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Abstract

Probes, supervised models trained to pre-

dict properties (like parts-of-speech) from

representations (like ELMo), have achieved

high accuracy on a range of linguistic tasks.

But does this mean that the representations

encode linguistic structure or just that the

probe has learned the linguistic task? In

this paper, we propose control tasks, which

associate word types with random outputs, to

complement linguistic tasks. By construction,

these tasks can only be learned by the probe

itself. So a good probe, (one that reflects the

representation), should be selective, achieving

high linguistic task accuracy and low control

task accuracy. The selectivity of a probe

puts linguistic task accuracy in context with

the probe’s capacity to memorize from word

types. We construct control tasks for English

part-of-speech tagging and dependency edge

prediction, and show that popular probes on

ELMo representations are not selective. We

also find that dropout, commonly used to

control probe complexity, is ineffective for

improving selectivity of MLPs, but that other

forms of regularization are effective. Finally,

we find that while probes on the first layer

of ELMo yield slightly better part-of-speech

tagging accuracy than the second, probes

on the second layer are substantially more

selective, which raises the question of which

layer better represents parts-of-speech.

1 Introduction

As large-scale unsupervised representations such

as BERT and ELMo improve downstream perfor-

mance on a wide range of natural language tasks

(Devlin et al., 2019; Peters et al., 2018a; Radford

et al., 2019), what these models learn about

language remains an open scientific question. An

emerging body of work investigates this question

through probes, supervised models trained to

Sentence 1 The cat ran quickly .
Part-of-speech DT NN VBD RB .
Control task 10 37 10 15 3

Sentence 2 The dog ran after !
Part-of-speech DT NN VBD IN .
Control task 10 15 10 42 42

Figure 1: Our control tasks define random behavior (like
a random output, top) for each word type in the vocabulary.
Each word token is assigned its type’s output, regardless of
context (middle, bottom.) Control tasks have the same input
and output space as a linguistic task (e.g., parts-of-speech) but
can only be learned if the probe memorizes the mapping.

predict a property (like parts-of-speech) from a con-

strained view of the representation. Probes trained

on various representations have obtained high

accuracy on tasks requiring part-of-speech and

morphological information (Belinkov et al., 2017),

syntactic and semantic information (Peters et al.,

2018b; Tenney et al., 2019), among other proper-

ties (Conneau et al., 2018), providing evidence that

deep representations trained on large datasets are

predictive of a broad range of linguistic properties.

But when a probe achieves high accuracy on

a linguistic task using a representation, can we

conclude that the representation encodes linguis-

tic structure, or has the probe just learned the

task? Probing papers tend to acknowledge this

uncertainty, putting accuracies in context using ran-

dom representation baselines (Zhang and Bowman,

2018) and careful task design (Hupkes et al., 2018).

Even so, as long as a representation is a lossless en-

coding, a sufficiently expressive probe with enough

training data can learn any task on top of it.

In this paper, we propose control tasks, which

associate word types with random outputs, to give

intuition for the expressivity of probe families and
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Figure 2: Selectivity is defined as the difference between
linguistic task accuracy and control task accuracy, and can
vary widely, as shown, across probes which achieve similar
linguistic task accuracies. These results taken from § 3.5.

provide insight into how representation and probe

interact to achieve high task accuracy.

Control tasks are based on the intuition that the

more a probe is able to make task output decisions

independently of the linguistic properties of a rep-

resentation, the less its accuracy on a linguistic task

necessarily reflects the properties of the representa-

tion. Thus, a good probe (one that provides insights

into the linguistic properties of a representation)

should be what we call selective, achieving high lin-

guistic task accuracy and low control task accuracy

(see Figure 2).

We show that selectivity can be a guide in

designing probes and interpreting probing results,

complementary to random representation baselines;

as of now, there is little consensus on how to design

probes. Early probing papers used linear functions

(Shi et al., 2016; Ettinger et al., 2016; Alain and

Bengio, 2016), which are still used (Bisazza and

Tump, 2018; Liu et al., 2019), but multi-layer

perceptron (MLP) probes are at least as popular

(Belinkov et al., 2017; Conneau et al., 2018; Adi

et al., 2017; Tenney et al., 2019; Ettinger et al.,

2018). Arguments have been made for “simple”

probes, e.g., that we want to find easily accessible

information in a representation (Liu et al., 2019;

Alain and Bengio, 2016). As a counterpoint

though, “complex” MLP probes have also been

suggested since useful properties might be encoded

non-linearly (Conneau et al., 2018), and they tend

to report similar trends to simpler probes anyway

(Belinkov et al., 2017; Qian et al., 2016).

We define control tasks corresponding to

English part-of-speech tagging and dependency

edge prediction, and use ELMo representations

to conduct a broad study of probe families,

hyperparameters, and regularization methods,

evaluating both linguistic task accuracy and

selectivity. We propose that selectivity be used for

building intuition about the expressivity of probes

and the properties of models, putting probing

accuracies into richer context. We find that:

1. With popular hyperparameter settings, MLP

probes achieve very low selectivity, suggest-

ing caution in interpreting how their results

reflect properties of representations. For ex-

ample, on part-of-speech tagging, 97.3 accu-

racy is achieved, compared to 92.8 control

task accuracy, resulting in 4.5 selectivity.

2. Linear and bilinear probes achieve relatively

high selectivity across a range of hyperparam-

eters. For example, a linear probe on part-of-

speech tagging achieves a similar 97.2 accu-

racy, and 71.2 control task accuracy, for 26.0
selectivity. This suggests that the small accu-

racy gain of the MLP may be explained by

increased probe expressivity.

3. The most popular method for controlling

probe complexity, dropout, does not consis-

tently lead to selective MLP probes. However,

control of MLP complexity through unintu-

itively small (10-dimensional) hidden states,

as well as small training sample sizes and

weight decay, lead to higher selectivity and

similar linguistic task accuracy.

Finally, we ask, can we meaningfully compare

the linguistic properties of layers of a model using

only linguistic task accuracy? We raise a poten-

tial problem with this approach: it fails to take

into account differences in ease of memorization

across layers. In particular, we find that while lin-

ear and MLP probes on the first layer of ELMo

(ELMo1) achieve slightly higher part-of-speech ac-

curacy than those on the second layer (ELMo2),

(97.2 compared to 96.6, for a loss of 0.6 ), the same

probes achieve much greater selectivity on ELMo2

(31.4 compared to 26.0, for a gain of 5.4). Thus,

the difference in selectivity in favor of ELMo2 is

much greater than the commonly known (Peters

et al., 2018a; Liu et al., 2019) difference in linguis-

tic task accuracy in favor of ELMo1; the difference

in accuracy may be explained by probes more eas-

ily accessing word identity features in ELMo1.
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Dependency Edge Prediction and Control Task Examples

Dependency:
The Ways and Means Committee will hold a hearing on the bill next Tuesday .

. .
. . . . .. . .. .

. .

Control:
The Ways and Means Committee will hold a hearing on the bill next Tuesday .

. .. .
.

. .. .
.

. .
.

.

.

Figure 3: Example dependency tree from the development set of the Penn Treebank with dependents pointing at heads, and the
structure resulting from our dependency edge prediction control task on the same sentence.

2 Control Tasks

In this section, we describe how to construct control

tasks. At a high level, control tasks have:

structure: The output for a word token is a deter-

ministic function of the word type1.

randomness: The output for each word type is

sampled independently at random.

We start with some notation; denote as 1 : T
the sequence of integers {1, ..., T}. Let V be the

vocabulary containing all word types in a corpus.

A sentence of length T is x1:T , where each xi ∈ V ,

and the word representations of the model being

probed are h1:T , where hi ∈ R
d. A task is a func-

tion that maps a sentence to a single output per

word, f(x1:T ) = y1:T , where each output is from

a finite set of outputs: yi ∈ Y . Each control task

is defined in reference to a linguistic task, and the

two share Y . We’ll now use part-of-speech tagging

and dependency edge prediction as examples to

describe the construction of control tasks.

2.1 Part-of-speech tagging control task

In part-of-speech tagging, the set Y is the tagset,

1 : 45 (corresponding to NN, NNS, VB,...). To

construct a control task, we independently sample a

control behavior C(v) for each v ∈ V . The control

behavior specifies how to define yi ∈ Y for a word

token xi with word type v. For part-of-speech

tagging, each control behavior directly specifies

the output yi for xi as an integer from 1 : 45, so

we sample from 45 behaviors2. The part-of-speech

control task is the function that maps each token xi
to the label specified by the behavior C(xi):

fcontrol(x1:T ) = f(C(x1), C(x2), ...C(xT )). (1)

This task is visualized in Figure 1.

1Equivalently, word identity.
2The exact distribution from which we sample isn’t crucial,

but for part-of-speech tagging, we sample from the empirical
token distribution of part-of-speech tagging, so the marginal
probability of each label is similar.

2.2 Dependency edge prediction control task

The dependency edge prediction task is the func-

tion fDEP(x1:T ) = y1:T where yi is the index of the

parent of xi in the dependency tree on the sentence

x1:T . Thus, the output space Y = 1 : T depends on

the length of the sentence, T . To accommodate this

in our control task, we define the control behaviors

C(v) in a length-independent way that still fully

specifies yi. The possible behaviors C(v) are as

follows:

attach to self: Always attach tokens of this type

to themselves. That is, yi = i.

attach to first: Always attach tokens of this type

to the first token. That is, yi = 1.

attach to last: Always attach tokens of this type to

the last word in the sentence. That is, yi = T .

We sample uniformly from the three. Given these

behaviors, the control task is defined as before by

Eqn 1. This task is visualized in Figure 3.

While very similar to dependency parsing, de-

pendency edge prediction differs in two ways. The

output is not constrained to be a tree for evalua-

tion; each prediction is evaluated independently.

So, while our control tasks do not define trees, the

two tasks’ output spaces are still the same. Sec-

ond, in dependency edge prediction, the root of the

sentence is omitted from evaluation; no sentence-

external ROOT token is posited for evaluation.

2.3 Properties of control tasks

To summarize, a control task is defined for a single

linguistic task, and shares the linguistic task’s out-

put space Y . To construct a control task, a control

behavior C(v) is sampled independently at random

for each word type v ∈ V . The control task is a

function mapping x1:T to a sequence of outputs

y1:T which is fully specified by the sequence of

behaviors, [C(x1), ..., C(xT )].
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From this construction, we note that the ceiling

on performance is the fraction of tokens in the

evaluation set whose types occur in the training set

(plus chance accuracy on all other tokens.) Further,

C(v) must be memorized independently for each

word type, and a probe taking vectors h1:T as input

must identify for each hi its corresponding xi, and

output the element of Y specified by C(xi).

3 Experiments on Probe Selectivity

In this section, we conduct a broad study of

probe families (e.g, linear, MLP) and hyperparam-

eter choices (weight matrix rank/hidden state size,

amount of regularization) on a single representa-

tion (ELMo1) to determine (1) what probe choices

exhibit high linguistic task accuracy and high se-

lectivity (and whether this holds for a range of

hyperparameters), and (2) whether each probe fam-

ily can be made selective through hyperparameter

choices without substantially sacrificing linguistic

task accuracy.

3.1 Probe families

We experiment with three types of probes per task.

For part-of-speech tagging, we experiment with

linear, MLP-1, and MLP-2 probes. The linear

probe is a multiclass model mapping hi to yi ∼
softmax(Ahi + b). The MLP-1 probe is a multi-

layer perceptron with one hidden layer and ReLU

nonlinearity defined as:

yi ∼ softmax(W2 g(W1hi)). (2)

And the MLP-2 probe is defined as:

yi ∼ softmax(W3 g(W2 g(W1hi))). (3)

where g is the ReLU function, and bias terms are

omitted from all affine transformations for brevity.

For dependency edge prediction, we experiment

with bilinear, MLP-1, and MLP-2 probes. These

probes take as input the entire sequence h1:T as

well as the vector hi of a given state to produce yi;

the softmax operates over the sequence to construct

a distribution over the T classes. Formally, the bi-

linear model is defined as yi ∼ softmax(h⊤
1:TAhi+

b). The MLP-1 probe is defined as follows:

yi ∼ softmax(W2 g(W1[h1:T ;hi])). (4)

Note here that hi broadcasts to R
T×d,while W1 ∈

R
ℓ×d, and W2 ∈ R

1×ℓ broadcast as well. That

is, each [hj ;hi] pair is mapped to a single scalar

independently of all others, leading to T logits

used as input to the softmax. Similarly, the MLP-2

model is defined as follows:

yi ∼ softmax(W3 g(W2 g(W1[h1:T ;hi]))). (5)

3.2 Complexity control

It is well-known that probes should not be too com-

plex (Liu et al., 2019; Alain and Bengio, 2016);

this is the motivation behind constraining the input

to the probe to be a single vector or pair of vectors.

However, there has been no systematic investiga-

tion of probe complexity. We study what complex-

ity control is necessary to achieve selectivity. As

we will see, the typical practice of regularizing to

reduce the generalization gap (difference between

training and test task accuracy) is insufficient if one

is interested in selectivity.

Rank/hidden dimensionality constraint. For

our linear and bilinear probes, we constrain the

rank of weight matrices through an LR decomposi-

tion. We let A ∈ R
k×d, where k is the output space

(45 for part-of-speech tagging; 1 for dependency

head prediction). To constrain A to rank ℓ, we fac-

tor A = LR, where L ∈ R
k×ℓ and R ∈ R

ℓ×|V |,

and optimize over L and R. For MLP models, we

let the hidden state size be equal to ℓ.3

From the default value of rank-1000 and 1000-

dimensional hidden states, we let ℓ take on

the values {2, 4, 10, 45} for part-of-speech, and

{5, 10, 50, 100} for dependency edge prediction.4

Dropout. We apply dropout (Srivastava et al.,

2014) with probability p to the input for lin-

ear and bilinear probes, and to the input and

the output of each hidden layer for MLP probes.

From the default value of 0, we let p range over

{0.2, 0.4, 0.6, 0.8}.

Number of training examples. We artificially

constrain the number of sentences the probe is

trained on, with the intuition that general rules can

be learned more sample-efficiently than memoriza-

tion. Zhang and Bowman (2018) showed this to be

an effective distinguishing factor between trained

representations and random representation controls.

From the default of 39832 (the number of training

3One could constrain the matrices of the MLP to be rank ℓ

without making the hidden state smaller, but one must choose
a hidden state size anyway, so we believed a study changing
the hidden state size would be most informative.

4Note that for linear models, the rank is constrained by k

regardless, since A ∈ R
k×d.
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Probe PoS Ctl Select. Dep Ctl Select.

Probes with Default Hyperparameters

Linear 97.2 71.2 26.0 - - -
Bilinear - - - 89.0 82.4 6.6

MLP-1 97.3 92.8 4.5 92.3 93.0 -0.7
MLP-2 97.3 93.2 4.2 93.9 92.0 1.9

Probes with 0.4 Dropout

Linear 97.1 67.3 29.8 - - -
Bilinear - - - 90.4 73.7 16.7

MLP-1 97.5 93.4 4.1 93.8 93.1 0.7

MLP-2 97.4 94.1 3.4 94.7 93.5 1.3

Probes Designed with Control Tasks

Linear 97.0 64.0 33.0 - - -
Bilinear - - - 91.0 83.1 7.9

MLP-1 97.2 80.6 16.6 90.5 84.3 6.2

MLP-2 97.2 81.7 15.4 92.8 89.8 3.0

Table 1: Probe accuracies on linguistic tasks and control
tasks. Default hyperparameters correspond to a hidden state
of dimensionality 1000 and no dropout. Under Probes De-
signed with Control Tasks, we used selectivity to hand-pick
a hyperparameter setting for each probe. In particular, part-
of-speech probes designed with control tasks all use rank-10
weight matrices (10-dimensional hidden state) and no other
changes. Dependency edge prediction probes designed with
control tasks had, for the bilinear model, weight decay of 0.01,
for MLP-1, weight decay of 0.1, for MLP-2, a rank-50 weight
matrix.

examples in the dataset), we train on {4000, 400}
examples, corresponding to roughly 100%, 10%,

and 1% of the total data, as suggested by Zhang

and Bowman (2018).

L2 regularization. We apply weight decay to

the probe parameters. From the default of 0, we

let the weight decay constant take on the values

{0.01, 0.1, 1.0, 10.0}, unnormalized by batch size.

Early stopping. All of our probing models are

trained with Adam (Kingma and Ba, 2014). By

default, we anneal the learning rate by a factor

of 0.5 each time an epoch does not lead to a

new minimum loss on the development set, and

stop training when 4 such epochs occur in a

row. However, in early stopping, we explicitly

halt training at a fixed number of gradient steps.

From the default of 100000 (approximately 40

epochs), we let this maximum take on the values

{50000, 25000, 12500, 6000, 3000, 1500}.

3.3 Dataset

We use the Penn Treebank (PTB) dataset (Mar-

cus et al., 1993) with the traditional parsing train-

ing/development/testing splits5 without preprocess-

5As given by the code of Qi and Manning (2017) at
https://github.com/qipeng/arc-swift.

ing. We report accuracies on the development set.

We convert the PTB constituency trees to the Stan-

ford Dependencies formalism (de Marneffe et al.,

2006) for our dependency edge prediction task.

3.4 Representation

We use the 5.5 billion-word pre-trained ELMo rep-

resentations (Peters et al., 2018a). Since the output

of the first BiLSTM layer was recently shown to be

the most transferrable on a wide variety of tasks, in-

cluding part-of-speech and syntax (Liu et al., 2019),

we focus on analyzing that layer, which we denote

ELMo1.

3.5 Results

Selectivity of default hyperparameters. Our

results with linear, bilinear, and MLP probes with

“default” hyperparameters, as specified in § 3.2, are

found in Table 1 (top). We find that linear probes

achieve similar part-of-speech accuracies to MLPs

(97.2 compared to 97.3) with substantially higher

selectivity (26.0 vs 4.50). In dependency edge pre-

diction, we find a definite gap between bilinear

probe accuracy (89.0) and MLP-1 accuracy (92.3).

However, the bilinear probe achieves 16.7 selec-

tivity, compared to −0.7 by MLP-1 and 1.3 by

MLP-2. Thus, with no regularization, modest gains

in linguistic task accuracy through MLP probes

over linear/bilinear probes are tempered by losses

in selectivity. Bilinear and linear probes themselves

show a significant capacity for memorization.

Does adding moderate regularization through

dropout (e.g., p = 0.4) consistently lead to selec-

tivity? Surprisingly, as shown in Table 1 (middle),

the opposite is true for some MLP probes, where

selectivity actually decreases (e.g., 4.2 → 3.4 for

MLP-2). In one case, the MLP-1 probe on depen-

dency edge prediction, dropout increases selectivity

(-0.7 → 0.7) but for no others.

How hard is it to find selective probes? We

tried 6 methods for controlling probe complexity,

and all worked except dropout and early stopping,

though never for a broad range of hyperparame-

ters. For each complexity control method except

dropout and early stopping, we find hyperparame-

ters that lead to high linguistic task accuracy and

high selectivity. Our results are summarized in

Figure 4.

We find that constraining the hidden state di-

mensionality of MLPs is an effective way to en-

courage selectivity at little cost to linguistic task

https://github.com/qipeng/arc-swift
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Figure 4: Linguistic task accuracies and selectivities for the 5 complexity control methods. All methods except dropout and
early stopping are shown to improve selectivity without a large impact on linguistic task accuracy. All methods for the same task
share a common y-axis, and use their own categorical x-axis. All x-axes are ordered from most severe constraints on complexity
(left) to most laissez-faire (right).

accuracy. MLP hidden state sizes of 10 and 50,

for part-of-speech tagging and dependency head

prediction respectively, lead to increased selectivity

while maintaining high linguistic task accuracy. As

such, MLP probes with hundreds or 1000 hidden

units, as is common, are overparameterized.

Constraining the number of training examples

is effective for part-of-speech, suggesting that learn-

ing each linguistic task requires fewer samples

than our control task. However, for dependency

edge prediction, this leads to significantly reduced

linguistic task accuracy. Finally, we find that the

right weight decay constant can also lead to high-

accuracy, high-selectivity probes, especially for de-

pendency edge prediction. As shown, however, it is

unclear what hyperparameters to use (e.g., weight

decay 0.1) to achieve both high accuracy and high

selectivity; that is, finding selective MLP probes is

non-trivial.

Applying dropout, the most popular probing

regularization method (Adi et al., 2017; Belinkov

and Glass, 2019; Şahin et al., 2019; Kim et al.,

2019; Elloumi et al., 2018; Belinkov and Glass,

2017; Belinkov et al., 2018) does not consistently

lead to high-accuracy, high-selectivity MLP probes

across a broad range of dropout probabilities (p =
0.2 to p = 0.8) on part-of-speech tagging. For de-

pendency edge prediction, dropout of p = 0.6 im-

proves the selectivity of MLP-2 but not MLP-1, and

considerably increases the already relatively large

selectivity of the bilinear probe. Early stopping in

the ranges tested also has little impact on part-of-

speech tagging, selectivity, but does improve selec-

tivity of MLP dependency edge prediction probes.

From our study, we pick a set of hyperparam-

eters for linear, bilinear, MLP-1 and MLP-2 probes

to encourage selectivity and linguistic task accu-

racy together, to compare to default parameters and

dropout. We chose rank constraints of 10 and 45,

respectively (with no other changes,) for linear and

MLP part-of-speech tagging probes, weight decay

of 0.01 for the bilinear dependency probe, and

weight decay of 0.1 for MLP dependency probes.

We report the results of these probes in Table 1

(bottom). In all cases, we see that the right choice

of probe leads to considerably higher selectivity

than dropout or no regularization. In particular,

for part-of-speech tagging, our chosen MLP-1
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probe achieves 16.6 selectivity, up from 4.5, and

on dependency head prediction, 6.2 selectivity, up

from -0.7.

3.6 Discussion

Our most consistent result seems to be that all

probes, whether linear, bilinear, or multi-layer per-

ceptron, are over-parameterized and needlessly

high-capacity if using defaults like full-rank weight

matrices, hidden states with a few hundred dimen-

sions, and moderate dropout. We can tell this is

the case because we’re able to heavily constrain

the probes (e.g., to rank or 10-dimensional hidden

states with little loss in accuracy.

We find that the most selective probes of those

tested, even after careful complexity control, are

linear or bilinear models. They also have the advan-

tage that they exhibit high selectivity without the

need to search over complexity control methods.

However, the most accurate probes on the more

complex task of dependency edge prediction are

MLPs, even with hyperparameters tuned for se-

lectivity. This suggests that while much of the

part-of-speech information of ELMo is extractable

linearly, some information about syntactic trees

is not available to a bilinear function. In some

cases, therefore, one might opt for an MLP probe

to extract non-linear features, while optimizing for

selectivity through hyperparameter choices.

Errors in Selective and Non-Selective Probes

Do selective and non-selective probes make dif-

ferent types of errors? We ran a qualitative study

on this, training ten MLP-1 probes and ten linear

probes, each with default parameters, on part-of-

speech tagging. We then manually inspected their

aggregate confusion matrices for trends in differ-

ences between the models’ errors.

While the MLP performed marginally better at

recognizing many categories, the plurality of im-

provement over the linear probe by far was in cor-

rectly identifying the difference between nouns and

adjectives in phrases. For example,

Kan.-based/JJ National/NNP Pizza/NNP

rental/JJ equipment/NN

were correctly labeled by the MLP but not

the linear probe, which incorrectly labeled the

adjectives as nouns. As can be seen with the

second example, the distinction between a JJ NN

modified noun and a NN NN noun compound

is quite subtle, and the MLP picks up on the

distinction considerably better.

The linear probe, however, was substantially

more accurate at predicting the NNP tag, which

the MLP probe frequently mislabeled as NNPS.

Manual inspection showed a general trend:

Environmental/NNP Systems/NNP Co./NNP

Cara/NNP Operations/NNP Co./NNP

7.8/CD %/NN stake/NN in/IN Dataproducts/NNP

In each case, the MLP probe mislabeled the word

with the suffix -s as NNPS. The linear probe was

considerably less prone to this error. We hypothe-

size that this is because the MLP probe is expres-

sive enough to pick up on (spurious) markers of

plurality as well as status as a proper noun inde-

pendently and combine them, whereas the linear

probe is less able to do so. If this hypothesis is

true, then this serves as an example of how less

selective probes may be less faithful in represent-

ing the linguistic information of the model being

probed, since features may be combined to make

fine-grained distinctions.

4 Selectivity Differences Confound Layer

Comparisons

In this section, we use selectivity to shed light on

confounding factors when comparing the linguis-

tic capabilities of different representations. Mul-

tiple studies have found probes on ELMo1 to per-

form better at part-of-speech tagging than probes

on ELMo2 (Peters et al., 2018a; Tenney et al., 2019;

Liu et al., 2019). As we note, these results depend

on the probe as well as the representation; given

what we know about probes’ capacity for memo-

rizing at the type level, we explore an alternative

to the hypothesis that ELMo1 has higher-quality

part-of-speech representations than ELMo2. In

particular, word identities are strong features in

part-of-speech tagging when used in combination

with other indicators; since ELMo1 is closer to

the word representations than ELMo2, it may be

easier to identify word identities from it, meaning

the probe may utilize word identities more readily,

as opposed to picking up on a representation of

part-of-speech.

4.1 Experiments

We run experiments on the first and second contex-

tual layers of ELMo, denoted ELMo1 and ELMo2.
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We also examine the representations of an un-

trained BiLSTM run on the non-contextual charac-

ter CNN word embeddings of ELMo, shown to be a

strong baseline contextualization method, but with-

out any linguistic knowledge learned from context

(Zhang and Bowman, 2018; Hewitt and Manning,

2019). We denote this model Proj0.

We train linear and MLP-1 probes for part-of-

speech tagging, and bilinear and MLP-1 probes

for dependency edge prediction, all with default

hyperparameters (§ 3.2). We examine both the

linguistic task accuracy and selectivity achieved by

each probe on each representation.

4.2 Results & Discussion

We find probes on ELMo2 to be strikingly more

selective than those on ELMo1, consistent across

all probes, both for part-of-speech tagging and de-

pendency head prediction. In particular, the linear

probe on ELMo2 achieves selectivity of 31.4, com-

pared to selectivity of 26.0 for ELMo1, for a gain

of 5.4. The same probe achieves 96.6 linguistic

task accuracy on ELMo2 and 97.2 on ELMo1, for

a loss of 0.6. The MLP probe shows roughly the

same result. So, does ELMo1 have a better grasp

of part-of-speech than ELMo2? Our results, sum-

marized in Table 2, offer the alternative hypothesis

that probes use word identity as a feature to pre-

dict part-of-speech, and that feature is less easily

available in ELMo2 than ELMo1.

Probes on Proj0 and ELMo2 achieve similar

part-of-speech tagging accuracy, echoing findings

of (Zhang and Bowman, 2018), but we find that

Proj0 is far less selective, suggesting that probes

on ELMo2 rely far less on word identities than

those on Proj0. Without considering selectivity,

it might be thought that ELMo2 encodes nothing

about part-of-speech, since it doesn’t beat the Proj0

random representation baseline. Taking selectivity

into account, we see that probes on ELMo2 are

unable to rely on word identity features like those

on Proj0, so to achieve high accuracy, they must

rely on emergent properties of the representation.

5 Related Work

Early work in probing, (also known as diagnos-

tic classification (Hupkes et al., 2018),) extracted

properties like parts-of-speech, gender, tense, and

number from distributional word vector spaces like

word2vec and GloVe (Mikolov et al., 2013; Pen-

nington et al., 2014) using linear classifiers (Köhn,

Part-of-speech Tagging

Linear MLP-1

Model Accuracy Selectivity Accuracy Selectivity

Proj0 96.3 20.6 97.1 1.6

ELMo1 97.2 26.0 97.3 4.5

ELMo2 96.6 31.4 97.0 8.8

Dependency Edge Prediction

Bilinear MLP-1

Model Accuracy Selectivity Accuracy Selectivity

Proj0 79.9 -4.3 86.5 -9.0
ELMo1 89.7 6.7 92.5 -1.0
ELMo2 84.5 6.2 89.5 1.4

Table 2: Part-of-speech and dependency edge prediction
probe accuracies and selectivities across three representations.
ELMo1 and ELMo2 are the two contextual layers of ELMo,
while Proj0 refers to an untrained BiLSTM contextualization
of ELMo’s non-contextual character CNN representations.

2015; Gupta et al., 2015). Soon after, the investi-

gation of intermediate layers of deep models using

linear probes was introduced independently by Et-

tinger et al. (2016) and Shi et al. (2016) in NLP

and Alain and Bengio (2016) in computer vision.

Since then, probing methods have varied as to

whether they investigate whole-sentence properties

like sentence length and word content using a sen-

tence vector (Shi et al., 2016; Adi et al., 2017; Con-

neau et al., 2018), word properties like verb tense or

part-of-speech using word vectors (Shi et al., 2016;

Belinkov et al., 2017; Liu et al., 2019), or word-pair

properties like syntactic relationships using pairs

of vectors (Tenney et al., 2019; Hewitt and Man-

ning, 2019). Probes have been used to make rel-

ative claims between models or components (Adi

et al., 2017; Liu et al., 2019; Belinkov et al., 2017)

or absolute claims about models above baselines.

Probes have also been used to test hypotheses about

the mechanisms by which models perform tasks

(Hupkes et al., 2018; Giulianelli et al., 2018).

Previous work has made extensive use of control

representations like non-contextual word embed-

dings or models with random weights (Belinkov

et al., 2017; Tenney et al., 2019; Saphra and Lopez,

2019; Hewitt and Manning, 2019); our control

tasks provide a complementary perspective, mea-

suring a probe’s ability to decode a random func-

tion from the representation of interest.

The most related work to ours is that of Zhang

and Bowman (2018), who presented experiments

for understanding the roles probe training sam-

ple size and memorization have on linguistic
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task accuracy. They observed that untrained

BiLSTM contextualizers achieved almost the

same part-of-speech tagging accuracies as trained

contextualizers, and found that by reducing the

probe training set, the trained models could be

shown to significantly outperform the untrained

model. They evaluated which representations

were easiest to memorize from by probing to

predict nearby words, finding as we do that word

identities are most easily available in untrained

contextualizers’ representations. They take this

as evidence that gains in part-of-speech probing

accuracy on the trained representations over the

untrained representations are due to linguistic

properties, not memorization. Our experiments

with selectivity complement their results, finding

among other things that even though untrained

BiLSTMs are better for memorization than ELMo,

there is still a striking capacity for memorization

using ELMo when using high-capacity probes.

5.1 Random tasks

Zhang et al. (2017) defined completely random

tasks related to Rademacher complexity (Bartlett

and Mendelson, 2001) to understand the capacity

of neural networks to overfit, showing that they

are expressive enough to fit random noise, but still

function as effective models. In our random control

tasks, randomness is applied at the type-level rather

than at the example-level, and are designed to have

strong non-linguistic structure as opposed to ab-

solutely no structure. While the tasks of Zhang

et al. (2017) aid in understanding the expressivity

of neural nets, our control tasks aid in understand-

ing the expressivity of a probe model with respect

to a specific linguistic task.

6 Conclusion

Through probing methods, it has been shown that

a broad range of supervised learning tasks can

be turned into tools for understanding the prop-

erties of contextual word representations (Conneau

et al., 2018; Tenney et al., 2019). Alain and Ben-

gio (2016) suggested we may think of probes as

“thermometers used to measure the temperature si-

multaneously at many different locations”. We

instead emphasize the joint roles of representations

and probes together in achieving high accuracy on

a task; we suggest that probes be thought of as

craftspeople; their performance depends not only

on the materials they’re given, but also on their

expressivity.

To explore the relationship between represen-

tations, probes, and task accuracies, we defined

control tasks, which by construction can only be

learned by the probe itself. We’ve suggested that a

probe which provides insights into the properties

of the representation should be selective, achieving

high linguistic task accuracy and low control task

accuracy. Selectivity measures the probe’s ability

to make numerous output decisions independently

of linguistic properties of the representation.

We’ve found that linear and bilinear models

achieve higher selectivity at similar accuracy to

MLP probes on part-of-speech tagging. MLP

probes, achieving higher accuracy on the more com-

plex task of dependency edge prediction, can be

re-designed to achieve higher selectivity at a rela-

tively small cost to dependency edge accuracy, but

often not through dropout, the most popular MLP

probe regularization method.

Finally, we showed how selectivity can be used

to provide added context to probing results, demon-

strating that marginal differences in part-of-speech

tagging accuracy between ELMo1 and ELMo2 cor-

respond to large differences in selectivity, and sim-

ilarly, the even though ELMo2 achieves similar

part-of-speech tagging accuracy to a random repre-

sentation baseline, ELMo2 achieves it with much

higher selectivity.

As probes are used increasingly to study repre-

sentations, we hope that control tasks and selectiv-

ity, as diagnostic tools, can help us better interpret

the results of these probes, ultimately leading us to

better understand what is learned by these remark-

ably effective representations.

Reproducibility. All code, data, and experi-

ments are available at https://worksheets.

codalab.org/worksheets/

0xb0c351d6f1ac4c51b54f1023786bf6b2.
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