locating a ‘‘best fit” set of parameter values

through the use of fit statistics (Table 1). We performed what is re-

ferred to as a coarse calibration, where the values for each param-

eter ranged from 1–100, but only increments of 25 were tested (i.e.

1, 25, 50, 75, and100). This resulted in 3125 unique parameter

combinations. In our previous work, we found that any gains in

performance achieved by testing additional parameter values are

minimal, particularly given the substantial increase in computing

time (Jantz & Goetz, 2005).

The choice of appropriate goodness of fit measures is important,

since it determines how SLEUTH will simulate urban patterns and

how forecasts of urban growth will be created (Silva & Clarke,

2002). However, there is no consensus regarding which goodness

of fit measure or set of measures to use. Clarke et al. (1997) relied

primarily on four metrics: population, edges, clusters, and the Lee

and Sallee statistic. Recent examples show that others have relied

on a weighted sum of all the statistical measures (Yang & Lo,

2003), or an unweighted product score of several metrics (Candau,

2002; Silva & Clarke, 2002). Dietzel and Clarke (2007) suggest an

optimum fit statistic, a product of seven of SLEUTH’s fit statistics

that were found to produce robust and unique results. We empha-

size, however, the potential difficulty in evaluating the fit of the

model using a composite score. For example, Jantz and Goetz

(2005) found that the parameter sets producing a high fit score

for one statistic were opposed to those producing a high fit for an-

other, making interpretation of the model’s behavior problematic

when using composite metrics. For the calibration procedure in

this work, we therefore focused on two metrics we considered

most relevant to the application: the pixel fractional difference

(PFD) and the clusters fractional difference (CFD).

The PFD and CFD metrics are direct comparisons between the

number of urban pixels and the number of urban clusters, respec-

tively, in the control maps and the corresponding simulated maps.

Achieving an accurate fit for the PFDmetric ensured that the overall

amount of developmentwould bematched. The CFDmetric is a sim-

ple patternmetric that focuses on the frequencyof clusters in the ur-

ban system. Achieving an accurate fit for this metric indicates that

the model is capturing an important aspect of urban form (i.e. clus-

tered vs. dispersed settlementpatterns).We selectedparameter sets

that were able to match both of these fit statistics within ±10%.

SLEUTH is stochastic and thus utilizes the Monte Carlo method

to generate multiple simulations of growth for each unique param-

eter set, so the fit statistics that SLEUTH-3r calculates are averaged

over the Monte Carlo trials. For calibration, we initially used only

seven Monte Carlo trials to economize computational processing

time. Based on these initial results, we selected a subset of param-

eter sets that performed well. Then, each parameter set was tested

by running the model in calibrate mode for 25 Monte Carlo trials.

Twenty-five Monte Carlo trials were, we found by experimenta-

tion, sufficient for quantifying the spatial variability resulting from

random processes. We were therefore able to achieve acceptable

computational efficiency while maintaining a rigorous calibration

procedure.

For calibration, the original version of SLEUTH requires inputs of

historic urban extent for at least four time periods, a historic trans-

portation network for at least two time periods, slope, and an ex-

cluded layer. Because of the new fit statistics, SLEUTH-3r requires

only two inputs of historic urban extent. We were therefore able to

take advantage of our existing data set for the Chesapeake Bay wa-

tershed for 1990 and 2000, as noted in Section 2.3 and as docu-

mented in Goetz et al. (2004) and Jantz et al. (2005).

A USGS 7.5 min digital elevation model was used to create an

input layer for slope. The road network used in this study is based

on limited access and other major highways, derived from the US

Streets data set (Environmental Systems Research Institute,

2003), which reflects the ca. 2000 primary road network. The pri-

mary road network was used because it is the transportation net-

work that likely has had the largest influence on regional growth

patterns. We assumed no change in the primary road network be-

tween 1990 and 2000 due to the lack of data for 1990 of compara-

ble quality to the 2000 road data.

The final input is the excluded layer, which designates lands

that are resistant to urban development. For the excluded layer

used in calibration, federal, state, and local parks, easements, and

water bodies were entirely excluded from development. The ex-

cluded layer is typically scaled from 0 (no exclusion) to 100 (com-

pletely excluded). However in our calibration of SLEUTH-3r,

instead of using zero as the default value to indicate areas theoret-

ically open for development, we used a base value of 50. This al-

lows the user to indicate areas that are more likely to be

developed by applying values less than 50 in the excluded layer,

effectively creating an exclusion/attraction layer. This exclusion/

attraction layer provides added functionality for both calibration

and forecasting and, we contend, enables improved overall model

performance by allowing the inclusion of growth attractors (e.g.

areas of anticipated population growth) as well as constraints.

SLEUTH also has a ‘self-modification’ function (Clarke et al.,

1997), which is intended to more realistically simulate different

rates of growth over time. When the rate of growth exceeds a spec-

ified critical threshold, the growth coefficients are multiplied by a

factor greater than one, simulating a development ‘boom’ cycle.

Likewise, when the rate of development falls below a specified

critical threshold, the growth coefficients are multiplied by a factor

less than one, simulating a development ‘bust’ cycle. Without self-

modification, SLEUTH will simulate a linear growth rate until the

availability of developable land diminishes. Because we used only

two actual historic data sets, we did not invoke the self-modifica-

tion function for calibration. As discussed in the next section, how-

ever, we did utilize self-modification when creating forecasts.
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In order to provide additional assessments of the accuracy and

utility of the model simulations, beyond those calculated by the

model during calibration, we performed an extensive accuracy

assessment. After the best-fit parameters were identified for each

sub-region, the model was initialized in 1990 and run in predict

mode to 2000, with 25 Monte Carlo trials. This resulted in a pre-

dicted development probability surface for 2000, which was then

compared to the observed patterns for 2000. We assessed the per-

formance of the model across multiple extents and scales: coun-

ties, Hydrologic Unit Code 11 (HUC 11) watersheds, and an array

of 7290 m � 7290 m grid cells (Fig. 3). The cell size for this array

was selected to achieve a cell resolution between 5 km2 and

10 km2, and so that the number of rows and columns would match

the extent of our study area.

2.5. Forecasts to 2030

When forecasts are created with SLEUTH, the model is initial-

ized with the latest urban extent map, in our case the year 2000,

and the growth coefficient values that were derived during

Fig. 3. Areal units for multi-scale calibration accuracy assessment, shown for the Delmarva peninsula.
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calibration. The user sets the target year in which to stop the

forecast; in our case we chose the year 2030. As in calibration,

25 Monte Carlo trials were performed and each sub-region was

modeled separately. For the forecasts presented here, we utilized

the same exclusion/attraction layer that was used for calibration,

assuming no change in spatial factors that would influence urban

patterns in the future. For most sub-regions, we assumed a linear

growth trend and thus did not invoke the model’s self-modification

functionality. However, for urban sub-regions, such as the

Washington, DC–Baltimore, MD region, or urbanizing sub-regions,

Fig. 4. Forecast scenario maps (exclusion/attraction layers) for southeast Pennsylvania.
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such as the Delmarva Peninsula, the maintenance of linear growth

rates was thought to be an implausible assumption. As land

available for urbanization decreases, actual growth rates will slow

as there is a greater economic incentive for growth to occur in

denser clusters. Thus for these sub-regions, we allowed the model’s

‘‘bust” self-modification to operate, using a multiplier of 0.95.

When the model enters into the ‘‘bust” cycle, the self-modification

multiplier is applied to the diffusion, breed, and spread coefficient

values before each annual growth cycle begins, effectively lower-

ing those values and slowing growth.

To illustrate the capability of SLEUTH to simulate alternative

scenarios, we developed three different scenarios to forecast future

development for the southeast Pennsylvania sub-region, an area of

expanding population and exurban growth (Fig. 1). This sub-region

is a good case study area because it has a large urban center, Har-

risburg, PA, several small urban centers, such as Lancaster and

York, PA, and a heterogeneous exurban landscape that includes

agricultural valleys and forested ridges. In addition, it is a region

that has been experiencing rapid growth in recent years due to

its proximity to the Washington, DC–Baltimore, MD and Philadel-

phia, PA metropolitan regions.

For the test sub-region, alternative scenarios were implemented

by developing exclusion/attraction layers that reflect different land

use policy scenarios (e.g. Jantz et al., 2004). In our case, we devel-

oped three scenarios (Fig. 4):

1. A ‘‘business as usual” (BAU) scenario that assumed no change in

the excluded layer.

2. A trend scenario developed by the Chesapeake Bay Program (CBP

trend) that incorporates an agricultural vulnerability model. In

addition to using the existing protected lands to designate areas

that are off-limits for new development, this scenario identifies

county agricultural lands that are either more or less likely to

be developedbased on the relative difference between the extent

of modeled agricultural lands in 2030 and mapped agricultural

lands in 2002 at the county scale (R. Burgholzer, pers. comm.,

based on participation in the CBP Agricultural and Nutrient

Reduction Workgroup). Because we calibrated SLEUTH using an

exclusion/attraction layerwith a base valueof 50, countyagricul-

tural lands that are less likely to be developedwere given a value

between 51 and 80 (expressing the degree of exclusion of urban-

ization); county agricultural lands more likely to be developed

were given a value between 20 and less than 50 (expressing the

degree of attraction of urbanization). Agricultural resistance val-

ues were not stretched to the minimum or maximum range of

possible values because no farmlands could be considered to be

powerfully attractive or repulsive to urban growth based solely

on farm animal production trends.

3. A ‘‘smart growth” (SG) scenario that uses the exclusion/attrac-

tion layer to code existing protected lands as completely off-

limits for new development, and to apply stronger protection

for lands with associated cultural or natural value. Also, areas

around existing urban centers were assumed to be more likely

to become developed. Resource lands were identified using the

Chesapeake Bay Program’s Resource Lands Assessment (RLA)

data sets (Chesapeake Bay Program, 2005). The RLA consists of

five GIS-based models that represent ecological, environmental

or cultural elements: ecologically valued forests, economically

valued forests, forests valued for water quality protection,

prime agricultural soils, and cultural assets. We applied a resis-

tance to development using a GIS overlay model that combined

the five RLA maps using a weighting scheme as outlined in

Fig. 5. Resistance within ‘‘smart growth” areas was eliminated

to simulate a higher likelihood of development in these areas.

Smart growth areas were centered on existing developed areas

and were modeled using US Census designated urbanized area

boundaries (Fig. 5).

Three versions of each scenario were run: one where the growth

coefficients stayed static over the forecast time period (linear

growth), and two where self-modification ‘‘bust” multipliers would

be applied to cause growth rates to decline over the forecast time

period. The first ‘‘bust” scenario used a multiplier of 0.90 and the

second used a multiplier of 0.80. The critical growth rate was set

so that the system would go into a bust cycle beginning with the

first forecast year. Because growth rates for southeast Pennsylvania

were high throughout the calibration time period, we assumed

that a linear growth trend (with a bust multiplier of 1.0) would

represent a high growth scenario, the 0.90 multiplier would simu-

late a moderate growth scenario, and the 0.80 multiplier would

Fig. 5. GIS overlay model for smart growth scenario.
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simulate a low growth scenario. Thus, a total of nine forecast sce-

narios were run, a low, medium and high growth forecast for each

of the three policy scenarios.

3. Results

3.1. Modifications to the SLEUTH model

The ability to interactively set a diffusion coefficient multiplier

that reflects the unique characteristics of the study area is a key

advancement in the SLEUTH-3r model. For all sub-regions we were

able to identify a value for the diffusion coefficient multiplier that

would over-estimate the number of urban clusters (by roughly

30%) when diffusion growth was maximized (Table 3). This en-

sured that SLEUTH-3r would be able to simulate an appropriate le-

vel of diffusion growth (see Section 3.3 for calibration results).

Our modifications of the SLEUTH code to speed-up processing

and to reduce memory requirements proved effective. The net

reduction in required RAM was approximately 65%, though the ex-

act savings depend on the size and content of the input layers.

With these reduced memory constraints we were able to make

runs for our relatively large modeling units on computers equipped

with just 1.5 Gigabytes of RAM. The new road-search algorithm

proved to be about 800 times faster than the old algorithm and, be-

cause of the prominent role of this algorithm, the overall speed of

processing was at least doubled. The processing speed-up from the

new road-search algorithm in conjunction with increased speed

resulting frommore efficient processing of other internal arrays re-

sulted in an overall speed increase of a factor of five. This allowed

us to run calibrations for all 15 of our sub-regions on 10 nodes of a

Beowulf cluster over the course of about a month; without the in-

creased speed our calibration runs would have taken nearly five

months of CPU time.

3.2. Subdivision of the Chesapeake Bay watershed

The initial results of the multivariate k-means clustering is

shown in Fig. 6A. Urban centers, such as Washington, DC, Balti-

more, MD and Richmond, VA, are clearly identified, along with

their surrounding suburban or suburbanizing counties. As dis-

cussed in Section 2.3, the county groupings identified in this initial

analysis were, however, too large and required further subdivision.

Using the methodology described in Section 2.3, and with input

from the Chesapeake Bay Program, we settled on the final regional

subdivisions shown in Fig. 6B.

3.3. Calibration of the SLEUTH-3r model

The calibration results for each sub-region provide both the

best-fit parameter set (Table 4) and corresponding fit metrics (Ta-

ble 5). For all sub-regions we were able to match the overall

amount of development within 10% and for all but four sub-regions

(New York central, Richmond–Norfolk Virginia, Virginia south-cen-

Fig. 6. Initial k-means stratification (A) and final stratification (B).

Table 3

Diffusion coefficient multiplier (DM) values for each sub-region.

Sub-region DM

Delmarva 0.040

New York central 0.040

New York east 0.001

New York west 0.025

Pennsylvania north-central 0.060

Pennsylvania northeast 0.015

Pennsylvania northwest 0.040

Pennsylvania south-central 0.050

Pennsylvania southeast 0.130

Virginia central 0.060

Virginia Richmond–Norfolk 0.080

Virginia south 0.030

Virginia south-central 0.045

Virginia west 0.040

Washington, DC–Baltimore, MD 0.120
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tral and Virginia south) we achieved a match within 5%. Likewise,

for matching the number of urban clusters, all sub-regions except

for New York east achieved a match within 10% and most were

matched within 5%.

SLEUTH calculates the fit metrics globally for each sub-region.

We also present results of the model’s performance at the county

scale, HUC 11 watershed scale, and using the 7290 m � 7290 m lat-

tice. Table 6 shows the results of linear regression analyses that

compare the observed and simulated development in 2000 and ur-

ban land-cover change between 1990 and 2000 for each areal unit.

Fig. 7 illustrates, for the 7290 � 7290 lattice, the spatial patterns of

the differences between simulated and observed urban land cover

estimates for 2000.

3.4. Forecasts to 2030

The basin-wide forecasts (Fig. 8) indicate a continuation and

intensification of development trends that were observed in the

1990–2000 time period (Jantz et al., 2005). We note, for example,

the intensification of urbanization in southeast Pennsylvania, be-

tween Harrisburg and Philadelphia, and on the Delmarva Penin-

sula. Likewise, exurban development throughout Virginia is also

apparent.

The results for the nine 2030 forecasts for southeast Pennsylva-

nia (Fig. 9) indicate that the overall amount of development be-

tween the BAU and SG scenarios, regardless of the growth rates,

was similar. Fig. 10 focuses on these two scenarios to illustrate

the spatial differences in growth patterns. The CBP trend scenario

consistently resulted in higher levels of growth, likely due to the

fact that there are more pixels available for urbanization in this

scenario. As an example of an impact assessment, we compared

the types of land converted to development by overlaying the fore-

cast maps with the RLA map developed for the smart growth sce-

nario (Fig. 11).

4. Discussion

4.1. Modifications to the SLEUTH model

The added functionality of SLEUTH-3r has greatly enhanced the

model’s ability to capture urbanization patterns across a wide

range of conditions. That we found diffusion coefficient multiplier

Table 4

Parameter sets for each sub-region.

Sub-region Diffusion Breed Spread Slope Road growth

Delmarva 100 75 50 25 50

New York central 50 25 25 50 50

New York east 50 50 100 50 25

New York west 100 50 50 100 25

Pennsylvania north-central 75 25 25 1 75

Pennsylvania northeast 100 50 75 100 50

Pennsylvania northwest 75 50 50 25 1

Pennsylvania south-central 50 50 25 50 50

Pennsylvania southeast 75 75 25 1 50

Virginia central 100 25 50 25 25

Virginia Richmond–Norfolk 100 100 25 75 25

Virginia south 50 50 50 100 50

Virginia south-central 75 25 75 50 50

Virginia west 75 1 75 50 1

Washington, DC–Baltimore, MD 100 50 25 1 50

Table 5

Calibration accuracy results for each sub-region. The number of urban pixels and the percent urban, and the number of urban clusters for 1990 and 2000 are given, along with the

simulated number of pixels and clusters for 2000. For the pixels and clusters fractional difference metrics, a zero value indicates a perfect match between the simulated and

observed data sets. Negative values indicate underestimation; positive values indicate overestimation.

Sub-region 1990 Pixels

(% urban)

2000 Pixels

(% urban)

2000

Simulated

pixels

Pixels fractional

difference

1990

Clusters

2000

Clusters

2000 Simulated

clusters

Clusters fractional

difference

Delmarva 327,589 (0.80) 798,168 (1.96) 789,505 �0.01 92,427 185,299 166,896 �0.09

New York central 521,977 (0.85) 842,267 (1.37) 766,146 �0.09 75,436 126,166 119,151 �0.05

New York east 35,300 (0.14) 83,827 (0.34) 84,244 0.00 9840 25,361 9831 �0.60

New York west 214,957 (1.03) 432,758 (2.07) 425,102 �0.01 51,886 89,171 88,390 �0.01

Pennsylvania north-

central

236,622 (0.32) 394,575 (0.54) 377,223 �0.04 48,243 85,696 85,090 �0.01

Pennsylvania

northeast

229,234 (1.01) 370,372 (1.63) 384,873 0.04 32,121 56,535 55,482 �0.02

Pennsylvania

northwest

123,451 (0.18) 286,435 (0.42) 280,295 �0.02 29,886 70,959 71,381 0.01

Pennsylvania south-

central

235,264 (0.45) 418,710 (0.80) 406,840 �0.02 57,983 109,305 102,917 �0.05

Pennsylvania

southeast

1354,671 (2.34) 2045,556 (3.53) 2024,113 �0.01 248,499 349,571 315,144 �0.09

Virginia central 197,389 (0.25) 495,483 (0.63) 502,965 0.02 45,043 118,785 129,152 0.08

Virginia Richmond–

Norfolk

1037,356 (1.86) 1608,125 (2.88) 1507,658 �0.06 124,248 203,814 213,845 0.04

Virginia south 102,681 (0.44) 289,000 (1.24) 262,528 �0.09 18,828 62,161 56,182 �0.09

Virginia south-central 142,646 (0.24) 467,646 (0.79) 494,381 0.06 35,359 122,487 121,610 �0.01

Virginia west 75,543 (0.10) 226,422 (0.29) 219,623 �0.03 23,871 65,167 68,078 0.00

Washington, DC–

Baltimore, MD

2211,517 (4.53) 3031,176 (6.21) 2973,476 �0.01 229,441 299,615 275,798 �0.07
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Table 6

Calibration accuracy results for counties, HUC 11 watersheds, and an array of 7290 � 7290 m grid cells. Ordinary least squares (OLS) regression scores are presented for both

estimates of total developed area and for estimates of change in developed area between 1990 and 2000.

Estimated developed area (r2) Estimated change in developed area, 1990–2000 (r2)

Counties, N = 208 0.97, p < 0.01 0.74, p < 0.01

HUC 11 watersheds, N = 505 0.98, p < 0.01 0.65, p < 0.01

7290 � 7290 lattice, N = 5126 0.97, p < 0.01 0.74, p < 0.01

Fig. 7. Difference in estimates of percentage developed area, where the simulated estimates were subtracted from the mapped estimates. Negative values thus represent that

SLEUTH-3d is under-estimating development in 2000, while positive values represent an overestimation.
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values ranging from 0.001 to 0.130 for the Chesapeake Bay wa-

tershed sub-regions (Table 3), illustrates both the heterogeneity

of urbanization patterns found in the study area and the model’s

new ability to adapt to these conditions. While it is outside the

scope of this paper to address how these patterns may reflect the

process of urban growth, the diffusion multiplier could offer new

insight into these questions. The new fit metrics enable application

of SLEUTH-3r in areas that lack more than two data sets represent-

ing historic urban land cover. We found the fractional difference

metrics (PFD, CFD) particularly useful because they quantified both

Fig. 9. Forecast results for southeast Pennsylvania, 2000–2030.

Fig. 8. Basin-wide forecasts to 2030. The percentage of each county’s area that is urbanized in 2000 is shown in (A), and the forecast for 2030 is shown in (B).

C.A. Jantz et al. / Computers, Environment and Urban Systems 34 (2010) 1–16 13



the model’s fit and the direction of error. Finally, the enhanced pro-

cessing speed and memory allocation allow for processing of larger

input layers, expanding SLEUTH-3r’s ability to model larger areas

with fine-grained (small) cells, thus better capturing sub-unit var-

iability (e.g. within grid cells, watersheds, regions, districts).

4.2. Sub-dividing the Chesapeake Bay watershed

We found the input of and collaboration with the Chesapeake

Bay Program invaluable throughout the modeling process, particu-

larly for sub-dividing the study area both in terms of the selection

of variables for the k-means clustering, and in the production of the

final subdivision units. The use of political boundaries, such as

counties and states, was based on the recognition that governmen-

tal jurisdictions influence land-use change, while variables such as

the rural–urban commuting areas provide linkages between

metropolitan centers and their suburban and exurban counties.

The inclusion of biophysical variables, such as ecoregion classifica-

tions, enabled the model to react to environmental influences on

regional urbanization patterns. Finally, many of the variables were

directly derived from existing urban patterns or from observed ur-

ban land-cover change, and these same variables were used to

drive the calibration of the SLEUTH-3r model. This ensured consis-

tency between the methodology and data used to guide the subdi-

vision of the study area and the modeling approach implemented

in SLEUTH-3r. The resulting sub-regions were logical to the

Fig. 10. Example forecast results for southeast Pennsylvania. The percentage of watershed area that is developed in 2000 is shown in (A), and 2030 forecasts for the Business

as Usual (BAU) linear trend scenario and the Smart Growth linear trend scenario are shown in (B) and (C).

Fig. 11. Forecasted impacts on resource lands for three scenarios for southeast

Pennsylvania. Only the higher valued classes are shown here.
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Chesapeake Bay Program partners, a good indication of the prag-

matic validity of our choice of 15 sub-regions.

4.3. Calibration of the SLEUTH-3r model

The calibration results show wide variation in the best-fit

parameters derived for each sub-region (Table 4), reinforcing the

justification for sub-dividing the study area. These results also

indicate the sensitivity of the model to the input data. For example,

the best score for the clusters fractional difference metric for the

New York east sub-region was –0.60, indicating a 60% underesti-

mation (Table 5). This case reflects the poor quality of the 1990

data for this sub-region (due to cloud cover in the original satellite

imagery) rather than the model’s inability to capture the observed

urbanization rates and patterns. The performance of the model for

the other sub-regions was quite good at the aggregate level of the

sub-regions (Table 5).

While themodel also performswell at finer scales, trade-offs be-

come apparent. In examining the difference between the amount of

urbanization estimated by themodel and the observed urbanization

for the year 2000 (Fig. 8), areas where the model consistently over-

estimated tended to fall within the exurban or rural landscapes. In

contrast, the areas where the most significant underestimation oc-

curred were associated with urban centers. This is particularly evi-

dent for Richmond, VA, Washington, DC and Harrisburg, PA. These

results indicate the challenge of capturing local scale heterogeneity

in densely developed areas. Nonetheless, we note that for nearly the

entire CBW watershed we are able to capture the amount of urban

development within 5%, which we feel are particularly positive re-

sults given the scale and scope of this project.

4.4. Forecasts to 2030

The basin-wide forecasts presented here (Fig. 8) were created

based on a set of assumptions that reflect ‘‘business as usual,” so

it is not surprising that the results indicate an intensification of his-

toric development patterns. These results do, however, provide an

important baseline from which alternative scenarios can be evalu-

ated, both in terms of the spatial pattern of development, potential

impacts on resource lands, and impacts on water quality and

hydrology. These are on-going efforts at the time of this writing,

as noted below in Section 5.

The forecasts presented for southeast Pennsylvania represent

examples of how alternative future scenarios can be developed in

SLEUTH-3r. The use of the exclusion/attraction layer and the use

of self-modification to simulate high, medium and low growth

rates, are innovations that warrant special attention in future

applications. While we did not conduct quantitative sensitivity

analyses related to these innovations, we have demonstrated that

the utility of this approach is both important and promising. We

were able to evaluate alternative futures that exhibited similar lev-

els of new development across sub-regions, but differed in terms of

the spatial patterns of development and the types of land con-

verted to new development (Figs. 7 and 8). These results can be

used as input to other models to quantify impacts on, for example,

water quality, flood risk, or wildlife habitat (e.g. Goetz, Jantz, &

Jantz, 2009). It is precisely this type of information that is impor-

tant for ecosystemmanagement and sound land use decision-mak-

ing (e.g. Jantz & Goetz, 2007).

5. Conclusion

This paper presents the broadest scale application of the

SLEUTH model to date – a rare example of a fine-scale land-cover

change model applied across a large region – and introduces a

new version of SLEUTH with substantially augmented functional-

ity. We have introduced new fit statistics that significantly en-

hance the calibration process, and enable application of the

model when historic data are available for only two points in time.

The use of relative exclusion/attraction values has expanded the

capability of SLEUTH to incorporate economic, cultural and policy

information with bearing on historic and future urbanization

trends (e.g. Jantz & Goetz, 2007). Taken together, all of these

changes open up new avenues for the integration of SLEUTH with

other land-change models (e.g. Goetz, Jantz, Towe, & Bockstael,

2007). Future research will also be able to use the new information

generated by SLEUTH-3r to address questions related to how urban

patterns relate to the process of urban land-cover change. In addi-

tion, we have made significant advances in the model’s computa-

tional efficiency.

The Chesapeake Bay Program is currently using the results from

SLEUTH-3r to prepare future land use inputs for their Hydrologic

Simulation Program-Fortran (HSPF) watershed model. Because

we were able to preserve the high-resolution of the land cover

data, SLEUTH-3r provided the capability of visualizing alternative

future scenarios at a detailed scale, which helped to engage stake-

holders in the scenario development process. SLEUTH-3r and HSPF

are especially good complements because HSPF, as a lumped

parameter model, tends to dampen and correct any absolute spa-

tial errors in SLEUTH’s forecasts by aggregating results to broader

spatial scales (larger grain sizes).

We believe this project represents an important advancement

in computational modeling of urban growth. In terms of simulation

modeling, we have presented several new advancements in the

SLEUTH model’s performance and capabilities. More importantly,

however, this project represents a successful broad scale modeling

framework that has direct applications to land use management.
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