
Antimicrobial peptides (AMPs) are produced by multi­
cellular organisms as a defence mechanism against 
competing pathogenic microbes1,2. Pioneering studies 
have led to the discovery of various types of these ‘host 
defence peptides’ — including defensins3, cecropins4, 
magainins5 and cathelicidins6 — with remarkably dif­
ferent structures and bioactivity profiles7. Extensive 
research has led to the realization that these bioactive 
peptides do not merely act as direct antimicrobial agents 
but also represent important effectors and regulators of 
the innate immune system that are able to profoundly 
modulate the immune response through a range of 
activities, including increasing chemokine production 
and release by immune and epithelial cells, enhancing 
wound healing and angiogenesis, exerting pro­ and 
anti­apoptotic effects on different immune cell types, as 
well as having adjuvant activity in promoting adaptive 
immunity2,8–10.

In addition to their direct (although sometimes 
weak) antimicrobial activities, AMPs have additional 
antimicrobial effects as they are able to suppress biofilm 
formation and induce the dissolution of existing bio­
films11, chemotactically attract phagocytes and mediate  
non-opsonic phagocytosis12–14. Some natural AMPs, like 
porcine protegrin, exhibit strong antimicrobial effects 
but in general the activity of AMPs is improved by 
their increased concentrations in phagocyte granules, 
the crypts of the intestine and near degranulating  
phagocytes15–17. In  vitro studies have revealed that 
direct antimicrobial activity is not limited to the pre­
viously suggested mechanisms of membrane and/or 
cell rupture but instead extends to interference with 

membrane­associated biosynthesis, macromolecular 
synthesis in the cytoplasm and metabolic functions2,18,19.

It has been suggested that the term ‘antimicrobial  
peptide’ should be used when direct antimicrobial activity  
is being examined, and the term ‘host defence peptide’ 
should be used when referring to anti­infective activity 
that enhances or modulates the host immune response 
to infectious agents20. Here, we review the current status  
of computer­assisted peptide design, with particular 
focus on the in silico generation of novel AMPs. We 
concentrate on describing the optimization of direct 
anti microbial activity, as optimization studies on host 
defence peptides and their synthetic innate defence  
regulator counterparts are still in their infancy.

Our awareness of natural antimicrobials — namely,  
the “existence of antimicrobial substances in blood, 
leucocytes and lymphatic tissue”21 — dates back to 
the late nineteenth century22. The concept that low­
molecular­weight antimicrobial proteins were impor­
tant in immunity was first highlighted by studies on 
human phagocytes23 and Hyalophora cecropia moths24. 
Currently, the most potent natural peptides known 
to exhibit antimicrobial activity are the β­hairpin 
peptides typified by the horseshoe crab polyphe­
musin I (RRWC
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YRGFC
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YRKC
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R; where 

the equivalently numbered cysteine residues form 
cystine disulphide bridges)25,26 and pig protegrin 
(RGGRLC

1
YC

2
RRRFC

2
VC

1
VGR)27,28. Polyphemusin I 

inhibits the growth of various Gram­positive and Gram­
negative bacteria as well as Candida albicans at a minimal 
inhibitory concentration (MIC) of around 0.5–1 μg per 
ml29. However, polyphemusin I does not protect against  
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Abstract | Multidrug-resistant bacteria are a severe threat to public health. Conventional 

antibiotics are becoming increasingly ineffective as a result of resistance, and it is imperative 

to find new antibacterial strategies. Natural antimicrobials, known as host defence peptides 

or antimicrobial peptides, defend host organisms against microbes but most have modest 

direct antibiotic activity. Enhanced variants have been developed using straightforward 

design and optimization strategies and are being tested clinically. Here, we describe 

advanced computer-assisted design strategies that address the difficult problem of 

relating primary sequence to peptide structure, and are delivering more potent, 

cost-effective, broad-spectrum peptides as potential next-generation antibiotics.
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Pseudomonas aeruginosa infections in cyclophosphamide-

treated (neutropenic) mice, it exhibits haemolytic activity 
at higher concentrations, and a protegrin derivative — 
IB­367 (iseganan) — failed in Phase III clinical trials of 
oral mucositis29–31.

Most of the natural cationic peptides are much less 
(~10–100­fold) active than these AMPs and are strongly 
antagonized by physiological concentrations of mono­ 
and divalent cations as well as polyanionic polymers 
like glycosaminoglycans and mucin32. Thus, new design 
approaches are required that enable the identification of 
more cost­effective sequences (that is, smaller sequences 
without post­translational modifications) that are highly 
active, have broad­spectrum activity without associ­
ated toxicities, good pharmacokinetics and a desired 
selectivity profile.

The challenge of bacterial resistance

Presumably, bacteria have been exposed to AMPs for 
millions of years and, with the exception of a few species  
(such as Burkholderia spp.)33, widespread resistance has 
not been reported, making them a potential treasure 
trove of starting points for rational, focused antimicro­
bial drug design. In most instances natural AMPs do not 
appear to be highly optimized for direct antimicrobial 
activity, and it is likely that multiple modestly active pep­
tides with concomitant immunomodulatory activities 
work effectively in combination and/or when induced or 
delivered to sites of infection34. Drug developers are not 
limited to such considerations and can strive to develop 
AMPs with an optimized specific function or target.

Modern antibiotics have a considerably limited 
number of macromolecular targets, often essential bac­
terial proteins, and are subject to severe and growing  
resistance problems35–37. Notably, the development 
of resistance against AMPs has occurred to a much 
lesser degree as they usually work by attacking multiple 
hydrophobic and/or polyanionic targets38,39. Thus, it is 
difficult to obtain mutants that are resistant to AMPs, 
and training methods — for example, multiple passages 
with half the MIC of AMPs — are usually required for 
the development of any resistance40.

Mechanisms of resistance to AMPs include cell surface 
modification (which can occur adaptively through the 
two­component regulator PhoPQ, for example), exter­
nal trapping of AMPs, active efflux of AMPs, proteolytic 
degradation, as well as the suppression of host path­
ways by the pathogen for the production of AMPs39,41. 
These challenges are usually met by screening peptides 
for activity against intact bacteria using conventional 
bacterial growth media that contain physiological salt 
concentrations, and by counterscreening for lack of 
mammalian cell toxicity. The development of computa­
tional alternatives to this experimental selection protocol 
is aiding the elimination of poor candidate peptides at 
very early stages of development.

In addition, the realization that small­molecule drugs 
tend to interact with multiple macromolecular targets 
has profoundly changed drug design42–44. Consequently,  
chemogenomics and ‘systems’ views have evolved as methods  
for rational drug discovery and compound library design, 

and target profile prediction that specifically addresses 
undesired off­target activity is now possible for drug­like 
compounds45–47. So­called kernel methods have recently 
been added to the set of algorithms that seem to be par­
ticularly suited for the purpose of identifying drug–target  
interaction pairs48. These methodological advances 
have not yet been transferred to peptide design but have  
the potential to boost the design of AMPs with desired 
selective antibacterial activity.

Mechanism of action of AMPs

A profound understanding of the molecular mechanisms 
responsible for the direct antibacterial activity of AMPs 
will enable the development of improved predictive 
models, and several mechanisms of action have been 
proposed49–51. Indisputably, AMPs must interact with 
membranes as part of their direct antibacterial mecha­
nism (or mechanisms) of action, leading to membrane 
perturbation, disruption of membrane­associated 
physiological events such as cell wall biosynthesis or cell 
division, and/or translocation across the membrane to 
interact with cytoplasmic targets (FIG. 1). It is generally 
assumed that the positively charged AMP initially inter­
acts with the negatively charged lipid head groups of the 
outer surface of the cytoplasmic membrane. The peptide 
is then inserted, in an approximately parallel orientation 
to the bilayer, into the outer leaflet of the cytoplasmic 
membrane lipid bilayer, leading to the displacement 
of lipids.

Possible alterations in membrane structure, including 
thinning, pore formation, altered curvature, modified 
electrostatics and localized perturbations, may result 
in the reorientation of peptide molecules in the mem­
brane. Finally, the peptides may translocate through the 
membrane and diffuse into the cytoplasm to reach intra­
cellular targets. These basic mechanisms certainly explain 
many aspects of the observed antibacterial activity  
of AMPs but they do not increase our understanding of 
the overall number of fundamentally different mecha­
nisms by which AMPs interact with the bilayer, or the 
relative importance of membrane rupture, graded leak­
age and non­membrane mechanisms. Moreover, they do 
not answer the important question of whether membrane 
binding represents the sole basis of AMP selectivity52. 
Further modelling analyses of peptides and lipids will 
be required to achieve significant progress in rational 
AMP design and engineering based on membrane 
interactions.

The interactions of an AMP with the membrane can­
not be explained by a particular sequential amino­acid 
pattern or motif; rather, they originate from a combina­
tion of physicochemical and structural features8 including  
size, residue composition, overall charge, secondary 
structure, hydrophobicity and amphiphilic character53. 
There has been considerable discussion, based largely 
on model membrane studies, about how AMPs exhibit 
strong preferences for specific membrane compositions 
and seemingly prefer membranes that: contain compara­
tively large fractions of anionic lipids, such as phosphati­
dylglycerol and cardiolipin; maintain a high electrical 
potential gradient; and lack cholesterol, such as bacterial 
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membranes. For example, bacterial membranes possess 
a comparatively large fraction (up to 20 mole percent) 
of negatively charged lipids and maintain high electrical 
potential gradients (a transmembrane potential (Δψ) of 
approximately –120 mV) that attract positively charged 
substances like AMPs, whereas the membranes of plant 
cells and animal cells are enriched in cholesterol and 
lipids, have no net charge and maintain weak Δψ1.

To assess AMP­induced membrane tropism, a pro­
tocol for surface plasmon resonance has been devised 
that involves using membrane compositions that mimic 
those of mammalian and microbial cells53. A membrane­
based surface plasmon resonance sensor chip has also 
been described that can detect a binding event and 
monitor the actual membrane­disturbing effect of the 

peptides54. However, the actual in vivo situation is likely 
to be more complex as membranes are not just simple 
passive bilayer structures as assumed in this surface 
plasmon resonance protocol and in model membrane 
studies; rather, they contain domains that may include 
hexagonal structures, minor lipid species, embedded 
proteins and glycolipids, and may differ in fluidity, fatty 
acid chain composition, as well as transmembrane Δψ 
and ΔpH gradients49,55.

This does not mean that model membrane systems 
have no value; however, any predictions that come 
from such systems cannot automatically be trans­
ferred to the in vivo setting. For example, the human 
cathelicidin AMP LL­37 has an absolute tropism for 
model membranes of bacterial­like composition56 but 
its antibacterial activity is largely restricted by physio­
logical conditions57. LL­37 is freely translocated across 
eukaryotic membranes, in a similar manner to cell­
penetrating peptides, and this translocation is obliga­
tory for its immunomodulatory function of chemokine 
induction58,59.

Preference for a certain membrane or classes of 
membranes is likely to be important in peptide activity. 
This probably requires nascent or induced (via peptide–
membrane interaction) structural features of AMPs, 
rather than mere electrostatic attraction due to opposing 
charges or hydrophobic interactions. Further evidence 
for this concept stems from extensive studies performed 
with the cell­penetrating peptide penetratin (also known 
as the protein transduction domain), a 16­residue cati­
onic peptide (RQIKIWFQNRRMKWKK­amide) cor­
responding to the third helix of the homeodomain of 
the antennapedia protein60, which has been patented as a 
carrier peptide (or a cargo carrier) for drug delivery into 
cells61. The mutation of a single residue (W6F) abolished 
the membrane­transfer properties of penetratin, indicat­
ing that lipid binding per se might be insufficient for 
AMP activity62. Similarly a W2G mutation in cecropin, 
an AMP constituting a major part of cell­free immunity 
in insects63, nearly abolished antibacterial activity64.

There are many similarities between cell­penetrating 
peptides and AMPs. Both exhibit antimicrobial effects 
and can carry passenger molecules into the cell; in fact, 
the well­studied peptide LL­37 can be translocated into 
eukaryotic cells at concentrations below those required 
to kill bacteria (at the equivalent divalent cation con­
centrations)65. However, it is worth noting that AMPs 
are considered to have the ability to pass across bacte­
rial membranes without requiring a transport appara­
tus, whereas cell­penetrating peptides are thought to be 
internalized primarily by active endocytosis66, perhaps 
pointing to a fundamental difference in how peptides 
access prokaryotic and eukaryotic cells.

AMPs feature a remarkable variety of structural 
motifs67. FIGURE 2 presents an alternative to the tradi­
tional structural classification of peptides with some 
degree of antimicrobial activity (and for which experi­
mentally determined structures are available). To obtain 
an overview of their structural diversity, we clustered the 
peptides according to their backbone structure in solu­
tion (data obtained from nuclear magnetic resonance 

Figure 1 | Potential mechanism of membrane disruption and/or translocation by 

antimicrobial peptides. The antimicrobial peptide (AMP) is represented as a ribbon 

diagram, with positively charged residues indicated in blue (other residues are shown 

in yellow). The initial stages include membrane attachment (part a) and insertion into 

the outer leaflet (part b). Not all AMPs actually insert into and disrupt the membrane 

(part c) or form pores. Some peptides are too short to span the bilayer (for example, 

the cyclic decapeptide gramicidin S). A high peptide concentration leads to increased 
membrane curvature and facilitates pore formation192 or translocation across  

the membrane. A suggested feature of the mode of action of AMP is to stretch, 

disorder and thin the outer leaflet of the membrane (part b). The panels on the right 

illustrate hypothetical mechanisms of the AMP–membrane interaction that can  

be studied by molecular dynamics simulations. Here, spinigerin (Protein Data Bank193 

ID: 1ZRV194) was simulated in explicit water with a POPE (1-palmitoyl-2-oleoyl- 

phosphaethanolamine) membrane bilayer model using the NAMD v2.7b2 software195 

and the CHARMM22 force field196.
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spectroscopy). These peptides have very different folds, 
which suggests that elements of their secondary structure 
can be used as a means for classification68. Furthermore, 
these peptides have to integrate, interact with and/or 
pass a specific membrane, but the mechanisms by which 
they do this are unclear. Extracting the discriminating 
features, however delicately tuned, among these groups 
of membrane­interacting peptides will help us under­
stand the functional aspects of AMPs and enable the 
optimization of activity and ‘rational’ structure­based 
peptide design.

AMP databases

As natural AMPs are largely derived from gene­coded 
sequences, bioinformatics methods have been applied to 
create databases of known AMPs as well as tools to specif­
ically predict AMPs from genomes that have not yet been 
annotated. For example, the AMPer resource was devel­
oped with the aim of classifying natural AMPs, as well as 
predicting novel AMPs in the bovine genome using hidden 

Markov models69,70. Recently, feature­extraction methods 
have been applied to the Collection of Antimicrobial 
Peptides71, and alignment­based AMP detection was  
performed72. Another example is the ANTIMIC collection, 
which contains approximately 1,700 known and putative 
AMP sequences73. One of the original data resources, the 
Antimicrobial Sequences Database, was created more 
than 14 years ago and there are now at least 21 AMP 
repositories in different stages of activity and mainte­
nance74. The Antimicrobial Peptides Database (APD)75, 
and later the updated APD2 (REF. 76), is a valuable resource 
of AMP sequences. This well­maintained database offers 
various options for convenient searches in different phylo­
genetic kingdoms. In recent years, the discovery of AMPs 
from plants and marine organisms has further augmented 
the variety of anti­infective peptides with biotechnological 
and pharmaceutical potential77,78.

Despite many convenient database analysis options, 
one may doubt whether studies across AMPs that are 
structurally widely dissimilar will be fruitful for under­
standing AMP activity in general, given their potentially 
diverse mechanisms of action. To address this issue and 
enable the development of improved data resources, syn­
thetic peptide design will help to unravel the underlying 
structure–activity relationships (SARs). Like databases of 
small, drug­like bioactive compounds, AMP databases 
provide an indispensable knowledge base for both quali­
tative and quantitative activity prediction models79–81.  
Knowledge­based computational approaches have 
already led to the design of synthetic AMPs, such as the 
adepantins (automatically designed peptide antibiotics)82, 
and allowed the systematic mining of genomic expressed 
sequence tag data aimed at the discovery of hitherto 
undescribed natural AMP sequences83.

Synthetic AMPs

To develop AMPs into therapeutics, several objectives 
must be met. As an anti­infective treatment, an AMP 
must be active against the pathogen of interest and have 
low toxicity at the therapeutic dose (that is, it must have a  
high therapeutic index). Recent research on AMPs has 
focused on methods to search through the constella­
tion of known or predicted peptide sequences — either 
empirically or computationally — for peptides with 
desired properties, and these approaches are continually  
evolving. We distinguish three research approaches: 
modification of known AMP sequences (known as  
templates) with limited computational input; rigorous 
biophysical modelling to understand peptide activity;  
and virtual screening. We outline these methodologies and  
data requirements below.

Template-based studies. Studies of AMP activity based 
on a template AMP with known activity seek to identify 
peptides with greater antimicrobial activity or reduced 
toxicity based on altered amino­acid sequences84. These 
studies have often systematically — but incompletely — 
changed a single amino acid in the peptide to identify 
amino acids and positions that are important for activity. 
Cecropin, magainin, protegrin and lactoferricin have all 
been used as AMP templates. In most cases, the source of 

Figure 2 | Clustering of antimicrobial peptides according to backbone torsion 

angles. Representatives of each cluster formed are shown as ribbon diagrams with 

secondary structure elements highlighted (helices are shown in turquoise, and strands 

are shown in magenta). We selected 135 antimicrobial peptides (AMPs) from the updated 

Antimicrobial Peptide Database76, for which nuclear magnetic resonance solution 

structures are available from the Protein Data Bank. Each peptide structure was 

represented by a 16-dimensional vector coding for the prevalence of backbone torsion 

angles (Φ and ψ), which are characteristic of peptide structure, and clustered using 

Ward’s method197. As a result, AMPs with similar backbone folds were grouped together. 

This automated, fine-grained classification provides a basis for the rational design of 

novel AMPs with desired structural features. All calculations were performed using 

Matlab R2010b (The MathWorks Inc., Natick, USA).
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their activity has been investigated by examining peptide 
variants that were designed on the basis of the general — 
but somewhat limited — concept that charge and amphi­
philicity are crucial to peptide activity85–87. Despite their 
apparent limitations, such studies have shed light on the 
importance of specific amino acids and residue positions 
to peptide activity.

It is evident, however, that such ‘local’ approaches 
fail to account for interactions between amino acids 
that influence the global three­dimensional conforma­
tion of the peptide88. Using high­throughput peptide 
synthesis on arrays, coupled with a high­throughput and 
rapid luminescence­based assay for bacterial killing89, it 
has been possible to carry out a complete substitution 
study including all single amino­acid changes to bacte­
necin 2A, a linearized version of bovine bactenecin90,91. 
Overall, it is clear when comparing two amino­acid sub­
stitution studies that the substitutions favouring activity 
vary according to the template sequence, and analogous 
substitutions may well have substantially different effects 
at different positions in the primary sequence. In other 
words, the effect of a particular residue substitution is 
context­dependent92.

Possibly the most intuitive attempt to model AMPs 
based on natural peptide sequences was a linguistic 
model in which sequences in one­letter amino­acid 
codes were considered as ‘text’ and ‘formal grammar 
rules’ were applied to identify text patterns in naturally 
occurring peptides93. When novel peptides were con­
structed based on this linguistic model but selected 
to be dissimilar to natural AMPs, they were found to 
be superior to similar peptides with a shuffled amino­
acid sequence, demonstrating that this method did 
indeed identify functionally relevant patterns or motifs. 
Out of the 40 peptides that were designed, four exhib­
ited activity against Escherichia coli or Bacillus cereus at  
concentrations below 64 μg per ml; the most potent  
peptide designed through this approach, D28, had an 
MIC against Staphylococcus aureus of 4–8 μg per ml  
and MICs against E. coli of 64 μg per ml. Although these 
values fall far short of the most potent natural peptides 
and even the peptides used in the training sets, this study 
elegantly demonstrated how innovative computer­based 
modelling could support peptide design.

Several studies have chosen templates that are based 
on small amino acids or reduced numbers of amino 
acids. As early as 1992, AMPs consisting only of leu­
cine and lysine residues were synthesized, which were 
active against both Gram­negative and Gram­positive 
bacteria94. Short peptides acting as AMPs were designed 
de novo that consisted of only tryptophan, leucine and 
lysine residues, and the positioning of tryptophan resi­
dues and sequence length on antimicrobial activity was 
investigated95. This study also succeeded in designing 
peptide sequences that are capable of forming amphi­
pathic helices, using only arginine and valine as prototype  
residues.

In another project, the generic template sequence 
acetyl­C­HBHB(P)HBH­GSG­HBHB(P)HBH­C­amide

  

(where B corresponds to a cationic residue; H corresponds  
to a hydrophobic residue; and P corresponds to a polar 

residue) served as the starting point for the design of 
anti­endotoxic peptides using chemoinformatics meth­
ods96. Following a similar template approach, simplistic 
cationic amphiphilic peptides have been devised and 
shown to have membrane­lytic effects against Bacillus 
subtilis and C. albicans by scanning electron micros­
copy85. Notably, the replacement of very hydrophobic 
residues in the apolar face of the amphipathic helix with 
weakly hydrophobic residues decreased the lytic effect of 
the peptide on erythrocytes, demonstrating that exces­
sive hydrophobicity in AMPs increases undesirable 
erythrocyte lysis97.

Recently, a template­based design approach has 
been presented, introducing the concept of specificity 
determinants to achieve membrane selectivity98. This 
design concept involves the use of positively charged 
amino­acid residues in the centre of the non­polar face 
of amphi pathic α­helical AMPs to enhance the peptide’s 
selectivity between eukaryotic and prokaryotic mem­
branes. Starting from a known broad­spectrum AMP, the 
systematic alteration of residues led to reduced haemo­
lytic activity and improved therapeutic indices against 
the targets Acinetobacter baumannii and P. aeruginosa. 
These results demonstrated that a reduction in haemo­
lytic activity can be achieved using computer­assisted 
drug design without losing antimicrobial activity, and 
that both charge distribution and structural features 
have a delicate role in the balance between membrane 
recognition and the selectivity of AMPs.

In 2009, the design of an AMP that exhibits consider­
able selectivity for both P. aeruginosa and Streptococcus 
mutans was reported99. This effect was accomplished by 
fusing a nonspecific widespread AMP with a specifically 
targeted AMP. One domain of the chimeric peptide was 
proposed to harbour the killing function, whereas the 
other led to selectivity. Forming chimaeras from two 
active compounds is a popular concept in computer­
assisted drug design, and is used by the software tools 
TOPAS100 and BREED101. However, this approach may 
not always be applicable to peptides, as it does not auto­
matically take into account structural folding (or refold­
ing) that might involve the two supposed domains.

Another important strategy for enhancing AMP activity  
is the addition of acyl moieties, as these can provide the 
necessary hydrophobic domains for making short pep­
tides102–104. For example, the aminolauryl­acylated AMP 
sequence ALWKTLLKKVLKA exhibits improved bacteri­
cidal properties and is less prone to degradation by plasma 
proteases than the unmodified peptide42.

Biophysical studies. In contrast to template­based design 
methods in which peptides are treated as a ‘text’ formed 
by amino acid ‘letters’ bearing individual properties 
like charge and hydrophobicity values, biophysically 
motivated modelling studies aim to understand AMP 
activity and design improved variants by examining 
peptide structures in hydrophobic environments or by 
modelling peptides at the atomic level. Examples of these 
types of studies include molecular modelling based on 
free energy perturbation, molecular dynamics simulation as 
well as thermodynamic calculations of the interactions 
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of peptides with membranes105. Such computationally 
demanding exercises have been successfully applied to 
drug design and optimization106,107, and are also increas­
ingly being applied to peptide design. The AMPs bac­
tenecin108 and indolicidin109 are examples of known 
peptides that have been used as templates for structure­
guided design.

Conversely, porcine protegrin110 was investigated 
using molecular dynamics methods. Protegrin is thought  
to act primarily by causing membrane disruption as a 
result of pore formation (at a concentration of approxi­
mately 1 μg per ml), and it is amenable to computational 
modelling because of its β­hairpin structure111. Although  
the precise details of the mechanism of action of proteg­
rin are largely unknown, the model of protegrin activity  
suggests that the following mechanisms are involved:  
electrostatic attraction to the anionic membrane; dimeri­
zation; insertion of protegrin into the membrane; and 
the formation of large aggregates that lead to transmem­
brane pores and a consequent lethal flux of ions from the 
cytoplasm (FIG. 1).

Molecular dynamics simulations may involve repre­
senting each atom of the peptide, surrounding solvent 
and portions of the membrane; the value of a model is 
inevitably limited by the complexity of natural systems 
as simplifications have to be made in computational 
approaches. For example, one can restrict the number 
of peptide atoms represented or replace the solvent 
by a continuous medium (known as an implicit sol­
vent model). Interactions between atoms or coarser­
grained sites are typically calculated based on Coulomb 
and van der Waals forces as well as bond interactions 

using methods derived from a consistent empirical 
force field. Simulations and experimental confirma­
tion are often restricted to peptides interacting with 
micelles or lipid bilayers as surrogates for the bacterial 
membrane. Phenomena such as lipid bilayer thinning 
and conductance induction, as well as the biological 
effects of pores, have emerged from these studies, and 
potentially relevant hydrogen­bonding sites have been 
suggested112–114.

Even though molecular dynamics simulation of the 
AMP–membrane interaction can provide a working 
hypothesis, one has to bear in mind that by using the 
currently available technology the initial conditions for 
simulation (including the conformation of pore forma­
tion) must be well defined, and practical simulation times 
might be too short to allow spontaneous pore forma­
tion to be observed — if indeed this occurs biologically. 
Simulation studies are often interpreted by a disordered 

toroidal pore model but they tend to demonstrate115 that 
only a very small number of peptides (as few as one 
or two) are oriented in a perpendicular manner to the 
membrane, causing substantial membrane perturba­
tion, and these peptides do not tend to cluster (which is 
possibly more consistent with an aggregate model of an 
AMP–membrane interaction)116. Nevertheless, molecu­
lar dynamics simulation was successfully applied in the 
design of ovispirin117 and indolicidin118 analogues, and 
has led to the development of peptides with a twofold 
improvement in antimicrobial activity and a tenfold 
decrease in haemolytic activity.

Virtual screening studies. Virtual screening methods can 
be used when exhaustive synthesis and testing is prohibi­
tively expensive and biology­assisted techniques such as 
phage display119 cannot be applied120. These approaches 
have the advantage of having only a few a priori assump­
tions, as they seek to impute peptide structures based 
on primary sequences. In contrast to computational 
simulation studies, virtual screening studies do not 
necessarily attempt to create models with immediately 
and easily interpretable outcomes. Instead, numerical 
methods are used to determine quantifiable properties 
of peptides (descriptors) — such as charge and hydro­
phobicity — from the primary structure and physico­
chemical characteristics of the peptides, and they are  
used to relate such properties to the biological activi­
ties of the peptides using SAR models. Virtual screening 
studies — more specifically, quantitative SAR (QSAR) 
models — apply numerical analyses to describe the 
relationship between these descriptors as input vari­
ables and biological activity as the output variable. Many 
papers have been published on the statistical analyses 
and machine­learning methodologies that may be used 
for this purpose121,122.

The most important aspect of computer­assisted 
AMP design (FIG. 3) is the accurate estimation or pre­
diction of desired biological activity from the primary 
amino­acid sequence alone. Since the 1980s, computa­
tional QSAR models for peptides have been used as a 
guide for activity prediction and sequence optimization 
for several biological activities (TABLE 1). In the 1990s, 

Figure 3 | Computer-assisted molecular design cycle. 

Peptide design starts from scratch (de novo) or from  

known peptides that have a desired activity (also termed 

‘seed peptides’). In an iterative process new peptides are 

generated in silico using alternating variation-selection 

operators. A ‘fitness function’, often a machine-learning 

model, guides the design towards regions in sequence 

space that contain residue sequences with a higher 

predicted biological activity.
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Artificial neural networks

Estimators of universal function 

that are modelled loosely  

on nervous systems. They can 

be used to find patterns  

in sequence data and for 

modelling structure–activity 

relationships.

machine­learning methods — specifically artificial neural 

networks123 — replaced the more traditional regression 
functions for peptide QSAR models. Currently, a com­
mon computer­based design approach involves combin­
ing a sophisticated activity estimator with a technique 
that enables stochastic optimization (that is, involving 
random iterative processes to overcome issues associated 
with experimental noise).

Evolutionary algorithms, particularly evolution strat­
egies and genetic algorithms, in which the process of 
evolution is performed in silico through successive gen­
erations of mutations, deletions, sequence shuffling and 
so on, have also been used to search for peptides with 
improved activity124–126. Stochastic approaches are suited 
for peptide optimization in a vast search space, particu­
larly for long sequences for which deterministic methods 
are prohibitive. Although some implementations of evo­
lutionary algorithms suffer from certain well­known 
computational inefficiencies (for example, a dependency 
on parameter initialization, partially insufficient sam­
pling and premature convergence)127, they have proven 
their applicability in many practical studies128,129; this can 
be attributed to their overall robustness to experimental 
noise and optimization involving many solutions that 
are locally optimal.

Notably, for each molecular design problem there 
is a best­suited combination of the size of a screening 
compound library (the number of peptides synthesized 
and tested at a time) and the number of iterative synthe­
size­and­test rounds required, with the aim of keeping 
experimental efforts minimal130. The overall concept is 
to utilize the results that are obtained by activity testing  
or prediction to influence the decision as to which pep­
tides should be designed, generated and tested in the 
next cycle. Such a ‘memory’ concept is characteristic of 
adaptive systems and essential for successful navigation 
in a large sequence space131,132 (BOX 1).

Molecular descriptors and QSAR models

In general, peptide modelling is guided by the same 
concepts as small­molecule drug design, particularly to 
account for the underlying pharmacophore and molecular 
shape features that are relevant for an observed or desir­
able activity133,134. Modelling peptides using molecular 
descriptors that account for these features is not a new 
approach. In 1987 a set of three descriptors (z1, z2 and z3) 
was proposed, based on a principal component analysis 
of 29 largely empirical properties such as molecular 
weight, pK (the logarithm of the dissociation constant), 
pI (the isoelectric point), nuclear magnetic resonance  

Table 1 | Selection of computer-based peptide design concepts and approaches

Year Fitness function Design strategy Description Refs

1994  
(and 1998)

Artificial neural 
network

Evolutionary 
algorithm

Peptides are generated de novo by a simulated 
molecular evolution process so that they maximize 
a neural network-scoring function value

92,187, 
201,202

2004 Fold stability, 
energy-based 
probabilities

Amino-acid 
replacement

The ‘inverse folding problem’ is solved to identify 
novel peptide sequences that are compatible with 
backbone templates of reference peptides

203

2005  
(and 2006)

Docking  
simulation

Evolutionary 
algorithm, 
heuristic

A docking score is calculated as an estimation of 
peptide–receptor interaction energy, and serves as 
a fitness function for an evolutionary algorithm

204,205

2006 Regular  
grammar

Linguistic  
model

New antimicrobial peptides (AMPs) are generated 
based on grammatical rules derived from naturally 
occurring AMPs

93

2007 Docking simulation Genetic  
algorithm

Peptides are docked and then altered by mutation 
or crossover

206

2007 Experimentally 
optimized 
alignment matrix

Random sequence 
generation

A scoring matrix is systematically altered based 
on substitutions that approve the differentiation 
between strong and weak binders

207

2007 Artificial neural 
network

Ant colony 
optimization 
algorithm

Automated peptide design is performed de novo 
using adaptive positional weight matrices

208

2008 Hidden Markov 
model (HMM)

Random sequence 
generation

An HMM model is used to identify and classify AMPs 
based on natural proteins in the UniProt database

70

2008 Molecular 
dynamics 
simulation

Evolutionary 
algorithm

The algorithm searches for stable parts of a peptide 
by generating point mutants, which are evaluated 
in molecular dynamics simulations

209

2009 Artificial neural 
network

Random sequence 
generation

The algorithm ranks a large set of random 
sequences according to a neural network model 
that had been trained for AMP recognition

149,150

2011 Artificial neural 
network

Genetic  
algorithm

Automated peptide design is performed de novo 
using a genetic algorithm for AMP sequence 
generation

151
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Start
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Generation

10th generation

10th 
generation

measurements and chromatographic indices135. Studies 
examining peptides based on lactoferricin successfully 
used the z­descriptors as well as other descriptor sets136–139.  
Other early studies of AMPs using chemoinformatics 
were based on protegrin140,141.

The most straightforward molecular representations 
in terms of computed descriptors provide a quantifica­
tion of whole­molecule properties — such as partial 
charge, hydrophobicity and amphiphilicity — and are 
relatively intuitive. However, arrays of descriptors have 
been developed that lack such clear interpretations and 
intuitive understanding. These include descriptors that 
are calculated based on theoretical models, such as van 
der Waals surface area and hardness (akin to the energy 
required to remove the outermost electron), as well  
as properties that are experimentally measured, such as 
retention time in a given chromatography column, pI, 
octanol–water partition fraction or circular dichroism. 
Commercial software packages are available that offer 
hundreds of descriptors of the molecular nature of mol­
ecules, and are often customized specifically to the type 
of molecule (for example, they can be specific for small 
compounds versus peptides and proteins)142.

Nevertheless, to some extent the computational 
approaches pursued in peptide design have been uncou­
pled from those used in small­molecule drug design. This 
might be due to the comparably higher molecular weight, 
increased flexibility and abundance of repetitive pharma­
cophoric features (such as the amide backbone) of pep­
tides. The choice of descriptors has often been made based 
on a prior understanding of the physical attributes that give 
rise to the activity of the peptide, but ideally descriptors 
can and should be automatically selected during numerical 
analysis, through a method termed ‘feature selection’143,144.

Regardless of the numerical method used, most algo­
rithms require at least as many distinct peptides with 
measured activity as the number of parameters matched 
by the method. For simplistic methods this is not an oner­
ous requirement (for example, using only two parameters 
can fit activity to a linear method). However, more recent 
studies on modelling AMP activity have led to models 
based on machine­learning methods that involve simulta­
neously fitting tens to hundreds of parameters depending 
on the configuration. Many descriptors are available for 
modelling AMPs, and a substantial number of modelling 
methods have been applied to find QSAR functions that 
predict AMP activity (reviewed in REF. 145).

Complex prediction models using machine­learning 
methods often require a large number of measured values 
of AMP activity to fit the correspondingly large set of 
parameters. Solid­phase synthesis and high­throughput 
screening of large peptide arrays has become common 
practice in drug discovery146. For peptide lengths of up to 
6 or 7 residues, full combinatorial arrays have been only 
marginally practically feasible, resulting in a sequence 
space containing 20n peptides for the 20 natural amino 
acids (if n = 6, 206 = 6.4 × 107; if n = 7, 207 = 1.28 × 109); 
owing to potential crosslinking, oxidation, poor aqueous 
solubility and synthetic issues, cysteine and methionine 
residues as well as very hydrophobic sequences are usually 
excluded from these arrays.

Box 1 | Principles of adaptive peptide design

Evolutionary algorithms are based on the iterative generation of potential solutions 

(x
i
) to a problem and the selection of the best solution according to a (usually) 

multimodal fitness function, defined as f(x
i
)186. In peptide design, the underlying 

fitness landscape is either provided by a determination of the candidate peptides 

using actual biochemical activity, or by computing a structure–activity landscape.  

The ideal measure of ‘fitness’ is an experimental response. If sufficient training data 

are available, f(x
i
) can be expressed by a machine-learning model187. To find the best 

solution in the fitness landscape containing An peptides (where A is the number of 

different building blocks, and n is the peptide length), the population of solutions 

(peptides) must be able to adapt to the local ruggedness of the landscape so that  

the search does not prematurely converge in areas of low fitness. Such a desired 

behaviour can be achieved using so-called strategy parameters — that is, variables 

that capture the progress made within a population and are used for projecting a 

promising search path for the next generation.

A straightforward way to perform an informed search is illustrated in the figure. A simple 

evolution strategy188 was implemented to find the global optimum in a virtual fitness 

landscape. For clarity, in this case a mathematical function serves as the fitness 

estimator f(x
i
) and is a substitute for an experimental activity assay. For each of the  

50 simulated generations, ten offspring (x
1
 to x

10
) were bred from a single parent 

(indicated by the arrow, xP, as shown in the left panel of the figure). Their spread 

around the location of the parent approximates a normal distribution with width σ 

(known as step size), which serves as the adaptive strategy parameter in this 

algorithm. This factor is a property of the current parent — that is, the best among the 

set of offspring solutions, x, from the previous generation. In every new generation,  

a new population (x) will be created so that its position in the search space satisfies  

a localized distribution with width σ and center xP. As only the best solution (and its 

associated individual σ value) is picked as the next parent in the subsequent selection 

step, over time small values of σ will evolve in rugged parts of the fitness landscape or 

near an optimum point (leading to small steps in the search space), whereas large 

values of σ will dominate in flat, plateau-like areas (leading to large steps in the search 

space). It is important to realize that σ adapts to the local form of the fitness landscape 

so that optimal progress of the search takes place, without any predefined cooling 

schedule, operator intervention or external control.

Different implementations of evolutionary optimization use different mechanisms 

for adaptation189,190, and the adaptive step-size concept presented here is a 

characteristic of evolution strategies, which — in the case of peptide design — 

work directly on molecular properties such as residue polarity, side-chain volume, 

hydrophobic moment, and so on. By contrast, genetic algorithms first code molecular 

properties in the form of bit strings representing a peptide’s genotype, and then apply 
mutation and recombination operations to the bit strings to generate offspring191.

The figure provides an example of evolutionary optimization. A mathematical 

function (indicated by the contour plot on the left) served as a fitness function that 

had to be optimized by an evolution strategy. The size of the population was 10 

individuals (search agents), and a single parent (elitism) was selected in each of  

the 20 simulated generations. After 10 generations the search converged close to  

the global optimum (as indicated by the trend line joining the grey points below).  

Note that the distribution of the population is adaptive (step size, σ, represented  

as the blue curve on the right). In terms of molecular design, the σ value corresponds 

to compound diversity.
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Hydrophobic moment

The hydrophobicity of  

a peptide measured for 

different angles of rotation  

per residue.

Signal peptides

Typically amino-terminal 

stretches of amino-acid 

residues that are required for 

the targeting of proteins to 

their intra- and extracellular 

destination.

Measurements of MIC, which must be made using 
low­throughput methods (overnight incubation with 
dilutions of AMPs), have restricted the size of data sets 
available for modelling AMP activity. Surrogate measures 
of bacterial killing, such as lipid vesicle experiments147 
or the diminished energy­dependent luminescence of 
bacteria constitutively expressing luciferase90, have been 
used to develop faster assays for peptide activity. By 
replacing MIC values with such surrogate measures148, 
and combining these with high­throughput analysis 
and relatively inexpensive peptide array synthesis on 
cellulose sheets, a set of peptides with more than 1,400 
distinct sequences was assayed for activity149,150. Initially, 
two iterative sets of randomized peptide sequences were 
synthesized and tested for antibacterial activity against 
P. aeruginosa. These peptide sequences were biased 
according to the amino­acid composition of the most 
active peptides, which were especially rich in lysine,  
arginine, tryptophan and hydrophobic amino acids.

Based on these data, several artificial neural networks 
were trained to recognize potent peptides using the meas­
ured peptide activities and 44 calculated descriptors of 
the peptides based on the properties of the amino­acid 
sequences (rather than the sequence per se). To maximize 
the use of the data, a set of crossvalidated neural networks 
was used rather than a single neural network. A consen­
sus of this set of neural networks was used to predict the 
ranked activities of nearly 100,000 virtual (that is, gen­
erated in silico) peptides. A total of 200 peptides, classi­
fied into four levels of activity (assessed by comparison 
with the bactenecin 2A control), were synthesized and 
used for validation. Of the novel peptides predicted to 
be highly active compared to the bactenecin 2A control, 
94% were found to be highly active. Of the novel peptides 
predicted to have low activity, all were found to have low 
activity. Interestingly, when MIC values were measured 
against clinical pathogens with demonstrated drug resist­
ance, many synthetic peptides had MIC values <10 μM 
and several had MIC values <1 μM, which is equivalent to 
the best peptides described in the literature, despite being 
significantly shorter (nine residues long) than any natural 
peptide (natural peptides can be >12 residues long, but 
are usually >18 residues long).

It is also notable that peptides with similar overall 
properties, such as hydrophobicity or charge, can have 
dramatically different levels of activity. For example, 
the peptides KRWWKWIRW and KRWWKWWRR 
demonstrated the highest antibacterial activity, whereas 
peptides with a very similar residue composition — 
for example, WHGVRWWKW, WVKVWKYTW, 
WVRFVYRYW and AIRRWRIRK — were ranked in 
the least active 30% of peptides and found to be virtually 
inactive. These findings suggest that there are common 
physicochemical features shared by AMPs, presumably 
in the context of their three­dimensional structures. 
Some of the features found in the most active AMP 
sequences are consecutive pairs of tryptophan residues 
and interspersed arginine and/or lysine residues; these 
residues might aid in the general interfacial affinity of 
these AMPs for lipid membranes or in their translocation 
across lipid membranes (FIG. 4).

Evolutionary search methods for peptide sequences 
allow for a guided search in the sequence space, in 
which peptide sequences are varied to achieve improve­
ments in a ‘fitness landscape’ — an analogy for visual­
izing how good (or well matched) numerical solutions 
are in the space of possible parameter settings (BOX 1). 
This concept of peptide design was first applied to  
signal peptides88,92. Recently, the methodology has been 
adapted to generate potent synthetic AMPs. Using 
trained neural network models as an estimate of pep­
tide ‘fitness’, a genetic algorithm was used to find AMPs 
with greater efficiency in a preliminary computational  
screening151.

Owing to the limited number of studies that have 
used machine­learning models for peptide design, we 
feel that an assessment of their relative performance and 
practical applicability would be premature. Nevertheless, 
pioneering concept studies have already demonstrated 
that novel, short AMP sequences with substantial bio­
logical activity can be obtained using adaptive computer­
based design. It is safe to say that machine­learning 
applications hold substantial promise for peptide design 
in general, and not just for finding novel membrane­
interacting peptides like AMPs.

Figure 4 | Artificial fitness landscape spanned  

by synthetic peptides. There is a visible separation 

between only moderately active peptides (red) and 

potent antimicrobial peptides (AMPs) (blue). Selected 

peptide sequences are shown together with their 

relative IC
50

 (half-maximal inhibitory concentration) 

values indicating their antibacterial activity against 

Pseudomonas aeruginosa in a reporter gene assay151. 

Many active peptides are strongly enriched in 

tryptophan and arginine residues. For computation  

and visualization of the structure–activity landscape, 

each nonapeptide was represented by 9 × 19 properties 

(principal component scores computed from a set of  

434 physicochemical amino-acid properties)123,198  

and projected to two new coordinates using stochastic 

proximity embedding199. The continuous landscape  

was generated using the software tool LiSARD200.
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Table 2 | Selected host defence peptides in drug development

Name Sequence Company Description Application Trial 
phase

Comments Clinical trial 
identifiers 
and further 
information

Pexiganan 
acetate  
(MSI 78)

GIGKFLKK 
AKKFGKAF 
VKILKK

MacroChem Synthetic 
analogue of 
magainin 2 derived 
from  
frog skin

Topical antibiotic III No advantage 
demonstrated over 
existing therapies

NCT00563433 
and 
NCT00563394

Omiganan 
(MX-226/ 
MBI-226)

ILRWPW 
WPWRRK

Migenix/
BioWest 
therapeutics

Synthetic cationic 
peptide derived 
from indolicidin

Topical antiseptic, 
prevention of 
catheter infections

III Missed primary end  
point (infections) but 
achieved secondary  
end points of 
microbiologically 
confirmed infections and 
catheter colonization

NCT00027248 
and 
NCT00231153

Omiganan 
(CLS001)

ILRWPW 
WPWRRK

Cutanea Life 
Sciences/
Migenix

Synthetic cationic 
peptide derived 
from indolicidin

Severe acne 
and rosacea; 
anti-inflammatory

II/III Significant efficacy  
in Phase II trials for  
both indications;  
in Phase III trials

NCT00608959

Iseganan 
(IB-367)

RGGLCY 
CRGRFC 
VCVGR

Ardea 
Biosciences

Synthetic 17-mer 
peptide derived 
from protegrin 1

Oral mucositis 
in patients 
undergoing 
radiation therapy

III No advantage 
demonstrated over 
existing therapies

NCT00022373

hLF1–11 GRRRRS 
VQWCA

AM-Pharma Cationic peptide 
fragment 
comprising 
amino-terminal 
amino acids 
1–11 of human 
lactoferricin

Bacteraemia and 
fungal infections 
in immuno - 
compromised 
haemato poetic 
stem cell 
transplant 
recipients

I/II Significant efficacy 
observed in Phase I  
trials; mechanism  
of action appears to be 
immunomodulatory 
rather than antibiotic; 
Phase II trials  
initiated after a  
long delay

NCT00509938

XOMA 629 KLFR-(d- 
naphtho 
-Ala)-QAK- 
(d-naphtho 
-Ala)

Xoma Derivative of 
bactericidal 
permeability-
increasing  
protein

Impetigo IIa No Phase IIa results 
available (trial started  
in July 2008)

XOMA website

PAC-113 AKRHHG 
YKRKFH

Pacgen 
Biopharma-
ceuticals

Synthetic 12-mer 
peptide derived 
from histatin 3  
and histatin 5

Oral candidiasis IIb Phase IIb results 
(announced June 2008): 
34% increase in  
primary end point  
efficacy level; Phase III 
trial not initiated

NCT00659971

CZEN-002 (CKPV)
2

Zengen Dimeric octamer 
derived from 
α-melanocyte- 
stimulating 
hormone

Vulvovaginal 
candidiasis; 
anti-inflammatory

IIb Positive efficacy  
results announced; 
Phase IIb trial is  
a dose-ranging  
study

US Patent 
application 
serial number 
09/535066

IMX942 KSRIVPA 
IPVSLL

Inimex Synthetic cationic 
peptide derived 
from IDR1 and 
bactenecin

Nosocomial 
infection, febrile 
neutropenia

Ia Phase Ia trial completed 
in 2009; no Phase II trial 
announced yet

Inimex 
Pharmaceuticals 
website

OP-145  IGKEFK 
RIVERIK 
RFLREL 
VRPLR

OctoPlus; 
Leiden 
University,  
The 
Netherlands

Synthetic 
24-mer peptide 
derived from 
LL-37 for binding 
to lipopoly-
saccharides or 
lipoteichoic acid

Chronic bacterial 
middle ear 
infection

II (com - 
pleted)

Clinical proof-of-efficacy 
in Phase II trials;  
no Phase III trials 
proposed yet

ISRCTN84220089

Ghrelin210 GSSFLSPE 
HQRVQQ 
RKESKKPP 
AKLQPR

University 
of Miyazaki, 
Japan; 
Papworth 
Hospital, 
Cambridge, UK

Endogenous 
host-defence 
peptide

Airway 
inflammation, 
chronic respiratory 
infection and 
cystic fibrosis

II Peptide hormone that 
suppresses neutrophil-
dominant inflammation 
in airways of patients 
with chronic respiratory 
infection

JPRN-
UMIN000002599, 
JPRN- 
UMIN000001598 
and 
NCT00763477
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AMPs as drugs: challenges and solutions

Since 2000, 20 new antibiotics have been launched and 
approximately 40 compounds are currently in active 
clinical development152. Several synthetic AMPs have 
entered clinical trials and at least 15 peptides or mimetics 
are in (or have completed) clinical trials as antimicrobial 
or immunomodulatory agents (TABLE 2). In a Phase I/II 
trial, the AMP hLF1–11 (which is composed of amino­
terminal amino acids 1–11 of human lactoferrin) was 
found to be safe and well tolerated when delivered intra­
venously153. By contrast, a protegrin derivative, iseganan, 
failed to demonstrate significant efficacy in the clinic30,154.

Two peptides have demonstrated efficacy in Phase III  
clinical trials but have not yet been approved. Pexiganan155, 
a derivative of magainin, showed equivalence to an oral 
fluoroquinolone for foot ulcer infections in patients 
with diabetes but was deemed non­approvable by the 
US Food and Drug Administration, although there is 
evidence it might resurface in clinical trials. Omiganan 
(MBI­226), an analogue of indolicidin, has been proven 
to be capable of significantly reducing catheter coloniza­
tion and microbiologically confirmed tunnel infections 
during catheterization (ClinicalTrials.gov identifier: 
NCT00608959), and in Phase II trials it exhibited anti­
inflammatory activity against the non­infectious skin con­
dition rosacea. Both of these peptides are first­generation 
peptides that were devised by template­based design. 
Overall, the peptides that are currently in the clinic offer 
fascinating alternatives to standard therapies and indi­
cate that synthetic peptides are an active and promising 
area of research. AMP­coated devices represent another 
promising application, although the reduction in anti­
microbial activity by the tethering of the peptide to solid 

supports must be overcome156. SAR studies have dem­
onstrated that tethered peptides are nearly 100­fold less 
active (on a molecular weight basis) than their soluble 
counterparts157.

Despite several attempts to develop AMPs as anti­
biotics, the reasons why synthetic AMPs have not pro­
gressed more successfully through the clinic include the 
cost of goods, their lability to proteolytic degradation, 
and their unknown toxicology profile when administered 
systemically2. Each of these factors can be addressed by 
the peptide design approaches described above in com­
bination with advanced chemoinformatics tools158,159.  
For example, the cost of goods can be addressed by making  
smaller peptides, and machine­learning approaches 
have already delivered highly active, broad­spectrum 
peptides that work systemically in animals. The liability 
to degradation by proteases in the body can be addressed 
using d­amino acids, non­natural amino­acid ana­
logues, mimetics with different backbone structures or  
appropriate formulations160,161.

The toxicology of AMPs can typically be addressed by 
making a plethora of highly active sequences and testing 
these for lack of toxicity in animals and/or using formu­
lations that mask the peptides — for example, liposomal 
formulations2,162. Although it has become common to 
investigate the haemolytic toxicity of AMPs163, it is evi­
dent that reliable computational toxicology prediction will 
be necessary to improve design algorithms that explicitly 
consider crucial preclinical toxicological end points for 
AMPs. Taking into consideration the multifactorial nature 
of toxicology and current lack of large sets of published 
standardized toxicology data for AMPs, some machine­
learning methods and alerting tools have been devised  

Table 2 (cont.)  | Selected host defence peptides in drug development

Name Sequence Company Description Application Trial 
phase

Comments Clinical trial 
identifiers 
and further 
information

PMX-30063 Structure 
not 
disclosed

PolyMedix Arylamide 
oligomer mimetic 
of a defensin

Acute bacterial 
skin infections 
caused by 
Staphylococcus 
spp. 

II Mimetic rather than 
peptide; currently in 
Phase II trials

NCT01211470; 
PolyMedix 
website

Delmitide 
(RDP58)211

RXXXRX 
XXGY  
(X =  
norleucine)

Genzyme Semisynthetic 
d-amino acid 
decapeptide 
derived from HLA 
class I B2702

Inflammatory 
bowel disease

II (com - 
pleted)

A protease-resistant, 
d-amino acid-containing 
peptide with similar 
efficacy to asacol; 
attempting to  
improve activity  
through formulation

Genzyme 
website;  
ISRCTN84220089

Plectasin212 GFGC
1
NG 

PWDEDD 
MQC

2
HNH 

C
3
KSIKGYK 

GGYC
1
AKG 

GFVC
2
KC

3
Y)

Novozymes Fungal defensin; 
candidate in 
development is 
an amino-acid 
substitiution 
variant

Bacterial  
diseases

Pre - 
clinical

Excellent efficacy 
demonstrated in  
animal models

Novozymes 
website

HB1345 Decanoyl- 
KFKWPW

Helix BioMedix Synthetic 
lipohexapeptide

Acne; 
broad-spectrum 
antibiotic

Pre- 
clinical

Looks promising as  
this is a very small 
lipopeptide

Helix BioMedix 
website

HLA, human leukocyte antigen; IDR1, innate defence regulator 1; LL-37, human cathelicidin antimicrobial peptide LL-37. 
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Deep-ultraviolet resonance 

Raman spectroscopy

A biophysical technique for 

sensitive secondary-structure 

detection in peptides and 

proteins, and for confident 

discrimination between 

secondary structure types.

that seem to be suited for this task164–166. Multidimensional 
design techniques have been devised and were first applied 
to combinatorial optimization and drug discovery167–172. 
Computer­assisted peptide design and peptide­mimetics 
design coupled with in silico pharmacology will undoubt­
edly benefit from these methodological advances173,174.

A recent and extensive review of the field of peptide 
mimetics provides an overview of various peptide­to­
drug design approaches175. In many cases these design 
principles are analogous to those described above and 
will benefit from prior experiences in this arena with 
natural peptides176,177. For example, the reported effects 
of secondary­structure disruption or modification of  
d­amino­acid replacements in AMPs suggest that 
secondary­structure preference and biological activity  
are not directly coupled178. Furthermore, methyl ation 
has been shown to fine­tune the haemolytic activity  
of a cecropin  A–melittin­derived helical AMP 
(KWKLFKKIGAVLKVL­amide)179 without significantly 
affecting the secondary structure of the AMP. These 
studies also suggest that helix formation in at least part 
of this chimeric AMP, together with ionic interactions 
with the bacterial membrane, is mandatory for direct 
antimicrobial activity.

There are apparent similarities in amino­acid com­
position (with the exception of positively charged residues) 
between aggregation­prone regions of proteins and AMPs, 
and it has recently been shown that amyloid­forming  
peptides can be turned into membrane­disrupting AMPs 
by placing cationic amino acids at selected residue 

positions so that the mutated peptides possess the ability  
to adopt amphiphilic structures180. Such experiments 
provide a rationale for linking molecular structure with 
direct antimicrobial activity in peptides that have been 
designed de novo. The apparent preferences of AMPs 
for certain membranes could be triggered by differential 
membrane lipid compositions181, and methodological 
advances in structure determination will aid future inves­
tigations of the dynamic behaviour of AMP structure 
at the membrane–solvent interface; this was recently 
demonstrated using deep-ultraviolet resonance Raman 

spectroscopy of a model helical peptide embedded in a 
membrane­mimetic environment182.

Given these considerations, how likely is it that 
AMP­like compounds will succeed in delivering their 
therapeutic potential? There are clear precedents for 
cationic peptides having clinical efficacy183; the cationic 
lipopeptide polymyxin is the last­resort drug for treat­
ing multiresistant Pseudomonas spp. and Acinetobacter 
spp. infections, the cyclic cationic peptide gramicidin S 
is highly used in topical ointments and eye drops, and 
the cationic lantibiotic nisin is an approved food addi­
tive in Europe184. Thus, in our opinion, the increasing 
availability and use of innovative computer­assisted 
design strategies has considerable potential to boost the 
discovery of next­generation therapeutic peptides and 
peptide mimetics as anti­infectives not only for target­
ing bacteria that have become resistant to existing anti­
biotics but also for targeting disease­causing protozoa, 
helminths, insects and fungi185.
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