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The authors describe a standardized, 
structured test methodology based on 
the boundary-scan proposal from the 

Joint Test Action Group, which is now 
IEEE proposed standard P1149.1. The 
architecture ensures testability of the 

hardware from the printed-circuit- board 
level down to integrated-circuit level. In 

addition, the architecture has built-in 
self-test a t  the IC level. The authors have 

implemented this design using a 
self-test compiler. 
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he problems of testing increasingly complex digital integrated 
systems continue to challenge the design and test commu- 
nity. At the printed-circuit-board, or PCB, level, these prob- T lems led to the formation of JTAG, short for Joint Test Action 

Group, a collaborative organization of major semiconductor users in 
Europe and North America. JTAG subsequently developed the 
boundary-scan standard' with the goal of improving the controlla- 
bility and observability of an IC's primary inputs and outputs. 
Because of this standard, which is now IEEE proposed standard 
P1149.1, we can now easily implement testability hardware using 
computer tools, which reduces overall design time. 

However, boundary scan does not address testability at the IC 
level-primarily because there is no standard for designing BET 
circuits. At this level are many approaches to adding testability, but 
the one that seems most promising for future VLSI and ULSI circuits 
is built-in self-test, or In BIST, test data is generated and 
evaluated on the chip. 

In this article, we present an architecture called hierarchical test- 
able, or H-testable, architecture for integratingboundary scan at the 
PCB level and BIST at the IC level. We believe that this integration is 
important because the boundary-scan standard defines access to the 
IC during the IC test. The extra test pins let us  control on-chip 
testability hardware. 

A digital system has several levels of hierarchy. First, we have the 
PCB level, which contains such items as a Winchester control board. 
The second level is the IC level, where we have units such as a 
microprocessor chip. The third level, called the macro level, allows 
us to make finer distinctions between functional modules like PLAs 
and &Us, for example-the so-called macros3 We use these three 
levels to define the H-testable architecture. With this hierarchical 
structure, we can use BIST for a macro at the higher levels and so 
more completely integrate the testability features at the IC and PCB 
levels. 

As we show in more detail later, the H-testable architecture can be 
implemented using a self-test ~ompiler .~ This compiler automatically 
generates the layout of a macro, including hardware to generate data 
for and evaluate the results of self-test. 
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To be H-testable, an architecture must have certain characteristics. 
First, it must be hierarchical because, as we just mentioned, the 
hierarchical approach allows us to use test results from a lower level 
in higher levels. The results of a macro test can be used for the IC 
test, for example. Second, the architecture has to be standard 
because PCB manufacturers use ICs from different vendors on a 
single board. If we have well-defined test-interface rules and control 
definitions for every level of hierarchy, we can use standard test 
approaches. Third, the architecture has to be structured also to 
reduce extra design time. With a structured approach, test hardware 
is developed only once and is reusable. A structured approach also 
facilitates the design by allowing us  to use computer tools. Finally, 
to be H-testable, the architecture must incorporate the BIST facilities 
of different macros. 

Select 

INTEGRATION WITH BOUNDARY SCAN 

Enable 

Figure 1 shows the JTAG boundary-scan architecture for PCB 
testing. The behavior and architecture of all blocks in this figure are 
defined in the standard.' We use this architecture to define our 
H-testable architecture. 

Figure 2 is a schematic block diagram of the H-testable architecture 
at the IC level. In this diagram, we can distinguish two levels of 
hierarchy: the macro level and the IC level. At the IC level are 
(self-)testable macros, connections between these macros, and addi- 
tional testability hardware. The macro level consists of a (self-)test- 
able macro with additional testability hardware. Both levels of the 
testability hardware incorporate test interface elements, or TIEs; a 
test processor; and a scan path. 

The TIEs separate a macro (IC) from the connections with other 
macros (ICs). Therefore, TIEs are located at the primary inputs and 
primary outputs of both macros and ICs. Each TIE contains bound- 
ary-scan cells and serial control registers. Test processors provide 
parallel control of the TIEs. 

TCK controller I 

Status I 
I I 

Figure 1 .  Architecture of the Joint Test Action Group boundary-scan standard. 
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The IC test processor provides the TIEs at the IC level and the macro 
test processors with parallel control. The macro test processor 
provides the TIEs at the macro level with parallel control. The macro 
test processor can also control a macro self-test. 

Parallel control 
I 

IC-level test processor 

ARCHITECTURE AT THE IC LEVEL 
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At the IC level, the H-testable architecture is compatible with the 
boundary-scan architecture and its behavior. Therefore, we have in 
effect merged the H-testable architecture with the JTAG boundary- 
scan architecture as evidenced by the following structural character- 
istics: 

The JTAG boundary-scan path in Figure 1 is part of the boundary- 
scan cells of the TIEs at the IC’s input and output in Figure 2. 
The JTAG instruction-register path is implemented in the IC-level 
test processor. The registers in this path provide the serial control 
data for the IC-level TIE. 
The JTAG test-access port (TAP) controller is implemented in the 
IC-level test processor of the H-testable architecture. The TAP 
controller generates the parallel control signals for the IC-level TIEs 
and the macro-level test processors. 
The JTAG user-defined register path is used to implement the local 
scan path in Figure 2. 

We can merge the architecture of the JTAG boundary-scan standard 
and the H-testable architecture without any changes to either. 
Consequently, at the IC level, the H-testable architecture has already 
been defined. 

ARCHITECTURE AT THE MACRO LEVEL 
The test hardware for the H-testable architecture at the macro level 

consists of TIEs and a macro test processor, as Figure 2 shows. 
A TIE in the local scan path forms the link between a macro and 

the macro interconnection. We add this element only to enhance 
testability. The TIEs are located at both inputs and outputs of a macro 
and do not affect the functional behavior of the IC during normal 
operation. 

We can merge theJTAG 
boundary-scan and 

H-testable architectures 
without any changes to 

either. Thus, the 
H-testable architecture 

is already defined at the 
IC leuel. 

Test processor Test processor Local scan path .---------_-______________ 

TDO 4 IC-level TIE TDI 
1 ......._.._...... 1 

IC out 
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IC in 

Figure 2. Block diagram of the hierarchical testable @f-testable) architecture at the IC level. 
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During an IC test however, the TIEs are able to separate macros 
from their interconnections, which allows an independent test of 
both. Test patterns are shifted serially into the TIE via the local scan 
path, and the TIE applies the patterns in parallel to the macro or to 
the interconnection of macros. Results from a macro self-test are 
loaded in parallel into the TIEs at the output of the macro. Results 
from the macro interconnection test are loaded in parallel into the 
TIEs at the input of a macro. Next, data m the TIE’S will be shifted 
out serially via the local scan path. Control signals for the TIE are 
applied serially via the local scan path and in parallel via the control 
signals from the macro-level test processor. 

Figure 3 shows the implementation of the TIE. A TIE consists of 
data-register cells D, two control-register cells ( M  and S), a bypass 
path, and a multiplexer. 

Data-register cells form the interface of the macro and the inter- 
connections to other macros. Figure 4a is a block diagram of one of 
these cells. This cell consists of two multiplexers and a master-slave 
register. The macro-level test processor provides the signals Mode, 
DRC1, and DRC2. The data-register cell is used in different modes, 
which vary according to the control signals applied to the multiplex- 
ers. Figure 4b shows the truth table of multiplexer 2. The first mode 

- 
cu 
0 )  
~ Hold 
3 Normal- - 

(1 E Test- MSFF 
- 

figure 3. Implementation of a test interjime element, or TIE: D is the data-reg- 
ister cell and M and S are control-register cells. 
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figure 4. Block diagram of a data-register cell (4 and the truth table for 
data-register multiplexer 2 &I. 
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of the data-register cell is the hold mode (DRC 1 =0, DRC2=O), in which 
data in the register remains unchanged. The second mode (DRC 1= 1, 
DRC2=O) is the test mode, in which the input Test is used for BIST. 
The third mode (DRC 1=0, DRC2= 1) is the scan mode, in which the 
cell is placed in the local scan path at the IC level. Figure 2 shows 
this path. We can now shift data into input TDI and towards output 
TDO. The fourth mode (DRC1=1, DRC2=1) is the normal functional 
operation. Data enters the cell via the input Data-In and propagates 
through the cell with minimal delay to Data-Out. 

The control-register cells in the instruction path of a TIE (M and S 
in Figure 3) provide its serial control. These registers consist of a shift 
register (L2) and an output latch (Ll).  Figure 5a is a block diagram 
of an instruction-register cell. The TAP controller of the IC-level test 
processor supplies the control signals Update-IR, IRC 1, and IRC2. 
At the rising edge of Update-IR, the contents of shift register L2 are 
loaded into the output latch L1. The signals IRC 1 and IRC2 control 
which input is selected by the multiplexer. Figure 5b shows the truth 
table of this multiplexer. The input Hold (IRC 1=0, IRC2=0) is selected 
to retain the data in the output latch L1. The input Status (IRC 1= 1, 
IRC2=O) is required to load a signal into the shift register. The input 
Shift (IRC1=0/1, IRC2=1) is the serial scan input. This input is 
connected to the output TDO of the previous shift-register cell. 

Because TIEs are at both the input and output of a macro, there 
are two mode registers-M1 at the input, M2 at the output-and two 
select registers41 at the input and S2 at the output. These four 
instruction registers can define 16 modes for the data-register cells. 

The select register S in Figure 3 controls the bypass of the data- 
register cells. The data-register cells in a TIE are placed in the local 
scan path if S=l. If S=O the scan path of a TIE contains only the 
instruction-register cells. 

Hold 
Multiplexer 

The value in the mode register M is decoded in the macro-level test 
processor and, together with parallel control signals from the IC-level 
test processor, controls the two functions of the data-register cells. 
In Figure 4a the data-register cells transmit data if mode=l and 
receive data via input Data-In if mode=O. 

- 
TDI- 

Figure 3 shows, in contrast with the JTAG architecture, that the 
boundary-scan path and the instruction path are connected serially. 
With this architecture at the macro level, we can use a simple 
multiplexer to select either the bypass mode or the boundary-scan 
mode. Because both modes include the instruction path, a data scan 
will always contain data bits and instruction bits. We need only one 
scan operation to initialize the TIES for a macro test. At the PCB level, 
the JTAG boundary-scan architecture requires two scan operations 
to initiate the TIEs. In the first stage, the instruction bits are shifted 
in. In the second stage, the data bits are shifted in. 

Another difference between the macro-level TIE and the IC-level TIE 
is the number of modes that a data-register cell has. The boundary- 
scan data-register cell at the IC level has three modes of operation. 
At the macro level, it has four modes. As we mentioned earlier, this 
additional mode is the test mode, which allows the data-register cell 
to be used for BET. This mode does not require an extra control signal 
as compared with the boundary-scan register cell. 
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Central to the 
H-testable architecture 

is the sey- testable 
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THE MACRO-LEVEL TEST PROCESSOR 
The test processor forms the control part of the H-testable archi- 

tecture. At the macro level, the processor has to perform a macro 
self-test and apply the parallel control signals to the data-register 
cells of the TIES at both the input and output of the macro. 

To carry out BIST, we must generate test patterns and compact 
them using some hardware implementation of a test-pattern gener- 
ation/compaction algorithm. Test patterns are applied in parallel to 
the macro inputs by loading the test patterns in the data-register 
cells via the extraTest input, as Figure 4a illustrates. The test result 
is loaded in parallel into the TIE at the output of the macro. 

During the self-test, the macro test processor generates the par- 
allel control signals for the data-register cells of the TIE. Figure 6 is 

-1 Decoder 
s2  

BAH-dr BSH-dr =I 

Self-test Ready 

-f Dataout Controller Pattern generator 

Parallel control 

DRC22 
Model 

* Mode2 I 
Figure 6. Block diagram of a macro-level test processor: 
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Figure 7. Example of the hierarchical testable, or H-testable architecture. 
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a block diagram of the macro-level test processor. We briefly describe 
the main parts of the test-processor architecture. A more detailed 

Parallel and serial control logic supply the data-register cells with 
control signals. The signals DRCl1, DRC12, and Model form the 

The signals DRC21, DRC22, and Mode2 form the signals DRC1, 
DRC2, and Mode for the TIE at the output of a macro. These signals 

description is available el~ewhere.~ 

signals DRC 1, DRC2, and Mode for the TIE at the input of a macro. 

AN H-TESTABLE ARCHITECTURE 
The best way to illustrate the features of the H-testable architecture 

is to describe an actual implementation. Figure 7 shows the example 
we have used. Our intent is primarily to show the integration of 
boundary-scan hardware with BIST at the IC level. Our example 
incorporates two TIEs, a macro test processor, one TAP controller, 
and a simple macro. 

The central part in the architecture is the self-testable macro, which 
has four inputs and four outputs. This macro contains only combi- 
national logic and is tested with pseudorandom patterns. A signature 
analyzer compacts the test results. We have added some hardware 
to the data-register cells of the TIEs so that we can use the data 
register as a building block for pseudorandom pattern generation 
and signature analysis. Figure 8 illustrates the additional hardware. 

We form the pattern generator/compactor by connecting a number 
of modified data-register cells as a linear-feedback shift register. To 
do this, we feed Data-Out ofthe last register cell back to the Feedback 
terminal of specific data-register cells. The connections are deter- 
mined by the feedback polynomial.6 We can use the structure as a 
pseudorandom pattern generator when (DRC 1, DRC2)=( 1.0) and 
mode=l. The circuit operates as a signature analyzer when (DRC1, 
DRC2)=( 1,O) and mode=O. 

In our example, the TIEs form an LFSR during the test mode that 
has a feedback polynomial of l+X+2. Figure 9 shows the data 
register of a TIE realizing this LFSR. 

The macro-level test processor also incorporates the logic to start 
and complete the self-test. The Ready signal, which indicates the 
completion of the self-test, is true when a specific test pattern is 
generated. 

A pattern gemraw, 
which is governed by 

the controller, generates 
the testpatterns 
for the macro. 
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Figure 8. Block diagram of a modifid data register. 
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Figure 9. Block diagram of the data register part of the test interface element. or TIE, that forms a four-bit linear feedback shijl 
register with feedbackpolynomial 1 +X+x'. 
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The TAP controller is identical to the TAP controller as described in 
version 2.0 of the boundary-scan standard.' 

SIMULATION OF THE SAMPLE CIRCUIT 
Table 1 shows the scan actions applied to the example circuit 

during simulation. Scan action 1 initializes the instruction-register 
cells. Four clock cycles shift the values for the initialization path into 
the instruction-register cells: (Ml,Sl,M2,S2) = (1,1,0,1). Because 
S 1 = 1 and S2= 1, we can initialize the data-register cells at both the 
input and output. 

Scan action 2 initializes the data-register cells for a macro self-test. 
Both data-register cells are initialized with the value (1,l ,O,O). Scan 
action 3 indicates that during a macro self-test, we can still shift data 
through the TIEs. While the two TIEs perform a macro self-test, a 
pattern is shifted via the input TDI to the output TDO. 

We need scan action 4 to place the data-register cells in the scan 
path after the macro self-test has been completed. Finally, with scan 
action 5, the signature in the output TIE appears at the serial output 
TDO. 

We simulated the test process for this sample circuit using a 
switch-level description. The results of the simulation5 show the 
correct operation of the H-testable architecture. A layout for the 
individual blocks of the H-testable architecture has since been 
designed and will be used in our self-test compiler. 

7 

A SELF-TEST COMPILER 
As we mentioned earlier, the purpose of the H-testable architecture 

is to develop a standard, hierarchical test approach to ease the 
burden of test development. Towards that end, we implemented our 
architecture in a self-test compiler.* The compiler automatically 
generates the layout of the most appropriate on-chip test hardware 
for self-testing along with the functional macro. Designers define only 
the type and size of the macro to be realized, along with the fault 
coverage they desire for the self-test. Using the described architec- 
ture, the compiler generates self-testable macros that we can control 
in a standardized format. The H-testable architecture defines the 
signals to initialize, control, and verify a macro self-test from the 
macro level to the PCB level. 

Table 1 .  Tests applied to the sample circuit in Figure 9. 

No. Scan Action Instruction 
M1 S1 M2 52 

1 Select initialization path 1 1 0 1  

2 Initialize dataand instruction register 1 0 0 0 

3 Scan operation during self-test 1 0 0 0  

4 Select result path 0 1 0 1  

pattern for external test 0 1 1 1  
5 Verify test result and scan in 

FEBRUARY 1990 
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For small mucros of say, 
10 to 20 I/O ports, the 

controllers will probably 
determine the ouerhead 

of the extra test 
hardware. 

Figure 10 shows part of the layout of a self-testing carry-save array 
multiplier, which was generated by the self-test compiler. The self- 
test, performed in this particular structure, is an exhaustive test. We 
used a signature analyzer to evaluate the test responses. The bottom 
row of cells in the figure shows the layout of some data-register cells 
used for data compaction. 

The overhead needed for the extra test hardware vaies with the 
size of the array multiplier. For a 16x16-input carry-save array 
multiplier, for example, the overhead is about 20%. For a 32x32-bit 
array multiplier, the overhead is about 12%. 

he H-testable architecture we have described will ease the 
problems of testing ICs on printed-circuit boards. I t  is hier- 
archical, structured, and compatible with the JTAG bound- T ary-scan standard for PCB testing. Using this architecture, 

we can initialize, control, and verify a macro self-test from the IC level 
up to the PCB level. During a macro self-test, the IC-level scan path 
can still be used, which implies that we can test different macros in 

Figure 1 0 .  Part of the layout of a self-testing carry-save array multiplier; which 
was generated by the self-test compiler. The bottom row of cells shows the 
layout of some data-register cells used for data compaction. 
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parallel with the H-testable architecture. We have implemented this 
architecture in a self-test compiler. An example circuit, generated by 
this compiler, shows the possibilities of this architecture. 

The overhead of the extra test hardware remains a Droblem that 
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needs more research. For small macros of say, 10 to 50 1 / 0  ports, 
we expect the controller parts of the H-testable architecture to 
determine the overhead. Therefore, we advise the use of only one 

s%ems, PartiCuiarlY boundary Scan with 

, " , ' ~ e ~ ~ c ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ * ~ e ~ ~  
OfTwente. 

macro test processor for a set of small self-testable macros. @ 
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