
Designing and Improving Code-based

Cryptosystems

Vom Fachbereich Informatik der

Technischen Universität Darmstadt genehmigte

Dissertation

zur Erlangung des Grades

Doktor rerum naturalium (Dr. rer. nat.)

von

Dipl.-Math. Mohammed Meziani

geboren in Beni Sadden, Marokko.

Referenten: Prof. Dr. Johannes Buchmann
Dr. Pierre-Louis Cayrel
Prof. Dr. Ayoub Otmani

Tag der Einreichung: 12.05.2014
Tag der mündlichen Prüfung: 03.06.2013

Hochschulkennziffer: D 17

Darmstadt 2014

Wissenschaftlicher Werdegang

November 2008 - 2012

Promotionsstudent am Lehrstuhl von Prof. Dr. Johannes Buchmann, Fachbereich Informatik, Fachge-

biet Theoretische Informatik - Kryptographie und Computeralgebra -, und Mitarbeiter im Projekt

”Kryptographische Primitives” des Arbeitsbereichs ”Sichere Daten” im Center for Advanced Secu-

rity Research Darmstadt (CASED).

April 2002 - Oktober 2007

Studium der Mathematik mit Schwerpunkt Informatik an der Technischen Universität Darmstadt.

Oktober 1992 - Oktober 2000

Studium der Angewandten Mathematik mit Schwerpunkt Statistik an der Sidi Mohammed Ben Abdellah-

Universität-Fes, Marokko.

iii

Acknowledgement

I sincerely thank Allah, my God, the Most Gracious, Most Merciful for enabling me to accomplish

my Ph.D. successfully and for often putting so many good people in my way.

In completing my Ph.D. thesis I owe a great debt to many people. I wish to extend my deep thanks

gratitude and appreciation to everyone contributed to the successful completion of my thesis.

First and foremost, I would like to express my deep sense of gratitude and thanks to my research

supervisor Prof. Dr. Johannes Buchmann for his valuable advice, constructive criticism, patient guid-

ance, encouragement and his extensive discussions around my work. I also must express my heartiest

thanks to Dr. Pierre-Louis Cayrel for his sincere efforts, interest and time he have kindly spent to

complete my thesis. I also gratefully thank Prof. Dr. Ayoub Otmani for his help and for agreeing to

be my coreferee.

I also thank my closest friends, Sidi Mohamed El Yousfi Aloui, Mohamed Saied Emam Mohamed,

Rachid El Bensarkhani, Sami Alsouri, and Özgür Dagdelen for their help and support. Special thanks

go to Stanislav Bulygin, Gerhard Hoffmann, and Robert Niebuhr for their interesting and fruitful

collaboration. Additionally, I would like to thank my CDC and CASED colleagues for creating a

peaceful and beautiful office atmosphere. Also, I thank CASED for their financial support.

Finally, very special thanks go to my parents, brothers and sisters, who always supported me in all

my pursuits; my wife for her inspirational patience and support; my little son Ibrahim, who kept me

smiling during the last year of my PhD pursuit. Thank you !.

iv

List of Publications

[PUB1] Mohammed Meziani and Rachid El Bansarkhani. An Efficient and Secure Coding-based Au-

thenticated Encryption. In Roberto Di Pietro and Javier Herranz and Ernesto Damiani and Radu

State editors, Data Privacy Management and Autonomous Spontaneous Security, 7th Interna-

tional Workshop, DPM 2012, and 5th International Workshop, SETOP 2012, volume 7731 of

Lecture Notes in Computer Science, pages 43-60. Springer, 2013.

[PUB2] Rachid El Bansarkhani and Mohammed Meziani: ”An Efficient Lattice-based Secret Sharing

Construction. In Ioannis G. Askoxylakis and Henrich Christopher Pöhls and Joachim Posegga

editors, Information Security Theory and Practice. Security, Privacy and Trust in Comput-

ing Systems and Ambient Intelligent Ecosystems- 6th IFIP WG 11.2 International Workshop,

WISTP 2012, volume 7322 of Lecture Notes in Computer Science, pages 160-168, Springer,

2012.

[PUB3] Mohammed Meziani, Gerhard Hoffmann and Pierre-Louis Cayrel. Improving the Performance

of the SYND Stream Cipher. In Aikaterini Mitrokotsa and Serge Vaudenay editors, AFRICACRYPT,

volume 7374 of Lecture Notes in Computer Science, pages 99-116. Springer, 2012.

[PUB4] Robert Niebuhr, Mohammed Meziani, Stanislav Bulygin and Johannes Buchmann. Selecting

paramaters for secure McEliece-based cryptosystems. In the International Journal of Informa-

tion Security, volume 11, number 3, pages 137-147, Springer 2012.

[PUB5] Mohammed Meziani, Pierre-Louis Cayrel, Sidi Mohamed El Yousfi Alaoui. 2SC: An Efficient

Code-Based Stream Cipher. In Tai-Hoon Kim and Hojjat Adeli and Rosslin John Robles and

Maricel O. Balitanas editors, Information Security and Assurance - International Conference,

ISA 2011, volume 200 of Communications in Computer and Information Science, pages 33-42,

Springer, 2011.

[PUB6] Mohammed Meziani, Özgür Dagdelen, Pierre-Louis Cayrel, Sidi Mohamed El Yousfi Alaoui.

S-FSB: An Improved Variant of the FSB Hash Family. In Tai-Hoon Kim and Hojjat Adeli and

Rosslin John Robles and Maricel O. Balitanas editors, Information Security and Assurance -

International Conference, ISA 2011, volume 200 of Communications in Computer and Infor-

mation Science, pages 132–145, Springer, 2011.

[PUB7] Sidi Mohamed El Yousfi Alaoui, Pierre-Louis Cayrel, Mohammed Meziani. Improved Identity-

Based Identification and Signature Schemes Using Quasi-Dyadic Goppa Codes. In Tai-Hoon

Kim and Hojjat Adeli and Rosslin John Robles and Maricel O. Balitanas editors, Information

v

Security and Assurance - International Conference, ISA 2011, volume 200 of Communications

in Computer and Information Science, pages 146–155, Springer, 2011.

[PUB8] Pierre-Louis Cayrel, Sidi Mohamed El Yousfi Alaoui, Gerhard Hoffmann, Mohammed Meziani,

Robert Niebuhr. Recent Progress in Code-Based Cryptography. In Tai-Hoon Kim and Hojjat

Adeli and Rosslin John Robles and Maricel O. Balitanas editors, Information Security and

Assurance - International Conference, ISA 2011, volume 200 of Communications in Computer

and Information Science, pages 21–32, Springer, 2011.

[PUB9] Mohammed Meziani, Sidi Mohamed El Yousfi Alaoui, Pierre-Louis Cayrel. Hash Functions

Based on Coding Theory. In the proceedings of the 2nd Workshop on Codes, Cryptography and

Communication Systems (WCCCS 2011), pages 32–37, June 2011.

[PUB10] Pierre-Louis Cayrel and Mohammed Meziani. Post-quantum Cryptography: Code-Based Sig-

natures. In Tai-Hoon Kim and Hojjat Adeli editors, Advances in Computer Science and Infor-

mation Technology, AST/UCMA/ISA/ACN 2010 Conferences, volume 6059 of Lecture Notes

in Computer Science, pages 82–99. Springer, 2010.

[PUB11] Mohammed Meziani and Pierre-Louis Cayrel. A Muti-Signature based on Coding Theory”.

In the proceeding of the International Conference on Cryptography, Coding and Information

Security (ICCCS 2010), volume 63 March 2010 ISSN 2070-3724, 2010.

vi

Zusammenfassung

In der modernen Kryptographie basiert die Sicherheit der meisten beweisbar sicheren kryptographis-

chen Primitiven auf schwierigen Problemen aus der Zahlentheorie wie beispielsweise das Faktorisierungs-

und das diskrete Logarithmusproblem. Allerdings allein auf die Hartnäckigkeit dieser Probleme ver-

trauen scheint riskant zu sein. Im Jahr 1994 zeigte Peter Shor wie beide genannten Probleme in

polynomieller Zeit (und somit effizient) mit Hilfe von Quantencomputern gelöst werden können.

Im Gegensatz dazu, sollen kryptographischen Primitive, welche auf Probleme aus der Kodierungs-

theorie basieren, gegen Quantuncomputerangriffe resistent sein und die uns heute bekannten Angriffe

benötigen exponentielle Laufzeit. Neben der Post-Quantum Sicherheit bieten Code basierte Systeme

weitere Vorteile fr die heutigen Anwendungen aufgrund ihrer hervorragenden algorithmischen Ef-

fizienz. In der Tat sind sie schneller als herkömmliche Kryptosysteme wie RSA, da sie nur sehr ein-

fache Operationen wie Verschiebungen und XORs benötigen, anstatt den blichen teuren Berechnun-

gen ber groe Zahlen. Trotz herausstechender Effizienz leiden die meisten Code basierten Systeme von

zu groenSchlsselgren. Die Einführung von Codes mit algebraischer Struktur wie quasi-zyklische und

quasi-dyadische Codes, half das Schlüsselgröenproblem zu berwinden, allerdings hat sich ergeben,

dass sie anfällig auf algebraische Kryptoanalyse waren.

Diese Dissertation leistet einen Beitrag zur Forschung und Entwicklung von Code-basierten Kryp-

tosysteme. Insbesondere interessieren wir uns fr die Entwicklung sowie die Verbesserung der drei

wichtigen Primitive: Stromchiffren und Hash-Funktionen. Wir untersuchen die FSB Hashfunktion

und die SYND Stromchiffre und zeigen wie deutlich ihre Effizienz verbessert werden kann, whrend

die Sicherheitsreduktionen auf die gleichen NP-vollständigen Probleme erhalten und gültig bleiben.

Unabhängig von diesen Ergebnissen, adressieren und lösen wir das Problem der Auswahl geeigneter

Parametern für den Goppa Code basierten McEliece Kryptosystem. Basierend auf dem Lenstra-

Verheul Modell bieten wir auch, zum ersten Mal, ein Framework, das ermöglicht eine Auswahl von

optimalen Parametern zu bestimmen, welche die gewünschte Sicherheitsstufe in einem bestimmten

und konkreten Jahr erfüllt.

vii

Abstract

In modern cryptography, the security of the most secure cryptographic primitives is based on hard

problems coming from number theory such as the factorization and the discrete logarithm problem.

However, being mainly based on the intractability of those problems seems to be risky. In 1994, Pe-

ter Shor showed how these two problems can be solved in polynomial time using a quantum computer.

In contrast, cryptographic primitives based on problems from coding theory are believed to resist

quantum computer based attacks and the best known attacks have exponential running time. Along

with post-quantum security, code-based systems offer other advantages for present-day applications

due to their excellent algorithmic efficiency. Actually, they run faster than traditional cryptosystems

like RSA, since they only require very simple operations like shifts and XORs instead of expensive

computations over big integers. However, although efficient, most code-based schemes suffer from

considerably large key sizes. Codes with algebraic structure such as quasi-cyclic and quasi-dyadic

codes, were proposed to overcome the key size issue, but it has been shown to be insecure against

algebraic cryptanalysis.

This thesis contributes to the research and development of code-based cryptosystems. In particular,

we are interested in developing as well as improving three important primitives: stream ciphers and

hash functions. We study the FSB hash function and the SYND stream cipher and find a way to con-

siderably improve their efficiency, while maintaining the security reduction to the same NP-complete

problems.

Independently of these results, we address and solve the problem of selecting appropriate parameter

sets for the binary Goppa code-based McEliece cryptosystem. Based on the Lenstra-Verheul model,

we also provide, for the first time, a framework allowing to choose optimal parameters that offer a

desired security level in a given year.

viii

Contents

1. Introduction 1

2. Preliminaries and Definitions 3

2.1. Mathematical notation . 3

2.2. Standard notions . 4

2.3. Coding Theory & Cryptography . 4

2.3.1. Introduction . 4

2.3.2. Basic Definitions from Codes . 5

2.3.3. Some Examples of Codes . 7

2.3.4. Computational Problems . 8

2.4. Some Cryptographic Primitives . 9

2.4.1. Encryption Schemes . 9

2.4.2. Stream Ciphers . 11

2.4.3. Hash Functions . 11

3. Code-based Stream Ciphers 15

3.1. Previous Work . 15

3.1.1. The Fischer-Stern’s Pseudo-Random Generator 15

3.1.2. The SYND stream cipher . 17

3.2. The 2SC Stream Cipher . 21

3.2.1. Description of the 2SC cipher . 21

3.2.2. Security Analysis . 23

3.2.3. Parameters Choice and Implementation Results 25

3.3. The XSYND Cipher . 26

3.3.1. Description of the XSYND cipher . 27

3.3.2. Security of XSYND . 28

3.3.3. Parameters and Experimental Results . 36

3.4. The PSYND Cipher . 37

3.4.1. Motivation . 37

3.4.2. Description of the PSYND cipher . 38

3.4.3. Security of the cipher . 40

3.4.4. Parameters and experimental results . 45

3.5. Conclusion and Open Problems . 48

ix

Contents

4. Code-based Hash Functions 49

4.1. Introduction . 49

4.2. Fast Syndrome Based Hash Family . 50

4.2.1. Description of FSB hash familiy. 50

4.2.2. Theoretical security of FSB . 51

4.2.3. Practical security of FSB . 52

4.2.4. Efficiency of FSB . 52

4.2.5. Parameters choice for FSB. 52

4.3. The S-FSB Hash function . 53

4.3.1. Description of S-FSB . 53

4.3.2. Security Analysis . 55

4.3.3. Parameters Choice . 61

4.3.4. Performance and Comparison . 61

4.4. The RFSB Hash Function . 63

4.4.1. Description of the RFSB hash function . 63

4.4.2. Security of RFSB . 63

4.4.3. Performance of RFSB . 64

4.5. Conclusion and Open Problems . 64

5. Parameters Selection for the McEliece-like Cryptosystems 65

5.1. Motivation . 65

5.2. Our Security Model . 65

5.3. Parameters selection . 70

5.4. Conclusion and Open Problems . 73

List of Figures 76

List of Tables 77

Bibliography 78

x

Chapter 1
Introduction

Today cryptography is the cornerstone of information security. It is used for many applications such

as electronic commerce, e-banking, computer password, etc. It can be divided into two families:

symmetric (or private-key cryptography), and asymmetric (or public-key cryptography). In the first

case, a single key is used for both encryption and decryption. Symmetric cryptography includes many

cryptographic primitives such as stream ciphers and hash functions. In the asymmetric setting, two

different keys are required: one is the public key, used to encrypt, and the other is the private key

needed to decrypt and therefore must be kept secret.

Nowadays, many public-key systems are available; and the three most widely used are: RSA, Rabin

and ElGamal. The security of RSA is based on the intractability of the integer factorization problem.

In the Rabin system, the underlying problem is computationally equivalent to factoring. The secu-

rity of ElGamal public-key cryptosystem is related to the hardness of the discrete logarithm problem.

However, Shor [Sho94] proposed a quantum computer algorithm, which can solve these two prob-

lems in polynomial time. Therefore, all public-key cryptosystems resting on the difficulty of these

two problems could be broken by a large quantum computer. For this reason, a significant amount of

effort in the cryptographic community bas been devoted to design new cryptographic schemes which

are resistant to future quantum computer algorithms. The schemes are known as post-quantum cryp-

tographic primitives [BBD08]. Cryptosystems based on error correcting codes are one of the four

promising alternatives [BBD08] that are believed to possess the potential to achieve this goal. In these

systems, the problem that is used is drawn from coding theory, namely the problem of decoding gen-

eral linear codes, which is known to be NP-hard [BMvT78]. The oldest-known schemes belonging to

this group are the McEliece public-key system [McE78] and its dual Niederreiter’s variant [Nie86].

These two systems are still secure, in the sense that no attack able to realize a total break in an accept-

able time has been proposed up to date. All published algorithms have an exponential running time. In

addition to post-quantum security, code-based cryptosystems have some advantages over conventional

public-key cryptosystems, for example RSA. They possess fast encryption and decryption algorithm

(for comparison see the benchmark data made available by eBATS benchmarking project [BL]). How-

ever, they also suffer from two major problems that seriously limit their practical usability: the public

key size is quite large, and the transmission rate is low.

1

1. Introduction

Results and outline of the thesis

This thesis contributes to designing three classes of code-based cryptosystems, namely stream-ciphers,

hash functions, and authenticated encryptions scheme as well as to solving the problem of selecting

secure parameters for the McEliece-like cryptosystems. After introducing the required notions of

code-based cryptography for understanding this thesis in Chapter 2, we present the following results

and discuss the main open problems as well as future research directions in the respective chapter.

Code-based Stream Ciphers (Chapter 3). In chapter 3, we first start with the description of all

existing code-based stream ciphers that have been proposed in the literature, namely the Pseudo-

random generator due to Fischer and Stern [FS96], and the SYND stream cipher proposed by Gaborit

et al [GLS07]. Then, we present our three contributions in this area. The first contribution consists

in designing a new code-based stream-cipher following the sponge construction, called 2SC, which

stands for ”Sponge Code-based Stream Cipher”. This cipher runs faster than previous proposals,

but suffers from the drawback of possessing large matrices. The second contribution consists in

improving the SYND stream cipher in terms of speed by replacing the transformation used in SYND

by a new one without loss of security reduction to the regular syndrome decoding problem. The

new resulting cipher, called XSYND (eXtended SYND), performs all previous constructions in terms

of performance in practice and is shown to be provably secure in the sense that if any adversary is

able to distinguish the key stream produced by XSYND, he can solve a hard instance of the regular

syndrome decoding problem. Futhermore, XSYND requires small storage capacity compared to 2SC.

The last contribution is to show how to construct a parallel variant of XSYND, called Parallel SYND

(in short PSYND) and hence obtaining a faster stream cipher, whose security is still based on the same

problem as SYND and XSYND. At the time of writing of this thesis, we are not aware of any similar

code-based stream cipher that has less storage requirements and a faster key stream generation.

Code-based Hash Functions (Chapter 4). This chapter deals with the design of hash functions

based on coding theory. We first start by describing the Fast Syndrome Based hash family [AFS03,

AFS05, FGS07] (in short FSB) and recalling its main features. Then, we present our main contri-

bution, which consists in showing how to incorporate the ideas of FSB and the sponge construction

due to Bertoni et al. [BDPA07] to design a variant of FSB hash function, called Sponge-FSB (in short

SFSB). The security of this variant is based on the same problems as FSB, and outperforms FSB in

terms of speed. Our experimental results show that our proposal is up to 30 % faster in practice than

FSB using appropriate parameters.

Parameters Choice for the McEliece-like cryptosystems (Chapter 5). In this chapter, we address

the problem of choosing optimal parameters for the McEliece cryptosystem that provide security until

a given year and give detailed recommendations. Following the Lenstra-Verheul model, which uses

a set of explicitly formulated parameter settings, combined with existing data points about future

hardware and software developments, we propose parameters that provide the desired security level

until a given year and optimize the key sizes.

2

Chapter 2
Preliminaries and Definitions

In this chapter, we will introduce the shared notations and some mathematical definitions for all fol-

lowing chapters. Furthermore, we recall a number of essential security notions and basic tools that

are needed for understanding the rest of this thesis.

2.1. Mathematical notation

Scalar, Vectors, Sets, and Matrices. We write scalars using italic Roman lowercase letters (e.g.

x) or, sometimes, italic Greek lowercase (e.g. α). Vectors are denoted by bold fonts (e.g. x). The

coefficients of a vector are noted using the same letter but with the bold removed. For instance, the

ith coefficient of the vector y is written yi. We use sans-serif fonts to denote matrices (e.g. A). The

transpose of a matrix A (resp.of a vector x) is denoted A⊤ (resp. x⊤). The coefficient located at

the intersection of the ith row and the jth column of the matrix A is denoted ai, j. We write sets

using upper-case letters (e.g. S). We write usual sets of numbers using the blackboard font (e.g. N

for the natural numbers). The explicit definition of a set is denoted using the curly brackets (e.g.

S = {1,2, . . . ,10}= {i | i = 1, . . . ,10}). The length of the binary string x is denoted |x|. A finite field

consisting of q elements is written Fq.

Operators. The symbol ”‖” is used to indicate the concatenation operator. If x and y are two equal-

sized vectors, then x⊕y denotes their bitwise XOR. We denote by ” · ” the matrix-vector multiplica-

tion. The symbol ”←” is used for assignment, while ”=” as well as ”≡” for comparison. When using

”≡”, we mean equality modulo an equivalence relation (e.g. a≡ b mod q). The inner product of two

bit vectors a and b (of the same size) is defined by 〈a,b〉 ≡ ∑i aibi mod 2.

Functions. Regarding functions, we use standard mathematical notations. That is, if f is a function

that takes as input elements from a set X and outputs elements from a set Y , then we denote this by

f : X → Y . The set X is called the domain of f and Y the range of f .

3

2. Preliminaries and Definitions

Distributions. Let S be a finite set. The statement x
$←− S means that x is distributed uniformly over

the set S. If D is a distribution, then we denote by x
$←−D the event that x is a random variable selected

according to D. We denote by Un the uniform distribution over the set Fn
2 = {0,1}n. A function

µ : N→ [0,1] is called negligible if for all polynomials p, there exists some n0 > 1 such that for all

n > n0, µ(n)< | 1
p(n) |.

2.2. Standard notions

Algorithms. Algorithms are written using lowercase calligraphic letters (e.g. A). The execution of

an algorithm A with inputs x to produce an output a is written as a←A(x) or A(x) = a. An algorithm

is said to be efficient, if it runs in Probabilistic Polynomial Time (PPT).

Computational indistinguishability and pseudorandomness. Indistinguishability is a fundamen-

tal notion in complexity theory. It originates from [GM82] and was presented in a more general way

in [Yao82a]. Informally, two probability distributions are computationally indistinguishable if no effi-

cient algorithm (called the ”distinguisher”) can tell them apart better than with a negligible probability.

Formally, this can be stated as follows. Let (Xn)n and (Yn)n be sets of probability distributions, where

Xn and Yn are probability distributions over {0,1}p(n) for some polynomial p(n). We say that (Xn)n and

(Yn)n are computationally indistinguishable if for all non-uniform PPT distinguisher D , there exists a

negligible function ε(n) such that

∀n ∈ N, Pr[t← Xn,D(t) = 1]−Pr[t← Yn,D(t) = 1]< ε(n).

Based on the definition of computational indistinguishability, we next want to define the notion of

pseudo-random distributions. Let Un denote the uniform distribution over {0,1}n. We say that a

distribution is pseudo-random if it is indistinguishable from the uniform distribution.

2.3. Coding Theory & Cryptography

In this section, we start with a short introduction to coding theory. Then we briefly recall some

concepts and definitions from coding theory and code-based cryptography that we will rely upon

later. For more details we refer the reader to the books [MS77, Lin98].

2.3.1. Introduction

The theory of error-correcting codes was originally introduced in 1948 by Claude Shannon in his

paper ”A Mathematical Theory of Communication” [Sha48]. The study of error-correcting codes is

called coding theory. This field is concerned with sending digital information over a noisy channel

that adds errors to the transmitted data. Its main goal is to construct coding systems that can detect and

correct such errors. The applications of coding theory include, for example, satellite communication,

data transmission, data storage, mobile communication, file transfer, and digital audio/video trans-

mission. The core idea of coding theory is to systematically introduce some redundancy to messages

4

2.3. Coding Theory & Cryptography

for allowing transmission errors not only to be detected but also to be corrected. In other words, the

sender first selects a message, which is represented as a string of symbols over some alphabet. This

message is encoded (encoding process) into a longer string over the same alphabet, called a codeword,

and then transmitted over a noisy channel. The channel adds errors (or noise) by modifying some of

the characters of the transmitted string, then delivers the corrupted string to the receiver. The receiver

finally tries to decodes the delivered message by using some knowledge (decoding process), hopefully

to the intended message. This idea is similar to that used by McEliece to construct the first code-based

cryptosystem [McE78].

2.3.2. Basic Definitions from Codes

Definition 2.3.1 (Linear Error-Correcting code). A q-ary (linear) error-correcting code (or code) C
of length n over Fq is a subspace of Fn

q. The dimension k of C is the dimension of C as an Fq-vector

space. Elements of Fn
q are called words and elements of C are called codewords. The difference n− k

is called the co-dimension of C . A code with these features is called an [n,k] code. For q = 2, C is

called a binary linear code. The code rate R of C is defined as the ratio between its dimension and its

length, i.e. R = k
n
.

Definition 2.3.2 (Hamming weight, Hamming distance). The Hamming weight (or weight) wt(x) of

a word x is the number of non-zero entries in x. The Hamming distance d(x,y) between two words x,

y is the number of entries i such that xi 6= yi.

Definition 2.3.3 (Regular word). A word x of length n and weight wt(x) = ω is called regular, if it is

composed of ω blocks of length n
ω , where each block has only a single non-zero entry.

Definition 2.3.4 (2-Regular word). A 2-Regular word is defined as a sum of two regular words. It is

of length n and weight less or equal to 2ω.

Definition 2.3.5 (Minimum distance, relative distance). The minimum distance d (or just distance)

of code C is the smallest distance between distinct codewords, i.e. d = min{d(x,y);x,y ∈ C ,x 6= y}.
The ratio d

n
is called the relative distance of C , where n is the code length.

If C is a linear code, the minimum distance d of C is the same as the minimum weight of the non-

zero codewords of C , i.e. d = min{wt(x);x ∈ C ,x 6= 0}. If the minimum weight d of an [n,k] code is

known, we refer to the code as an [n,k,d] code.

For decoding a word belonging to a subset S of the space F
n
q relative to a code, the usual method

is to link a codeword having minimum distance to that word. To this purpose, we use the so-called

error-correcting (or decoding) algorithm.

Definition 2.3.6 (Error-correcting algorithm). Let C be an [n,k] code defined over Fq, S a subset of

the space F
n
q, and δ a positive integer. An δ-error correcting algorithm AC for C is defined by the

following equation:

∀x ∈ S, AC (x) = {y ∈ C ;d(x,y)≤ δ}.

Let C be an [n,k,d] code, and a word x in F
n
q. For any positive integer δ with δ ≤ ⌊ (d−1)

2 ⌋, there

exists at most one codeword y∈ C satisfying d(x,y)≤ δ. As a result, the word x is uniquely decodable

5

2. Preliminaries and Definitions

to codeword x. The positive integer ⌊ (d−1)
2 ⌋ is called the error-correction capability of the code C . As

we can see, the minimum distance d is important in determining the error-correction capability of an

[n,k,d] code. The higher the minimum distance, the more errors the code can correct.

The two most common ways to define a linear [n,k] code are whether with a generator matrix or

with a parity check matrix. Such matrices are defined as follows.

Definition 2.3.7 (Generator matrix). A generator matrix for an [n,k] code C is any k× n matrix G

whose rows form a basis for C . In this case, we have C = {z ·G,z ∈ F
k
q}. If G = [Ik ‖ A], where Ik

is the k× k identity matrix and A is an k× (n− k) matrix , then we say that G is in systematic (or

standard) form.

Definition 2.3.8 (Parity check matrix). A parity check matrix H for an [n,k] code C is any (n−k)×n

matrix defined by C = {x ∈ F
n
q,H ·x⊤ = 0}.

It is easy to check that if G = [Ik ‖ A] is a generator matrix for an an [n,k] code C in systematic

form, then H= [−A⊤ ‖ In−k] is a parity check matrix for C .

Definition 2.3.9 (Syndrome). Let C be an [n,k] code over Fq, and let H be a parity check matrix for

C . For any x ∈ F
n
q, the syndrome of x is the vector sH = H ·x⊤ ∈ F

n−k
q .

As we can see, the syndrome depends on the choice of the parity check matrix H. Therefore, it is

more suitable to denote the syndrome by sH to emphasize this dependance. However, for simplicity

of notation, the index H is eliminated whenever there is no risk of ambiguity.

The Gilbert-Varshamov (GV) bound is a lower bound on rate of a code. It provides a sufficient

condition for the existence of a linear code. It was actually proved in two independent works, first

for general random codes by Gilbert [Gil] and then for linear random codes by Varshamov [Var57].

Before defining this bound, we need the following definition.

Definition 2.3.10 (Entropy function). For a positive integer q ≥ 2, the q-ary entropy function hq :

[0,1]→ R is defined as follows: hq(x) =−x logq(x)− (1− x) logq(1− x).
Of special interest is the binary (q = 2) entropy function: h2(x) =−x log2(x)− (1− x) log2(1− x).

The function hq is continuous and strictly increasing on [0,1− 1
q
] with hq(0) = 0 and hq(1− 1

q
).

The binary entropy function h2 is symmetric with respect to line x = 1
2 and satisfies h2(1−x) = h2(x).

Furthermore, for z∈ [0,1], the inverse h−1
q (z) is defined as the unique x∈ [0,1− 1

q
] such that hq(x) = z.

Definition 2.3.11 (Gilbert-Varshamov bound). Let n, k, and d be positive integers such that 2≤ d ≤ n

and 1≤ k≤ n. If
d−2

∑
i=0

(
n−1

i

)
(q−1)i < qn−k, then there exists a linear [n,k]-code over Fq with minimum

distance at least d.

There exists a asymptotic version of the GV bound, which is stated using the relative distance and

the entropy function hq. This version reads as follows.

Definition 2.3.12 (Asymptotic Gilbert-Varshamov bound). Let q ≥ 2. For every 0 ≤ δ < 1− 1
q
, and

0 < ε≤ 1−hq(δ), there exists a code with rate R≥ 1−hq(δ)− ε , and relative distance δ.

6

2.3. Coding Theory & Cryptography

2.3.3. Some Examples of Codes

In this section we briefly describe some important classes of linear codes that we will use in the sub-

sequent chapters of this thesis. These codes have introduced to construct a number of cryptographic

primitives from coding theory. We will start by presenting Goppa codes, followed by (quasi-) cyclic

codes.

Goppa codes

These codes were first defined by V .D. Goppa in [Gop70]. They constitute a family of q−ary linear

codes and can be defined as follows. Let q be an arbitrary prime power and m, n be two positive

integers such that m≥ 2 and n≤ qm. Let also L = {α1,α2, · · · ,αn} be a subset of distinct elements of

Fqm .

Definition 2.3.13 (q−ary Goppa codes). Let t be an integer such that 0 < t < n. Let g(x) ∈ Fqm [x] be

a polynomial of degree t, called Goppa polynomial, such that g(αi) 6= 0, for all 1≤ i≤ n. The q−ary

Goppa code Gq(L,g) is defined by

Gq(L,g) = {x ∈ F
n
q,

n

∑
i=0

xi

x−αi
≡ 0 mod g(x)}.

Another way to describe Goppa codes is to consider the definition using the parity check matrix

(see[MS77] for more details). In this definition, the Goppa code is defined as the the set of vectors a∈
F

n
qm , whose coordinates are labeled with the elements of L in the following way a = (aα1

,aα2
, · · · ,aαn

)

and satisfy the equation H ·a⊤ = 0, where H is a parity check matrix given by

H=

1
g(α1)

1
g(α2)

· · · 1
g(αn)

α1

g(α1)
α2

g(α2)
· · · αn

g(αn)
...

...
. . .

...
αt−1

1

g(α1)
αt−1

2

g(α2)
· · · αt−1

n

g(αn)

Since Fqm can be seen as a m-dimensional vector space over Fq, then the matrix H can be written as

a matrix over Fq of size mt×n.

If g(x) is irreducible, then Gq(L,g) is an irreducible Goppa code. In this thesis, we only consider

binary Goppa codes, i.e. q = 2, which are denoted G(L,g). For such codes we have the following

results.

Theorem 2.3.1 ([MS77]). Let G(L,g) be an [n,k,d] Goppa code. Then we have

• k ≥ n−mt, where t is the degree of g

• d ≥ 2 deg(g∗)+ 1, where g∗ is the square-free polynomial, which has the highest degree and

divides g

• there exists deg(g∗)-error correcting algorithm for G(L,g).

Theorem 2.3.2 ([vdV90]). Let g(x) ∈ F2m [x] be a square-free polynomial of degree t with no roots in

F2m . Let also G(L,g) be the corresponding [n,k] Goppa code. If we choose t < 2
m
2 −1, then we have

k = n−mt.

7

2. Preliminaries and Definitions

Cyclic codes

Cyclic codes were first introduced by Prange [Pra57] in 1957. They form a fundamental subclass

of linear codes and have wide applications in data storage systems and in communication systems

due to their interesting algebraic structure and efficient encoding/decoding algorithms. They can be

described as follows.

Definition 2.3.14 (Cyclic code). An [n,k] linear code C is cyclic if the cyclic shift of a codeword x∈ C
is also a codeword in C . That is, x = (x1,x2, · · · ,xn) ∈ C ⇒ x′ = (xn,x1, · · · ,xn−1) ∈ C .

Another way to define cyclic codes are cyclic (or circulant) matrices.

Definition 2.3.15 (Cyclic (or circulant) matrix). Let A be a square matrix of size n×n. A is cyclic if

every row of the matrix is a cyclic shift of the row above, i.e.

A=

a1 a2 · · · an

an a1 · · · an−1

...
. . .

. . .
...

a2 · · · an a1

As we can see, this matrix is fully specified by its first row (or column), which allows to reduce the

size of the storage memory. Instead of storing the whole matrix, one need to store only its first row

(or column).

Quasi-Cyclic (QC) codes

Quasi-cyclic codes are a generalization of cyclic codes and can be defined as follows.

Definition 2.3.16 (Quasi-cyclic code). An [n,k] linear code C with n = mn0 and k = mk0 is called

quasi-cyclic if the cyclic shift of a codeword x ∈ C by n0 symbols is also a codeword in C . That is,

x = (x1,x2, · · · ,xn) ∈ C ⇒ x′ = (xn−n0
, · · · ,x1, · · · ,xn−n0−1) ∈ C .

A cyclic code is quasi-cyclic with n0 = 1. As before, a QC code can be defined using a quasi-cyclic

matrix as follows.

Definition 2.3.17 (Quasi-cyclic matrix). An k× n block matrix with n = mn0 and k = mk0 is called

quasi-cyclic if each block is a cyclic matrix of size m×m.

In code-based cryptography, (QC) codes are used to construct many cryptographic primitives in or-

der to improve their efficiency in practice. Some of these primitives will be presented in the following

chapters.

2.3.4. Computational Problems

The security of the cryptosystems presented in this thesis rely on the hardness of the subsequent prob-

lems: The Syndrome Secoding (SD) problem and its two variants the Regular Syndrome Decoding

(RSD), and the 2-Regular Null Syndrome Decoding (2-NRSD) problem. In this thesis we will use

only the binary versions of these problems. That is, we consider q = 2.

8

2.4. Some Cryptographic Primitives

Definition 2.3.18 (Syndrome decoding (SD)). Given an (n− k)× n binary matrix H, an (n− k)-bit

vector s, and an integer ω > 0. Find an n-bit word x of weight ω such that H ·x⊤ = s.

This problem is proven NP-complete in [McE78] and decades of research in coding theory indicate

that it is hard in the average case [Bar98]. Note that its extended variant Fq of this problem is also

showed NP-complete in [Bar94].

A special case of this problem is called the regular syndrome decoding (RSD) problem, which

only has solutions in the set of regular words. This is proven NP-complete in [AFS05], and reads as

follows.

Definition 2.3.19 (Regular Syndrome decoding (RSD)). Given an (n− k)× n binary matrix H, an

(n− k)-bit vector s, and an integer ω > 0. Find n-bit regular word x of weight ω such that H ·x⊤ = s.

A further NP-complete variant of the SD problem, introduced also in [AFS05], is the 2-Regular

Null Syndrome Decoding (2-NRSD), which can be stated as follows.

Definition 2.3.20 (2-Regular Null Syndrome Decoding (2-NRSD)). Given an (n− k)×n binary ma-

trix H, and an integer ω > 0. Find an n-bit word x of weight less than or equal to 2ω such that

H ·x⊤ = 0.

In practice, all generic known algorithms to solve the above problems run in exponential time. We

will discuss some of these algorithms in more details later.

2.4. Some Cryptographic Primitives

Cryptographic primitives are the most basic building blocks for creating cryptographic systems, that

are designed to achieve security properties such as confidentiality, authentication or anonymity. Such

systems include (authenticated) encryption schemes, hash functions and stream ciphers. In this thesis,

we will look at how to design these three cryptographic systems from coding theory, whose security

is based on the problems introduced in the previous section. For this purpose, we briefly recap the

definition and properties of such primitives.

2.4.1. Encryption Schemes

An encryption scheme is a (mathematical) algorithm where plaintext is converted into so called ciper-

text. There are two basic classes of encryption: symmetric encryption (or secret key encryption) and

asymmetric encryption (or public key encryption). In symmetric encryption, a single key is used both

for encryption and decryption, while in asymmetric encryption, two different keys are used, one for

encryption and one for decryption.

As mentioned in Chapter 1 , the most famous class of asymmetric encryption schemes based on

the hardness of the syndrome decoding problem contains the McEliece and Niederreiter encryption

scheme [McE78, Nie86], which are actually equivalent from the security point of view as shown

in [LDmW94]. In the following lines, we briefly explain how these systems work. The parameters of

these systems are n, k, t with ω << n.

9

2. Preliminaries and Definitions

The McEliece Public Key Cryptosystem. The McEliece cryptosystem (in its original version) uses

a binary irreducible Goppa code as a trapdoor. This trapdoor is the knowledge of the Goppa polyno-

mial. The McEliece PKC can be described as follows:

• Key Generation: Generate the following matrices:

– G′: k×n generator matrix of a [n,k] binary irreducible Goppa code G with error-correcting

capability ω

– S: k× k binary non-singular matrix

– P: n×n random permutation matrix

Public Key: (G,ω) with G= SG′P.

Secret Key: (S,AG ,P), where AG is an efficient ω-error correcting algorithm for G .

• Encryption: To encrypt the plaintext x ∈ F
k
2

- choose randomly a word e ∈ F
n
2 of weight ω

- compute the ciphertext y as y = x ·G⊕ e

• Decryption: To decrypt a ciphertext y

- compute the inverses P−1 and S−1

- calculate y ·P−1 = x ·SG′⊕ e ·P−1

- apply the algorithm AG for G to recover x ·S .

- compute the plaintext x = x ·S ·S−1

The Niederreiter Public Key Cryptosystem. This system is a (dual) variant of the McEliece cryp-

tosystem. It uses a parity check matrix instead a generator matrix. The plaintext x ∈ F
n
2 of weight ω,

while the corresponding ciphertext is a syndrome y ∈ F
n−k
2 . The Niederreiter cryptosystem consists

of three algorithms:

• Key Generation:

– H′: (n−k)×n parity check matrix of a [n,k] binary irreducible Goppa code G with error-

correcting capability ω

– S: (n− k)× (n− k) binary non-singular matrix

– P: n×n random permutation matrix

Public Key: (H,ω) with H= SH′P.

Secret Key: (S,AG ,P), where AG is an efficient ω-error correcting algorithm for G .

• Encryption: To encrypt plaintext x ∈ F
n
2 of weight ω, compute y = H ·x⊤

• Decryption: To recover x

- compute the inverses P−1 and S−1

- calculate S−1 ·y = H′P ·x⊤

- apply the algorithm AG for G to recover P ·x⊤ .

- compute the plaintext x via x⊤ = P−1P ·x⊤

10

2.4. Some Cryptographic Primitives

2.4.2. Stream Ciphers

Stream ciphers are a fundamental class of symmetric encryption algorithms, which transform a se-

quence of plaintext symbols (usually binary digits) one at a time, into a sequence of ciphertext sym-

bols by combining plaintext symbols with a pseudo-random sequence, called keystream sequence.

This latter is generated using a (known) initial vector and a secret key. Stream ciphers are commonly

divided into classes: synchronous or self-synchronizing.

The former is one of the topics of this thesis and Chapter 3 is especially devoted to stream ciphers

based on coding theory.

Informally, a synchronous stream cipher can be defined as follows.

Definition 2.4.1 (Synchronous stream cipher). A synchronous stream cipher is one in which the

keystream is produced independently of the plaintext and the ciphertext.

Let K be a secret key and IV be an initial vector. We denote by si an internal state of the cipher. In

a synchronous stream cipher, the encryption (and decryption) process consists of the following steps:

• Initialization: The aim of this step is to produce a (pseudo-random) initial state, s0, by s0 =
f (K, IV), where f is an initialization function, whose arguments are K and IV .

• Update: In this step, an internal state si is updated as si+1 = g(si), where g is a function, called

update or next state function.

• Output: The key stream, xi, is produced by xi = h(si), where h is a function, called output

function.

• Encryption/Decryption: The ciphertext yi is obtained by combining xi with the plaintext pi

using a combining function k as follows: yi = k(xi, pi). In the most proposed stream ciphers,

the function k is simply the bitwise XOR-operator, i.e. yi = xi⊕ pi. The decryption is then given

by pi = xi⊕ yi.

2.4.3. Hash Functions

A hash function is an important cryptographic primitive used in many applications and protocols

for secure communication such as digital signatures, data integrity, and identification protocols. A

detailed overview on hash functions can be found for example in [Pre93]. An informal definition for

hash functions would be the following.

Definition 2.4.2 (Hash function). A hash function h is a computationally efficient function, which

maps binary strings of arbitrary length to binary strings of some fixed length, called digest or hash.

That is, h : {0,1}∗→{0,1}t , where t is the hash length.

In principle, to be of cryptographic use, a hash function must fulfill three fundamental security re-

quirements: preimage resistance, second preimage resistance and collision resistance. The importance

of these requirements is application dependent. To explain these requirements, let h : {0,1}∗→{0,1}t

be a hash function, where t is the hash length in bits. A hash computation of a plaintext x ∈ {0,1}∗ is

expressed as h(x) = y ∈ {0,1}t .

1. Preimage resistance: Given any hash value y, it is ”computationally infeasible” or ”hard” to

find a plaintext (or message) x such that h(x) = y. In other words, it must be hard to invert h

from y to get x. This property is also known as one-wayness.

11

2. Preliminaries and Definitions

2. Second preimage resistance: Given a plaintext x and its corresponding hash value h(x), it is

”computationally infeasible” or ”hard” to find another plaintext x′ such that

x′ 6= x and h(x′) = h(x).

3. Collision resistance: It is ”computationally infeasible” or ”hard” hard to find any two plaintexts

(or message) x′ and x such that

x′ 6= x and h(x′) = h(x).

A hash function f that transforms a fixed-length input and to a shorter, fixed-length output, is called

a compression function. That is, f : {0,1}ℓ→{0,1}t , with ℓ > t.

In practice, for designing hash function, the following modes of operation can be utilized.

The Merkle-Damgård construction (MD). The simplest and most commonly approach for design-

ing hash functions is to iterate a compression function on the plaintext to be hashed. A compression

function is a mapping, which takes a fixed length input and returns a shorter, fixed-length output. This

design principle is called the Merkle-Damgård construction [Mer89, Dam89] (MD), and it works

briefly as follows. Let f be a compression function. First the plaintext to be hashed (with padding)

P, is broken up into equal-sized blocks, i.e. P = (p1, p2, · · · , pl). Then the temporary hash values hi,

called the chaining variable or the internal state, are computed as

hl = f (pl ‖ hl−1) ,

where h0 = IV is a given initial value and hl is the final hash for P. Figure 2.1 illustrates the MD-

construction.

Figure 2.1.: The Merkle-Damgård construction using a compression function f .

The security of this construction is mainly based on the security of the underlying compression

function. More precisely, Merkle [Mer89] and Damgård [Dam89] showed that as long as the compres-

sion function is collision resistant, the resulting hash function is guaranteed to be collision resistant.

Unfortunately, the MD-construction has been shown to be vulnerable to certain generic attacks such

as multi-collision attacks [Jou04] and long-message second-preimage attacks [KS05]. Motivated by

these attacks, new methods of designing hash functions have proposed. One of these methods, called

the Sponge construction is described in the following.

12

2.4. Some Cryptographic Primitives

The Sponge construction (SG). In contrast to the MD-construction, the sponge construction [BDPA07]

is a recently proposed and very interesting hash design, which uses a random permutation or a ran-

dom transformation f , instead of a compression function and supports variable length outputs. If f

is a random permutation, this construction is called P-sponge, otherwise, it is called a T-sponge. The

sponge construction operates on an internal state having a fixed size b = r+ c, where r is the bit rate

and c the capacity of the sponge. Initially, the state is equal to the all-zeros vector, i.e. 0b. Basically,

the sponge construction as depicted in Figure 2.2, proceeds in the following steps:

• Absorbing step: In this step, the plaintext to be hashed is first padded using a padding rule and

cut into r-bit blocks such that the last block absorbed shall not be zero, i.e. P = (p1, p2, · · · , pl)
with |pi|= r for all i and pl 6= 0r. Then each block is XOR-ed with the r-bit part of the current

state si, intervealed by the application of f , resulting in the next state si+1, i.e.

si+1 = f (si⊕ (pi ‖ 0c)), with s0 = 0b.

This process will be iteratively repeated until all blocks are processed.

• Squeezing step: In this step, the state continues to be updated (or permuted) by f followed

by outputting only the r-bit part of the resulting state at each iteration as output blocks. We

denote these blocks by hi. The hash value h of length ℓ consists of the concatenation of all these

blocks, i.e. h = h1 ‖ h2 ‖ · · · ‖ hN such that ℓ= Nr. The number of iterations (or output blocks)

is chosen by user in order to get the desired hash length.

Figure 2.2.: The sponge construction based on the permutation/transformation f .

The security of SG construction depends on its capacity c, hash length ℓ, and transforation or

permutation f . It has been shown in [BDPA08] that when the internal permutation (resp. internal

transformation) is modeled as a randomly chosen permutation (resp. random chosen transformation),

the expected security bounds offered by a ℓ-bit sponge-based hash function are given in Table 2.1.

Type Collision Preimage 2nd Preimage

P-Sponge min(2
c
2 ,2

ℓ
2) min(2

c
2 ,2ℓ) min(2

c
2 ,2ℓ)

T-Sponge min(2
c
2 ,2

ℓ
2) min(2c,2ℓ) min(2c

|P| ,2
ℓ)

Table 2.1.: The security bounds of the sponge construction against collision, preimage, and 2nd Preimage

attacks, where the quantity |P| is the size of the plaintext to be hashed.

On the other hand, if the SG construction is keyed [BDPA11b], i.e. the message is prefixed with a

secret key of length t, then the best known attack against this construction is exhaustive key search as

13

2. Preliminaries and Definitions

long as the size of the message queries is upper bounded by 2a with a << c and c≥ t +a+1.

14

Chapter 3
Code-based Stream Ciphers

This chapter starts with a brief overview of existing constructions of code-based stream ciphers in

Section 3.1. Namely, the pseudo-random generator due to Fisher and Stern [FS96], followed by the

SYND stream cipher, proposed by Gaborit et al. [GLS07]. Then, it presents our three contributions in

this field: the 2SC [MCY11], XSYND [MHC12], and PSYND [MHC] stream cipher. Following the

sponge construction, we present the 2SC stream cipher in Section 3.2, while we describe the XSYND

cipher in Section 3.3, which is an improved version of the SYND cipher in terms of performance.

Finally, the PSYND cipher we present in Section 3.4 can be regarded as a parallel version of XSYND

and outperforms all previous constructions in terms of efficiency.

3.1. Previous Work

This section briefly gives an overview of proposed pseudo-random number generators, which use

error-correcting codes.

3.1.1. The Fischer-Stern’s Pseudo-Random Generator

At Eurocrypt 1996, Fischer and Stern [FS96] presented the first code-based pseudo-random number

generator (FS-PRNG) based on the syndrome decoding problem. This generator uses a collection of

functions, denoted here as (fn)n≥0, whose domains (Dn)n≥0 are given by

Dn =
{
(H,x) ∈ F

ℓ×n
2 ×F

n
2,wt(x) = ω

}
.

and the collection (fn)n≥0 are defined by

fn : Dn→ F
ℓ(n+1)
2 (3.1)

(H,x) 7→ fn(x) =
(
H,H · x⊤

)
. (3.2)

Thus inverting a function fn implies solving instances of the syndrome decoding (SD) problem.

Hence, if one chooses (n, ℓ,ω) such that the collection corresponds to hard instances of the SD prob-

lem, then it can be regarded as a collection of one-way functions. So, for parameter sets (n, ℓ,ω)

15

3. Code-based Stream Ciphers

satisfying the GV bound, we have the following fact: ”For sets of parameters (n, ℓ,ω) satisfying the

GV bound the collection (fn)n≥0 is one-way.”

Note that the functions fn are expansion functions. They accept strings of length ℓn+ log2(
(

n
ω

)
) bits

and output strings having length ℓ(n+1) bits, since log2(
(

n
ω

)
)< ℓ.

Starting from a function fn defined over Dn, Fischer and Stern proposed an iterative construction of a

pseudo-random number generator, which produces ℓ− log2(
(

n
ω

)
) key stream bits in each round. One

iteration of this generator is illustrated in Algorithm 1.

Algorithm 1 One round of Fischer-Stern PRNG

Input : a seed e0 of length ⌈log2

(
n
ω

)
⌉ bits

Output : a bit string z of length ℓ−⌈log2

(
n
ω

)

x← φ(e0) // convert e0 into a word x of length n and weight ω using Algorithm 2.

y← H · x⊤ // multiply x by H

(y1,y2)← y // split y into y1 and y2 with |y1|= ⌈log2

(
n
ω

)
⌉ and |y2|= ℓ−⌈log2

(
n
ω

)
⌉

z← y2 //output z

Figure 3.1.: A diagram of FS-PRNG.

For converting bit strings of size ⌈log2

(
n
ω

)
⌉ into words of length n and weight ω, the Fischer-Stern

PRNG uses the encoding algorithm shown in Algorithm 2.

Security analysis. The randomness of the key stream produced by Gn is proven in [FS96] under

two assumptions:

(1) the collection of functions (fn)n≥0 and

(2) the matrix H is indistinguishable from a random one.

The proof is done by contradiction and briefly works as follows: Assume that the key stream

produced by Gn is not pseudo-random. One first constructs a distinguisher whose input is a string

generated by Gn, say Gn(z) for some random z∈ Fn
2, and a random string r ∈ Fn

2 and whose output is 1

with different probability. Then one uses this distinguisher to build a predicator allowing to correctly

16

3.1. Previous Work

Algorithm 2 Guillot’s algorithm φ

Input : an integer e between 0 and
(

n
ω

)
−1

Output : a binary word x = (x1,x2, · · · ,xn) of length n and weight ω

t←
(

n
ω

)
, t ′← 0, j← n

while j > 0 do

t ′← t · j−ω
j

if e≤ t ′ then

x j← 0

t← t ′

else

x j← 1

e← e− t ′

t← t · ω
n

end if

j← j−1

end while

guess the inner product of x and r with success probability at least 1
2 +

1
2p(n) , for every polynomial

p(n). In doing so, they obtain a contradiction to the one-wayness of (fn)n≥0 using the Goldreich-

Levin Theorem [GL89].

Performance. As explained above, a string y2 ∈ F
ℓ−⌈log2 (

n
w)⌉

2 is produced in each iteration. To do so,

one needs to first multiply an ℓ×n matrix H by a string from Wn,w. This can solely be performed by

XORing ω columns of H leading to ℓω binary operations. The columns positions are determined by

the indexes j of x with x j = 1 in Algorithm 2, which needs the computations of binomial coefficients

and necessitates arithmetic operations on large integers. This approximately requires O(n2 log2(n))
binary operations. As a consequence, the whole cost of generating ℓ−⌈log2

(
n
ω

)
⌉ bits amounts to

around O(n2 log2(n))+ℓω binary operations. In practice, the authors claimed that their system outputs

3500 bits per second on a SUN Sparc10 station using (n, ℓ,ω) = (512,256,55).
In order to increase the performance of the generator, Fischer and Stern proposed to precompute the

binomial coefficients and store them in a table. For a code with parameters (n, ℓ,ω), the memory

needed to store these coefficients is (ωℓn) bits, since we need ωn entries, each of them of size ℓ bits.

Furthermore, a space of ℓ(n− ℓ) bits due to the matrix H is required.

Proposed parameters. Their values are listed in Table 3.1 with n = 2ℓ and log2

(
n
ω

)
< ℓ, for which

the GV-bound condition is fulfilled.

3.1.2. The SYND stream cipher

Motivated by the inefficiency of Fischer-Stern PRNG [FS96], Gaborit et al. [GLS07] proposed the

SYND stream cipher as an improved variant with two main features: introducing quasi-cyclic matrices

reduces the storage capacity and replacing the above encoder by a new one. This so called regular

encoder is used in [AFS05], and considerably speeds up the key stream generation. As for most stream

17

3. Code-based Stream Ciphers

n ℓ ω key/IV speed sec-level

(bits) (cycles/byte) log2(# bin.Ops)

512 256 55 247 360410 60

728 364 71 331 38140 78

728 364 78 353 40330 85

1024 512 100 468 25810 100

1024 512 110 613 26970 120

Table 3.1.: Proposed parameters for FS-PRNG in [FS96].

ciphers, keystream generation of SYND consists of three phases: the initialization, the update and the

output steps.

(1) Initialization: It is depicted in Figure 3.2. The aim of this phase is to produce an initial state e0

using a secret key K and an initial vector IV of the same length ℓ/2 bits. This is achieved as

follows. Let g1 and g2 be two syndrome maps defined by

g1 : Fℓ
2→ F

ℓ
2 (3.3)

x 7→ g1(x) = A · (φ(x))⊤ (3.4)

and

g2 : Fℓ
2→ F

ℓ
2 (3.5)

x 7→ g2(x) = B · (φ(x))⊤ (3.6)

A graphical illustration of gi (i = 1,2) is shown in Figure 3.3. The matrices A and B are

two random cyclic of the same size ℓ× n with ℓ = ω log2(n/ω)and x 7→ φ(x) is an encoding

algorithm, called a (n,ω) regular encoder, transforming an ℓ bits string into regular words of

length n and weight ω. This encoder is presented in Algorithm 3. The purpose of this algorithm

is to speed up the vector-matrix multiplication, which only consists in XORing of ω columns

of the underlying matrix. Here we assume that n/ω is an integer such that n/ω = 2α for some

α > 0. Note that in [AFG+08] a further regular encoding algorithm has been introduced, which

mixes the input bits to produce a regular word.

Figure 3.2.: A diagram of the initialization function f used in SYND.

18

3.1. Previous Work

Algorithm 3 Regular Encoder φ

Input : x a binary string of ℓ bits with ℓ= ω log2(n/ω)
Output : a regular word z = φ(x) of length n and weight ω.

z = (z1, · · · ,zn)← 0n (initializing with n zeros)

for i = 1 to ω−1 do

Extract the log2 (n/ω) right bits of x

Convert those bits into an integer k between 0 and n/ω−1

z(i·n/ω)+k← 1

Shift x to the right by log2 (n/ω) bits

end for

Figure 3.3.: A diagram of mappings x→ gi(x).

Starting from the mapping (gi)i=1,2, a further mapping f is build as an initialization function to

generate an initial state e0 of length ℓ. This function is defined by

f : F
ℓ/2
2 ×F

ℓ/2
2 → F

ℓ
2

(x‖y) 7→ f (x‖y) = (x‖y)⊕g1(x‖y)⊕g2 ((x‖y)⊕g1((x‖y)⊕g1(x‖y)))

Where (x‖y) denotes the concatenation of x and y. Obviously computing e0 exactly requires

three XOR operations and three function evaluations. We can estimate the number of XORs

needed to evaluate f (x||y): the evaluation of g1 (or g2) can be performed in ωℓ binary XORs

and each XOR-operation of two binary vectors of length ℓ needs ℓ binary XORs. This means,

that the generation of e0 requires 3ℓ(1+ω) binary operations.

(2) Update: During this phase, the initial state is updated several times (say λ times) by calling the

mapping g1 to produce an internal state ei+1 as ei+1← g1(ei) with e0 = f (K, IV).

(3) Output: In this step, the resulting internal state ei is fed through the mapping g2 to generate the

keystream, which is XOR-ed with the cleartext to get a ciphertext. The whole process of key

stream generation is depicted in Figure 3.4

Security analysis. In the above description, the main building blocks of the SYND stream cipher

are the functions g1 and g2. Thus the security of SYND can be reduced to the RSD problem presented

19

3. Code-based Stream Ciphers

Figure 3.4.: A diagram of the key stream generation of SYND.

earlier. Indeed, state recovery or key recovery consists in inverting either g1 or g2, which is equivalent

to solving instances of regular syndrome decoding problem. Furthermore, the authors of SYND did

not deliver an explicit security reduction proof. They only pointed out that the proof is a generalization

of [BGP09] and [FS96] and the proof will be detailed in the full version. The main result of their

proof is the following: If there exists an algorithm A distinguishing a random bit sequence from the

sequence of the bit key stream produced through a known random (or a quasi-cyclic random) ℓ× n

matrix multiplied by an unknown randomly chosen regular word e in time T and advantage ε, then

there exists an algorithm A ′ that can recover e in time T ′≈ 27ℓ2λ2T
ε2 , where λ is the number of iterations.

Performance. Theoretically the performance of SYND can be expressed as the number of binary

XORs to produce ℓ bits of the keystream. To do this, we have to count the average number of XORs

in each step. As mentioned above, the initialization step requires about 3ℓ(1+ω) binary XORs. The

complexity of the update and the output phase is about Nω and ω binary XORs respectively, where

N is the number of rounds made during the update process. Thus, the whole complexity to produce a

keystream of ℓ bits is about

3ℓ+ ℓω(2N +3) binary operations

Regarding the storage requirements, one needs to store ℓ bits coming from key size and initial vector

and the n bits of first row of the random quasi-cyclic matrix of size ℓ×n.

Proposed parameters. They are shown in Table 3.2. For efficiency reason, n = 8192, ℓ = 256

and ω = 32 are the proposed parameter. The implemenation results given in [GLS07] provide 27

cycles/byte on Pentium IV running at 3.4 GHz versus 26 cycles/byte for AES-CTR according the best

AES-implementation in 2007. At the time of writing this chapter, there exists no-free implementation

of SYND made by the authors. The only available implementation of SYND has been first presented

in [MCY11]. An optimized version of this implementation is recently proposed in [CSM] (see the

subsequent section) and shows that SYND only runs at 30.27 instead of 26 cycles/byte as claimed

in [GLS07]. We will make our comparison based on this optimized implementation [CSM]. The

security levels listed below are estimated according to the best known attack [MMT11].

20

3.2. The 2SC Stream Cipher

n = 8192

ω ℓ key/IV size speed sec-level

(bits) (cycles/byte) log2(# bin.Ops)

32 256 128 26 90

48 384 192 47 155

128 1024 512 83 370

Table 3.2.: Performance of SYND given in [GLS07]

3.2. The 2SC Stream Cipher

In this section, the first contribution in the context of stream ciphers will be presented. We propose

here a novel stream cipher, called the sponge code-based stream cipher (in short 2SC), following the

sponge construction. The main goal of this section is to show how to design a new stream cipher,

which runs much faster than the SYND cipher described in the previous section.

In the description of 2SC, we will preserve the same notations as before. The main parameters are

(n, ℓ,ω) with ℓ = ω log2(n/ω) = r + c, where r and c are the parameters characterizing the sponge

construction.

3.2.1. Description of the 2SC cipher

The 2SC is a family of synchronous stream cipher supporting the key/initial vector (IV) lengths of

144, 208, and 352 bits, respectively. As for most stream ciphers, the key stream generation process

consists of two phases:

(1) initialization: an initial state of the cipher is created using the key K and the initial vector IV

having the same length ℓ/2, and

(2) the key stream generation: the state is repeatedly updated (Update step) and used to generate

key stream bits (Squeezing step).

These two phases use two different functions f and g and are defined as follows.

Initialization. The initialization function f takes a key K and an initial vector IV and returns an

initial state as follows:

f : F
|K|
2 ×F

|IV |
2 → F

ℓ
2

(x1,x2) 7→ f (x1,x2) = f1

(
f
[r]
1 (x1‖0c)⊕ x2, f

[c]
1 (x1‖0c)

)
,

where ”‖” denotes the concatenation and ”0t” is the all-zero vector of size t. We write f
[r]
1 (z) (resp.

f
[c]
1 (z)) the r-bit (resp. c-bit) part of the output f1(z) for an input z from F

ℓ
2, where f1 is defined by:

21

3. Code-based Stream Ciphers

f1 : Fℓ
2→ F

ℓ
2

x 7→ f1(x) = A · (φ(x))⊤.

Here, the function x 7→ φ(x) is a regular encoder described above in Algorithm 3, which converts a

ℓ-bit string into a regular word of length n and weight ω. The matrix A is a random binary matrix of

size ℓ×n. The whole process of generating an initial state is shown in Figure 3.5.

Figure 3.5.: The Initialization function f of the 2SC stream cipher, where f1(x) = A · (φ(x))⊤.

Update. During this step, an additional function g is used to update the internal state several times.

The number of times (say λ) that g is run is chosen by the user, affecting both the security and the

efficiency of the construction. The function g is defined by:

g : Fℓ
2→ F

ℓ
2 (3.7)

x 7→ g(x) = B · (φ(x))⊤, (3.8)

where A is a binary random matrix having the same size as B.

Squeezing. Let e0 be the initial state returned by f and eλ−1 = g(λ−1)(e0), where g(λ−1) is the

composition of g with itself (λ− 1) times. The keystream of SC consists of r-bit blocks (zi)i≥1

computed as follows:

• z1 consists of the first r bits of the internal state eλ−1 after calling g, i.e. z1 = g[r](eλ−1)

• For i≥ 2, zi = g[r](eλ+i−2).

The entire process explaining Update and Squeezing steps is shown in Figure 3.6.

Having the key stream bits zi, the ciphertext ci is obtained by combining the plainttest block mi with

zi using the XOR-operation as in the one-time pad encryption scheme.

22

3.2. The 2SC Stream Cipher

Figure 3.6.: The Update and Squeezing phases of the 2SC cipher, where g(x) = B · (φ(x))⊤.

3.2.2. Security Analysis

The security of 2SC is discussed in this subsection. We first show that, the output of 2SC is pseudo-

random, i.e., the probability to distinguish the key stream output by 2SC from a random sequence is

negligible. Then we analyze the security of 2SC from practical point of view by demonstrating that,

in practice, it is hard to recover states or reconstruct the secret data (K and IV) from the key stream.

Pseudorandomess of the key stream. In order to prove that the output of 2SC is pseudo-random,

we define some useful concepts.

Definition 3.2.1. A family U of hash functions u ∈ U with u : X → Y is called universal if for all

x 6= x′ we have

Prob[u(x) = u(x′) | u sampled randomly from U]≤ 1

b
,

where x,x′ ∈ X and b = |Y |.

Next, we introduce the Subset Sum Problem (SSP), which is closely related to the syndrome de-

coding problem. The SSP has been proved NP-complete by Karp in [Kar72] and can be stated as

follows.

Definition 3.2.2 (Subset Sum Problem (SSP)). Given n integers (h1, · · · ,hn), each of ℓ bits, and and

an integer y called the target, find a subset S⊂ {1, · · · ,n} such that ∑ j∈S h j = y mod 2ℓ.

As stated in [IN96], this problem is equivalent to inverting the function

gh(S) = ∑
j∈S

h j = y mod 2ℓ. (3.9)

This function maps an n-bit string to ℓ-bit string. When the cardinality |S| of S is upper bounded by

a fixed integer ω (i.e. |S| ≤ ω), we get an instance of the (regular) syndrome decoding stated earlier.

More precisely, take |S|= ω; then the elements in S can be interpreted as the positions of the non-zero

coordinates of an incidence vector x. Thus x has weight |S| = ω. The elements (h1, · · · ,hn) are the

23

3. Code-based Stream Ciphers

rows of a matrix H of size ℓ×n. The target y is the syndrome such that H · x⊤ = y.

Without loss of generality, the transformation f in the initialization step and the equivalent transfor-

mation g can be regarded as a mapping x 7→ u(x) = H · x⊤, x is a regular word, because the encoding

function φ is bijective.

In what follows, we will use R to denote the set of regular words having length n and weight ω

and H to indicate the set of binary random matrices of size ℓ× n. In order to prove that the family

U = {u : u(x) = H · x⊤,x ∈ R ,H ∈H } is universal, we need the following lemma.

Lemma 3.2.1. There exists, on average, only one solution of each instance RSD(n, ℓ,ω), where ℓ =
ω log2(n/ω).

Proof. Let Nrsd(n, ℓ,ω) denotes the expected number of solutions of an instance RSD(n, ℓ,ω). This

number is defined as the number of regular words divided by the number of the syndromes, i.e.

Nrsd(n, ℓ,ω) =
(n

ω)
ω

2ℓ
. By replacing ℓ by the value ω log2(n/ω), we obtain Nrsd(n, ℓ,ω) = 1.

Proposition 3.2.1. The family U = {u : u(x) = H · x⊤,x ∈ R ,H ∈H } is universal.

Proof. From Lemma 3.2.1, we know that there exists on average only one regular word that solves

the syndrome decoding problem. Thus, it follows that for all for all x 6= x′

Pr[H · x⊤ = H · x′⊤ | H sampled randomly from H] = 0≤ 1

2ℓ

Now we prove the following theorem.

Theorem 3.2.1. The probability of distinguishing the output of each u ∈U from a random sequence

of length ℓ is negligible.

Proof. The proof is deduced from [IN96] and works as follows. As explained above, the family U
can be seen as a collection gh defined as in equation (3.9). Due to Proposition 3.2.1 this collection

of transformations is universal and therefore, as proved in [IN96], we can apply the Leftover hash

lemma [IZ89] to show that if ℓ < γn for some real number γ < 1, then the expected distinguishibility

of gh(S) = H · x⊤ and a random y ∈ F
ℓ
2 is at most 2

−(1−γ)n
2 .

In our setting, γ can be obtained as follows:

ψ(n,ω) =
ℓ

n
=

log2(n/ω)

(n/ω)
.

For simplicity, we can assume that n > 4ω. In this case, the function ψ tends to zero when n is chosen

to be large enough. Consequently, there exists an n0 such that for all n≥ n0, ψ(n,ω) is upper bounded

by a constant γ < 1/2. Thus, for values of the code length n such that
(1−γ)n

2 is large enough, the

probability of distinguishing the output of any function u ∈U from a random sequence of length ℓ is

negligible.

24

3.2. The 2SC Stream Cipher

Pseudorandomness of the initial state. The initialization process of the 2SC consists of two

stages. During the first stage, the secret key K is introduced to generate a pre-initial state. For suitably

chosen parameters (n, ℓ,ω), as indicated in [GLS07], the underlying syndrome mapping behaves like

a random function, since its outputs are indistinguishable from a random sequence. Therefore, the

pre-initial state is pseudo-random. During the second stage, the outer r-bit part of this state is first

XORed with a secret initial value. Then, the resulting ℓ-bit vector is fed to the function f to pro-

duce the initial state. This process can be viewed as XORing ω random columns of a random matrix,

resulting in a random ℓ-bit initial state.

Best known attacks. In practice, an adversary against the security of 2SC is faced with two prob-

lems. On the one hand, knowing the blocks zi of r bits does not allow him to get the remaining c bits;

the larger the capacity, the more secure the system is. On the other hand, even having successfully

guessed those bits, the adversary must solve an instance of the RSD problem. However, solving the

RSD problem efficiently is as difficult as SD in average case, for an appropriately chosen parameter

set. Indeed, all known attacks for SD are fully exponential; in fact, only three kinds of algorithms can

attack the SD-based systems: Information Set Decoding (ISD), the Generalized Birthday Algorithm

(GBA), and structural decoding. Which of the two approaches is more efficient depends on the pa-

rameters and the cryptosystem. In our setting, each instance of RSD has on average one solution due

to the form of the regular words; here the best known attack is the GBA, as shown in [FS09]. The

most recent GBA against code-based crytosystems is proposed in [FS09] and will be used to select

secure parameters for 2SC.

Remark 3.2.1. One could also use Time Memory trade-off attacks against stream ciphers. This attack

was first introduced in [Hel80] as a generic method of attacking block ciphers. To avoid it, one must

adjust the cipher parameters as shown in [HS05, Gol97], i.e., the IV should be at least as large as the

key, and the state should be at least twice the key.

3.2.3. Parameters Choice and Implementation Results

Suitable parameters (n, ℓ,ω) for 2SC should provide both efficiency and high security against all

known attacks. Firstly, we account for Time Memory Trade-Off attacks (see section 5.1) and choose

(n, ℓ,ω) such that ℓ= ω log2(n/ω)≥ 2|IV | and |IV | ≥ |K|.
Since |IV |= |K|= r, we obtain ℓ≤ 2c. We use the following strategy for selecting secure parameters

for 2SC: according the sponge construction, we first fix c such that c/2 is at least the desired security

level, then choose the remaining parameters (n, ℓ,ω) accordingly.

We have implemented 2SC to test a large set of potential parameters for a number of security lev-

els. In practice, optimal parameters for this scheme should also take into account these three main

implementation-specific requirements: the ratio ℓ
c
, selecting an appropriate block size for the regular

encoding, and the use of int-wise (rather than byte-wise) XORing. A large value of ℓ
c

yields a large

value of r, hence allowing for better performance. We implement the regular encoding such that it

uses shift operations, thus efficiently using processor architecture. The choice log2(n/ω) = 16 was the

most promising block size in terms of the computation time in our implementation. Finally, int-wise

XORing reduces computation time by four times compared to byte-wise XORing. Our parameters

should thus ensure that we can perform int-wise XORing.

25

3. Code-based Stream Ciphers

Putting everything together, the choice of ω, ℓ and c is a tradeoff decision. On the one hand, a small

ω leads to fewer XOR operations during matrix multiplication. On the other hand, a small ω implies

a small ℓ (ℓ= ω log2(n/ω)). Making n large will help in increasing ℓ. But at the same time the matrix

will become very big. Last but not least, the smaller c is chosen, the more efficient the computation

is, because r becomes larger.

In order to compare the speed of 2SC with the speed of SYND [GLS07], we have optimized the

implementations of SYND and 2SC proposed in [MCY11] with the same techniques using the pa-

rameter sets proposed in [GLS07] and [MCY11] respectively. As mentioned earlier, the results given

in [GLS07] can not be checked, since no freely-available implementation of SYND exists. On our

own implementations, we obtained the results presented in Table 3.3 and Table 3.8. For comparable

security levels, 2SC runs faster than SYND. At the same time, SYND needs significantly larger key

sizes compared to 2SC. However, 2SC suffers from the drawback of having to store large matrices. A

graph showing comparison between SYND and 2SC performance for the same security levels is given

in Figure 3.7. In this Figure, the red graph (resp. green graph) represents the interpolation curve that

provides estimates for the performance of SYND (resp. of 2SC) with respect to the expected security

level based on the optimal parameters we found. As one can see, the SYND’s curve is linear, while

the 2SC’s curve is a quadratic function.

Security Level n ℓ ω Key/IV size Speed

(bits) (cycles/byte)

90 8192 256 32 128 30.27

170 8192 512 64 256 41.50

250 8192 1024 128 512 149.94

Table 3.3.: Performance of SYND using quasi-cyclic codes

Security Level n ℓ ω c Key/IV size Speed

(bits) (cycles/byte)

90 13 ·219 384 24 240 144 25.12

170 7 ·217 544 34 336 208 33.22

250 29 ·217 928 58 576 352 80.05

Table 3.4.: Performance of 2SC using quasi-cyclic codes

3.3. The XSYND Cipher

As seen in the previous section, the 2SC stream cipher outperforms the SYND cipher in terms of

speed, but it requires huge storage capacity. This section presents our second contribution [MHC12],

which shows how to improve considerably the performance the SYND cipher without using a regular

26

3.3. The XSYND Cipher

Figure 3.7.: A graphical performance comparison between 2SC and SYND.

encoder and without compromising the security of the modified SYND stream cipher. Our new pro-

posal, called the eXtended SYND (in short XSYND), uses a generic state transformation which is also

reducible to the regular syndrome decoding problem, but has better computational characteristics than

the regular encoding. Moreover, unlike SYND, we show how the security reduction of our XSYND

works.

3.3.1. Description of the XSYND cipher

For describing we will use the same notations as before. The XSYND is obtained from SYND by

making the following modifications. Firstly, we modify the f function (Figure 3.2) such that it requires

only two, rather than three function evaluations, without loss of security. We denote the new function

by f ′ and depict it in Fig. 3.8. Note that this modification does not affect the recovery of the secret K

or the initial vector IV . In fact, it is straightforward to prove that, given an initial state e0 output by f ′,
if an adversary can extract K and IV from e0, it can also easily solve an instance RSD(n, ℓ,ω). The

new function f ′ function is defined by:

f ′(x) = y⊕g2(y); y = x⊕g1(x); ∀x = (K, IV) ∈ F
ℓ/2
2 ×F

ℓ/2
2 .

The second modification in XSYND is to avoid the regular encoding x 7→ φ(x) in functions gi

(i = 1,2) described in Figure 3.3 by using the Randomize-Then-Combine paradigm due to Bellare et

al. [BGG94, BGG95, BM97]. This paradigm is shown in Figure 3.9. More precisely, given an input

x consisting of ω blocks x1,x2, . . . , ,xω , each block being α bits (where α is chosen at will), we first

feed each block through a random function Fi, obtaining an output yi, i.e., Fi(xi) = yi . The values

y1,y2, · · · ,yω are then combined by bitwise XOR to produce the final output y = y1⊕ y2⊕·· ·⊕ yω.

In XSYND, we use the following function Fi: let H be a random binary matrix of size ωα×ω ·2α,

consisting of ω submatrices H1 . . .Hω of size ωα× 2α (we write H = H1|| . . . ||Hω). If we write the

submatrices as Hi = (h
(0)
i ,h

(1)
i , . . . ,h

(2α−1)
i), where h

(j)
i ∈ F

ωα for j ∈ {0,1, . . . ,2α− 1}, then we can

27

3. Code-based Stream Ciphers

Figure 3.8.: The initialization function f ′ of XSYND

define Fi by Fi(xi) = yi = h
(j)
i if and only if the decimal value < xi >α of xi is equal to j. We have 2α

possible value for each yi, depending on the integer value of the block xi. In this way, we redefine the

functions gi as follows:

g1(x) = a
(<x1>α)
1 ⊕a

(<x2>α)
2 ⊕·· ·⊕a

(<xω>α)
ω with A= A1|| . . . ||Aω and Ai = (a

(0)
i ,a

(1)
i , . . . ,a

(2α−1)
i)

g2(x) = b
(<x1>α)
1 ⊕b

(<x2>α)
2 ⊕·· ·⊕b

(<xω>α)
ω with B= B1|| . . . ||Bω and Bi = (b

(0)
i ,b

(1)
i , . . . ,b

(2α−1)
i)

Figure 3.9.: Randomize-then-combine paradigm proposed in [BGG94]

Figure 3.10 illustrates the new function g1 introduced in XSYND.

3.3.2. Security of XSYND

In this subsection we analyze the security of XSYND from both the theoretical and practical point

of view. In the theoretical part, we show first that the security of the core mapping introduced in

XSYND is directly reducible to the syndrome decoding problem. More precisely, this mapping can be

expressed as a product of a parity check matrix by a regular word such that the security of our proposal

is equivalent of that of SYND. After that, we prove that distinguishing the key stream generated by

XSYND from truly random sequence is reducible to solving an instance of regular word. Our proof is

28

3.3. The XSYND Cipher

Figure 3.10.: The new functions g1

mainly based on Goldreich-Levin Theorem. In the practical part, we analyze the security of XSYND

faces the best known algorithms.

Theoretical Security. Our analysis is done in two steps. In the first step, we show that it is hard to

recover the secret state x given g1(x) and g2(x). More precisely, we show that inverting gi(x) is re-

ducible to the RSD problem. In the second step, we prove that XSYND is a pseudo-random generator,

meaning that the key stream produced by XSYND is indistinguishable from truly random sequences.

Step 1: We consider general transformations T defined as:

T (x) = a
(<x1>α)
1 ⊕a

(<x2>α)
2 ⊕·· ·⊕a

(<xω>α)
ω , ∀x = (x1, . . . ,xω) ∈ F

ωα
2 .

In this transformation, a
(j)
i for j = 0, . . . ,2α is the (j + 1)th column of the ith submatrix Ai of a

random binary matrix A of size ωα×ω2α. Note that both g1 and g2 are particular instantiations of T ,

for random matrices A and B. Our argument in this step is as follows: we first show that (1) for each

x there exists a regular word z such that T (x) = A · z⊤, then prove that (2) learning x from y = T (x) is

equivalent to finding a regular word z such that A · z⊤ = y (this is an instantiation of RSD(n, ℓ,ω) for

ℓ= ωα and n = ω2α). Thus, under the RSD assumption, the modified XSYND protocol security can

be reduced to the hardness of RSD.

First consider (1). We write A= A1| . . . |Aω as in the previous subsection, for ωα×2α submatrices

Ai. Each submatrix has columns a
(0)
i , . . . ,a

(2α−1)
i . We note that any regular word z is in fact a word

of length n = ω2α and weight ω, whose intger entries z1, . . . ,zω indicate the positions of its non-zero

entries (and each zi is a unique value between (i− 1)2b + 1 and i2b since the word is regular). Let

x′ = (x′1, . . . ,x
′
ω) be a state in decimal notation of the ℓ-bit vector x, i.e., x′i =< xi >α for i = 1, · · · ,ω.

We associate each x′ with a value z whose decimal notation is (z1, . . . ,zω) for zi = (x′i+1)+(i−1)2α.

The reverse transformation of z to x′ is obtained as follows:

x′1 ≡ z1−1 (mod 2α)
x′2 ≡ z2−1 (mod 2α)
· · · · · · · · · · · ·
x′ω ≡ zω−1 (mod 2α)

29

3. Code-based Stream Ciphers

It is easy to check that:

A · z⊤ = a
(<x1>α)
1 ⊕a

(<x2>α)
2 ⊕·· ·⊕a

(<xω>α)
ω = T (x).

Toy Example. Let us consider ω = 3 and α = 2. Then the matrix A should be (3 · 2)× (3 · 22) =
6×12 and binary. Consider in this example the following matrix A:

A=

a
(0)
1 a

(1)
1 a

(2)
1 a

(3)
1 a

(0)
2 a

(1)
2 a

(2)
2 a

(3)
2 a

(0)
3 a

(1)
3 a

(2)
3 a

(3)
3

1 0 1 0 1 0 1 0 1 0 0 1

0 1 1 0 0 0 1 0 1 1 1 0

1 0 0 0 0 1 0 1 0 1 0 0

0 1 0 1 0 1 0 1 0 1 1 1

0 0 1 1 0 1 1 0 1 1 1 0

1 0 0 0 0 1 0 1 0 1 0 0

Let us consider a state x′ in decimal form, with x′ = (2,1,0), corresponding to x = [100100]. Com-

pute z in decimal form according to the formula zi = (x′i + 1)+ (i− 1)2α. Thus z1 = 3,z2 = 6, and

z3 = 9. In binary notation, zi denotes the positions of z’s non-zero entries, i.e. z = [0010|0100|1000].
We can now verify that for this z we have

T (x) = a
(2)
1 ⊕a

(1)
2 ⊕a

(0)
3 = [001111] = A · z⊤.

Now let us consider the security reduction of general transformations T to the RSD problem, i.e.

step (2) outlined above. We have shown that for each input value x we can find a regular word z of

weight ω such that A · z⊤ = T (x). Assume that there exists an adversary that can invert T (x), i.e.

given y = g(x), the adversary outputs x. Then the same adversary computes z as above and can thus,

given a matrix A, and a value y = T (x) = A · z⊤, this adversary can output the regular word z. This

is exactly an instantiation of RSD(n, ℓ,ω) for ℓ= ωα and n = ω2α. In conclusion, we can reduce the

security of XSYND to the hardness of the RSD problem.

Step 2: In this step, we prove that XSYND is a pseudo-random generator. Our proof is an adaption

of that given for the Fischer-Stern’s PRNG [FS96]. We will show that if there exists an algorithm that

is able of distinguishing a random bit string from the output of the mapping x→ (g1(x),g2(x)), then

this algorithm can be converted into a predicator that can predicts the inner product of an input x and

a random bit string chosen at random. Before doing so, we state the following assumptions.

1. Indistinguishability (A1): The binary matrices A and B (both of size ℓ×n) are computationally

indistinguishable from uniform matrices of the same dimensions.

2. Regular syndrome decoding (RSD) (A2): The family of mappings defined as gM(z) =M ·z⊤ for

an uniform 2ℓ× n binary matrix M is one-way on the set of all regular words of length n and

weight ω.

As shown before, the mapping x→ g1(x) (resp. x→ g2(x)) can be regarded as Fu(z) = A · z⊤ (resp.

Fo(z) = B · z⊤), where A and B are binary matrices, both of size ℓ×n, and z is taken from the set of

30

3.3. The XSYND Cipher

regular words and related to the input x. Therefore, from now on, we will use Fu (resp. Fo) instead of

g1 (resp. g2).

From A and B we create a 2ℓ×n block matrix M by stacking them vertically, i.e.

M=

(
A

B

)

In this case, we can write the mapping x → (g1(x),g2(x)) as gM(z) = M · z⊤ = (Fu(z),Fo(z)).
Consequently, in order to prove that XSYND is a pseudo-random generator, it is sufficient to prove that

the output of z→ gM(z) is pseudo-random as proved in [FS96]. Our proof is based on the Goldreich-

Levin Theorem [GL89], which says that, for any one-way function, the inner product of its argument

and a randomly chosen bit string is a hardcore bit (or hardcore predicate). Recall that the inner product

of two bit strings a and b (of the same size) is defined by

〈a,b〉= ∑
i

aibi mod 2.

Formally, this theorem can be stated as follows:

Theorem 3.3.1 (Goldreich-Levin theorem [GL89]). Let f : F
λ(n)
2 → F

µ(n)
2 be a one-way function. For

every PPT algorithm A , for all polynomials p and all but finitely many n’s,

Pr[A(f (x),ν) = 〈x,ν〉]≤ 1

2
+

1

p(n)

where the probability is taken over x uniformly chosen x and ν ∈ F
λ(n)
2 .

Using this theorem we now prove that that XSYND is a pseudo-random generator.

Theorem 3.3.2. Suppose n, ℓ, and ω are chosen such that the indistinguishability and the regular

syndrome decoding assumptions hold. Then the output distribution of XSYND is computationally

indistinguishable from a truly random distribution. That is, XSYND is a pseudo-random generator.

Proof. Our proof is by contradiction. Let us assume that an 2ℓ-bit output of the mapping gM(z) =
M · z⊤ is not pseudo-random, and there exists a distinguisher D , which is capable to differentiate this

output of from a 2ℓ-bit random string υ. More precisely, D takes as input 2ℓ×n binary random matrix

M and a random υ ∈ {0,1}2ℓ as a candidate being equal to M · z⊤ for some unknown regular word

z. In the event that M · z⊤ = υ, D outputs 1 with probability above 1
2 +

1
p(n) , for every polynomial

p(n). Otherwise, when υ is chosen uniformly from {0,1}2ℓ, D outputs 1 with probability at most 1
2 .

Formally, the distinguisher D behaves as follows:

{
Pr[D(M,υ) = 1]≥ 1

2 +
1

p(n) , if υ =M · z⊤, for some regular word z

Pr[D(M,υ) = 1]< 1
2 , if υ is taken uniformly from {0,1}2ℓ

31

3. Code-based Stream Ciphers

As next step, we will build an algorithm P , which uses the distinguisher D as subroutine. This

algorithm will predicts the inner product 〈z,ν〉 with probability at least 1
2 +

1
2p(n) , where z is an un-

known regular word (an input of gM) and ν a randomly chosen n-bit string. To this end, let write

ν = (ν1, · · · ,νn). In addition, let σ be the number of the positions j such that where zi = ν j = 1, i.e.

the size of the intersection z∩ ν and ρ its parity, i.e. the inner product 〈z,ν〉. Then the algorithm P
takes as input gM(z) and ν and executes the following steps:

• Select a random ρ′ ∈ {0,1} as candidate to ρ

• Choose randomly ξ ∈ {0,1}2r

• Build a new 2ℓ×n binary matrix M̂= (m̂1, · · · , m̂n) such that for every j ∈ {1, · · · ,n} it holds

m̂ j =

{
m j +ξ if ν j = 1,

m j if ν j = 0

• Feed the distinguisher with M̂ and gM(z)+ρ′ ·ξ
• If the distinguisher outputs 1, then output ρ′ = ρ. Otherwise, output the opposite of ρ′.

Now, we show next that P predicts the inner product 〈z,ν〉 with probability above 1
2 +

1
2p(n) . We

have to consider two events:

(1) E1:”ρ is guessed correctly”. Then the prognosticated value for the inner product 〈z,ν〉 is

correct if the distinguisher outputs 1. The distribution seen by the distinguisher on (M̂,gM(z)+
ρ′ ·ξ) is identical to the distribution on input (M,gM(z)). By construction, this is the case with

probability at least 1
2 +

1
p(n) .

(2) E2:”ρ is not guessed correctly”. The distinguisher receives uniformly distributed inputs

because of the randomness of ξ. It then returns 1 with probability 1
2 .

Since Pr[E1] = Pr[E2] =
1
2 , we conclude that the overall probability of correctly predicting the inner

product 〈z,ν〉 is at least 1
2 +

1
2p(n) . This contradicts the Theorem 3.3.1 because of the RSD assumption.

Practical Security This section presents what are provably the most generic attacks against XSYND.

We will only address the hardness of inverting the mapping T defined in the previous section, since

this is the main building block of XSYND design. If an attacker can invert T , then she can recover

the secret key and recover inner states.

In what follows, we denote by WFY (n, ℓ,ω) the work factor (i.e. number of binary operations) required

to solve the instance RSD(n, ℓ,ω) by using an algorithm Y . Furthermore, in estimating the complexity

of each attack against XSYND we use ℓ= ωα with α = log2

(
n
ω

)
.

There are essentially three types of known attacks that are applicable to XSYND:

1. Linearization Attacks. There are two types of linearization attacks that are relevant for XSYND,

namely the Bellare-Micciancio (BM) attack [BM97] against the XHASH function [BM97], and

the attack due to Saarinen [Saa07]. We discuss these attacks below.

(a) The Bellare-Micciancio’s attack (BM). This is a preimage attack proposed by Bellare and

Micciancio [BM97] against the so-called XHASH mapping. This attack relies on finding a

32

3.3. The XSYND Cipher

linear dependency among ω ℓ-bit vectors, where ω is the number of vectors XORred together

and ℓ, the length (in bits) of the target value. This is likely to succeed if the value ω is close

to ℓ. More precisely, let l and k be two positive integers. Let f be a random function with

f : Fl
2 7→ F

ℓ
2. Let [i] denote the binary representation of an integer i. Based on f , the XHASH

mapping is defined as

XHASH(x) = f ([1]|x1)⊕·· ·⊕ f ([ω]|xω), with x = (x1,x2, . . . ,xω).

The BM attack finds a preimage x of a given z = XHASH(x) ∈ Fℓ
2 as follows. First, one finds

ω-bit string y = (y1, . . . ,yω), with yi ∈ F2, such that XHASH(xy) = z, where xy = x
y1

1 . . .xyω
ω . To

achieve this, one first computes 2ω values βk
i = f ([i]|x j

i) for k ∈ {0,1} and i ∈ {1, . . . ,ω}; the

next step is to try to solve the following system of equations over F2 using linear algebra:

{
yi⊕ ȳi = 1, i ∈ {1, . . . ,ω},
⊕ω

i=1β0
i (j)yi⊕β1

i (j)ȳi = z(i), j ∈ {1, . . . , ℓ}.

Here, β0
i (j) (resp. β1

i (j)) denotes the j−th bit of β0
i (resp. β1

i) and ȳi = 1−yi are the unknowns.

This system has ℓ+ω equations in 2w unknowns and is easy to solve when w = r+ 1. More

generally, it was shown in [BM97] that for all y ∈ F
ω
2 the probability to have XHASH(xy) 6= z

is at most 2ℓ−ω. That is, the complexity of inverting XHASH is at least 2ℓ−ω; in our notation,

WFBM(n, ℓ,ω)≥ 2ℓ−ω = 2(α−1)ω.

(b) The Saarinen’s attack (SA). This attack is due to Saarinen [Saa07] and it was proposed

against the FSB [AFS05] hash function. The main idea behind this attack is reducing the prob-

lem of finding collisions or preimages to that of solving systems of equations. This attack is

very efficient when ℓ < 2ω. We briefly show how this attack works in our setting, where we

must invert the map T .

As shown in section 5.1, T (x) = A · z⊤, where A is the random binary matrix of size ℓ× n,

whose entries define T , and z is a regular word of length n and weight ω. We can in turn write

A · z⊤ out as follows:

y =⊕ω
i=1a(i−1) n

ω+xi+1, 0≤ xi ≤
n

ω
, (3.10)

where x = (x1, . . . ,xω) and a j denotes the j−th column of A. For simplicity, assume that xi ∈
{0,1}. In this case, we define a constant ℓ-bit vector c and an additional ℓ×ω binary matrix H

as follows.

c =⊕ω
i=1a(i−1) n

ω+1, A= [b1 · · ·bω] with bi = a(i−1) n
ω+1⊕a(i−1) n

ω+2. (3.11)

It is easy to check that y = B · x+ c. As a consequence if ℓ = ω, then H is square and we can

find the preimage x from y as:

x = B−1 · (y⊕ c), (3.12)

where B−1 denotes the inverse of H. Note that this inverse exists with probability without proof

of ∏ℓ
i=1(1−1/2i)≈ 0.29 for ℓ moderately large. The expected complexity of this attack is the

the workload of inverting H, which is al most 0.29 · ℓ3. It has been proved in [Saa07] that the

same complexity is obtained even if ℓ≤ 2ω.

33

3. Code-based Stream Ciphers

In the opposite direction, Saarinen also extended his attack for the case when ω ≤ ℓ/θ for

θ > 1 and xi /∈ {0,1}. In this case, the complexity is about 2ℓ/(θ+ 1)w. Moreover, the recent

result [BLPS11b] shows that if θ = 2β, for β > 1, this complexity becomes 2ℓ/(β+ 1)2ω. As

consequence we obtain:

WFSA(n, ℓ,ω)≥
{

2ℓ/(θ+1)ω if ω≤ ℓ/θ

2r/(θ+1)2ω if ω≤ ℓ/2θ

which can be rewritten in our setting as:

WFSA(n, ℓ,ω)≥
{

(2α

θ+1)
ω if θ≤ α

(2α

(θ+1)2)
ω if θ≤ α/2

2. Generalized Birthday Attacks (GBA). This class of attacks attempt to solve the following,

so-called k-sum problem: given k random lists L1,L2, . . . ,Lk of ℓ-bit strings selected uniformly

and independently at random, find x1 ∈ L1,x2 ∈ L2, . . . ,xk ∈ Lk such that ⊕k
i=1xi = 0. For k = 2,

a solution can be found in time 2ℓ/2 using the standard birthday paradox. For k > 2 Wagner’s al-

gorithm [Wag02] and its extended variants [AFS05, Ber07, MS09, FS09] can be applied. When

k = 2 j−1 and |Li|> 2ℓ/ j, Wagner’s algorithm can find at least one solution in time 2ℓ/ j.

Let us explain the main idea behind a GBA algorithm for k = 4. Let L1, . . . ,L4 be four lists,

each of length 2ℓ/3. The algorithm proceeds in two iterations. In the first iteration, we build

two new lists L1,2 and L3,4. The list L1,2 contains all sums x1⊕x2 with x1 ∈ L1 and x2 ∈ L2 such

that the first ℓ/3 bits of the sum are zero. Similarly, L3,4 contains all sums x3⊕ x4 with x3 ∈ L3

and x4 ∈ L4 such that the first ℓ/3 bits of the sum are zero. So the expected length of L1,2 is

equal to 2−ℓ/3 · |L1| · |L2|= 2ℓ/3. Similarly, the expected length of L3,4 is also 2ℓ/3. In the second

iteration of the algorithm, we construct a new list L′1 containing all pairs (x′1,x
′
2) ∈ L1,2×L3,4

such that the first ℓ/3 bits of the sum x′1⊕ x′2 are zero. Then the probability that x′1⊕ x′2 equals

zero is 2−2ℓ/3. Therefore, the expected number of matching sums is 2−2ℓ/3 · |L1,2| · |L3,4|= 1. So

we expected to find a solution. This idea can be generalized for k = 2 j−1 by repeating the same

procedure j−2 times. In each iteration a, we construct lists, each containing 2ℓ/ j elements that

are zero on their first aℓ/ j bits, until obtaining, on average, one ℓ-bit element with all entries

equal to 0.

We estimate the security of XSYND against GBA attacks by using the GBA algorithm from [FS09].

This algorithm attempts to find a set of indices I = {1,2, · · · ,2γ} satisfying⊕i∈IHi = 0, where Hi

are columns of the matrix H. As shown in [FS09], the algorithm is applicable when
(

2αω
2(1−γ)ω

)
≥

2αω+γ(γ−1). Under this condition, the cost of solving an instance RSD problem with parameters

(n, ℓ,ω) is given by:

WFGBA(n, ℓ,ω)≥
(

ωα
γ −1

)
2

ωα
γ −1

.

Note that the recent result in [NCB11] shows that the time and memory efficiency of GBA at-

tacks can be improved, but only by a small factor. This improvement is taken into account when

proposing parameters for XSYND in the following subsection.

34

3.3. The XSYND Cipher

3. Information Set Decoding (ISD). ISD is one of the most important generic algorithm for de-

coding errors in an arbitrary linear code. An ISD algorithm consists (in its simplest form) in

finding a valid, so-called information set, which is a subset of k error-free positions amongst

the n positions of each codeword. Here, k is the dimension and n the length of the code. The

validity of this set is checked by using Gaussian elimination on the ℓ×n parity check matrix H.

If we denote by p(n, ℓ,ω) the probability of finding a valid information set and by c(ℓ) the cost

of Gaussian elimination, then the overall cost of ISD algorithms equals the ratio c(r)/p(n, ℓ,ω).

In the following, we estimate the cost of finding a solution to the regular syndrome decoding

(RSD) problem, i.e. we wish to invert the map T . Let ns(n, ℓ,ω) be the expected number of

solutions of RSD instance. This quantity is:

ns(n, ℓ,ω) =

(
n
ω

)w

2ℓ
= 1,

because ℓ= ω log2(
n
ω). In addition, let pv(n, ℓ,ω) be the probability that a given information set

is valid for one given solution of RSD. As shown in [AFS05], p(n, ℓ,ω) can be approximated

by: p(n, ℓ,ω)≈ pv(n, ℓ,ω) ·ns(n, ℓ,ω).

Furthermore, as shown in [AFS05], pv(n, ℓ,ω) is given by:

pv(n, ℓ,ω) =
(r

n

)ω
=

(
log2(n/w)

n/ω

)ω

We thus conclude that the probability of selecting a valid set to invert RSD is equal to: p(n, ℓ,ω)=(
α
2α

)ω
.

Hence, the cost WFISD(n, ℓ,ω) of solving an instance of RSD with parameters (n, ℓ,ω) is approx-

imately:

WFISD(n, ℓ,ω)≈ c(ℓ) ·
(

2α

α

)ω

. (3.13)

If we assume that the complexity of Gaussian elimination is ℓ3, then WFISD(n, ℓ,ω) becomes:

WFISD(n, ℓ,ω)≈ (ωα)3 ·
(

2α

α

)ω

. (3.14)

In practice, we use the lower bound for ISD algorithms presented in [MMT11] to estimate the

security of XSYND faces ISD attacks and show our results in Table 3 .

Remark 3.3.1. One could also use Time Memory trade-off attacks against stream ciphers. This

attack was first introduced in [Hel80] as a generic method of attacking block ciphers. To make

this attack unfeasible, one must adjust the cipher parameters as shown in [Gol97, HS05], i.e.,

the initial vector should be at least as large as the key, and the state should be at least twice the

key.

Table 3 briefly summarizes the expected complexity of the previous attacks against XSYND.

35

3. Code-based Stream Ciphers

Attack The binary logarithm of the complexity: log2(WF(.)(n, ℓ,ω))
with ℓ= ωα and n = ω2α

BM ω(α−1)

SA

{
ω(α− log2(θ+1)), if θ≤ α

ω(α−2log2(θ+1)), if θ≤ α/2

GBA ωα/γ+ log2(ωα/γ−1)−1 for γ ∈ N

ISD ω(α− log2(α))+3log2(ωα)

Table 3.5.: The estimated complexities of possible attacks against XSYND.

3.3.3. Parameters and Experimental Results

Taking into account all the previous attacks against XSYND, we select ’optimal’ parameters

that offer both a desired level of security and a satisfying efficiency. First, we choose ℓ= 2|IV |
and |IV | = |K| to avoid the Time Memory Trade-Off attacks according [Gol97, HS05]. For

efficiency reasons we then fix α = log2(n/ω) = 8 and for each security level λ we vary ω to

obtain both high performance and a complexity of solving the RSD problem of at least 2λ.

We have tested a large set of potential parameters for a number of security levels. Table 3.6

presents the optimal parameter sets (n, ℓ,ω) resulted from running our implementation for sev-

eral security levels. Note that in our implementation, we only use random binary codes without

any particular structure. But it is possible to find parameters providing the same security levels

when the parity check matrix is quasi-cyclic as in [GLS07]. In this case, ℓ has to be a prime

and 2 is primitive root of the finite field F
∗
r in order to guarantee the randomness property of

quasi-cyclic codes as demonstrated in [GZ07].

Table 3.6.: Proposed parameters for XSYND.

Security Level n ℓ ω Key/IV size Speed of XSYND

(bits) (cycles/byte)

90 8192 256 32 128 14.92

120 12288 384 48 192 16.98

160 16384 512 64 256 35.40

200 20480 640 80 320 43.68

240 24576 768 96 384 55.42

280 28672 896 112 448 77.09

The results shown in Table 3.6 are for a pure C/C++ implementation with additional use of

C/C++-Intrinsics). The operating system was Debian 6.0.3, the source has been compiled with

gcc (Debian 4.4.5-8) 4.4.5. All results have been gained on an AMD Phenom(tm) 9950 Quad-

Core Processor, running at a clock rate of 1300 MHz. Due to the row-major convention of

C/C++, the two matrices A resp. B have been used and stored in transposed form. In order to

compare the speed of XSYND with the claimed speed of SYND [GLS07] and 2SC [MCY11]

(Table 3.8), we have tested our implementation using the parameter sets suggested in [GLS07].

Our results presented in Table 3.7 show that, for comparable security levels (90 and 250),

XSYND runs faster than SYND [GLS07] and 2SC cipher [CSM], but its speed is compara-

36

3.4. The PSYND Cipher

Figure 3.11.: The behavior of speed of XSYND in function of security level.

ble to that of 2SC for 170-bit security.

Security Level n ℓ ω key/IV size speed of SYND speed of XSYND

(bits) (cycles/byte) (cycles/byte)

[GLS07] — [CSM]

90 8192 256 32 128 27 — 30.27 14.92

170 8192 512 64 256 53 — 41.05 35.18

250 8192 1024 128 512 83 — 149.94 55.69

Table 3.7.: Performance of XSYND compared to that of SYND using the same parameters in [GLS07].

Table 3.8.: Parameters and performance of 2SC cipher given in [CSM].

Security Level n ℓ ω key/IV size Speed

(bits) (cycles/byte)

90 1572864 384 24 144 25.12

170 2228224 544 34 208 33.22

250 3801088 928 58 352 80.05

3.4. The PSYND Cipher

3.4.1. Motivation

From the description of the XSYND stream cipher and its original variant XSYND, it is straight-

forward to see that for producing a key stream block of SYND, the mapping g2 first has to wait for

37

3. Code-based Stream Ciphers

Figure 3.12.: Speed comparison between SYND , 2SC and XSYND.

function evaluation of g1 every time. This a bottleneck of this two schemes, because it makes the

whole process not fully parallelizable using the state-of-the art programming techniques. The main

purpose of this section is to show how to design a SYND-like stream cipher that can be completely

implemented in a parallel manner, and hence has better computationally features than the XSYND

stream cipher, and can be furthermore shown to be provably secure at the same time.

3.4.2. Description of the PSYND cipher

In this subsection we provide a detailed description of the PSYND cipher and its basic ingredients.

The letters in its name stand for ”Parallel SYND”.

As in XSYSND and SYND, the PSYND is a synchronous stream cipher and parameterized by a

set of positive integers (n, ℓ,ω) satisfying ℓ = ωα, where ω < ℓ < n, and α = log(n/ω). This set de-

termines the size of an internal state, the key length, and the size of an initial vector (IV). For security

reasons, the IV has the same length as the secret key, both have ℓ/2 bits. The PSYND is composed

of two major blocks, Initializer, and Generator, both implicitly use two transformations G1 and

G2 that are similar to the mappings g1 and g2 of the XSYND stream cipher, respectively. (See Fig-

ure 3.10).

Initializer: F : F
|K|
2 ×F

|IV |
2 → F

ℓ
2×F

ℓ
2.

It takes as input the initialize vector IV and the key K in order to calculate the initial state s0 = (x0,y0),
according the following steps:

38

3.4. The PSYND Cipher

λ = K‖IV
β = λ⊕G1(λ)

γ = λ⊕G2(λ)

F(λ) = (β⊕G2(β),γ⊕G1(γ)) = (x0,y0) = s0

During the initialization stage no output bits are returned, only after s0 is produced, keystream

generation is allowed to take place. A graphical illustration of F is presented in Figure 3.13.

Figure 3.13.: Block diagram of Initializer F

Generator: G : Fℓ
2×F

ℓ
2→ F

ℓ
2×F

ℓ
2.

It takes as input the initial state s0 generated by F , and produces an 2ℓ-bit string (ui,vi), i≥ 1 in each

round. A simple block diagram of this generator is shown in Figure 3.14.

The creation of {si+1}i≥0 works as follows. Starting with si = (xi,yi), the generator G outputs (ui,vi)
and updates si (or computes the subsequent state si+1 = (xi+1,yi+1)) by executing the following com-

putations (in parallel):

xi+1← φ1(xi) and yi+1← φ2(yi) (STEP 1) (3.15)

vi← φ2(xi) and ui← φ1(yi) (STEP 2) (3.16)

During this process, only ui and vi are returned as output and made visible to an adversary.

Note that G1 and G2 are called at the same time with different inputs, so that the implementation of

G can be fitted to the parallelism of modern CPUs. The whole process of the keystream generation of

PSYND can be described by a single function h that takes as input a 2ℓ-bit string and expands it into

a 4ℓ-bit string in each iteration. This function is defined as follows:

h(x,y) := f(x,y)‖g(x,y) ∈ F
4ℓ
2 , (3.17)

where (x,y)→ f(x,y) := (G1(x),G2(y)) is a update function, that refreshes the current state (x,y),
while (x,y)→ g(x,y) := (G1(y),G2(x)) is an output function producing an 2ℓ-bit string which form

39

3. Code-based Stream Ciphers

Figure 3.14.: Diagrammatic representation of the PSYND’s Generator G

the keystream bits of PSYND.

3.4.3. Security of the cipher

The security of PSYND is discussed. More precisely, we will prove that the PSYND is a pseudo-

random generator. Then we analyze its security from practical point of view by identifying all the

best known attacks that can applicable against it.

Theoretical security. Here we will prove that the PSYND is a pseudo-random generator under the

assumptions made in the previous section, namely the indistinguishability and RSD assumption. In

order to prove that, we need the following lemmas.

Lemma 3.4.1. If the assumption A2 holds, then the transformations G1 and G2 defined in PSYND are

one-way.

Proof. To prove this Lemma, it is sufficient to show that G1 (and G2) can be transformed into a

function selected from the collection defined in A2. This claim has been proved in subsection 3.3.2.

40

3.4. The PSYND Cipher

Lemma 3.4.2. If the assumption A2 holds, then the transformations f and g are both one-way.

Proof. This straightforward results from [GIL+90, Yao82b], that state that for every collection of

one-way functions F = { fk}k∈S, where S is a finite set, the collection Fn = { fi1,··· ,in}i1,··· ,in∈Sn , whose

elements are defined as fi1,··· ,in(x1, · · · ,xn) = (fi1(x1), · · · , fin(xn)) is also one-way. In addition, this is

even true when having a single mapping (i.e., when i1 = · · ·= in). In our setting, we have S = {1,2}.

For proving the pseudo-randomness of the key stream produced by PSYND, we will prove that the

sequence pair (ui,vi) is pseudo-random, meaning that it is indistinguishable from an 2ℓ-bit random

string. We will do this by induction. Before doing this, we prove the following theorem.

Theorem 3.4.1. Let R and L be two functions defined over Fℓ
2 by

R(x) = G1(x)‖G2(x) and L(y) = G2(y)‖G1(y)

Related to R and L, we define two 2ℓ-bit strings generator GR and GL depicted in Figure 3.15 and

Figure 3.16, respectively.

Figure 3.15.: Illustration of GR Figure 3.16.: Illustration of GL

The function G1 (resp. G2) is the update (resp. output) function of GR contrary to GL.

If the assumptions A1 and A2 hold, then GR and GL are both pseudo-random generators.

Proof. It is sufficient to prove this statement for GR, since they are similar. The proof is similar to that

of XSYND (Theorem 3.3.2. Note that R and is L are both expansion functions with expansion factor

2ℓ.
As shown earlier the functions G1 (resp. G2) can be rewritten as G1(x) = A · z⊤ (resp. G2(x) = B · z⊤),

where z is a regular word that corresponds to the input x. Hence, if we vertically stack A and B, we

obtain a new 2ℓ×n matrix M given by

M=

(
A

B

)
.

This matrix satisfies assumption A1. By doing so, we can write R(x) = M · z⊤. So, it would be

sufficient to prove that the output of M · z⊤ is pseudo-random. Now, we show by contradiction that the

output of R is pseudo-random. Suppose the opposite. Then there is a distinguisher Ψ that can make a

distinction between this output and an 2ℓ-bit random sequence u. This distinguisher accepts as input

an 2ℓ×n binary random matrix A and a random u ∈ {0,1}2ℓ as a candidate being equal to M · z⊤ for

some unknown regular word z. If M · z⊤ = u, Ψ outputs 1 with probability above 1
2 +

1
p(n) , for every

polynomial p(n). Otherwise, when u is chosen uniformly from {0,1}2ℓ, Ψ outputs 1 with probability

at most 1
2 .

More precisely, the behavior of Ψ is the following:

41

3. Code-based Stream Ciphers

{
Pr[Ψ(M,u) = 1]≥ 1

2 +
1

p(n) , if u =M · z⊤, for some regular word z

Pr[Ψ(M,u) = 1]< 1
2 , if u is taken uniformly from {0,1}2ℓ

Our next step is to construct an algorithm Θ which calls Ψ as a subroutine, in order to predict

the dot product of unknown regular word z and a random chosen η-bit sequence v (i.e., 〈z,v〉) with

probability at least 1
2 +

1
2p(n) . To achieve this, we write v = (v1, · · · ,vη) and define π to be the number

of the positions j such that zi = v j = 1, i.e. the size of the intersection z∩v. Let σ be its parity, i.e. the

inner product 〈z,v〉. By doing so, on inputs M · z⊤ and v, the algorithm Θ will perform the following:

• Choose a random σ′ ∈ {0,1} as candidate to σ

• Choose randomly δ ∈ {0,1}2ℓ

• Construct a new 2ℓ×n binary matrix M̂= (â1, · · · , ân) such that for every j ∈ {1, · · · ,n} it holds

â j =

{
a j +δ if v j = 1,

a j if v j = 0

where (a1, · · · ,aη) is the decomposition of M.

• Supply the distinguisher Ψ with M̂ and M · z⊤+σ′ ·δ

• If Ψ outputs 1, then outputs σ′ = σ. Otherwise, returns the opposite of σ′.

We now show that Θ predicts the dot product 〈z,v〉 with probability above 1
2 +

1
2p(n) .

There are to distinct cases to treat:

(1) C1:= {σ guessed correctly}. Then the predicted value for 〈z,v〉 is correct if the distinguisher

outputs 1. But the distribution seen by the distinguisher on (M̂,M · z⊤+σ′ ·δ) is similar to the

distribution on input (M,M · z⊤). By construction, this occurs with probability at least 1
2 +

1
p(n) .

(2) C2:= {σ not guessed correctly}. The distinguisher receives uniformly distributed inputs be-

cause of the randomness of δ and therefore outputs 1 with probability 1
2 .

Seeing that Pr[C1] = Pr[C2] =
1
2 , we can conclude that the entire success probability of predicting

the dot product 〈z,v〉 is at least 1
2 +

1
2p(n) . This leads to a contradiction with the Goldreich-Levin

Theorem [GL89] due to assumption A2. As consequence, the function R (and also L) is pseudo-

random.

Now we are ready to present the main result concerning the pseudo-randomness of the PSYND

stream cipher. The proof is inductive over the iteration number and involves Theorem 3.4.1.

Theorem 3.4.2. If we choose parameters (n, ℓ,ω) such that assumptions A1 and A3 are met, then the

PSYND cipher is a pseudo-random generator.

Proof. To this end, we will show that the sequences ui and vi are pseudo-random. We will prove this

by induction over i.

42

3.4. The PSYND Cipher

• Base case : i = 1. From Theorem 3.4.1 we conclude that R(x0) = G1(x0)‖G2(x0) and L(y0) =
G2(y0)‖G1(y0) are both 2ℓ-bit pseudo-random sequence. This implies also u0 = G2(x0) and

v0 = G1(y0) are pseudo-random sequence. The same argument holds for x1 = G1(x0) and y1 =
G2(y0).

• Induction step: Assume that u j and v j (and also x j and y j) are pseudo-random sequences for

some positive integer j (the induction hypothesis). We will show that u j+1 and v j+1 are also

pseudo-random sequences. We have the following relations:
{

ui+1 = G1(yi+1), y j+1 = G2(y j)

vi+1 = G2(xi+1), x j+1 = G1(x j)

By the induction hypothesis, the sequences R(x j) = G1(x j)‖G2(x j) and L(y j) = G2(y j)‖G1(y j) are

pseudo-random. That means, G1(x j) = x j+1 and G2(y j) = y j+1 are pseudo-random and applying

Theorem 3.4.1 on these sequences completes the inductive step and therefore the PSYND cipher is a

pseudo-random number generator.

After proving the pseudorandomness of the key stream of the PSYND stream cipher, we now want

to discuss the security of the initialization process.

Security of the initialization process. We will prove that the probability of recovering the secret

key is negligible. As described before, the generation of the initial state s0 = (x0,y0) of PSYND is

done as follows:

λ = K‖IV
β = λ⊕G1(λ)

γ = λ⊕G2(λ)

F(λ) = (β⊕G2(β),γ⊕G1(γ)) = (x0,y0) = s0

Assume that one can somehow know the initial state s0. So, to recover the secret key and IV, one has

to solve the following equations:

x0 = β⊕G2(β) with β = λ⊕G1(λ) (3.18)

y0 = γ⊕G1(γ) with γ = λ⊕G2(λ) (3.19)

To do this, it is sufficient to solve the equations

x′ = x⊕G2(x), (3.20)

y′ = y⊕G1(y), (3.21)

where x′ and y′ are both known, while x and y are unknown variables. As shown before, G2 and

G1 produce pseudo-random outputs for random inputs. That means, that the variables x and y are also

pseudo-random. For the sake of simplicity, one can suppose that x′ = 0 and y′ = 0. In this case, the

equations (6) and (7) become

43

3. Code-based Stream Ciphers

x⊕G2(x) = 0, (3.22)

y⊕G1(y) = 0, (3.23)

As a result, to solve this system one has to find fixed points for the transformations G1 and G2. But,

what is the success probability for finding such points. In order to estimate this probability, we use

the following result, which is known as the Piling-Up Lemma [Mat94].

Lemma 3.4.3. For each value (1≤ i≤ t), let Zi be a random variable over {0,1}, independent of Z j

for all j 6= i, such that

Pr(Zi = 1) = pi, ∀i ∈ {1, · · · , t}
Pr(Zi = 0) = 1− pi

Then Pr(Z1⊕Z2⊕·· ·⊕Zt = 0) = 1
2 +2t−1 ∏t

i=1(pi− 1
2)

The equation (3.23) can be rewritten as XORing of ω+1 unknown ℓ-bit strings, whose sum equals

0. Thus if x is randomly chosen from F
ℓ
2, then the probability that it is a fixed point for G2 is equal to

1
2

ℓ
. Actually, the row entries of the underlying matrix of G2 and x can be associated to independent

random variables (Z
(j)
i) defined over {0,1}, where i∈{1, · · · ,ω+1} and j∈{1, · · · , ℓ} are the column

and row positions, respectively. With this setting, we have Pr[Z
(j)
i = 1] = pi =

1
2 . Using Lemma 3.4.3

we obtain

Pr(φ2(x) = x) =
ℓ

∏
i=1

Pr(Z
(j)
1 ⊕Z

(j)
2 · · ·⊕Z

(j)
ω+1) =

1

2ℓ
. (3.24)

Thus for a large value of ℓ , this probability is negligible. In PSYND the value of ℓ is at least 128.

Practical security. To asses the security of the PSYND family from practical point of view, this

paragraph briefly describes the best known generic algorithms for attacking PSYND, but focuses only

on attacks that aim at recovering the secret key or internal states. Key or state recovery in PSYND can

be done by inverting the underlying functions G1 and G2 involved in the initialization and key stream

generation procedure, as they constitute the major components of PSYND’s desing.

Best known attacks: to our best knowledge, there basically exist three different potential algorithms:

Linearisation Attacks (LA), Generalized Birthday Attacks (GBA), and Information Set Decoding

(ISD). All these attacks have been described earlier in subsection 3.3.2.

Other type of attacks: Here we discuss some other attacks that could be applicable against the

PSYND stream cipher.

Exhaustive key search. It is the simplest attack against any cipher and consists in trying every possible

key in turn until the correct key is found. However, this attack do not seem to be applicable against

PSYND due to the large cardinality of the key space. The key length used in PSYND is at least to 128

44

3.4. The PSYND Cipher

bits.

Guess-and-Determine attacks. The basic idea of this kind of attacks is try to find the value of un-

knowns variables in a cipher by guessing some of them and deducing another from the guessed un-

knowns variables. Let us demonstrate how this attack can be applied against PSYND. Assume that IV

is known, that is ω
2 selected columns of the whole matrix of size ωα×ω2α are known. Suppose that an

adversary aims at attacking the initialization phase of PSYND for recovering the secret key. Assume

that she can only guess uα bits of the secret key and the remaining ω
2 α bits are still unknown. Those

bits correspond to ω
2 − u unknown columns, each of them has length ℓ bits. Thus, the complexity to

recover the secret key is ℓ
ω
2−u binary operations. For example, for the instance PSYND(8192,256,32),

this attack requires 2120 bops if only 8 bits of the secret key are successfully guessed.

Time-memory trade-off attacks. A time-memory tradeoffs attack, originally presented by Hellman

in [Hel80], is applicable when the state size of the cipher is too small. As pointed out in [Gol97,

HS05], the TMTA can be avoided by taking the following conditions into account: the initial value

should be at least as large as the key, and the state should be at least twice the key. The PSYND’s

parameters proposed in the next section fulfil this condition. If one allows the precomputation com-

plexity to be greater than the complexity of exhaustive key search, it is possible to get a time-memory

trade-off attack which is faster than exhaustive key search. This is valid for any type of stream cipher.

Dieharder tests. Dieharder tests∗, developed by G. Marsaglia, is a set of statistical tests designed

to examine the randomness of random numbers. These tests were performed on the internale state

(including the initial state) as well as on the output of the PSYND cipher. As a result, PSYND seems

to behave as a true random number generator, as it passes successfully all tests in the Dieharder suite.

3.4.4. Parameters and experimental results

Some implementation details The PSYND stream cipher has been implemented using C/C++ pro-

gramming language. The implementation employs the intrinsic functions and the underlying matrices

have been generated using the system time as a seed. For our tests we used an Intel Core 2 Duo E8400,

running at a clock frequency of 3.0 GHz. It has L1 cache size of 2 × 32 KB for the data caches, and

a L2 cache size of 6 MB. The sources have been compiled with gcc, version 4.6.1, and the tests have

be carried out under Linux Ubuntu 6.10. For each test run, we load the matrices A and B from a file

and generate the initial state. At the moment, we used a fixed key K and a fixed initial vector IV . For

each iteration of the output phase the indices of the XORed columns are unknown a priori. Therefore,

our scheme has difficulty to take advantage particularly of the L1 cache. The probability that cache

lines can be reused is quite low, which is also confirmed by our results. The bigger the matrices A and

B become, the more the advantages of the L1 cache get lost. In order to overcome this problem, we

executed the two output steps in parallel. For the implementation of threads, we used the pthread li-

brary. Each output step has been represented by its own thread. Thereby we create two output streams

which can then be used by the application.

∗http://www.phy.duke.edu/ rgb/General/dieharder.php

45

3. Code-based Stream Ciphers

Parameters choice The PSYND’s parameters should be selected with great caution as bad choice

could considerably affect the speed and the security of the system. By construction, the main pa-

rameters are α and ω due to the relations n = ω2α and n = ωα. Smaller ω offer good performance,

and larger α increase security and therefore controlling these two parameters allows for obtaining an

optimal efficiency–security tradeoff curve. According to this rule, the choice of α and ω in our imple-

mentation meets the following constraints: α is equal to 8, and ω is a multiple of 16, allowing ℓ to be

a multiple of 32 (or 64 depending on the CPU architecture) for a full use of the word-size XORs.

Experimental results Putting all of the above conditions together, we found a large set of parame-

ters (n, ℓ,ω) providing a high performance using different key/IV size and offering required security

levels. Table 3.9 presents some ”optimal” parameters sets (n, ℓ,ω) in which we give the provided

security level, and the size of the secret key K and the initial vector IV . The security is estimated

according to best known attacks described earlier.

security n ℓ ω K/IV size speed (cpb)

90 8192 256 32 128 9.43

128 12288 384 48 192 12.09

180 16384 512 64 256 16.84

300 20480 640 80 320 29.92

400 24576 768 96 768 41.8

Table 3.9.: Some parameters for the PSYND cipher.

Comparison with XSYND. Here we want to compare the PSYND cipher with the XSYND ci-

pher [MHC12]. The comparison is done in terms of the speed and the storage requirements. The speed

is measured in cycles per byte (cpb), while the storage space in bits. The data comparison results are

summarized in Table 3.10 and plotted in Figure 3.17. As one can deduce from this table, the PSYND

outperforms XSYND in terms of performance. For instance, PSYND(8192,256,32) runs much faster

than XSYND(8192,256,32), for the same security level of 90 bits. As mentioned in [GLS07], adding

of the quasi-cyclic structure in the matrices of PSYND, could significantly improve the PSYND sys-

tem in terms storage space, since the required space amount (in bits) to be stored equals n instead

of nℓ bits. This modification however could worsen the performance and threaten the security of the

system, despite the pseudo-randomness property of quasi-cyclic codes satisfying some constraints on

parameters [GZ07]. For that reasons, we did not implement this kind of codes in the PSYND family.

Comparison with the eSTREAM candidates. The eSTREAM portfolio contains 7 ciphers, 4 of

them are software-oriented stream ciphers (profile 1): HC-128, Rabbit, Salsa 20/12, and SOSE-

MANUK. A detailed description of these ciphers can be found in the eSTREAM book [RB08]. Ta-

ble 3.11 summarizes some data about these stream-ciphers including the key/IV size and the perfor-

mance. These data were reported in the Bernstein’s eSTREAM benchmarking paper [Ber]. The speed

measurements were performed on a computer possessing a four-core 2394MHz Intel Core 2 Quad

Q6600 6fb processor. As one can deduce from this table, the PSYND familiy is much slower than

these proposals. For instance, HC-128 supporting 128-bit key and 128-bit IV and offering 128-bit

46

3.4. The PSYND Cipher

scheme parameters key/IV size speed estimated security

(n, ℓ,ω) (bits) (cpb)

XSYND

(8192,256,32) 128 14.92 90

(12288,384,48) 192 16.98 128

(16384,512,64) 256 35.40 160

(20480,640,80) 320 43.68 200

(24576,768,96) 384 55.42 240

PSYND

(8192,256,32) 128 9.43 90

(12288,384,48) 192 12.09 128

(16384,512,64) 256 16.84 160

(20480,640,80) 320 29.92 200

(24576,768,96) 384 41.8 240

Table 3.10.: Performance comparison of PSYND with XSYND for the same security levels.

Figure 3.17.: Graphical comparison between XSYND and PSYND in terms of speed for the same

security levels.

security, runs with a speed of 2.34 cpb, while PSYND(8192,256,32) runs at 9.43 cpb and but only pro-

vides 90-bit security. However, compared to the 128-bit AES-CTR running at 12.59 cpb, the instance

PSYND(12288,384,48) with a key and IV of 192 bit, delivers the same performance.

47

3. Code-based Stream Ciphers

Primitive key size IV size speed (cpb)

HC-128 128 128 2.34

Rabbit 128 64 2.34

Salsa 20/12 128 64 2.54

SOSEMANUK 128 64 3.54

AES-CTR 128 128 12.59

PSYND 128 128 9.43

Table 3.11.: Performance of some software-oriented eSTREAM’s candidates, as reported in [Ber].

3.5. Conclusion and Open Problems

Starting from the Fischer-Stern pseudo-random number generator, we have describe three code-based

constructions of stream ciphers and shown how to improve the efficiency the existing ones. First, we

showed how to use the sponge construction to design a stream cipher, called 2SC. This runs much

faster than the SYND stream cipher, but it uses larger matrices than SYND. Then, we propose the

XSYND cipher as an improved variant of SYND in terms of performance. XSYND uses a generic

state transformation which is directly reducible to the regular syndrome decoding problem, but has

better computational characteristics than the regular encoding introduced in the SYND system. Fur-

thermore, we deliver a security proof for XSYND, which shows that if there exist a distinguisher for

XSYND, there exist a solver that can solve a hard instance of the regular syndrome decoding. In the

last section of this chapter, we showed how to parallelize the XSYND in order to double the output

size and hence increase further its performance leading to a new construction, called PSYND. This

cipher outperforms all previous constructions. For instance, for 80 bit security, the PSYND with 128

bits key size runs at 9.43 cycles per byte, while the original proposal SYND only runs at 36 cycles

per bytes, both use the same parameter set. However, despite its security reduction to the RSD prob-

lem, its efficiency is unfortunately incomparable to that of the software-oriented candidates (profile

1) from the eSTREAM project. As future work, we suggest a hardware implementation of PSYND

to see whether the performance can be further improved and to make a comparison with profile 2 of

eSTREAM project.

48

Chapter 4
Code-based Hash Functions

This chapter investigates the design of hash functions based on the SD problem. We first start by

describing the Fast Syndrome Based hash [AFS05, FGS07, AFG+08] family (FSB) and recalling its

main features in Section 4.2. Then, we present in Section 4.3 our main contribution, which con-

sists in showing how to incorporate the ideas of FSB and the sponge construction due to Bertoni et

al. [BDPA07] to design a variant of FSB hash function, called Sponge-FSB (in short S-FSB). The

security of this variant is based on the same problems as FSB, and discussed in Subsection 4.3.2,

while the proposed parameters and our implementation results are given in Subsection 4.3.3. Finally,

we describe the RFSB hash function, which is another variant of FSB and provide the reported results

according to the available RFSB implementations.

4.1. Introduction

As defined in Chapter 2, a cryptographic hash function satisfying certain security properties, plays an

important role in many cryptographic applications such as digital signatures, pass-word protection and

pseudo-random number generation. Over last years, a long list of hash functions have been proposed

in the literature. Following cryptanalytical advances, most of them widely used in practice such as

SHA-1 [EJ01] have been found to be insecure [CR06, WYY05]. This has called into question the

long-term security of later algorithms that share a similar design like SHA-2 family [Nat08]. As a

reaction, National Institute of Standards and Technology (NIST) announced a publicly available con-

test, called SHA-3 (or the Advanced Hash Standard (AHS)), to develop new family of hash functions.

Initially, 64 candidates have been submitted following different design principles, and only 14 of the

competing designs were selected in the second round of the contest. One of the submissions that

did not pass to this round, was the Fast Syndrome-Based hash function , which we describe in the

subsequent section.

49

4. Code-based Hash Functions

4.2. Fast Syndrome Based Hash Family

4.2.1. Description of FSB hash familiy.

In 2003, Augot et al. [AFS03] introduced the Syndrome-Based hash family (in short SB), which

iterates a so called compression function according to Merkle-Damgård’s design principle [Mer89,

Dam89] (MD). The SB is the first hash function which uses binary random codes and has security

reduction to NP-complete problems from coding theory. At Mycrypt 2005, Augot et al. [AFS05]

proposed an improved variant of SB, called Fast Syndrome-Based hash family (in short FSB), in

terms of speed by introducing the so-called regular encoder that convert a bit string of certain length

into a regular word. In 2007, Finiasz et al. [FGS07] showed how to increase the FSB’s efficiency in

two ways: (1) adding a final compression transformation in order to obtain a desired hash length as

well as to achieve a security level equal to half the output length; (2) using quasi-cyclic codes instead

of purely random ones in order to get a short description for the hash function, allowing the underlying

matrix to be fit in the cache of a standard CPU, and thus considerably increasing the speed of FSB.

The FSB construction with these two modifications has been submitted to the SHA-3 competition, but

it did not pass the second round because of its performance. In what follows, we describe the SHA-3

FSB’s proposal [AFG+08].

The FSB hash function follows Merkle-Damgård’s construction [Mer89, Dam89] based on a com-

pression function F from coding theory, as shown in Figure 4.1. This function (geen-framed) com-

presses s input bits to ℓ bits (s > ℓ) and is defined by

F : Fs
2→ F

ℓ
2

x 7→ F (x) =M · (φ(x))⊤,

Where M is a quasi-cyclic matrix of size ℓ×n, composed of ℓ block matrices Mi of size ℓ× ℓ, i.e.

M=M1 ‖M2 ‖ · · · ‖Mℓ, and s = ω log2(n/ω). Furthermore, this compression is parameterized by a

number prime p such that 2 is a generator of Fp. This prime determines n
ℓ pre-defined vectors, each

having p bits. Each vector generates a block matrix M̂i of size p× p, which should be truncated to Mi.

The function x→ φ(x) is an encoding algorithm, which takes inputs of size s bits and returns regular

words of length n and weight ω according to Algorithm 4.

Algorithm 4 FSB’s regular encoder φ

Input : x a binary string of s bits with s = ω log2(n/ω)
Output : a regular word e = φ(x) of length n and weight ω.

e = (e1, · · · ,en)← 0n (initializing with n zeros)

j = (j1, · · · , jω)
Write x = z ‖ t with |z|= ℓ, |t|= s− ℓ

Split z = (z1|| · · · ||zω) with |zi|= ℓ
ω (0≤ zi ≤ 2

ℓ
ω −1)

Split t = (t1|| · · · ||t s−ℓ
ω
) with |ti|= s−ℓ

ω (0≤ ti ≤ 2
s−ℓ
ω −1)

for i = 0 to ω−1 do

j← i n
ω + zi + ti2

ℓ
ω

e j← 1

end for

50

4.2. Fast Syndrome Based Hash Family

Figure 4.1.: Fast Syndrome-Based Hash function without a final transformation.

The FSB’s hashing process is shown in Figure 4.1. The message m = (m1,m2, . . . ,mk) (with

padding) to hash is first splitten into blocks mi, each of size s− ℓ bits. Then the intermediate hash

value hi, for i = 1, · · · ,k, is computed as

hi =F (mi ‖ hi−1),

where hi−1 = IV is an ℓ-bit initial value. All IV ’s used in FSB are equal to 0ℓ. This process will con-

tinue until the compression function finishes processing the entire message to produce the last result

hk, called pre-final hash. To obtain the hash value of the message by FSB hash function, hk is then

fed through a second compression function G to produce the desired hash length. The main reason

for using such function is that the FSB’s compression F cannot achieve a ℓ
2 -bit (resp. ℓ-bit security)

against collision attack (resp. inversion attack).

For all versions of FSB, the Whirpool hashing algorithm [BR00] is used as a final compression func-

tion because of its nice properties. It possesses a high degree of non-linearity and behaves well even

its output is shortened to achieve a smaller size.

4.2.2. Theoretical security of FSB

As the FSB hash function follows the MD-design, its security is directly related to the security of

the underlying compression function F . More precisely, Merkle and Damgård showed that if the

compression function is collision resistant, then the iterated hash function is collision resistant as

well. As demonstrated in [AFG+08] that the FSB compression function F has the following security

reduction:

• Collision resistance. Finding a collision for F is at least as hard as finding a codeword of length

n and weight≤ 2ω, which means solving an instance of the 2-regular Null-Syndrome Decoding

problem.

• Preimage resistance. Inverting F is at least as hard as finding a codeword of length n and

weight ω, which means solving an instance of the the Regular Syndrome Decoding problem.

51

4. Code-based Hash Functions

• Second preimage resistance. Finding a second preimage for F is at least as hard as finding a

codeword of length n and weight ω in a code, having a parity check matrix of size (ℓ−ω)×
(n−ω).

4.2.3. Practical security of FSB

In practice, the FSB’s compression function F has to resist the following attacks: Information Set

Decoding algorithm [AFS05] (ISD), Generalized Birthday Attack (GBA) [Wag02, CJ04], and some

other cryptanalytic techniques [Saa07, FL08, KK06]. All parameter sets proposed for FSB were

selected so as to withstand all these attacks. As reported in [AFG+08], the security level provided by

a FSB version with output size k bits (denoted FSBk) against collision, inversion and second perimage

are respectively k
2 , k, and k− l, where l is the logarithm to the base 2 of the message length. Note that

in [AFS05], a detailed analysis of the complexities of a ISD and GBA algorithm is given.

4.2.4. Efficiency of FSB

Theoretically the speed of FSB hash function depends mainly on the speed of the compression func-

tion F , which can be estimated as the number of bitwise XOR-operations required in each iteration

to process one bit of the input. As shown in [AFS05], this number, we denote here N f sb, is a function

in (n, ℓ,ω), which is defined by

NFSB(n, ℓ,ω) =
ℓω

ω log2(
n
ω)− ℓ

Using differential calculus shows that the minimum of NFSB is always attained for ω0 = 2ln(ℓ),
independently of n . Its minimum is equal to ω

ln(n
ω)−1

. So, for fixed ω, large values of n will further

improve the performance of FSB, however this will augment the size of the matrix to be used, and

hence increase the number of cache misses, which immediately affects the speed of the FSB.

4.2.5. Parameters choice for FSB.

Parameters for FSB are selected according the following rules:

• Choose ℓ in order to get the desired hash length and the security level required.

• ℓ must be a multiple of 32 or 64 depending on the CPU architecture, in order to use the word-size

XORs.

• Choose n and ω such that

– n
ω a power of 2 (by construction) for reading an integer number of input bits at a time.

– the size ℓ×n is smaller for avoiding the cache misses.

– ω is close to ω0

Five FSB’s instances [AFG+08] have been proposed, namely FSBk where output size

k ∈ {160,224,256,384,512}. Their parameter sets are shown in Table 4.1 below.

52

4.3. The S-FSB Hash function

Instance n ℓ ω p s

FSB160 5 ·218 640 80 653 1120

FSB224 7 ·218 896 112 907 1568

FSB256 221 1024 128 1061 1792

FSB384 23 ·216 1472 184 1483 2392

FSB512 31 ·216 1984 248 1987 3224

Table 4.1.: Parameters for the five instances of FSB hash function, where s = ω log2(
n
ω) and p is the

smallest prime number such that p≥ ℓ and 2 is a generator of Fp.

4.3. The S-FSB Hash function

In this section we present our construction, which is an improved variant of FSB family in terms of

performance. We call it S-FSB hash family, which stands for Sponge Fast Syndrome Based hash

family. To do so, we will use the same notations as in the previous section and define four positive

integers n,ℓ, r and c such that the ratio n
ω is a power of 2, and ℓ= r+ c = ω log2(

n
ω).

4.3.1. Description of S-FSB

The main idea behind S-FSB is to use the sponge design principle [BDPA07] based on a one-to-one

transformation T rather than a compression function F (Figure) according to the MD-paradigm [Mer89,

Dam89] used in FSB. This transformation is similar to that of the SYND stream cipher, which we have

presented in Chapter 3. It is defined by

T : Fℓ
2→ F

ℓ
2 (4.1)

x 7→M · (φ(x))⊤. (4.2)

Where M is a random binary matrix of size ℓ×n and the mapping x→ φ(x) is a regular encoding

algorithm as in FSB. For plugging this transformation into the sponge construction, we take ℓ width,

r the rate, and c the capacity such that ℓ= r+ c.

As explained in 2.4.3 the message m to be hashed must be padded according to a sponge-compliant

padding rule such that the last block be non-zero and broken into blocks mi of r bits. That is, m =
(m1, · · · ,mk). Then the ℓ bits of the state are all zeros, i.e. IV = 0ℓ and the the sponge construction

proceeds in two steps:

• Absorbing step: this step is illustrated in Figure 4.2. Each message block mi is proceeded as

follows: Let si−1 be the ℓ-bit input of round i such that si−1 = s
(1)
i−1 ‖ s

(2)
i−1 with |s(1)i−1| = r and

|s(2)i−1|= c. The output si of round i is then computed as

si = T (s
(1)
i−1⊕mi,s

(2)
i−1) with s0 = IV = 0ℓ

When all input blocks are processed, the S-FSB construction switches to the squeezing step.

53

4. Code-based Hash Functions

• Squeezing step: in this step the internal state (si)i≥k should be first updated by

si+1 = T (si) with i≥ k

and then truncated to b (b≤ r) bits to produce the pre-final hash values hi. The final l-bit hash

value h of the message m is obtained as the concatenation of those hash values, i.e. h = h1 ‖
h2 ‖ · · · ‖ hd , where d is the number of output blocks, which is chosen at will by the user such

that l = db. In S-FSB, we take d = 2, and b = r = l.

Figure 4.3 explains how the squeezing step works.

Figure 4.2.: Absorbing step of S-FSB hash function.

As in FSB hash function, the performance of S-FSB depends directly on the number of the bitwise

XOR operations computed at each round to treat the r bits of one message block. That is, one needs

first r XORs for the bitwise addition and then ℓ XORs of ω columns of the matrix M. This result to

r+ ℓω binary XOR-operations. Since the number of bits of each message block is r, the number of

expected binary XORs (denoted by Nsfsb) in average for each message input bit is:

NS-FSB(ω,r,c) =
r+ ℓω

r
=

r+(r+ c)ω

r
= 1+ω(1+

c

r
), (4.3)

where ℓ= r+ c = ω log2(
n
ω).

This results to

NS-FSB(n,ω,r,c) = 1+
ω2 log2(

n
ω)

r
= 1+

ω2 log2(
n
ω)

r
(4.4)

This function depends on three main parameters ω, r, and c and is the main measure to estimate the

theoretical performance of S-FSB.

54

4.3. The S-FSB Hash function

Figure 4.3.: Squeezing step of S-FSB hash function.

4.3.2. Security Analysis

In this subsection, we analyze the security of the S-FSB hash function. We first show how the secu-

rity of S-FSB is reducible to the two variants of the syndrome decoding problems as in FSB. More

precisely, finding pre-images (resp. collisions) for S-FSB is related to the hardness of the regular

syndrome decoding pro (resp. 2-null-regular syndrome decoding) problem. Then we identify all best-

known attacks against the S-FSB hash function and estimate their minimal complexities.

Theoretical Security

For analyzing the theoretical security of S-FSB, we need to introduce the following definitions to

understand how generic attacks work against sponge-based hash functions. With generic attacks, we

mean attacks that do not exploit special properties of the underlying transformation.

In our analysis we will denote by [e]c and [e]r the inner and the outer state of an ℓ-bit state e, respec-

tively. That is, e = [e]r ‖ [e]c with ℓ= r+ c.

Definition 4.3.1 (Absorbing function). The absorbing function abs(·) of a sponge construction S ,

takes as input a padded message x of length multiple of r and returns the value of the state e obtained

after absorbing x, i.e. abs(x) = e.

Definition 4.3.2 (Path). Let abs(·) be the absorbing function. An input x is called path to the state e

if abs(x) = e.

Definition 4.3.3 (Squeezing function). The squeezing function sqz(·) of a sponge construction S ,

takes as input an ℓ-bit state e given at the beginning of the squeezing step and returns an l-bit string

the output truncated to l bits of S .

55

4. Code-based Hash Functions

In general, it is difficult to find an ℓ-bit state e that satisfies sqz(e) = z, when the length of z is large

enough.

Definition 4.3.4 (Output binding problem). Given a random string z. Output binding problem is to

find a state e such that sqz(e) = z.

In output binding the string z is not mandatory equal to the result of the squeezing of a state e

and hence the equation sqz(e) = z may admit no solution. The expected number of solutions of this

problem is 2ℓ−|z|. If ℓ < |z|, the probability to find a solution is roughly 2ℓ−|z|. On the other hand, if

the string z has been actually obtained by squeezing an state e, then we talk about the state recovery

problem, which reads as follows.

Definition 4.3.5 (State recovery problem). State recovery problem consists in finding a state e, given

a string z verifying sqz(e) = z.

Definition 4.3.6 (State collision). A state collision is a pair of two distinct paths x, x′ such that

abs(x) = abs(x′).

Definition 4.3.7 (Inner collision). Let x, x′ be to distinct paths with abs(x) = e, and abs(x′) = e′.
The pair (x,x′) is said to be an inner collision if ec = e′c.

Definition 4.3.8 (Output collision). Let S be a sponge construction. An output collision (or just

collision) for S is a pair of distinct paths x, x′ that have the same hash value under S , i.e. S(x) = S(x′).

The following proposition shows the relation between inner collision and state collisions.

Proposition 4.3.1. Let S be a sponge construction with absorbing function abs(·). The problem of

finding state collisions for S is equivalent to the problem of finding inner collisions for S .

Proof. First we show that a state collision implies an inner collision. Let x, x′ be a state collision.

Then, by definition we have abs(x) = abs(x′), which implies that [abs(x)]c = [abs(x′)]c, and hence

x, x′ is also an inner collision.

Conversely, assume the existence of inner collisions. That means, there exist two distinct paths z and

z′ with [abs(z)]c = [abs(z′)]c. In order to construct a state collision, we perform the following steps:

• Compute the r-bit parts of z and z′, i.e. [abs(z)]r and [abs(z′)]r,

• Find two r-bit strings y and y′ such that [abs(z)]r⊕ y = [abs(z′)]r⊕ y′.

• Set t = z ‖ y and t ′ = z′ ‖ y′.

By doing so, t and t ′ are distinct and form a state collision for S . Indeed, the states ([abs(z)]r⊕y) ‖
[abs(z)]c and ([abs(z′)]r⊕ y′) ‖ [abs(z′)]c are equal and hence lead to the same value under abs(·).
Furthermore, any pair of the form t ‖ t∗ and t ′ ‖ t∗, where t∗ is an arbitrary input block leads to an

output collision, independent of the hash length.

In order to analyze the security of S-FSB hash function, we first explain how the sponge con-

struction based on a random transformation can be generically cryptanalyzed. We then apply these

cryptanalysis techniques when replacing the random transformation by the code-based one, which is

56

4.3. The S-FSB Hash function

defined by equation 4.1. The most techniques described here are given in [BDPA11a].

Let S be a sponge construction with absorbing function abs(·), and squeezing function sqz(·). Let

F denote a random transformation and T be the function defined in S-FSB. For attacking the sponge

construction in general, the following strategies can be used to find (output) collisions, preimages, and

second preimages.

Output collisions. As proven in Proposition 4.3.1, the existence of inner collisions plays an impor-

tant role to build collisions in the hash value. Therefore, in order to end up with collision resistance in

the hash values, it is sufficient to prevent inner collisions. As shown in [BDPA11a], an inner collision

is clearly producible with workload min(2
c+3

2 ,2
l+3

2), when a random transformation f is used, where

l is the hash length. However, when looking for inner collisions in S-FSB based on T , the security is

equivalent to the security of an FSB variant mapping to c bits. More precisely, let Let (n,ω,r,c) be

the parameter sets for an S-FSB hash function scheme. Moreover, let n = nr +nc and ω = ωr +ωc be

the corresponding columns of H and weights of the input regular word belonging to the first r bits and

the last c bits, respectively, i.e. nr = (n · r)/s and ωr = (ω · r)/s. Thus, the workload to produce an

inner collision for S-FSB is exactly as an FSB with parameters (nr,c,ωr). In [AFG+08], it is shown

that finding a collision for the function T applied on FSB is at least as difficult as finding a word of

weight ≤ 2ω and vice versa. That meas, finding inner (and also output) collisions in S-FSB requires

solving an instance of the 2-Null Regular Syndrome Decoding problem with parameters (nr,c,ωr).
Moreover, we need to consider the entire mapping T : Fℓ

2 → F
ℓ
2 according to state collisions. Here,

we need to ensure that the instantiation of an 2-NRSD with parameters (n, ℓ,ω) is hard. To sum up,

S-FSB comes up with the following bound on the workload to produce a collision.

Proposition 4.3.2 (collision resistance). Let h be an S-FSB(n,w,r,c) hash function scheme instanti-

ated with parameters (n,ω,r,c) where n = nr +nc and ω = ωr +ωc. For any adversary A the lower

bound of the workload to output two distinct input messages x,x′ mapping to the same hash value is

min(RSD(nr,c,2ωr),RSD(n, ℓ,2ω)).

Proof. Let A be an adversary successfully returning two preimages x,x′ mapping to the same hash

value y of an S-FSB instance with parameter sets (n,ω,r,c). We show that given A we build an

adversary B either providing a collision in FSB with parameter sets (nr,c,ωr) or solving efficiently a

syndrome decoding problem SD(n,s,w). Due to the sponge construction, an inner collision suffices

to produce (multi) collisions. An inner collision implies solving a FSB instance with parameter sets

(nr,c,ωr). If A outputs efficiently a (outer) collision which consequently means an inner collision

as well, B simply returns both preimages as a collision for the FSB instance. The workload solving

FSB(nr,c,ωr) equals RSD(nr,c,2ωr), proven in [AFG+08].

If A strategy neglects inner collisions and approaches directly to find two distinct preimages to the

mapping T of S-FSB, similar to FSB, finding a collision in T for random binary matrix H equals the

2-RNSD problem, i.e. B returns x̄ = x+ x′ given by A as the solution of the 2-RNSD with parameter

(n,s,ω).

(Second) Preimages. Let l be the hash length. To find a preimage for S based on F , an attacker

A has the following two approaches to succeed. Firstly, A could bind the output h ∈ {0,1}l to a

state s ∈ {0,1}ℓ. Then, A inverts T (if possible) to reach a state t = F −1(s) = tr||tc. At that point,

57

4. Code-based Hash Functions

a possible path tpre = tpre,r||tpre,c ∈ {0,1}ℓ is required, which leads to the same capacity as t, i.e.

tpre,c = tc. Hence, A takes the path to tpre and let tpre,r⊕ tr) be absorbed by T . This results to a desired

preimage of output h. The overall workload amounts to the cost of inverting T plus 2c/2 + 2l−r. If

inverting T is impossible, the output is bound directly to state t. We require that the first r bits of T (t)
matches to the l bits of h. The workload of finding such a state U is of order 2l +2c−1.

Now, we analyze the security against preimage attacks when we replace the random function F by

T as this is the case in S-FSB. Since T is invertible (even if it is hard) both approaches described

above are realizable.

The first method needs to invert T or equivalently, solving an instance of the regular syndrome

decoding. Thus, the cost to find a preimage to mapping H costs RSD(n, ℓ,ω). Finding a path to

state tpre costs exactly as an inner collision. A more efficient way to produce a preimage is given by

the second approach. First, we find a state t ∈ {0,1}ℓ such that T (t) matches the l bits of output h.

Therefore, we require to solve an RSD instance with parameters (n, ℓ,ω) and end up with an expected

workload of the order RSD(n, ℓ,ω)+RSD(nr,c,ωr) whereas the latter term corresponds the workload

for finding a path to the desired state.

A second preimage x′ ∈ {0,1}ℓ to a given image y= T (x) is obtained either by pursuing the strategy

of finding a preimage as described above or by finding a second path to one of the inner states of

message x. In [BDPA07], it is shown that for a random function S the workload to output a second

preimage is of order 2c/|P| if |P|< 2c/2 where |P| denotes the bit length of a given preimage P. Note

that the expected workload is at least as large as outputting an inner collision since a second preimage

implies an inner collision.

When replacing the random function F by transformation T , finding a second path to one of the

inner states results in an expected workload of inverting an syndrome decoding instance with inputs

(nr,c,ωr) divided by the the path length |P|. To summarize, we obtain the following proposition

concerning the (second) preimage resistance of S-FSB.

Proposition 4.3.3 (Preimage Resistance). Let S-FSB(n,ω,r,c) be an S-FSB hash function scheme in-

stantiated with parameters (n,ω,r,c) with n = nr + nc and ω = ωr +ωc. For any adversary A the

expected workload to find a message x such that h = S-FSB(n,ω,r,c)(x) to a given h ∈ {0,1}l is of order

min(RSD(n, ℓ,ω)+RSD(nr,c,ωr),2
l +2c−1),

Proposition 4.3.4 (Second Preimage Resistance). Let S-FSB(n,ω,r,c) be a hash function scheme instan-

tiated with parameters (n,ω,r,c) with n = nr +nc and ω = ωr +ωc. For any adversary A the expected

workload find a message x′ with x 6= x′ to a given message x ∈ {0,1}m such that S-FSB(n,ω,r,c)(x) =

S-FSB(n,ω,r,c)(x
′) is of order min(RSD(nr,c,ωr),2

c/2)/|P|, where |P| denotes the bit length of a given

preimage P.

Practical Security

As shown previously, the security of S-FSB is related to the hardness of solving instances of two

problems: RSD and 2-NRSD problem. In practice, to assess this security regarding the collision and

(second) preimage resistance, we have to identify all known applicable attacks and to estimate the

minimal complexities required to execute these attacks. As far as we know, there exist two kind of

attacks: Information Set Decoding (ISD), Generalized Birthday Attack (GBA). The essential idea be-

hind these algorithms is explained in the previous Chapter.

58

4.3. The S-FSB Hash function

Information Set Decoding (ISD). Let Pr(n, ℓ,ω) be the probability that a given information set is

valid for one given solution of RSD. Let denote by Nr(n, ℓ,ω) the expected number of solution of

RSD. As stated in [AFS05], the probability P(n, ℓ,ω) can approximated by P(n, ℓ,ω) = Pr(n, ℓ,ω)×
Nr(n, ℓ,ω). Since there exist

(
n
ω

)ω
regular words, then the average number of solutions of RSD is

Nr(n, ℓ,ω) =

(
n
ω

)ω

2ℓ
.

In our setting, we have ℓ = ω log2(n/ω). This results in Nr(n, ℓ,ω) =
(n

ω)
ω

(n
ω)

ω = 1. That means, we

have only one solution to RSD, on average. Furthermore, as shown in [AFS05], the Pr(n, ℓ,ω) is given

by

Pr(n, ℓ,ω) =
(s

n

)ω
=

(
log2(n/ω)

n/ω

)ω

If we set log2(n/ω) = β, for some integers β, then the final probability of selecting a valid set to invert

RSD equals to:

P(n, ℓ,ω) = Pr(n, ℓ,ω)×Nr(n, ℓ,ω) =

(
β

2β

)ω

with β = log2(n/ω). (4.5)

To estimate the cost of finding collisions, we have to evaluate the complexity of solving the 2-RNSD

problem stated above. This can be done in the same way as in [AFS05]. We compute the number of

two-regulars words, then we multiply it by the probability of the validity, to get the total probability

of choosing a valid set. This probability, denoted by PI , is given by:

PI(n, ℓ,ω) =
(ω

n

)ω
[(

log2(n/ω)

2

)
+1

]ω

For simplicity, we can assume that β ≥ 2. So, we get an upper bound for this probability, denoted

by PC, which is equal to:

PC(n, ℓ,ω) =

(
β2

2β+1

)ω

with β = log2(n/ω). (4.6)

From the equation (4.6), we conclude that the probability for a random information set to be valid

in case of collisions search is larger by a factor (β
2)

ω compared to the probability for a random infor-

mation set to be valid in case of finding preimages, where β = log2(n/ω).

In practice, there exists a lower bound for information set decoding attacks, presented in [BTP11].

Moreover, a new variant of ISD algorithm [BLPS11a] was developed for estimating the hardness of

solving the 2-Regular Null Syndrome Decoding problem (2-RNSD). These algorithms run faster than

the lower bounds given in [FS09]. The parameters we propose in the next section are chosen to resist

all these attacks.

59

4. Code-based Hash Functions

Generalized Birthday Attack (GBA). As in Chapter 3, we use the the attack from Matthieu and

Sendrier [FS09], which relies on the Generalized Birthday Problem introduced by Wagner [Wag02],

whose idea is as follows.

For a given integer α, to find a set of indexes I = {1,2, · · · ,2α} verifying

⊕

i∈I

Hi = 0.

To find this set I , one has to compile 2α lists of 2
ℓ

α+1 elements containing distinct columns of the

matrix H of size ℓ×n. These lists are then pairwise combined to get 2α−1 lists of XORs of 2 columns

of H. In the resulting lists, only 2 columns starting with ℓ
α+1 zeros are kept, instead of all the possible

columns. Then, the new lists are pairwise merged to obtain 2α−2 lists of XORs of 4 columns of H.

Only 4 columns of H starting with 2 ℓ
α+1 zeros, are kept. This process will be continued, until only two

lists are left. These two lists will contain 2
ℓ

α+1 XORs of 2α−1 columns of H having (α−1) ℓ
α+1 zeros

at the beginning. After that, the standard birthday algorithm can be applied to get one solution. Since

all lists treated above, have the same size ℓ
α+1 , the complexity of GBA is at least in O

(
ℓ

α+1 2
ℓ

α+1)
)

.

As we can see in this algorithm, the number of XORed columns was a power of 2. However, this

does not hold in general because the weight w can be any number. So if w is not a power of 2, one

can modify the above algorithm such that one can back in the general case of GBA by imposing

the following condition on α: 1
2α

(
n

2ω
2α

)
≥ 2

ℓ−α
α (see [FS09] for more details). This condition can be

rewritten as:

(
2βω

2(1−α)ω

)
≥ 2βω+α(α−1) (4.7)

where log2(n/ω) = β. In this case, one gets a lower bound of the cost of solving an instance SD

problem with parameters (n, ℓ,ω) as follows:

(
ωβ

α
−1

)
2

ωβ
α −1. (4.8)

As we can see, for fixed weight ω, this complexity is an increasing function in n. So, to avoid the

GBA attack, we have to choose large n.

In [BLN+09] an implementation of GBA is presented against the compression function of FSB.

This implementation includes two techniques introduced in [Ber07] in order to mount GBA on com-

puters, which do not have enough storage capacity to hold all list entries. However, the complexity of

this attack is still exponential. Since our scheme is based on the FSB compression function, we claim

that our proposal is secure against this implementation.

Other possible attacks. In addition to the previous attacks, it was shown in [GLP08] that the

sponge-based hash functions can be attacked by slide attacks. This kind of attacks was introduced

in [BW99] by Biryukov et.al for cryptanalyzing iterative block ciphers. For attacking a sponge-like

construction, the self-similarity issue can be exploited, meaning that all the blank rounds behave

identically. As noted in [GLP08], a simple defense against slide attacks consists in adding nonzero

60

4.3. The S-FSB Hash function

constant just before running the blank rounds. This can be achieved by a convenient padding such

that the last block of the message is different from null vector. That is exactly, what we are used in

our construction. Therefore, our proposal is secure against slide attacks. In [Saa07], the so-called

linearization attack (LA) was proposed against FSB to find collisions. The key idea is to reduce the

problem of finding collisions to a linear algebra problem that can be solved in polynomial time, when

the ratio ℓ/ω is up to 2. Furthermore, as shown in [Saa07], this attack can still be applied if ℓ > ω. It

can be extended even to ℓ > 2ω with complexity O(ℓ3
(

3
4

)ℓ−2ω
). So, to avoid the LA attack, we have

to choose ℓ > 2ω.

4.3.3. Parameters Choice

When selecting parameters for S-FSB, we have to look for parameters providing the desired security

with least processing cost required to hash one bit of the message. As mentioned in Section 4.3, this

cost can be theoretically measured using the function Ns f sb defined by the following equation

NS−FSB(n,ω,r,c) = 1+
ω2 log2(n/ω)

r
= 1+

ωℓ

r
= 1+

ω(r+ c)

r
= 1+ω

(
1+

c

r

)
(4.9)

We observe that for increasing values of c, this function is an implicitly increasing quantity in ω

and n. So, if we want to have a good performance, then we have to choose small values of c (as

small as possible) and select w and n such that the value of r are large. But from security point of

view, we should choose ℓ greater than 2ω+1 to withstand the linearization attack mentioned earlier.

Furthermore, to avoid inner and outer collisions, the running time of solving instances of RSD and

2-RNSD with parameters (n, ℓ,ω) and (nr,c,ωr) according the best known collision attack, must be

larger than the desired security.

Starting from those conditions, we propose three parameter sets (n, ℓ,ω,c) that provide different

security levels. Those sets of parameters are presented in Table 4.2 together with the corresponding

numbers of XORs and the complexities of the ISD and GBA attacks.

Preimage Collision

Hash size l n ℓ ω c NS−FSB GBA ISD GBA ISD

160 3 ·219 384 24 240 64.0 2130 299 286 291

224 17 ·217 544 34 336 88.9 2150 2144 2114 2122

256 39 ·217 624 39 296 90.5 2246 2172 2129 2148

Table 4.2.: Proposed parameters for S-FSB

4.3.4. Performance and Comparison

S-FSB has been implemented on a 2.53 GHz Pentium Core2 Duo, running Linux (Ubuntu 10.04) 32

Bit with 6MB of cache and 4GB of RAM. The C compiler is GCC, version 4.4.3 with -O3 optimiza-

tion. The performance of the three versions of S-FSB is reported in Table 4.3. This performance was

measured on a message of size 1 GB. The file hash time in the third row was measured by repeated

61

4. Code-based Hash Functions

calls to the clock() function to get the current millisecond clock value and subtracted the stop time

from the start time. The number of samples we performed is about one million. To get the speed ex-

pressed in cycles per bytes, we multiplied the measured hash time by the CPU frequency and divided

the result by the file size in bytes. The C-code of S-FSB can be found in [Cay11].

In order to compare our results with those of FSB SHA-3 proposal [INR07], we ran the C-code

of FSB on the same desktop and we obtained the results presented in Table 4.5. As we can see, the

S-FSB is more efficient than FSB by a factor of 1.44 (30%). Furthermore, we have small storage

capacity comparable to FSB. We leverage quasi-cyclic codes in our implementation. Despite these

improvements, the S-FSB hash family remains slower than the existing hash functions like the SHA-2

family.

Hash size (bits) File size (MB) File hash time (s) Speed (cpb)

160 1000 66.90 160

224 1000 84.48 201

256 1000 75.63 183

Table 4.3.: Performance of S-FSB in [Cay11] .

Hash size (bits) File size (MB) File hash time (s) Speed (cpb)

160 1000 87.76 212

224 1000 102.99 248

256 1000 109.38 264

Table 4.4.: Performance of FSB SHA-3 proposal in [INR07].

It is worth mentioning that in [CSM] optimized implementations of FSB and S-FSB are proposed

and available on [San12]. Using the same parameters and for the same hash size as above, their

implementation results are listed below.

Hash size (bits) Speed of FSB (cpb) Speed of S-FSB(cpb)

160 110 79

224 131 99

256 204 172

Table 4.5.: Performance of FSB and S-FSB in [CSM].

62

4.4. The RFSB Hash Function

4.4. The RFSB Hash Function

In this section, we describe the RFSB hash function [BLPS11b] (Really Fast Syndrome Based hash

function), which is a further enhanced variant of FSB in terms of efficiency.

4.4.1. Description of the RFSB hash function

RFSB [BLPS11b] was also proposed in 2011 and slightly changes the way the quasi-cyclic matrices

are handled. The shift is made during the sum up, depending only on the rank in this sum. It also takes

advantage of hardware considerations to improve the efficiency a lot. RFSB selects the xored columns

in a simpler way, which alleviate the matrix a lot. Theses columns are then shifted and properly xored.

This approach was chosen to simplify the implementations as mush as possible. Like FSB, the RFSB

follows also the MD-design and its compression function G takes s-bit inputs and returns ℓ bit strings,

where s = ωb > ℓ for some positive integer b verifying n = ω2b. Formally, the function G is described

as follows. Let x = (x1,x2, · · · ,xω) be an s-bit input of G, where each xi of length b bits, which is

represented by an integer yi between 0 and 2b− 1. Let H be a matrix of size ℓ× n. As n = ω2b, H

contains ω block matrices, each of size ℓ× 2b. That is, H = H1 ‖ H2 ‖ · · · ‖ Hω. According to the

MD-construction, x is composed of a (s− ℓ)-bit message block and the current state of size ℓ. The

next state G(x) is computed by:

G(x) = h
(y1)
1 ⊕h

(y2)
2 ⊕·· ·⊕h

(yω)
ω .

Where h
(y j)
j is a certain column of H j, for j = 1, · · · ,ω. Figure 4.4 shows how G(x) is calculated.

A detailed RFSB hash algorithm can be found in [MAC11, Algorithm 5].

Figure 4.4.: Compression function of RFSB hash function.

The specifications of RFSB in [BLPS11b] only take into account one set of parameters, which is

intended to use the hardware registers at their best. This set is (n, ℓ,ω) = (28672,509,112).

4.4.2. Security of RFSB

In [BLPS11b], a detailed security analysis of RFSB is done showing that it is secure against all the

best attacks like ISD and GBA algorithms. RFSB is designed to provide 128-bit security. From a

theoretical point of view, it is straightforward to prove that the security of RFSB is related to the

hardness of solving instances of RSD and 2-NRSD problems.

63

4. Code-based Hash Functions

4.4.3. Performance of RFSB

In [BLPS11b] the authors report an implementation of RFSB with ℓ= 509 (noted by RFSB-509) that

outperforms SHA-256 on Intel Core 2 Quad Q9550 CPUs at 13.62 versus 15.26 cycles/byte. The

latest measurements available on eBASH project∗ show that RFSB-509 runs even at 10.64 cycles/byte

while SHA-256 remains at 15.31 cycles/byte on the same platform. Furthermore, [RWMC11] presents

a software implementation for RFSB with ℓ ∈ {227,379,509,1019} and provides performance mea-

surements for all four instances. However, the speeds in [RWMC11] are not close to the speeds

reported in the original RFSB paper (e.g., the speed of RFSB-509 is 120.5 cycles/byte on an Intel i7

CPU). In addition, the authors in [CSM] suggest a implementation for RFSB-509 and reports a speed

only of 17.26 cycles/byte. Table 4.6 gives speed information about RFSB variants according to the

available implementations.

Variant Speed (cycles/byte) Speed (cycles/byte) Speed (cycles/byte)

in [RWMC11] in [CSM] in [BLPS11b]

RFSB-227 42.4 - -

RFSB-379 62.8 - -

RFSB-509 120.5 17.26 13.62

RFSB-1019 152.8 - -

Table 4.6.: Performance of RFSB.

4.5. Conclusion and Open Problems

We have shown how to construct a provably secure variant of the FSB hash family following the

sponge construction. Although its speed is better than the original FSB hash function and its security

is reducible to the hardness of solving to NP-complete problems, it suffers from some drawbacks. It

remains far slower than SHA-1 family, because it possesses a long initialization step for generating the

underlying matrix. Furthermore, its description is large (this is also the case for FSB), since it require

big matrices generated from about two millions bits of the digits of π. A simple way to reduce the

size of these matrices is to introduce a constant weight encoder, which requires only small parameters.

However, weight encoders run slower than regular ones. They will slow down the computation too

much, and hence worsen the performance as well as the security of the hash function. Hence, an

efficient construction of such a encoder would be an asset but remains an open problem. Another

useful trick to increase the speed of the hash function is to renounce the underlying encoder and

use another technique to perform the matrix-vector multiplication without any encoding algorithm as

introduced in RFSB.

∗http://bench.cr.yp.to/ebash.html

64

Chapter 5
Parameters Selection for the McEliece-like

Cryptosystems

5.1. Motivation

Public key encryption plays a vital role in securing sensitive data in practical applications. When

public key cryptosystems are used in such applications appropriate key sizes must be selected. For

number-theory-based systems such as RSA, and EC-ElGamal, Lenstra and Verheul proposed a frame-

work on how to select appropriate keys that provide security until a given year. In code-based cryp-

tography, as far we know, this is still an open problem. In this chapter we address this issue and show

how to select optimal parameters for the McEliece cryptosystem that provide security until a given

year and give detailed recommendations. This is our main contribution, which has been appeared

in [NMBB12].

5.2. Our Security Model

In this section we introduce the security model we use. This model is obtained by adapting the

Lenstra-Verheul framework based on Moores Law and is essentially made up of three parts. First we

begin by analyzing the McEliece cryptosystem from security point of view. Then we explain how the

Lenstra-Verheul model works and finally we give a sensitive analysis, which quantifies the robustness

of our model, and it allows users to apply our results even if they have different assumptions about the

correct values.

Security of the McEliece cryptosystem

For attacking the McEliece cryptosystem, there exist to families of algorithms. The structural and

decoding attacks. The former aim at recovering the private key from the public key. [EOS06] gives a

detailed overview of these attacks. The latter attempts to derive the plainttext from a given cipertext,

and is based on Information Set Decoding (ISD) technique. It seems to outperform all other tech-

niques in terms of complexity. Therefore, our security analysis will based on the complexity of this

65

5. Parameters Selection for the McEliece-like Cryptosystems

kind of attack.

Many ISD algorithms have been developed and proposed in the literature. The most important of

these are presented in Table 5.2, together with their respective complexity to decode a (1024,524,50)
Goppa code (these are the original McEliece parameters).

Binary logarithm

Year Algorithm of complexity

1986 Adams-Mejier [AM89] 80.7

1988 Lee-Brickell [LB88] 70.89

1989 Stern [Ste89] 66.21

1994 Canteaut-Chabanne [CC94] 65.5

1998 Canteaut-Chabaud [CC98] 64.1

2008 Bernstein-Lange-Peters [BTP08] 60.4

2009 Finiasz-Sendrier [FS09] 59.9

Table 5.1.: Complexity of ISD algorithms against (1024,524,50) McEliece cryptosystem

For estimating the security level, denoted by S(n,k, t), against a given (n,k, t) Goppa code, we use

the lower bounds of ISD algorithms proposed in the paper [NCBBb] (extended version of [NCBBa]),

which is based on the lower bounds in [FS09] and the idea of [BLP11].

Remark 5.2.1. In [FGO+10] a distinguisher against binary Goppa codes of high rate has been

proposed. This distinguisher uses the algebraic techniques introduced in [FOPT10] and works only

under certain requirements on the parameters. The parameters we propose, however, do not satisfy

these constraints, and are therefore secure against the techniques in [FGO+10].

Remark 5.2.2. In [JJ02] a further ISD algorithm has been published, which attempts to solve only

one SD instance out of many. However no asymptotic analysis of the advantage of this algorithm is

provided when attacking multiple targets instead of 1. Against the (1024,524,50) McEliece cryptosys-

tem with a single ciphertext, this algorithm requires at least 268.1 binary operations.

Lenstra-Verheul model

In [LV01] Lenstra and Verheul (LV) proposed a mathematical model providing key length recom-

mendations for public-key cryptosystems based on integer factorization (IF), discrete logarithm (DL),

and elliptic curve DL. This is the first important work that uses a mathematical approach for the de-

termination of secure key sizes based on concrete parameters. After the introduction of this model,

several papers made use of it to find appropriate key lengths for cryptographic primitives (see, for

example, [MQSW01], and [Sze08]). Furthermore, many companies have used this model to esti-

mate the accepted key length for their cryptographic applications. For instance, in 2004, McAfee,

the computer security company applied the LV-model to find the minimal key size for SSL connec-

tions [Ara04]. Another interesting organization is the BlueKrypt company which hosts the website

www.keylength.com. This site has an implementation of the LV-model and summarizes reports from

well-known organizations allowing the evaluation of the minimum security requirements for some

symmetric and asymmetric systems in the future. The LV-model is explained in more detail below.

66

www.keylength.com

5.2. Our Security Model

The LV-model is based on a number of assumptions that combine the impact of cryptanalytic

progress and the effect of changes in computing environment. The key points of this model on which

the choice of parameters depends are the following:

1. Security margin: It is the year s which is used to “anchor” the extrapolation. In [LV01]

the default value of s is 1982 which represents the last year for which it is assumed that a 56-bit

key DES cryptosystem provides adequate security for commercial use. The computational ef-

fort for breaking the 56-bit DES system was estimated to be 5 ·105 MIPS-years.

In order to estimate the security level provided at a given year, Lenstra and Verheul define a

function IMY(y). This abbreviation stands for “Infeasible number of MIPS-years∗ for year y”,

and it refers to the minimum computational effort that is expected to be infeasible to do in

year y.

In general, we define IMY(y) in such a way that a successful attack using tens of thousands of

year-y CPUs requires more than 100 years to finish. The number of CPUs is a rough estimate

for the effort a security agency might put into an attack. The number of years is derived from

the fact that US law used to require some national secrets to be protected for 75 years†.

2. Computing environment: This estimates the changes in computational power available

to attackers. This estimation is based on a slight variation of Moore’s law by introducing three

variables a, b, and c that specify the changes in hardware speed, IT budget, and price over time.

The definitions of these variables and their default values are as follows:

• a is the expected average number of months in which processor speed and memory size

increase by a factor of two. The default value is a = 18, which is the value specified by

Moore’s law and is so far in line with current hardware developments. In this paper we are

going to use the same value due to the fact that over the last years, hardware development

has resulted in a doubling of transistors (for a fixed price) every 12–24 months‡. Thus,

a default of 18 is a compromise of this historic data. Also, opinions differ in whether

hardware development will slow down or new technologies will further accelerate it;

• c ∈ {0,1} indicates how to interpret the variable a. For c = 0, the amount of computing

power and memory which is available to an attacker doubles every a months, while for

c = 1, the computing power and RAM for a given price double every a months. We will

use c = 1 since the historic trend mentioned above refers to a fixed price.

• b is defined as the average number of months it takes for IT budgets to double. According

to historic data§, the US Gross National Product has doubled approx. every 10.5 years

over the last 30 years. Since the exact growth varies every year, we will use an average

value to extrapolate over a larger period of time. Our default setting for b is 120.

3. Cryptanalysis: This refers to the expected cryptanalytic progress. It is measured by the

number of months r it is expected for cryptanalytic attacks to become twice as effective. We

estimate this number by attacks against code-based cryptosystems only, since the cryptanalytic

∗MIPS = million instructions per second
†For example, the report on the Kennedy assassination; see http://en.wikipedia.org/wiki/John_F._Kennedy_

assassination
‡See http://wi-fizzle.com/compsci/
§See http://www.bea.gov

67

http://en.wikipedia.org/wiki/John_F._Kennedy_assassination
http://en.wikipedia.org/wiki/John_F._Kennedy_assassination

5. Parameters Selection for the McEliece-like Cryptosystems

development can be very different for other cryptosystems. Lenstra and Verheul’s default value

is r = 18. In code-based cryptography, we find it reasonable to assume that the pace of future

cryptanalytic developments and their impact will be relatively close to what we have seen from

1988 until 2009. By applying a linear regression on data points listed in Table 5.2, we get a line

whose slope roughly equals −0.41 meaning that a twofold attack efficiency improvement will

happen in each 1/0.41≈ 2.44 years. Also the value of r is r = 2.44 ·12≈ 29.27. In this paper,

we take r = 30, which corresponds to 2.5 years.

Based on these points, Lenstra and Verheul give a formula allowing to determine lower bounds

for the algorithmic complexity that offer a specified security margin at least until year y in the future

(independent of the concrete asymmetric cryptosystem). To do this, they show how IMY(y) is esti-

mated from the points above. Given that breaking the DES system takes 5 · 105 MIPS-years, which

was infeasible in the year s = 1982, the function IMY(y) is defined by:

IMY(y) = 5 ·105 ·212(y−s)/a ·212c(y−s)/b MIPS-years. (5.1)

With our default settings, it follows that in year y a computational complexity of

IMY(y) = 5 ·105 ·2 23
30 (y−1982) MIPS-years (5.2)

provides an acceptable level of security. The next step is to convert this lower bound expressed in

MIPS-years to a lower bound for the number of binary operations. In order to do that, we use as

a data point the result [BTP08] that approximately 260.4 binary operations are needed to break the

original McEliece with parameters (1024,524,50); expecting cryptanalytic developments by a factor

212(y−2008)/r (with r = 30), we claim that a sufficient condition for security level, denoted by S(n,k, t),
of a McEliece instance with parameter set (n,k, t) providing an adequate security until a given year y

is the following:

S(n,k, t)≥ IMY(y) ·212(y−2008)/30 ·260.4

1.7 ·105
. (5.3)

As in [LV01, Page 9], S(n,k, t) is defined as the expected runtime of the fastest algorithm pub-

lished today for attacking the McEliece cryptosystem with the parameter set (n,k, t). In our case, this

corresponds to the lower bounds presented in [NCBBa, NCBBb]. The value 1.7 · 105 is expressed

in MIPS-years and obtained from the fact that the attack by Bernstein et al. [BTP08] required 1400

CPU days on Q6600 quad processors. Assuming that a Q6600 processor [BTP08] does approximately

44,000 MIPS (SiSoft Sandra benchmark and [AJ07]), this corresponds to 1.7 ·105 MIPS-years.

Therefore, the inequality (5.3) becomes:

S(n,k, t)≥ 2.9412 ·2 23
30 (y−1982)+ 12

30 (y−2008)+60.4 (5.4)

Analysis and discussion

In this subsection, we provide a sensitivity analysis for the values we explained in the previous sub-

section. More specifically, we estimate and discuss the impact that a different value of each variable

has on the resulting security level.

68

5.2. Our Security Model

Security margin 1982 and DES-56 bit

The function IMY(y) was “anchored” by defining 1982 as the last year in which breaking the DES

scheme with 56-bit key was considered infeasible. The choice to use DES with 56-bit for this defini-

tion is arbitrary; the function, therefore, is defined using the number of operations required to break

the DES scheme, and it is thus independent of which cryptosystem was used for the definition.

Any other year and/or cryptosystem can be used for the definition, e.g. AES or RSA. Using the

data from the 2008 attack by Bernstein et al. [BTP08] that a 44,000 MIPS CPU breaks the origi-

nal McEliece parameters in 1400 CPU-days, the attack complexity estimated as 260 operations cor-

responds to 217.3 MIPS years. An attack complexity of 280 operations, which was considered the

“smallest general-purpose level” of security¶ in 2008, corresponds to 237.3 MIPS-years, very close to

our estimate of IMY (2008) = 238.8.

Moore’s Law (parameters a and c)

The original Moore’s Law refers to the number of transistors on an integrated circuit [Moo98]. Moore

estimated this number to double every two years‖. The number of MIPS of a CPU depends on the

number of transistors, but also on the clock speed. These two factors taken together increase the chip

performance by a factor of two every 18 months [Hou] (estimated by David House, an Intel executive).

For our sensitivity analysis, we will consider a 10% error in this estimate, i.e. a range between 16 and

20 months for a twofold performance increase. The value c = 1 is in line with past developments, but

we will show the impact of c = 0 below.

Budget (parameter b)

Our choice for the value of b is based on the budget development of the US, since it constitutes the

largest economic power worldwide. However, countries like China have a much higher economic

growth; some analysts expect China to overtake the US in the near future, doubling the US economic

power in 2030∗∗. This growth corresponds to a twicefold increase in economic power in 6 years.

Even though GDP of China is smaller than that of the US (about 40% in 2010) and the faster growth

is therefore on a smaller baseline, we will assume a range of 72–120 for the value of b.

Cryptanalytic progress (parameter r)

For more than two decades, cryptanalytic progress has improved the efficiency of the fastest attack

algorithm by a factor of two every 30 months. While every individual attack algorithm has a lower

bound for its complexity (see, for example, [BTP08, FS09, NCBBa]), many new attacks have been

developed which improved the previous bounds. As in the case of Moore’s Law, it is unclear whether

generic attack algorithms have a lower bound for their complexity that cannot be improved, thereby

slowing down cryptanalytic progress, or whether new cryptanalytic tools will increase the progress.

We will therefore consider a larger range for r, from 20 to 40 months.

¶www.keylength.com, ECRYPT II recommendations
‖See http://www.intel.com/technology/mooreslaw/ or http://en.wikipedia.org/wiki/Moore’s_law
∗∗J. Lin, World Bank’s chief economist, on March 23rd, 2011

69

http://www.intel.com/technology/mooreslaw/
http://en.wikipedia.org/wiki/Moore's_law

5. Parameters Selection for the McEliece-like Cryptosystems

Our Expected Impact

Parameter value range Absolute Percent

a 18 16–20 5.7 4.3%

b 120 72–120 4.5 3.5%

c 1 0/1 6.8 5.2%

r 30 20–40 8.4 6.4%

Table 5.2.: Impact of different input values to our model. Impact is the absolute and percent change

in the required security level for the year 2050. For example, ranging parameter a from 16

to 20 changes the security level between 126.4 and 136.7 bit, an absolute change of 5.7 bit

and a relative change of 4.3.

It can be seen from Table 5.2 that even very pessimistic assumptions (from an user’s point of

view) do not lead to dramatic changes in the required security level. For example, assuming the most

pessimistic value for all four parameters above raises the required security until at least 2050 from 131

to 149 bit, an increase of 18.6 bits or 14.2%. Table 5.4 (page 75) applies the optimistic and pessimistic

assumptions described above and shows optimal parameters for selected years.

5.3. Parameters selection

Our methodology

The problem of estimating secure parameters for the McEliece cryptosystem for security until at least

a given year consists in obtaining, for the security level S calculated in (5.3), a set of parameters that

achieves this security level and provides the smallest key size among all other such sets. To solve this

problem, we use the following methodology:

1. Based on simplified theoretical arguments we show that there exists an optimal information rate

R∗ = k/n with R∗ ≈ 0.8 such that for a given key size the maximum of security is achieved at

this rate.

2. We show how an instance attaining maximum security for a given key size can be used to solve

the problem of finding the optimal key size for a given security level.

3. We present an algorithm that we use to find optimal instances that have a rate of ≈ 0.74, corre-

sponding to the arguments from 1.

As pointed out in [Sen02], the complexity of the ISD-algorithms is roughly estimated by

C(n,R) = p(n)2−t(n,R) log2(1−R), (5.5)

where p(n) is some polynomial in n and t(n,R) the error-correcting capability. For the classical ISD

the degree of p is 3 and it gets lower for improvements. In the case of a t-error correcting Goppa code

of length n and dimension k = n− t⌈log2 n⌉, the above formula becomes

CG(n,R) = p(n)2(c(R)n/ log2 n)(1+o(1)), (5.6)

where c(R) = −(1−R) log2(1−R) is the complexity coefficient. In [Sen02] it is also mentioned

that, neglecting p(n) and concentrating only on the exponential part, the following can be shown: for

70

5.3. Parameters selection

a given code length n, the highest complexity is achieved at an information rate of 1− e−1 ≈ 0.63.

Although we will compute our table using the lower bounds from [FS09], we would first like to

provide some theoretical evidence that the optimal rate exists also for the problem of the smallest

key size. Considering that the numerous improvements of the ISD enhance only the polynomial part

significantly, the reasoning appears to be sound. In the following lemma we simplify CG(n,R) to

CG(n,R) = 2(c(R)n/ log2 n)(1+o(1)), (5.7)

similarly to [Sen02].

Lemma 5.3.1. Given the key size K, the maximum complexity of an ISD-like algorithm as per (5.7) is

achieved at an information rate R∗ ≈ 0.8.

Proof. First, from the formula K =R(1−R)n2 we have that n=
√

K/(R(1−R)). Now if we substitute

this expression in (5.7) we obtain

CG(K,R) = 2

(
cK(R)

√
K/ log2

√
K

R(1−R)

)
(1+o(1))

,

where cK(R) = − log2(1−R)
√

1−R
R

. So in order to maximize CG(K,R) for a given K we need to

maximize the term cK(R)
√

K/ log2

√
K

R(1−R) for K. Fixing K and taking a derivative we have the

following equation for obtaining the point of maximum:

c′K(R)
Ks

log2
Ks√

(1−R)R

+cK(R)
Ks(1−2R) ln2

2R(1−R) log2
2

Ks√
(1−R)R

= 0,

where Ks =
√

K. This simplifies to

c′K(R)+ cK(R)
(1−2R) ln2

2R(1−R) log2
Ks√

(1−R)R

= 0. (5.8)

Consider now the equation

c′K(R) = 0. (5.9)

The solution of this equation is a root of the equation

ln(1−R)

R
=−2

and numerically this root is R∗ ≈ 0.8. This shows that the function cK(R) is bounded: 0 < cK(R) <
cK(R

∗). Now considering that for K, and thus for Ks, large enough the second summand of (5.8) is

negligible, we are left with the equation (5.9). The root of this equation is R∗.

Now let us show that having the fact that the maximum complexity for the given key size is attained

at some R∗, the minimum key size for the given security level is achieved for a code with the same

rate R∗.

71

5. Parameters Selection for the McEliece-like Cryptosystems

Proposition 5.3.1. Let the security level S∗ be given. Let C(K,R) be the complexity of a decoding

algorithm A for a code with the key size K and rate R. We impose the following formal assumptions

on C(K,R):

(a) C(K,R) is continuous on]0,∞[×[0,1].
(b) C is unbounded in K for all R:

∀R ∈]0,1[: C(K,R)→ ∞,K→ ∞.

(c) C is increasing in K:

∀K2 > K1 > 0 ∀R ∈]0,1[: C(K1,R)<C(K2,R).

Further, assume that for given K the maximum complexity of A is achieved at R∗:

(d) ∀K > 0 ∀R 6= R∗ : C∗(K) :=C(K,R∗)>C(K,R).

Then the McEliece cryptosystem that satisfies the security level S∗ w.r.t A with the smallest possible

key size has an underlying Goppa code of rate R∗.

Proof. Due to (a) the function C∗(K) is continuous and due to (c) is strictly increasing. Now because

of (b) there exists a solution to C∗(K) = S∗. And because of the above mentioned properties of C∗ this

solution is unique: C∗(K∗) = S∗. Finally, the claim of the proposition follows from S∗ =C(K∗,R∗)>
C(K∗,R) ∀R 6= R∗.

Remark 5.3.1. Conditions (a)–(c) are natural for any complexity function of a decoding algorithm.

The property (d) is true at least for ISD-like algorithms as we have seen in Lemma 5.3.1.

So now we may expect the following to happen in our table. Although we use more advanced

lower bounds from [FS09] we still expect that for given K the maximum security will be achieved at

some R∗, the same for all K. As we have mentioned, this is due to the fact that the improvements of

the ISD algorithm do not seem to improve much on the exponential part. Moreover, because of the

same reason we expect this R∗ not to differ significantly from the value 0.8 predicted by Lemma 5.3.1.

Having this, we then use Proposition 5.3.1 to construct an algorithm that with arbitrary precision finds

an instance with the smallest key possible that achieves the given security level S. This algorithm is

depicted below (see Algorithm 5). In this algorithm, the value of S is calculated via the inequality

(5.4), the interval [Rstart ,Rend] is chosen large enough and contains 0.8: we take an information rate

which ranges from Rstart = 0.6 to Rend = 0.85. All other parameters are chosen so that it is feasible

to complete the algorithm in a reasonable time. For the key size, we set Kup = 200 kB as an upper

bound and use the step size Kstep = 1 kB. Moreover, we use the lower bound formula from [FS09] as

a function C.

Proposed Parameters

Our results are presented in Table 5.3 which shows the following information:

• Year: the year until which data security is required. Historic data is given mainly to allow

comparison with other sources.

• Symmetric key size: the symmetric key size required to ensure data security, calculated in

accordance with Lenstra and Verheul’s approach.

72

5.4. Conclusion and Open Problems

Algorithm 5 Search(S,C,Kstep,Kup,Rstep,Rstart ,Rend)

Input:

- Security level S

- Complexity function C(n,R) satisfying (a)− (d) of Proposition 5.3.1

- Step for the key size search Kstep

- Search upper bound for the key size Kup

- Step for the rate search Rstep

- Rate search interval bounds Rstart ,Rend

Output: nout and Rout such that

- The key size is the smallest possible up to steps Kstep and Rstep

for K = Kstep to Kup do

for R = Rstart to Rend do

n←
√

K
R(1−R)

if C(n,R)≥ S then

return n and R

end if

R← R+Rstep

end for

end for

• Lower bound for log2(S(n,k, t)): the log2 of the minimum number of binary operations (re-

quired to break a McEliece cryptosystem) that are expected still to be infeasible in the respective

year.

• The last two columns are a translation of the required symmetric key size into parameters rele-

vant in practice, i.e. the number of MIPS years that render a cryptosystem infeasible to break,

and the corresponding number of years on a modern Quad core CPU.

5.4. Conclusion and Open Problems

In this work we have addressed the problem of selecting optimal parameters for the McEliece cryp-

tosystem based on binary Goppa codes. This problem was to find instances of the McEliece cryptosys-

tem that are expected to remain secure at least until a given year and providing the smallest key sizes.

The computations were modelled using the Lenstra-Verheul framework which is based on Moore’s

Law and other assumptions about future developments. For this problem, we have presented detailed

parameter recommendations. This allows (potential) users of the McEliece cryptosystem to optimize

the parameter choice, thereby improving the applicability of code-based cryptography. We have also

shown the fact that all such optimal instances have information rate close to 0.74.

As a next step, we suggest a comprehensive analysis of concrete application scenarios. As we have

illustrated above, in these scenarios constraints, as well as the trade-offs between the code properties,

strongly depend on the details of the application, e.g. available bandwidth, acceptable response times,

or (typical) message size. This analysis would provide further insights into the current strengths and

limitations of code-based cryptography, thereby also suggesting new research focuses for the future.

73

5. Parameters Selection for the McEliece-like Cryptosystems

Table 5.3.: Proposed parameters for the McEliece cryptosystem – optimized for public key size

Sym- Lower McEliece para- Corresponding

metric bound for meters (n,k, t) and IMY(y) number of

Year Key Size log2 S(n,k, t) public key size (kB) (MIPS-years) yearsa

2011 79 85 (1652, 1203, 42) 66 2.47 ·1012 5.61 ·107

2012 80 87 (1687, 1226, 43) 69 4.19 ·1012 9.52 ·107

2013 80 88 (1702, 1219, 45) 72 7.14 ·1012 1.62 ·108

2014 81 89 (1770, 1306, 43) 74 1.21 ·1013 2.75 ·108

2015 82 90 (1823, 1368, 42) 76 2.07 ·1013 4.70 ·108

2016 83 91 (1833, 1356, 44) 79 3.51 ·1013 7.98 ·108

2017 83 92 (1845, 1356, 45) 81 5.98 ·1013 1.36 ·109

2018 84 93 (1877, 1387, 45) 83 1.02 ·1014 2.32 ·109

2019 85 95 (1951, 1481, 43) 85 1.73 ·1014 3.93 ·109

2020 86 96 (1955, 1463, 45) 88 2.94 ·1014 6.68 ·109

2021 86 97 (1983, 1479, 46) 91 5.01 ·1014 1.14 ·1010

2022 87 98 (2013, 1508, 46) 93 8.52 ·1014 1.94 ·1010

2023 88 99 (2018, 1491, 48) 96 1.45 ·1015 3.30 ·1010

2024 89 101 (2104, 1596, 46) 99 2.47 ·1015 5.61 ·1010

2025 89 102 (2106, 1576, 48) 102 4.20 ·1015 9.55 ·1010

2026 90 103 (2135, 1604, 48) 104 7.14 ·1015 1.62 ·1011

2027 91 104 (2157, 1614, 49) 107 1.21 ·1016 2.75 ·1011

2028 92 105 (2198, 1654, 49) 110 2.07 ·1016 4.70 ·1011

2029 93 106 (2220, 1664, 50) 113 3.52 ·1016 8.00 ·1011

2030 93 108 (2241, 1673, 51) 116 5.98 ·1016 1.36 ·1012

2032 95 110 (2344, 1784, 50) 122 1.73 ·1017 3.93 ·1012

2034 96 112 (2440, 1877, 50) 129 5.01 ·1017 1.14 ·1013

2036 98 115 (2496, 1920, 51) 135 1.45 ·1018 3.30 ·1013

2038 99 117 (2440, 1776, 59) 144 4.20 ·1018 9.55 ·1013

2040 101 119 (2521, 1854, 59) 151 1.22 ·1019 2.77 ·1014

2042 103 122 (2623, 1964, 58) 158 3.52 ·1019 8.00 ·1014

2044 104 124 (2662, 1979, 60) 165 1.02 ·1020 2.32 ·1015

2046 106 126 (2691, 1973, 63) 173 2.95 ·1020 6.70 ·1015

2048 107 129 (2798, 2088, 62) 181 8.53 ·1020 1.94 ·1016

2050 109 131 (2804, 2048, 66) 189 2.47 ·1021 5.61 ·1016

aon a 2.4 GHz Intel Core 2 Quad Q6600

74

5.4. Conclusion and Open Problems

Table 5.4.: Comparison of parameters using optimistic versus pessimistic assumptions (from a users

point of view) for selected years.

Optimistic scenario Pessimistic scenario

Lower McEliece para- Lower McEliece para-

bound for meters (n,k, t) and bound for meters (n,k, t) and

Year log2 S(n,k, t) public key size (kB) log2 S(n,k, t) public key size (kB)

2020 95 (1902, 1390, 47) 87 98 (2047, 1541, 46) 95

2030 105 (2220, 1664, 50) 113 112 (2396, 1801, 53) 131

2040 142 (2453, 1811, 57) 116 126 (2730, 2045, 60) 171

2050 127 (2732, 2024, 62) 175 139 (3108, 2342, 66) 219

75

List of Figures

2.1. The Merkle-Damgård construction using a compression function f 12

2.2. The sponge construction based on the permutation/transformation f 13

3.1. A diagram of FS-PRNG. 16

3.2. A diagram of the initialization function f used in SYND. 18

3.3. A diagram of mappings x→ gi(x). 19

3.4. A diagram of the key stream generation of SYND. 20

3.5. The Initialization function f of the 2SC stream cipher, where f1(x) = A · (φ(x))⊤. . . 22

3.6. The Update and Squeezing phases of the 2SC cipher, where g(x) = B · (φ(x))⊤. . . . 23

3.7. A graphical performance comparison between 2SC and SYND. 27

3.8. The initialization function f ′ of XSYND . 28

3.9. Randomize-then-combine paradigm proposed in [BGG94] 28

3.10. The new functions g1 . 29

3.11. The behavior of speed of XSYND in function of security level. 37

3.12. Speed comparison between SYND , 2SC and XSYND. 38

3.13. Block diagram of Initializer F . 39

3.14. Diagrammatic representation of the PSYND’s Generator G 40

3.15. Illustration of GR . 41

3.16. Illustration of GL . 41

3.17. Graphical comparison between XSYND and PSYND in terms of speed for the same

security levels. 47

4.1. Fast Syndrome-Based Hash function without a final transformation. 51

4.2. Absorbing step of S-FSB hash function. 54

4.3. Squeezing step of S-FSB hash function. 55

4.4. Compression function of RFSB hash function. 63

76

List of Tables

2.1. The security bounds of the sponge construction against collision, preimage, and 2nd Preimage

attacks, where the quantity |P| is the size of the plaintext to be hashed. 13

3.1. Proposed parameters for FS-PRNG in [FS96]. 18

3.2. Performance of SYND given in [GLS07] . 21

3.3. Performance of SYND using quasi-cyclic codes . 26

3.4. Performance of 2SC using quasi-cyclic codes . 26

3.5. The estimated complexities of possible attacks against XSYND. 36

3.6. Proposed parameters for XSYND. 36

3.7. Performance of XSYND compared to that of SYND using the same parameters in [GLS07]. . 37

3.8. Parameters and performance of 2SC cipher given in [CSM]. 37

3.9. Some parameters for the PSYND cipher. 46

3.10. Performance comparison of PSYND with XSYND for the same security levels. 47

3.11. Performance of some software-oriented eSTREAM’s candidates, as reported in [Ber]. 48

4.1. Parameters for the five instances of FSB hash function, where s = ω log2(
n
ω) and p is

the smallest prime number such that p≥ ℓ and 2 is a generator of Fp. 53

4.2. Proposed parameters for S-FSB . 61

4.3. Performance of S-FSB in [Cay11] . 62

4.4. Performance of FSB SHA-3 proposal in [INR07]. 62

4.5. Performance of FSB and S-FSB in [CSM]. 62

4.6. Performance of RFSB. 64

5.1. Complexity of ISD algorithms against (1024,524,50) McEliece cryptosystem 66

5.2. Impact of different input values to our model. Impact is the absolute and percent

change in the required security level for the year 2050. For example, ranging parame-

ter a from 16 to 20 changes the security level between 126.4 and 136.7 bit, an absolute

change of 5.7 bit and a relative change of 4.3. 70

5.3. Proposed parameters for the McEliece cryptosystem – optimized for public key size . 74

5.4. Comparison of parameters using optimistic versus pessimistic assumptions (from a

users point of view) for selected years. 75

77

Bibliography

[AFG+08] D Augot, M. Finiasz, P. Gaborit, S. Manuel, and N. Sendrier. SHA-3 proposal: FSB.

Submission to NIST, 2008. (Cited on pages 18, 49, 50, 51, 52, and 57.)

[AFS03] D. Augot, M. Finiasz, and N. Sendrier. A fast provably secure cryptographic hash func-

tion. Cryptology ePrint Archive, Report 2003/230, 2003. http://eprint.iacr.org/.

(Cited on pages 2 and 50.)

[AFS05] D. Augot, M. Finiasz, and N. Sendrier. A Family of Fast Syndrome Based Cryptographic

Hash Functions. In E. Dawson and S. Vaudenay, editors, Mycrypt 2005, volume 3715,

pages 64–83. Springer, 2005. (Cited on pages 2, 9, 17, 33, 34, 35, 49, 50, 52, and 59.)

[AJ07] Au-Ja.de. Intel core 2 Quad Q6600, May 2007. 2007. (Cited on page 68.)

[AM89] C.M. Adams and H. Meijer. Security-related Comments Regarding McEliece Public-key

Cryptosystem. IEEE Trans. Inform. Theory, 35(2):454–455, 1989. (Cited on page 66.)

[Ara04] R. Araujo. The Need for Strong SSL Ciphers. 2004. (Cited on page 66.)

[Bar94] S. Barg. Some new np-complete coding problems. Problems Inform. Transmission,

30(3):23–28, 1994. (Cited on page 9.)

[Bar98] A. Barg. Complexity issues in coding theory, volume 1, pages 649–754. Elsevier Science,

Amsterdam, 1998. (Cited on page 9.)

[BBD08] D. J. Bernstein, J. Buchmann, and E. Dahmen. Post Quantum Cryptography. Springer-

Verlag, 2008. (Cited on page 1.)

[BDPA07] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge Functions. In ECRYPT

Hash Workshop 2007, 2007. (Cited on pages 2, 13, 49, 53, and 58.)

[BDPA08] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the indifferentiability of

the sponge construction. In EUROCRYPT, volume 4965 of Lecture Notes in Computer

Science, pages 181–197. Springer, 2008. (Cited on page 13.)

[BDPA11a] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Cryptographic sponge functions.

2011. http://sponge.noekeon.org/CSF-0.1.pdf. (Cited on page 57.)

[BDPA11b] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the security of the keyed

sponge construction. In SKEW, 2011. (Cited on page 13.)

78

http://eprint.iacr.org/

Bibliography

[Ber] D. J. Bernstein. Which phase-3 estream ciphers provide the best software speeds ? http:

//cr.yp.to/streamciphers/phase3speed-20080225.pdf. (Cited on pages 46, 48,

and 77.)

[Ber07] D. J. Bernstein. Better price-performance ratios for generalized birthday attacks. In

Workshop Record of SHARCS07: Special-purpose Hardware for Attacking Crypto-

graphic Systems (2007), 2007. (Cited on pages 34 and 60.)

[BGG94] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography: The case

of hashing and signing. In Proceedings of the 14th Annual International Cryptology

Conference on Advances in Cryptology, CRYPTO ’94, pages 216–233. Springer, 1994.

(Cited on pages 27, 28, and 76.)

[BGG95] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography and application

to virus protection. In Proceedings of the twenty-seventh annual ACM symposium on

Theory of computing, STOC ’95, pages 45–56. ACM, 1995. (Cited on page 27.)

[BGP09] C. Berbain, H. Gilbert, and J. Patarin. Quad: A multivariate stream cipher with provable

security. J. Symb. Comput., 44(12):1703–1723, 2009. (Cited on page 20.)

[BL] D. J. Bernstein and T. Lange. eBACS: ECRYPT Benchmarking of Cryptographic Sys-

tems. http://bench.cr.yp.to. (Cited on page 1.)

[BLN+09] D. J. Bernstein, T. Lange, R. Niederhagen, C. Peters, and P. Schwabe. FSBDay: Imple-

menting wagner’s generalized birthday attack against the SHA-3 candidate FSB, 2009.

(Cited on page 60.)

[BLP11] D. J. Bernstein, T. Lange, and C. Peters. Smaller decoding exponents: Ball-collision

decoding. In CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages 743–

760. Springer, 2011. (Cited on page 66.)

[BLPS11a] D. J. Bernstein, T. Lange, C. Peters, and P. Schwabe. Faster 2-regular information-set

decoding. IACR Cryptology ePrint Archive, 2011:120, 2011. (Cited on page 59.)

[BLPS11b] D. J. Bernstein, T. Lange, C. Peters, and P. Schwabe. Really fast syndrome-based hash-

ing. In A. Nitaj and D. Pointcheval, editors, Progress in Cryptology–AFRICACRYPT

2011, volume 6737 of LNCS, pages 134–152. Springer, 2011. http://cryptojedi.

org/papers/#rfsb. (Cited on pages 34, 63, and 64.)

[BM97] M. Bellare and D. Micciancio. A new paradigm for collision-free hashing: incremen-

tality at reduced cost. In Proceedings of the 16th annual international conference on

Theory and application of cryptographic techniques, EUROCRYPT’97, pages 163–192.

Springer, 1997. (Cited on pages 27, 32, and 33.)

[BMvT78] E. Berlekamp, R. McEliece, and H. van Tilborg. On the Inherent Intractability of Certain

Coding Problems. IEEE Trans. Inform. Theory, 24(3):384–386, 1978. (Cited on page 1.)

[BR00] P. S. L. M. Barreto and V. Rijmen. The WHIRLPOOL Hashing Function. 2000. Revised

May 2003. Available: http://www.larc.usp.br/˜pbarreto/WhirlpoolPage.html

(2009/06/24). (Cited on page 51.)

[BTP08] D. J. Bernstein, T.Lange, and C. Peters. Attacking and defending the mceliece cryp-

tosystem. In Johannes Buchmann and Jintai Ding, editors, PQCrypto, volume 5299 of

Lecture Notes in Computer Science, pages 31–46, 2008. (Cited on pages 66, 68, and 69.)

79

http://cr.yp.to/streamciphers/phase3speed-20080225.pdf
http://cr.yp.to/streamciphers/phase3speed-20080225.pdf
http://bench.cr.yp.to
http://cryptojedi.org/papers/#rfsb
http://cryptojedi.org/papers/#rfsb
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

Bibliography

[BTP11] D. J. Bernstein, T.Lange, and C. Peters. Smaller decoding exponents: Ball-collision de-

coding. In Phillip Rogaway, editor, CRYPTO, volume 6841 of Lecture Notes in Computer

Science, pages 743–760, 2011. (Cited on page 59.)

[BW99] A. Biryukov and D. Wagner. Slide attacks. In FSE, volume 1636 of LNCS, pages 245–

259. Springer, 1999. (Cited on page 60.)

[Cay11] P.L-. Cayrel. 2011. http://www.cayrel.net/research/code-based-cryptography/code-

based-cryptosystems/article/implementation-of-code-based-hash. (Cited on pages 62

and 77.)

[CC94] A. Canteaut and H. Chabanne. A further improvement of the work factor in an attempt

at breaking McEliece’s cryptosystem. Research Report RR-2227, INRIA, 1994. (Cited

on page 66.)

[CC98] A. Canteaut and F. Chabaud. A New Algorithm for Finding Minimum-Weight Words in

a Linear Code: Application to McEliece’s cryptosystem and to narrow-sense BCH codes

of length 511. IEEE Transactions on Information Theory, 44(1):367–378, 1998. (Cited

on page 66.)

[CJ04] J.-S. Coron and A. Joux. Cryptanalysis of a provably secure cryptographic hash func-

tion. Cryptology ePrint Archive, Report 2004/013, 2004. http://eprint.iacr.org/.

(Cited on page 52.)

[CR06] C. De Cannière and C. Rechberger. Finding sha-1 characteristics: General results and

applications. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT, volume 4284 of LNCS,

pages 1–20. Springer, 2006. (Cited on page 49.)

[CSM] P-L Cayrel, Q. Santos, and M. Meziani. Efficient Software Implementations of Code-

based Hash Functions and Stream-Ciphers. (Cited on pages 20, 36, 37, 62, 64, and 77.)

[Dam89] I. Damgård. A Design Principle for Hash Functions. In Gilles Brassard, editor, Advances

in Cryptology – CRYPTO ’89, Proc., volume 435 of LNCS, pages 416–427. Springer,

1989. (Cited on pages 12, 50, and 53.)

[EJ01] D. Eastlake and P. Jones. Us secure hash algorithm 1 (sha1), 2001. (Cited on page 49.)

[EOS06] D. Engelbert, R. Overbeck, and A. Schmidt. A summary of mceliece-type cryptosystems

and their security. Cryptology ePrint Archive, Report 2006/162, 2006. http://eprint.

iacr.org/. (Cited on page 65.)

[FGO+10] J.-C. Faugère, V. Gauthier, A. Otmani, L. Perret, and J.-P. Tillich. A distinguisher for

high rate mceliece cryptosystems. IACR Cryptology ePrint Archive, 2010:331, 2010.

(Cited on page 66.)

[FGS07] M. Finiasz, P. Gaborit, and N. Sendrier. Improved fast syndrome based cryptographic

hash functions. In V. Rijmen, editor, ECRYPT Hash Workshop 2007, 2007. (Cited on

pages 2, 49, and 50.)

[FL08] P.-A. Fouque and G. Leurent. Cryptanalysis of a hash function based on quasi-cyclic

codes. In Tal Malkin, editor, CT-RSA, volume 4964 of LNCS, pages 19–35. Springer,

2008. (Cited on page 52.)

[FOPT10] J.-C. Faugère, A. Otmani, L. Perret, and J.-P. Tillich. Algebraic cryptanalysis of mceliece

variants with compact keys. In Proceedings of the 29th Annual international conference

80

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Bibliography

on Theory and Applications of Cryptographic Techniques, EUROCRYPT’10, pages 279–

298. Springer, 2010. (Cited on page 66.)

[FS96] J.-B. Fischer and J. Stern. An efficient pseudo-random generator provably as secure as

syndrome decoding. In EUROCRYPT’96: Proc. of the 15th annual international confer-

ence on Theory and application of cryptographic techniques, pages 245–255. Springer,

1996. (Cited on pages 2, 15, 16, 17, 18, 20, 30, 31, and 77.)

[FS09] M. Finiasz and N. Sendrier. Security Bounds for the Design of Code-based Cryptosys-

tems. In Mitsuru Matsui, editor, Advances in Cryptology - ASIACRYPT 2009, number

5912 in LNCS, pages 88–105. Springer, 2009. (Cited on pages 25, 34, 59, 60, 66, 69,

71, and 72.)

[Gil] E. N. Gilbert. A comparison of signalling alphabets. Bell System Technical Journal.

(Cited on page 6.)

[GIL+90] O. Goldreich, R. Impagliazzo, L. Levin, R. Venkatesan, and D. Zuckerman. Security

preserving amplification of hardness. In Proceedings of the 31st Annual Symposium

on Foundations of Computer Science, SFCS ’90, pages 318–326 vol.1. IEEE Computer

Society, 1990. (Cited on page 41.)

[GL89] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In STOC

’89: Proc. of the twenty-first annual ACM symposium on Theory of computing, pages

25–32. ACM, 1989. (Cited on pages 17, 31, and 42.)

[GLP08] M. Gorski, S. Lucks, and T. Peyrin. Slide attacks on a class of hash functions. In Proceed-

ings of the 14th International Conference on the Theory and Application of Cryptology

and Information Security: Advances in Cryptology, ASIACRYPT ’08, pages 143–160.

Springer-Verlag, 2008. (Cited on page 60.)

[GLS07] P. Gaborit, C. Laudaroux, and N. Sendrier. Synd: a very fast code-based cipher stream

with a security reduction. In IEEE Conference, ISIT’07, pages 186–190, Nice, France,

2007. (Cited on pages 2, 15, 17, 20, 21, 25, 26, 36, 37, 46, and 77.)

[GM82] S. Goldwasser and S. Micali. Probabilistic encryption and how to play mental poker

keeping secret all partial information. In STOC, pages 365–377, 1982. (Cited on page 4.)

[Gol97] J.Dj. Golic. Cryptanalysis of alleged a5 stream cipher. In Proceedings of the 16th an-

nual international conference on Theory and application of cryptographic techniques,

EUROCRYPT’97, pages 239–255. Springer, 1997. (Cited on pages 25, 35, 36, and 45.)

[Gop70] V .D. Goppa. A New Class of Linear Correcting Codes. In Probl. Pered. Info., volume 6,

pages 24–30, 1970. (Cited on page 7.)

[GZ07] P. Gaborit and G. Zémor. Asymptotic improvement of the gilbert-varshamov bound for

linear codes. volume abs/0708.4164, 2007. (Cited on pages 36 and 46.)

[Hel80] M. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on Information

Theory, 26:401–406, 1980. (Cited on pages 25, 35, and 45.)

[Hou] D. House. Myths of moore’s law. http://news.cnet.com/Myths-of-Moores-Law/

2010-10713-1014887.html. (Cited on page 69.)

[HS05] J. Hong and P. Sarkar. Rediscovery of time memory tradeoffs. Cryptology ePrint

Archive, Report 2005/090, 2005. http://eprint.iacr.org/. (Cited on pages 25,

35, 36, and 45.)

81

http://news.cnet.com/Myths-of-Moores-Law/2010-1071 3-1014887.html
http://news.cnet.com/Myths-of-Moores-Law/2010-1071 3-1014887.html
http://eprint.iacr.org/

Bibliography

[IN96] R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably as secure as

subset sum. J. Cryptology, 9(4):199–216, 1996. (Cited on pages 23 and 24.)

[INR07] INRIA. 2007. http://www-rocq.inria.fr/secret/CBCrypto/index.php?pg=fsb. (Cited on

pages 62 and 77.)

[IZ89] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proceedings of the

30th Annual Symposium on Foundations of Computer Science, SFCS ’89, pages 248–

253. IEEE Computer Society, 1989. (Cited on page 24.)

[JJ02] T. Johansson and F. Jönsson. On the complexity of some cryptographic problems

based on the general decoding problem. IEEE Transactions on Information Theory,

48(10):2669–2678, 2002. (Cited on page 66.)

[Jou04] A. Joux. Multicollisions in iterated hash functions. application to cascaded constructions.

In Matthew K. Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in Computer

Science, pages 306–316, 2004. (Cited on page 12.)

[Kar72] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and J.W.

Thatcher, editors, Complexity of Computer Computations. Plenum Press, 1972. (Cited

on page 23.)

[KK06] J. Kelsey and T. Kohno. Herding hash functions and the nostradamus attack. In Pro-

ceedings of the 24th annual international conference on The Theory and Applications of

Cryptographic Techniques, EUROCRYPT’06, pages 183–200. Springer, 2006. (Cited

on page 52.)

[KS05] J. Kelsey and B. Schneier. Second preimages on n-bit hash functions for much less than

2n work. In EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages

474–490. Springer, 2005. (Cited on page 12.)

[LB88] P.J. Lee and E.F. Brickell. An Observation on the Security of McEliece’s Public-key

Cryptosystem. In EUROCRYPT ’88, Lect. Notes in CS, pages 275–280, 1988. (Cited on

page 66.)

[LDmW94] Y. X. Li, R. H. Deng, and X. m. Wang. On the equivalence of mceliece’s and niederre-

iter’s public-key cryptosystems. IEEE Transactions on Information Theory, pages 271–

271, 1994. (Cited on page 9.)

[Lin98] J. H. Van Lint. Introduction to Coding Theory. Springer-Verlag, 3rd edition, 1998.

(Cited on page 4.)

[LV01] A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. Journal of Cryptol-

ogy, 14:255–293, 2001. (Cited on pages 66, 67, and 68.)

[MAC11] M. Meziani, S. M. El Yousfi Alaoui, and P-L. Cayrel. Hash functions based on cod-

ing theory. In the 2nd Workshop on Codes, Cryptography and Communication Systems

(WCCCS 2011), pages 32–37, 2011. (Cited on page 63.)

[Mat94] M. Matsui. Linear cryptanalysis method for des cipher. In Workshop on the theory and

application of cryptographic techniques on Advances in cryptology, EUROCRYPT ’93,

pages 386–397. Springer, 1994. (Cited on page 44.)

[McE78] R.J. McEliece. A public-key cryptosystem based on algebraic coding theory. DNS

Progress Report, pages 114–116, 1978. (Cited on pages 1, 5, and 9.)

82

Bibliography

[MCY11] M. Meziani, P.-L. Cayrel, and S. M. Alaoui El Yousfi. 2SC: An Efficient Code-Based

Stream Cipher. In T.-H. Kim, H. Adeli, R. J. Robles, and M. O. Balitanas, editors, ISA,

volume 200 of Communications in Computer and Information Science, pages 111–122.

Springer, 2011. (Cited on pages 15, 20, 26, and 36.)

[Mer89] R. C. Merkle. One Way Hash Functions and DES. In Gilles Brassard, editor, Advances

in Cryptology – CRYPTO ’89, Proc., volume 435 of LNCS, pages 428–446. Springer,

1989. (Cited on pages 12, 50, and 53.)

[MHC] M. Meziani, G. Hoffmann, and P.-L. Cayrel. PSYND: A Parallel Variant of the XSYND

Stream Cipher. In MoCrySEn 2013 (submitted). (Cited on page 15.)

[MHC12] M. Meziani, G. Hoffmann, and P.-L. Cayrel. Improving the Performance of the SYND

Stream Cipher. In Aikaterini Mitrokotsa and Serge Vaudenay, editors, AFRICACRYPT,

volume 7374 of Lecture Notes in Computer Science, pages 99–116. Springer, 2012.

(Cited on pages 15, 26, and 46.)

[MMT11] A. May, A. Meurer, and E. Thomae. Decoding random linear codes in Õ(20.054n). In Pro-

ceedings of the 17th international conference on The Theory and Application of Cryptol-

ogy and Information Security, ASIACRYPT’11, pages 107–124. Springer-Verlag, 2011.

(Cited on pages 20 and 35.)

[Moo98] G.E. Moore. Cramming more components onto integrated circuits. Proceedings of the

IEEE, 86(1):82–85, 1998. (Cited on page 69.)

[MQSW01] A. Menezes, M. Qu, D. Stinson, and Y. Wang. Evaluation of Security Level of Cryp-

tography: ESIGN Signature Scheme. CRYPTREC Project, Japan, Jan. 2001. (Cited on

page 66.)

[MS77] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error Correcting Codes. North-

Holland, 1977. (Cited on pages 4 and 7.)

[MS09] L. Minder and A. Sinclair. The extended k-tree algorithm. In Proc. of the twentieth An-

nual ACM-SIAM Symposium on Discrete Algorithms, SODA’09, pages 586–595, 2009.

(Cited on page 34.)

[Nat08] National Institute of Standards and Technology (NIST). Secure Hash Standard, October

2008. (Cited on page 49.)

[NCB11] R. Niebuhr, P.-L. Cayrel, and J. Buchmann. Improving the efficiency of Generalized

Birthday Attacks against certain structured cryptosystems. In WCC 2011, LNCS, pages

163–172. Springer, Apr 2011. (Cited on page 34.)

[NCBBa] R. Niebuhr, P.-L. Cayrel, S. Bulygin, and J. Buchmann. On lower bounds for information

set decoding over Fq. In SCC 2010, Royal Holloway, University of London, London, UK

2010. (Cited on pages 66, 68, and 69.)

[NCBBb] R. Niebuhr, P.-L. Cayrel, S. Bulygin, and J. Buchmann. On lower bounds for information

set decoding over Fq and on the effect of partial knowledge. In ”Symbolic Computation

and Cryptography II” (unpublished) (2011). (Cited on pages 66 and 68.)

[Nie86] H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Problems of

Control and Information Theory. Problemy Upravlenija i Teorii Informacii, 15:159–166,

1986. (Cited on pages 1 and 9.)

83

Bibliography

[NMBB12] R. Niebuhr, M. Meziani, S. Bulygin, and J. Buchmann. Selecting parameters for

secure mceliece-based cryptosystems. International Journal of Information Security,

11(3):137–147, 2012. (Cited on page 65.)

[Pra57] E. Prange. Cyclic error-correcting codes in two symbols. September 1957. No. AFCRC-

TN-57-103. ASTIA Document No. AD133749. (Cited on page 8.)

[Pre93] B. Preneel. Analysis and design of cryptographic hash functions. Doctoral dissertation,

Katholieke Universiteit Leuven, 1993. (Cited on page 11.)

[RB08] M. Robshaw and O. Billet, editors. New Stream Cipher Designs: The eSTREAM Final-

ists. Springer-Verlag, 2008. (Cited on page 46.)

[RWMC11] L. Rothamel, M. Weiel, M. Meziani, and P.-L. Cayrel. Report cryptography lab ss2011

implementation of the rfsb hash function. 2011. www.cayrel.net/IMG/pdf/Report.pdf.

(Cited on page 64.)

[Saa07] M.-J. O. Saarinen. Linearization attacks against syndrome based hashes. In K. Srinathan,

C. Pandu Rangan, and Moti Yung, editors, INDOCRYPT, volume 4859 of LNCS, pages

1–9. Springer, 2007. (Cited on pages 32, 33, 52, and 61.)

[San12] Q. Santos. 2012. http://perso.ens-lyon.fr/quentin.santos/. (Cited on page 62.)

[Sen02] N. Sendrier. On the Security of the McEliece Public-key Cryptosystem. In M. Blaum,

P.G. Farrell, and H. van Tilborg, editors, Information, Coding and Mathematics, pages

141–163. Kluwer, 2002. Proceedings of Workshop honoring Prof. Bob McEliece on his

60th birthday. (Cited on pages 70 and 71.)

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell system technical journal,

27, 1948. (Cited on page 4.)

[Sho94] P. W. Shor. Algorithms for Quantum Computation: Discrete Logarithms and Factoring.

In SFCS ’94: Proc. of the 35th Annual Symposium on Foundations of Computer Science,

pages 124–134. IEEE Computer Society, 1994. (Cited on page 1.)

[Ste89] J. Stern. A method for finding codewords of small weight. In Proc. of Coding Theory

and Applications, pages 106–113, 1989. (Cited on page 66.)

[Sze08] G. Szewczyk. The dynamic ciphers - New concept of long-term protecting. Annales

Universitatis Apulensis Series Oeconomica, 2(10), 2008. (Cited on page 66.)

[Var57] R. R. Varshamov. Estimate of the number of signals in error correcting codes. Dokl.

Acad. Nauk SSSR, 117:739741, 1957. (Cited on page 6.)

[vdV90] M. van der Vlugt. The true dimension of certain binary goppa codes. IEEE Transactions

on Information Theory, 36(2):397–398, 1990. (Cited on page 7.)

[Wag02] D. Wagner. A generalized birthday problem. In Moti Yung, editor, CRYPTO, volume

2442 of LNCS. Springer, 2002. (Cited on pages 34, 52, and 60.)

[WYY05] X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full sha-1. In In Proceedings of

Crypto, pages 17–36. Springer, 2005. (Cited on page 49.)

[Yao82a] A. C. Yao. Theory and application of trapdoor functions. In Proceedings of the 23rd

Annual Symposium on Foundations of Computer Science, SFCS ’82, pages 80–91. IEEE

Computer Society, 1982. (Cited on page 4.)

84

Bibliography

[Yao82b] A. C. Yao. Theory and applications of trapdoor functions (extended abstract). In FOCS,

pages 80–91. IEEE Computer Society, 1982. (Cited on page 41.)

85

	1 Introduction
	2 Preliminaries and Definitions
	2.1 Mathematical notation
	2.2 Standard notions
	2.3 Coding Theory & Cryptography
	2.3.1 Introduction
	2.3.2 Basic Definitions from Codes
	2.3.3 Some Examples of Codes
	2.3.4 Computational Problems

	2.4 Some Cryptographic Primitives
	2.4.1 Encryption Schemes
	2.4.2 Stream Ciphers
	2.4.3 Hash Functions

	3 Code-based Stream Ciphers
	3.1 Previous Work
	3.1.1 The Fischer-Stern's Pseudo-Random Generator
	3.1.2 The SYND stream cipher

	3.2 The 2SC Stream Cipher
	3.2.1 Description of the 2SC cipher
	3.2.2 Security Analysis
	3.2.3 Parameters Choice and Implementation Results

	3.3 The XSYND Cipher
	3.3.1 Description of the XSYND cipher
	3.3.2 Security of XSYND
	3.3.3 Parameters and Experimental Results

	3.4 The PSYND Cipher
	3.4.1 Motivation
	3.4.2 Description of the PSYND cipher
	3.4.3 Security of the cipher
	3.4.4 Parameters and experimental results

	3.5 Conclusion and Open Problems

	4 Code-based Hash Functions
	4.1 Introduction
	4.2 Fast Syndrome Based Hash Family
	4.2.1 Description of FSB hash familiy.
	4.2.2 Theoretical security of FSB
	4.2.3 Practical security of FSB
	4.2.4 Efficiency of FSB
	4.2.5 Parameters choice for FSB.

	4.3 The S-FSB Hash function
	4.3.1 Description of S-FSB
	4.3.2 Security Analysis
	4.3.3 Parameters Choice
	4.3.4 Performance and Comparison

	4.4 The RFSB Hash Function
	4.4.1 Description of the RFSB hash function
	4.4.2 Security of RFSB
	4.4.3 Performance of RFSB

	4.5 Conclusion and Open Problems

	5 Parameters Selection for the McEliece-like Cryptosystems
	5.1 Motivation
	5.2 Our Security Model
	5.3 Parameters selection
	5.4 Conclusion and Open Problems

	List of Figures
	List of Tables
	Bibliography

