
Designing Application-Specific Networks on Chips with Floorplan Information

Srinivasan Murali�, Paolo Meloni§, Federico Angiolini‡, David Atienza†+, Salvatore Carta¶,
Luca Benini‡, Giovanni De Micheli†, Luigi Raffo§

�CSL, Stanford University, Stanford, USA, smurali@stanford.edu
§DIEE, University of Cagliari, Cagliari, Italy, {paolo.meloni, luigi}@diee.unica.it
‡DEIS, Univerity of Bologna, Bologna, Italy, {fangiolini, lbenini}@deis.unibo.it

¶DMI, University of Cagliari, Cagliari, Italy, salvatore@unica.it
† LSI, EPFL, Lausanne, Switzerland,{david.atienza, giovanni.demicheli}@epfl.ch

+DACYA, Complutense University of Madrid (UCM), Madrid, Spain.

ABSTRACT
With increasing communication demands of processor and mem-
ory cores in Systems on Chips (SoCs), scalable Networks on Chips
(NoCs) are needed to interconnect the cores. For the use of
NoCs to be feasible in today’s industrial designs, a custom-tailored,
application-specific NoC that satisfies the design objectives and
constraints of the targeted application domain is required. In this
work, we present a design methodology that automates the synthe-
sis of such application-specific NoC architectures. We present a
floorplan aware design method that considers the wiring complex-
ity of the NoC during the topology synthesis process. This leads
to detecting timing violations on the NoC links early in the design
cycle and to have accurate power estimations of the interconnect.
We incorporate mechanisms to prevent deadlocks during routing,
which is critical for proper operation of NoCs. We integrate the
NoC synthesis method with an existing design flow, automating
NoC synthesis, generation, simulation and physical design pro-
cesses. We also present ways to ensure design convergence across
the levels. Experiments on several SoC benchmarks are presented,
which show that the synthesized topologies provide a large reduc-
tion in network power consumption (2.78× on average) and im-
provement in performance (1.59× on average) over the best mesh
and mesh-based custom topologies. An actual layout of a multi-
media SoC with the NoC designed using our methodology is pre-
sented, which shows that the designed NoC supports the required
frequency of operation (close to 900 MHz) without any timing vi-
olations. We could design the NoC from input specifications to
layout in 4 hours, a process that usually takes several weeks.

Keywords
Networks on chips, deadlock-free routing, topology, floorplan

1. INTRODUCTION
With technology scaling, the number of processor, memory and

hardware cores on a chip is increasing. This has resulted in in-
creased computation and communication complexity of the design,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD’06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

and scalable approaches are needed to design the system. Networks
on Chips (NoCs) have emerged as the paradigm for designing scal-
able communication architecture for Systems on Chips (SoCs) [4],
[5]. In NoCs, instead of the traditional non-scalable buses, on-chip
micro-networks are used to interconnect the various cores. NoCs
have better modularity and design predictability when compared to
bus based systems.

Some of the most important phases in designing the NoC are
the synthesis of the topology or structure of the network and set-
ting of various design parameters (such as frequency of operation
or link-width). The standard topologies (mesh, torus, etc.) that
have been used in macro-networks result in poor performance and
have large power and area overhead when used for SoCs. Such
topologies are required for on-chip systems where the traffic char-
acteristics of the system cannot be predicted statically, as in chip-
multiprocessors. However, for most SoCs the system is designed
with static (or semi-static) mapping of tasks to processors and hard-
ware cores and hence the communication traffic characteristics of
the SoC can be obtained statically. This is true from SoC designs
that are small to state-of-the art SoCs, such as, the Philips Nexperia
platform [1], ST Nomadik [2], TI OMAP [3], etc.

Another motivation for the use of NoCs is the fact that the in-
terconnect structure and wiring complexity can be well controlled.
When the interconnect is structured, the number of timing viola-
tions that occur during the physical design (floorplanning and wire
routing) phase is minimum. Such design predictability is critical
for today’s SoCs for achieving timing closure. It leads to faster de-
sign cycle, reduction in the number of design re-spins and faster
time-to-market. As the wire delay as a fraction of gate delay is in-
creasing with each technological generation, having shorter wires is
even more important for future SoCs. Early works on NoC topol-
ogy design assumed that using regular topologies (such as mesh)
would lead to regular and predictable layouts [16]. While this may
be true for designs with homogeneous processing cores and memo-
ries, this is not true for most SoCs as they are typically composed of
heterogeneous cores. This is due to the fact that the core sizes of the
SoC are highly non-uniform and the floorplan of the design does
not match the regular, tile-based floorplan of standard topologies
[7]. An application-specific NoC with structured wiring, which
satisfies the design objectives and constraints is important to have
feasible NoC designs.

As a motivating example, the network power consumption
(switch and link power consumption), hop-count, wire-length and
design area of two different NoC topologies for a video processor
SoC with 42 cores is presented in Table 1. The first topology is a

355

Table 1: Topology Comparisons
Parameter Mesh Application-specific

Power (mW) 301.78 79.64
Hop-Count 2.58 1.67

Total wire-length (mm) 185.72 145.37
Design Area (mm2) 51.0 47.68

mesh, while the second is a custom topology generated using the
methodology presented in this paper. The wire-lengths and design
area are obtained from floorplanning of the NoC designs. The de-
tailed explanation of the topologies and the floorplanning process
is described later in this paper (Sections 5, 6 B). The custom topol-
ogy leads to a 3.8× reduction in network power consumption, a
1.55× reduction in average hop-count and a 1.28× reduction in
total length of wires when compared to the mesh.

In this work, we present a methodology to design the best topol-
ogy that is tailor-made for a specific application and satisfies the
communication constraints of the design. Our topology design pro-
cess supports two objective functions: minimizing network power
consumption and hop-count for data transfer. The designer can op-
timize for one of the two objectives or a linear combination of both.
The topology design process supports constraints on several param-
eters such as the hop-count (when the objective is power minimiza-
tion), network power consumption (when the objective is hop-count
minimization), design area and total wire-length. The topology
synthesis process uses a floorplanner to estimate the design area
and wire-lengths. The wire-length estimates from the floorplan are
used to evaluate whether the designed NoC satisfies the target fre-
quency of operation and to compute the power consumption of the
wires.

As deadlock-free routing is critical for proper operation of cus-
tom topologies, we integrate methods to find deadlock free paths
during the topology design process. We have built accurate analyt-
ical models for power consumption and area of the network com-
ponents. The power consumption values are obtained from layouts
with back-annotated resistance, capacitance information and from
the switching activity of the components. We also automatically
tune several NoC architectural parameters (such as the NoC operat-
ing frequency, link-width) in the design process. The methodology
can be streamlined with existing tool flows for instantiation, syn-
thesis, FPGA emulation and layout of the NoC design. We present
ways to close the design gap across the various levels of the flow:
from topology design to floorplanning to simulation of the design.
The methodology also supports manual intervention, if needed, at
several levels (like manually setting up frequency, link-width).

To the best of our knowledge, this is the first work that presents
a streamlined design methodology for NoC topology synthesis that
is completely integrated with the state-of-the commercial tools for
back-end physical design. Unlike all earlier works (please refer to
Section 2), we present a floorplan aware topology design method
for NoCs that leads to detecting timing violations on the NoC links
early in the design cycle, with the resulting designs fully verified
for timing correctness using standard place&route tools. This is
also the first work on custom NoC topology synthesis that guar-
antees a complete deadlock-free network operation without requir-
ing special hardware mechanisms, which is critical for using NoCs
in real designs. Our topology synthesis process is integrated with
NoC architectural parameter setting and uses accurate switch area,
power models and link power models that are obtained from lay-
outs of the components. The presented topology synthesis process
is both performance and power consumption aware, which are two
of the important design objectives in SoC design. Finally, the topol-
ogy design process is integrated with an existing design flow and

we present ways to ensure design convergence across the levels.
The tool flow presented automates the entire NoC design process,
including topology synthesis, routing and path computation, RTL
code generation and layout generation; thereby bridging an impor-
tant gap in the design of application-specific NoCs.

An actual layout obtained from an industrial tool (Cadence SoC
Encounter [37]) of a 30-core multi-media SoC with the NoC de-
signed using our methodology is presented in Sub-section 6 A.
At the layout level, the designed NoC supports the required fre-
quency of operation (close to 900 MHz) without any timing vio-
lations. We could design the NoC architecture from input speci-
fications to layout in 4 hours, a process that used to take several
weeks. A layout level comparison with a hand-designed architec-
ture for this example is also presented, which shows that our au-
tomatic design methodology produces excellent results (in terms
of power consumption and performance), matching those of care-
fully hand-crafted designs. Experiments on several SoC bench-
marks show large power, performance and wire-length improve-
ments when compared to standard topologies. Despite the very
large design space considered, due to the use of fast algorithms and
tools, the design process completes in reasonable time for all the
experiments (see Sub-section 6 B).

2. PREVIOUS WORK

A large body of research works exists in synthesizing and gener-
ating bus-based systems [9]-[14]. A floorplan-aware point-to-point
link design and bus design methodologies are presented in [15] and
[14]. While some of the design issues in the NoCs are similar to
bus based systems (such as link-width sizing), a large number of
issues such as finding the number of required switches, sizing the
switches, finding routes for packets, etc. are new in NoCs.

Methods to collect and analyze traffic information that can be fed
as input to the bus and NoC design processes have been presented
in [12] and [13]. Mappings of cores onto standard NoC topolo-
gies have been explored in [16]-[19]. In [17], [19] a floorplanner is
used during the mapping process to get area and wire-length esti-
mates. Unlike the method presented here, these works only select
topologies from a library of standard topologies. In [18], a unified
approach to mapping, routing and resource reservation has been
presented. However, the work does not explore topology design
process. The NoC design process for supporting multiple applica-
tions has been presented in [20]. This research complements our
work and its methods can be applied here to support multiple ap-
plications as well.

Important research in macro-networks has considered the topol-
ogy generation problem [21]. As the traffic patterns on these net-
works are difficult to predict, most approaches are tree-based (like
spanning or Steiner trees) and only ensure connectivity with node
degree constraints [21]. Hence, these techniques cannot be directly
extended to address the NoC synthesis problem. Application-
specific custom topology design has been explored earlier in [22]-
[25]. The works from [22], [23] do not consider the floorplanning
information during the topology design process. In [24], a physical
planner is used during topology design to reduce power consump-
tion on wires. However, the work does not consider the area and
power consumption of switches in the design. Also, the number
and size of network partitions are manually fed. In [25], a slicing
tree based floorplanner is used during the topology design process.
This work assumes that the switches are located at the corners of the
cores and it does not consider the network components (switches,
network interfaces) during the floorplanning process. Also, dead-
lock free routing, which is critical for custom NoC designs is not

356

switch area,

phase 2

power, hop−delay,

combination

switch, link
power models

User Objective: Constraints:

wire−length,
area, power,

hop−delay

NoC Architecture

Synthesis

Application

characteristics

phase 1

phase 3

switch

link

NI

SystemC
library

Processor
models

Network
generation

RTL simulations

RTL synthesis

FPGA emulation

Placement

& Routing

Layout

To Fab

mismatch

parameter

Figure 1: NoC Design Flow

Vary NoC frequency from a range

Vary link−width from a range

Vary the number of switches from one to number of cores
Synthesize the best topology with the particular
frequency, link−width, switch−count

Perform floorplan of synthesized topology, get
link power consumption, detect timing violations

Choose topology that best optimizes user objectives
satisfying all design constraints

Figure 2: NoC architecture synthesis (phase 2 of design flow)

supported in the work. Moreover, a complete design space explo-
ration, from architectural parameter setting to simulation is not pre-
sented.

Several works exist on automatically generating the Register
Transfer Level (RTL) code of a designed topology for simulation
and synthesis [26]-[28]. These works again complement ours, as
the input to them is a designed topology. Building area, power
models for on-chip networks has been addressed in [29]-[32].

3. DESIGN FLOW

Our flow for designing NoCs is presented in Figure 1. In the first
phase, the user specifies the objectives and constraints that should
be satisfied by the NoC. The application traffic characteristics, size
of the cores, and the area and power models for the network com-
ponents are also obtained (see Section 4).

In the second phase of the flow, which is the main contribution
of this work, the NoC architecture that optimizes the user objec-
tives and satisfies the design constraints is automatically synthe-
sized. The different steps in this phase are presented in Figure 2.
The steps are explained in detail in Section 5. In the outer iter-
ations, the key NoC architectural parameters (NoC frequency of
operation and link-width) are varied in a set of suitable values. The
bandwidth available on each NoC link is the product of the NoC
frequency and the link-width. During the topology synthesis, the
algorithm ensures that the traffic on each link is less than or equal
to its available bandwidth value.

The synthesis step is performed once for each set of the archi-
tectural parameters. In this step, several topologies with different
number of switches are explored, starting from a topology where
all the cores are connected to one switch, to one where each core
is connected to a separate switch. The synthesis of each topology
includes finding the size of the switches, establishing the connec-

sustained traffic

rates

ory Filter

IFFT

Disp
lay

ARMMem

FFT

100
100

100

100100 100

200

10

Figure 3: Filter application

critical stream

weighted

by 10

100
200

100
100

v6

v2

100100
100v4

v5

v3

v1

100

Figure 4: Core graph with
sustained rates and critical
streams

tivity between the switches and connectivity with the cores, and
finding deadlock-free routes for the different traffic flows. In the
next step, to have an accurate estimate of the design area and wire-
lengths, the floorplanning of each synthesized topology is automat-
ically performed. The floorplanning process finds the 2D position
of the cores and network components used in the design. For this,
we use Parquet, a fast and accurate floorplanner [35]. Based on
the frequency point and the obtained wire-lengths, the timing vio-
lations on the wires are detected and the power consumption on the
links is obtained. In the last step, from the set of all synthesized
topologies and architectural parameter design points, the topology
and the architectural configuration that best optimizes the user’s
objectives, satisfying all the design constraints is chosen. Thus, the
output of phase 2 is the best application-specific NoC topology, its
frequency of operation and the width of each link in the NoC.

In the last phase of the design (phase 3 in Figure 1), the RTL
(SystemC) code of the switches, network interfaces and links for
the designed topology is automatically generated. For this, we use
the ×pipes library [8], [34], a library of soft macros for the net-
work components and the associated tool ×pipesCompiler [26] to
interconnect the network elements with the cores. At this phase, we
also obtain a synthesizable RTL design that can also be emulated on
FPGA. From the floorplan specification of the designed topology,
the synthesis engine automatically generates the inputs for place-
ment&routing. The placement&routing of the design is performed
using SoC Encounter [37] for obtaining the layout, including the
global and detailed routing of wires. The output of this phase is a
complete layout of the NoC design that can be sent to a foundary.

As the flow has several steps, it is important to close the design
gap across the different steps. To ensure that the designed topology
will satisfy the timing constraints after place&route, we evaluate
the wire-lengths for detecting timing violations early in the design
process, i.e. during the topology synthesis phase itself. To bridge
the gap between the initial traffic models and the actual observed
traffic after simulating the designed NoC, we use a mismatch pa-
rameter. The parameter is read as part of the input specifications
by the topology synthesis engine. The user can manually tune the
parameter and re-design the NoC to suit the actual traffic character-
istics (explained in Sub-section 6 C). Several other options are also
supported by the topology synthesis engine, such as support for
cores with fixed locations in the layout (due to pin/pad constraints).
Due to lack of space, here we only present the major features of the
synthesis process.

4. INPUT MODELS

The traffic characteristics of the application are represented by a
graph [16], [17], [19], defined as follows:

DEFINITION 1. The core graph is a directed graph, G(V, E)
with each vertex vi ∈ V representing a core and the directed edge
(vi, vj), denoted as ei,j ∈ E, representing the communication be-
tween the cores vi and vj . The weight of the edge ei,j , denoted

357

Table 2: Component Area-Power
Component Parameter Analytical Experimental

4x4 area(mm2) 0.036 0.035
switch power(mW) 22.16 22.54

5x5 area(mm2) 0.048 0.047
switch power(mW) 28.38 28.70

link (2mm) power(mW) 0.57 0.57

by commi,j , represents the sustained rate of traffic flow from vi

to vj weighted by the criticality of the communication. The set
F represents the set of all traffic flows, with value of each flow,
fk, ∀k ∈ 1 · · · |F |, representing the sustained rate of flow between
the source (sk) and destination (dk) vertices of the flow.

The core graph for a small filter example (Figure 3) is shown
in Figure 4. The edges of the core graph are annotated with the
sustained rate of traffic flow, multiplied by the criticality level of
the flow, as done in [19].

We built accurate analytical models for the power consumption
and area of the network components, based on the ×pipes architec-
ture [8]. To get the power estimates, the place&route of the compo-
nents is performed using SoC Encounter and accurate wire capaci-
tances and resistances are obtained, as back-annotated information
from the layout, with 0.13µm technology library. The switching ac-
tivity in the network components is varied by injecting functional
traffic. The capacitance, resistance and the switching activity re-
port are combined to estimate power consumption using Synopsys
PrimePower [38].

A huge number of implementation runs were performed, vary-
ing several parameters such as the number of input, output ports,
link-width and the amount of switching activity at the layout level.
Linear regression was used to build analytical models for the area
and power consumption of the components as a function of these
parameters. Due to the intrinsic modularity and symmetry of NoC
components, the models built are very accurate (with maximum
and mean error of less than 7% and 5%, respectively) when com-
pared to the actual values. Power consumption on the wires is also
obtained at the layout level. The analytical and experimental area,
power consumption values for some components (with 900 MHz
frequency, link-width of 32 bits, buffer depth of 3 in the switches)
are presented in Table 2.

5. DESIGN ALGORITHMS

The algorithms for the topology design process are explained in
this section. In the first step of Algorithm 1, a design point θ is
chosen from the set of available or interesting design points φ for
the NoC architectural parameters. In our current implementation,
the synthesis engine automatically tunes two critical NoC param-
eters: operating frequency (freqθ) and link-width (lwθ). As both
frequency and link-width parameters can take a large set of values,
considering all possible combinations of values would be infeasible
to explore. The system designer has to trim down the exploration
space and give the interesting design points for the parameters. The
designer usually has knowledge of the range of these parameters.
As an example, the designer can choose the set of possible frequen-
cies from minimum to a maximum value, with allowed frequency
step sizes. Similarly, the link data widths can be set to multiples
of 2, within a range (say from 16 bits to 128 bits). Thus, we get
a discrete set of design points for φ, as done in [14]. In all our
experiments, we support 8 frequency steps and 4 link-width steps,
providing 32 discrete design points in the set φ. The rest of the
topology design process (steps 3-15 in Algorithm 1) is repeated for
each design point in φ.

As the topology synthesis and mapping problem is NP-hard [22],
we present efficient heuristics to synthesize the best topology for
the design. For each design point θ, the algorithm synthesizes
topologies with different numbers of switches, starting from a de-
sign where all the cores are connected through one big switch until
the design point where each core is connected to only one switch.
The reason for synthesizing these many topologies is that it cannot
be predicted beforehand whether a design with few bigger switches
would be more power efficient than a design with more smaller
switches. A larger switch has more power consumption than a
smaller switch to support the same traffic, due to its bigger cross-
bar and arbiter. On the other hand, in a design with many smaller
switches, the packets may need to travel more hops to reach the
destination. Thus, the total switching activity would be higher than
a design with fewer hops, which can lead to higher power consump-
tion.

For the chosen switch count i, the input core graph is partitioned
into i min-cut partitions (step 3). The partitioning is done in such a
way that the edges of the graph that are cut between the partitions
have lower weights than the edges that are within a partition (refer
to Figure 5(a)) and the number of vertices assigned to each partition
is almost the same. Thus, those traffic flows with large bandwidth
requirements or higher criticality level are assigned to the same par-
tition and hence use the same switch for communication. Hence,
the power consumption and the hop-count for such flows will be
smaller than for the other flows that cross the partitions. For parti-
tioning, we use Chaco, an efficient hierarchical graph partitioning
tool [36].

At this point, the communication traffic flows within a parti-
tion have been resolved. In steps 5-9, the connections between the
switches are established to support the traffic flows across the par-
titions. In step 5, the Switch Cost Graph (SCG) is generated.

DEFINITION 2. The SCG is a fully connected graph with i ver-
tices, where i is the number of partitions (or switches) in the current
topology.

Please note that the SCG does not imply the actual physical con-
nectivity between the different switches. The actual physical con-
nectivity between the switches is established using the SCG in the
PATH COMPUTE procedure, which is explained in the following
paragraphs.

In NoCs, wormhole flow control [39] is usually employed to
reduce switch buffering requirements and to provide low-latency
communication [6], [7]. With wormhole flow control, deadlocks
can happen during routing of packets due to cyclic dependencies
of resources (such as buffers) [39]. We pre-process the SCG and
prohibit certain turns to break such cyclic dependencies. This guar-
antees that deadlocks will not occur when routing packets. For
finding the set of turns that need to be prohibited to break cycles,
we use the turn prohibition algorithm presented in [33], [18]. The
algorithm has polynomial time complexity (very fast in practice,
see Section 6) and guarantees that at most 1/3 of the total num-
ber of turns would be prohibited to remove cycles. The algorithm
also guarantees connectivity between all nodes in the SCG after
prohibiting the turns. From the algorithm, we build the Prohibited
Turn Set (PTS) for the SCG, which represents the set of turns that
are prohibited in the graph. To provide guaranteed deadlock free-
dom, any path for routing packets should not take these prohibited
turns. These concepts are illustrated in the following example:

EXAMPLE 1. The min-cut partitions of the core graph of the
filter example (from Figure 3) for 3 partitions is shown in Figure
5(a). The SCG for the 3 partitions is shown in Figure 5(b). After

358

Partition 3

Partition 2
Partition 1

100

100
100

100v4

v5
v6

v3

v2v1

100

100
200

100

(a) Min-cut partitions

prohibited
p3

p2

p1

turns

(b) SCG graph

0.63

p3

p2

p1
0.63

0.70

0.70

0.63

0.63

(c) Path selection

Figure 5: Algorithm examples

applying the turn prohibition algorithm from [33], the set of pro-
hibited turns is identified. In Figure 5(b), the prohibited turns are
indicated by circular arcs in the SCG. For this example, both the
turns around the vertex P3 are prohibited to break cycles. So no
path that uses the switch P3 as an intermediate hop can be used for
routing packets.

Our topology synthesis process also supports freedom from an-
other type of deadlock, known as message-level deadlock [39], by
routing the traffic flows of the different message types in the de-
sign onto different physical links. Due to lack of space, we do not
explain this in detail in this paper.

Algorithm 1 Topology Design Algorithm

1: Choose design point θ from φ: freqθ , lwθ

2: for i = 1 to |V | do
3: Find i min-cut partitions of the core graph
4: Establish a switch with Nj inputs and outputs for each par-

tition, ∀j ∈ 1 · · · i. Nj is the number of vertices (cores) in
partition i. Check for bandwidth constraint violations.

5: Build Switch Cost Graph (SCG) with edge weights set to 0
6: Build Prohibited Turn Set (PTS) for SCG to avoid deadlocks
7: Set ρ to 0
8: Find paths for flows across the switches using function

PATH COMPUTE(i, SCG, ρ, PTS, θ)
9: Evaluate the switch power consumption and average hop-

count based on the selected paths
10: Repeat steps 8 and 9 by increasing ρ value in steps, until the

hop-count constraints are satisfied or until ρ reaches ρthresh

11: If ρthresh reached and hop-count not satisfied, go to step 2.
12: Perform floorplan and obtain area, wire-lengths. Check for

timing violations and evaluate power consumption on wires
13: If target frequency matches or exceeds freqθ , and satisfies

all constraints, note the design point
14: end for
15: Repeat steps 2-14 for each design point available in θ
16: For the best topology and design point, generate information

for ×pipesCompiler and Cadence SoC Encounter

The actual physical connections between the switches are estab-
lished in step 8 of Algorithm 1 using the PATH COMPUTE proce-
dure. The objective of the procedure is to establish physical links
between the switches and to find paths for the traffic flows across
the switches. Here, we only present the procedure where the user’s
design objective is to minimize power consumption. The procedure
for the other two cases (with hop-count as the objective and with
linear combination of power and hop-count as objective) follow the
same algorithm structure, but with different cost metrics.

An example illustrating the working of the PATH COMPUTE
procedure is presented in Example 2. In the procedure, the flows
are ordered in decreasing rate requirements, so that bigger flows are
assigned first. The heuristic of assigning bigger flows first has been
shown to provide better results (such as lower power consumption

Algorithm 2 PATH COMPUTE(i, SCG, ρ, PTS, θ)

1: Initialize the set PHY (i1, j1) to false and Bw avail(i1, j1)
to freqθ × lwθ, ∀ i1, j1 ∈ 1 · · · i

2: Initialize switch size in(j) and switch size out(j) to Nj ,
∀ j ∈ 1 · · · i. Find switching activity(j) for each switch,
based on the traffic flow within the partition.

3: for each flow fk, k ∈ 1 · · · |F | in decreasing order of fc do
4: for i1 from 1 to i and j1 from 1 to i do
5: {Find the marginal cost of using link i1, j1}
6: {If physical link exists and can support the flow}
7: if PHY (i1, j1) and Bw avail(i1, j1) ≥ fc then
8: Find cost(i1, j1), the marginal power consumption to

re-use the existing link
9: else

10: {We have to open new physical link between i1, j1}
11: Find cost(i1, j1), the marginal power consumption for

opening and using the link. Evaluate whether switch
frequency constraints are satisfied.

12: end if
13: end for
14: Assign cost(i1, j1) to the edge W (i1, j1) in SCG
15: Find the least cost path between the partitions in which

source (sk) and destination (dk) of the flow are present in
the SCG. Choose only those paths that have turns not pro-
hibited by PTS

16: Update PHY, Bw avail, switch size in,
switch size out, switching activity for chosen path

17: end for
18: Return the chosen paths, switch sizes, connectivity

and more easily satisfying bandwidth constraints) in several earlier
works [17], [18]. For each flow in order, we evaluate the amount
of power that will be dissipated across each of the switches, if the
traffic for the flow used that switch. This power dissipation value
on each switch depends on the size of the switch, the amount of
traffic already routed on the switch and the architectural parame-
ter point (θ) used. It also depends on how the switch is reached
(from what other switch) and whether an already existing physical
channel will be used to reach the switch or a new physical channel
will have to be opened. This information is needed, because open-
ing a new physical channel increases the switch size and hence the
power consumption of this flow and of the others that are routed
through the switch. These marginal power consumption values are
assigned as weights on each of the edges reaching the vertex rep-
resenting that switch in the SCG. This is performed in steps 8 and
11 of the procedure. When opening a new physical link, we also
check whether the switch size is small enough to satisfy the partic-
ular frequency of operation. As the switch size increases, the max-
imum frequency of operation it can support reduces (as the critical
path inside the switch gets longer) [8]. This information is obtained
from the placement&routing of the switches, taken as an input to
the algorithms.

Once the weights are assigned, choosing a path for the traffic
flow is equivalent to finding the least cost path in the SCG. This is
done by applying Dijkstra’s shortest path algorithm [40] in step 15
of the procedure. When choosing the path, only those paths that do
not use the turns prohibited by PTS are considered. The size of the
switches and the bandwidth values across the links in the chosen
path are updated and the process is repeated for other flows.

EXAMPLE 2. For the SCG from Example 1, let us consider
routing the flow of value 100 between the vertices v1 and v2, across

359

the partitions p1 and p2. Initially no physical paths have been es-
tablished across any of the switches. If we have to route the flow
across a link between any two switches, we have to first establish
the link. The cost of routing the flow across any pair of switches
is obtained from step 11 of the PATH COMPUTE procedure. The
SCG with the edges annotated with the costs is presented in Figure
5(c). The costs on the edges from p2 are different from the others
due to the difference in initial switching activity in p2 compared
to the other switches. This is because the switch p2 has to sup-
port flows between the vertices v2 and v3 within the partition. The
least cost path for the flow, which is across switches p1 and p2 is
chosen. Now we have actually established a physical path between
these switches and this is considered when routing the other flows.
Also, the size and switching activity of these switches have changed,
which is noted.

The PATH COMPUTE procedure returns the sizes of the
switches, connectivity between the switches and the paths for the
traffic flows. The objective function for establishing the paths is ini-
tially set to minimizing power consumption in the switches. Once
the paths are established, if hop-count constraints are not satisfied,
the algorithm gradually modifies the objective function to minimize
the hop-count as well, using the parameter ρ (in steps 7, 10 and 11
of Algorithm 1). The upper bound for ρ, denoted by ρthresh, is set
to the value of power consumption of the flow with maximum rate,
when it crosses the maximum size switch in the SCG. At this value
of ρ, for all traffic flows, it is beneficial to take the path with least
number of switches, rather than the most power efficient path. The
ρ value is varied in several steps until the hop-count constraints are
satisfied or until it reaches ρthresh.

In the next step (step 12, Algorithm 1), the algorithm invokes
the floorplanner to compute the design area and wire-lengths. The
floorplanner minimizes a dual-objective function of area and wire-
length, with equal weights assigned to both. The floorplanner
used [35] also supports soft cores, fixed pin/pad locations and as-
pect ratio constraints for the generated design. From the obtained
wire-lengths, the power consumption across the wires is calculated.
Also, the length of the wires is evaluated to check any timing vio-
lations that may occur at the particular frequency (freqθ). In the
end, the tool chooses the best topology (based on the user’s objec-
tives) that satisfies all the design constraints. At the last step, for the
synthesized topology, the algorithm automatically generates the in-
formation required for the ×pipesCompiler tool for network instan-
tiation and the SoC Encounter tool to perform placement&routing.

The presented NoC synthesis process scales polynomially with
the number of cores in the design. The number of topologies eval-
uated by the methodology also depends linearly on the number of
cores. Thus, the algorithms are highly scalable to a large number
of cores and communication flows. The synthesis time for several
different SoC benchmarks is presented in Section 6 B.

6. EXPERIMENTS AND CASE STUDIES

6.1 Layout-level Comparisons

We had earlier manually developed a NoC design for a SoC
that runs multi-media benchmarks [34]. The design consists of 30
cores: 10 ARM7 processors with caches, 10 private memories (a
separate memory for each processor), 5 custom traffic generators, 5
shared memories and devices to support inter-processor communi-
cation. The hand-designed NoC has 15 switches connected in a 5x3
quasi-mesh network (2 cores connected to each switch), shown in
Figure 6(a). The design is highly optimized, with the private mem-
ories being connected to the processors across a single switch and

the shared memories distributed around the switches. The layout of
the design (presented in Figure 6(b)) was performed using SoC En-
counter and the mesh structure was maintained in the layout. Each
of the cores has an area of 1 mm2 [34] in the design. The entire pro-
cess, from topology specification to layout generation took several
weeks. The post-layout NoC could support a maximum frequency
of operation of 885 MHz, which is determined by the critical path
in the switch pipeline. The power consumption of the topology for
functional traffic has been evaluated to be 368 mW.

We apply our topology synthesis process with the objective of
minimizing power consumption, to automatically synthesize the
NoC for this application. We set the design constraints and the
required frequency of operation to be the same (885 MHz) as that
of the hand-designed topology. The synthesized NoC topology and
the layout obtained using SoC Encounter are presented in Figures
6(c) and 6(d). The synthesized topology has fewer switches (8
switches) than the hand-designed topology. It can support the same
maximum frequency of operation (885 MHz), without any timing
violations on the wires. As we considered the wire-lengths during
the synthesis process to estimate the frequency that could be sup-
ported, we could synthesize the most power efficient topology that
would still meet the target frequency. To reach such a design point
manually would require several iterations of topology design and
place&route phases, which is a very time consuming process.

Layout level power consumption calculations on functional traf-
fic show that the synthesized topology has 277 mW power con-
sumption, which is 1.33× lower than the hand-designed topol-
ogy. Given the fact that the hand-designed topology is highly opti-
mized, with much of the communicating traffic (which is between
the ARM cores and their private memories) traversing only one
switch, these savings are achieved entirely from efficiently spread-
ing the shared memories around the different switches. The layout
of the hand-designed NoC was manually optimized to a large ex-
tent (by moving switches, network interfaces) to reduce the area
of the design. The layout of the synthesized topology is obtained
completely automatically, and still the area of the design is close to
that of the manual design (only a marginal 4.3% increase in area).

We perform cycle-accurate simulations of the hand-designed and
the synthesized NoCs for two multimedia benchmarks. The to-
tal application time for the benchmarks (including computation
time) and the average packet latencies for read transactions for
the topologies are presented in Figures 7(a) and 7(b). The custom
topology not only matches the performance of the hand-designed
topology, but provides an average of 10% reduction in total execu-
tion time and of 11.3% in packet latency.

6.2 Experiments on SoC Benchmarks

We have applied our topology design procedure to six different
SoC benchmarks: video processor (VPROC-42 cores), MPEG4 de-
coder (12 cores), Video Object Plane Decoder (VOPD-12 cores),
Multi-Window Display application (MWD-12 cores), Picture-in-
Picture application (PIP-8 cores) and IMage Processing applica-
tion (IMP-23 cores). We refer the readers to [7] for the communi-
cation characteristics of some of these benchmarks.

For comparison, we have also generated mesh topologies for the
benchmarks by modifying the design procedure to synthesize NoCs
based on mesh structure. To obtain mesh topologies, we generate
a design with each core connected to a single switch and restrict
the switch sizes to have 5 input/output ports. We also generated
a variant of the basic mesh topology: optimized mesh (opt-mesh),
where those ports and links that are unused by the traffic flows are
removed.

360

M0

T3

T2

T1

S14

S13

S12

S11

S10T0

M9

M8

M7

M6

P9

P8

P7

P6

P5

P4

P3

P2

P1

M5

M4

M3

M2

M1

P0

T4

(a) Hand-designed topology
6.

95
 m

m

5.1 mm

2
1 mm

(b) Layout

P6

P5 P4

P3 P2

P1

M5 M4

M3 M2

M1

P0 M0

T4

T3

T2

T1

S14S13

S12

S11

S10

T0

M9

M8

M7

M6

P9

P8

P7

(c) Automatically synthesized
5.05 mm

7.
32

 m
m

21 mm

(d) Layout

Figure 6: (a), (b) Hand-designed topology and layout. M: ARM7 processors, T: traffic generators, P, S: private and shared slaves (c),
(d) Automatically synthesized topology and layout. In Figure (c), bi-directional links are solid and uni-directional links are dotted.

256B 1KB 4KB 256B 1KB 4KB
0

1

2

3

4

5

6x 10
5

E
x
e
c
u
ti
o
n
 T

im
e
 (

n
s
)

hand−design
automatic

Benchmark 1

Benchmark 2

(a) Execution time

256B 1KB 4KB 256B 1KB 4KB
0

50

100

150

200

250

300

A
v
e

ra
g

e
 R

e
a

d
 L

a
te

n
c
y
 (

n
s
) hand−design

automatic

Benchmark 1

Benchmark 2

(b) Average read latency
Figure 7: Run time and latency for different cache sizes

The core graph and the floorplan for the custom topology syn-
thesized by our tool for one of the benchmarks (VOPD) are shown
in Figure 8. The network power consumption (power consumption
across the switches and links), average hop-count and design area
results for the different benchmarks are presented in Table 3. Note
that the average hop-count is the same for mesh and opt-mesh, as
in the opt-mesh only the unused ports and links of the mesh have
been removed and the rest of the connections are maintained. The
custom topology results in an average of 2.78× improvement in
power consumption and 1.59× improvement in hop-count when
compared to the standard mesh topologies. The area of the designs
with the different topologies is similar, thanks to efficient floor-
planning of the designs. It can be seen from Figure 8 that only very
little slack area is left in the floorplan. This is because we consider
the area of the network elements during the floorplanning process,
and not after the floorplanning of blocks. The total run time of the
topology synthesis and architectural parameter setting process for
the different benchmarks is presented in Table 3. Given the large
problem sizes and very large solution space that is explored (8 dif-
ferent frequency steps, 4 different link-widths, 42 cores for VPROC
and several calls to the floorplanner) and the fact that the NoC pa-
rameter setting and topology synthesis are important phases, the
run-time of the engine is not large. This is mainly due to the use of
hierarchical tools for partitioning and floorplanning and our devel-
opment of fast heuristics to synthesize the topology.

We also performed comparisons of synthesized topology against
several other standard topologies. For mapping the cores onto the
standard topologies, we use the tool from [17]. As the power li-
braries used for switches, links in the tool are different from the

Table 3: Comparisons with standard topologies
Appl Topol. Power Avg. Area Time

(mW) Hops mm2 (mins)
custom 79.64 1.67 47.68 68.45

VPROC mesh 301.8 2.58 51.0
opt-mesh 136.1 2.58 50.51
custom 27.24 1.5 13.49 4.04

MPEG4 mesh 96.82 2.17 15
opt-mesh 60.97 2.17 15.01
custom 30.0 1.33 23.56 4.47

VOPD mesh 95.94 2.0 23.85
opt-mesh 46.48 2.0 23.79
custom 20.53 1.15 15 3.21

MWD mesh 90.17 2.0 13.6
opt-mesh 38.60 2.0 13.8
custom 11.71 1 8.95 2.07

PIP mesh 59.87 2.0 9.6
opt-mesh 24.53 2.0 9.3
custom 52.13 1.44 29.66 31.52

IMP mesh 198.9 2.11 29.4
opt-mesh 80.15 2.11 29.4

ones used in the synthesis process, we optimized the topologies
for performance, subject to the design constraints. The compar-
isons against 5 standard topologies (mesh, torus, hypercube, Clos
and butterfly) for an image processing benchmark with 25 cores
is presented in Figure 9. The custom topology synthesized by
our method shows large performance improvements (an average of
1.73×) over the standard topologies.

As an interesting observation, we found that prohibiting certain
turns to avoid deadlocks during routing had a negligible impact on
the power and performance results for all of the benchmarks. This
was because, even if some turns were avoided, the path compu-
tation procedure could easily find other paths with low cost, as
several alternative low cost paths exist between each source and
destination in the SCG (refer to Section 5).

6.3 Handling Dynamic Effects

When the designed NoC is simulated, there can be some mis-
match between the observed traffic patterns and the initial traffic
estimates. This may be either because of inaccurate traffic mod-
els or because of dynamic effects, such as congestion. Note that it
will be too time consuming to simulate each topology during the
synthesis process. To bridge the gap between topology synthesis
and simulation, we use the mismatch parameter; the input traffic
rates are multiplied by the value of this parameter. The parameter
is fed as an input to the synthesis engine. It is initially set to 1 and
the user can manually tune the parameter and re-design the NoC,
until the simulations satisfy the required performance level. The

361

Figure 8: VOPD custom topology floorplan and core graph

Mesh Tor Hyp Clos Bfly Cust
0

0.5

1

1.5

2

2.5

3

A
v
e
ra

g
e
 H

o
p
 D

e
la

y

Figure 9: Performance com-
parisons

1 1.25 1.5 1.75 2.0
50

100

150

Mismatch parameterA
v
e

ra
g

e
 P

a
c
k
e

t
L

a
te

n
c
y
 (

in
 n

s
)

Figure 10: Dynamic effects

effect of increasing the parameter on performance for the MPEG4
NoC is presented in Figure 10. Extensions of the concept to handle
localized congestion effects in the NoC are currently underway.

7. CONCLUSIONS
To have a power and latency efficient design, the communication

architecture should closely match the application traffic character-
istics, satisfying the different design constraints. Synthesizing such
Network on Chip (NoC) architecture is non-trivial, given the large
design space that needs to be explored. In this work, we have pre-
sented a methodology that automates the process, generating effi-
cient NoCs that satisfy the design constraints of the application. To
have fewer design re-spins and faster time-to-market, we consider
fast and accurate floorplan information early in the design cycle.
This leads to detecting timing violations on the NoC links during
the NoC synthesis phase, thereby leading to timing closure with
quicker convergence between the high level design and the phys-
ical design phases. We use accurate switch and link power mod-
els that are based on layouts of the components and accurate link
power estimates based on the wire-lengths obtained from floorplan-
ning. We also integrate deadlock free routing methods in the NoC
synthesis process, which is critical for proper NoC operation. Ex-
periments on several SoC benchmarks show that the synthesized
topologies are much better (an average of 2.78× power reduction,
1.59× hop-count reduction) than the best mesh topology and mesh-
based custom topologies for our case studies.

8. REFERENCES
[1] S. Dutta et al., “Viper: A Multiprocessor SOC for Advanced Set-Top Box and

Digital TV Systems”, IEEE D&T, Sep/Oct 2001, pp. 21-31.
[2] http://www.st.com
[3] http://www.ti.com.
[4] L.Benini and G.De Micheli, “Networks on Chips: A New SoC Paradigm”, IEEE

Computers, pp. 70-78, Jan. 2002.
[5] D.Wingard,”MicroNetwork-Based Integration for SoCs”, Proc. DAC, pp.

673-677, Jun 2001.
[6] K. Goossens et al., ”A Design Flow for Application-Specific Networks on Chip

with Guaranteed Performance to Accelerate SOC Design and Verification”,
DATE 2005.

[7] D. Bertozzi et al., ”NoC Synthesis Flow for Customized Domain Specific
Multi-Processor Systems-on-Chip”, IEEE TPDS, Feb 2005.

[8] S. Stergiou et al., “×pipesLite: a Synthesis Oriented Design Library for
Networks on Chips”, pp. 1188-1193, Proc. DATE 2005.

[9] J. Daveau et al., “Synthesis of system-level communication by an allocation
based approach”, Proc. ISSS, pp. 150-155, Sept. 1995.

[10] M. Gasteier, M. Glesner, “Bus-based communication synthesis on system
level”, ACM TODAES, vol.4, no.1, pp. 1-11, 1999.

[11] K. Ryu, V. Mooney, “Automated Bus Generation for Multiprocessor SoC
Design”, Proc. DATE, pp. 282-287, March 2003.

[12] K.Lahiri et al., “Design Space Exploration for Optimizing On-Chip
Communication Architectures”, IEEE TCAD, vol.23, no.6, pp. 952- 961, June
2004.

[13] S. Murali, G. De Micheli, “An Application-Specific Design Methodology for
STbus Crossbar Generation”, pp. 1176-1181, Proc. DATE ’05.

[14] S. Pasricha et al., “Floorplan-aware automated synthesis of bus-based
communication architectures”, Proc. DAC ’05.

[15] J. Hu et al., “System-Level Point-to-Point Communication Synthesis Using
Floorplanning Information”, Proc. ASPDAC ’02.

[16] J. Hu, R. Marculescu, ’Exploiting the Routing Flexibility for
Energy/Performance Aware Mapping of Regular NoC Architectures’, Proc.
DATE, March 2003.

[17] S. Murali, G. De Micheli, “SUNMAP: A Tool for Automatic Topology
Selection and Generation for NoCs”, Proc. DAC 2004.

[18] A. Hansson et al., “A Unified Approach to Mapping and Routing on a
Combined Guaranteed Service and Best-Effort Network-on-Chip Architectures”,
Technical Report No: 2005/00340, Philips Research, April 2005.

[19] S. Murali et al., “Mapping and Physical Planning of Networks on Chip
Architectures with Quality-of-Service Guarantees”, Proc. ASPDAC 2005.

[20] S. Murali et al., “A Methodology for Mapping Multiple Use-Cases onto
Networks on Chips”, pp. 1-6, Proc. DATE, 2006.

[21] R. Ravi et al., “Approximation algorithms for degree-constrained
minimum-cost network design problems”, Algorithmica, 31(1): 58-78, 2001.

[22] A.Pinto et al., “Efficient Synthesis of Networks on Chip”, ICCD 2003, pp.
146-150, Oct 2003.

[23] W.H.Ho, T.M.Pinkston, “A Methodology for Designing Efficient On-Chip
Interconnects on Well-Behaved Communication Patterns”, HPCA 2003, pp.
377-388, Feb 2003.

[24] T. Ahonen et al. ”Topology Optimization for Application Specific Networks on
Chip”, Proc. SLIP 04.

[25] K. Srinivasan et al., “An Automated Technique for Topology and Route
Generation of Application Specific On-Chip Interconnection Networks”, Proc.
ICCAD ’05.

[26] A. Jalabert et al., “×pipesCompiler: A tool for instantiating application specific
networks-on-chip”, pp. 884-889, Proc. DATE 2005.

[27] D.Siguenza-Tortosa, J. Nurmi, “Proteo: A New Approach to
Network-on-Chip”, in CSN 02, Sep. 2002.

[28] X.Zhu, S.Malik, “A Hierarchical Modeling Framework for On-Chip
Communication Architectures”, ICCD 2002, pp. 663-671, Nov 2002.

[29] T. T. Ye et al., “Analysis of power consumption on switch fabrics in network
routers”, Proc. DAC ’03.

[30] H-S Wang et al., “Orion: A Power-Performance Simulator for Interconnection
Network”, Proc. Micro, Nov 2002.

[31] N. Banerjee et al., “A power and performance model for network-on-chip
architectures”, Proc. DATE ’04.

[32] G. Palemoro, C. Silvano, “PIRATE: A Framework for Power/Performance
Exploration of Network-On-Chip Architectures”, PATMOS 2004

[33] D. Starobinksi et al., “Application of network calculus to general topologies
using turn-prohibition”, IEEE/ACM Transactions on Networking, Vol. 11, Issue
3, pp. 411-421, June 2003.

[34] F. Angiolini et al., “Contrasting a NoC and a Traditional Interconnect Fabric
with Layout Awareness”, pp. 124-129, Proc. DATE 2006.

[35] S. N. Adya, I. L. Markov, ”Fixed-outline Floorplanning : Enabling Hierarchical
Design”, IEEE Trans. on VLSI Systems, vol 11(6), pp. 1120-1135, Dec 2003.
URL: http://vlsicad.eecs.umich.edu/BK/parquet/

[36] B. Hendrickson, R. Leland, “The Chaco User’s Guide: Version 2.0”, Sandia
Tech Report SAND94–2692, 1994. URL:
//www.cs.sandia.gov/b̃ahendr/chaco.html

[37] www.cadence.com
[38] www.synopsys.com
[39] W. J. Dally, B. Towles, ”Principles and Practices of Interconnection Networks”,

Morgan Kaufmann , Dec 2003.
[40] T. H. Cormen et al., ”Introduction to Algorithms”, The MIT Press, June 1990.

362

