
Designing Casanova: A Language for Games

Giuseppe Maggiore, Alvise Spanò, Renzo Orsini, Giulia Costantini,
Michele Bugliesi, and Mohamed Abbadi

Università Ca’ Foscari Venezia
DAIS - Computer Science

{maggiore,spano,orsini,costantini,bugliesi,mabbadi}@dais.unive.it

Abstract. Games are complex pieces of software which give life to ani-
mated virtual worlds. Game developers carefully search the difficult bal-
ance between quality and efficiency in their games.

In this paper we present the Casanova language. This language allows
the building of games with three important advantages when compared
to traditional approaches: simplicity, safety, and performance. We will
show how to rewrite an official sample of the XNA framework, resulting
in a smaller source and a higher performance.

1 Introduction

Computer games promise to be the next frontier in entertainment, with game
sales being comparable to movie and music sales in 2010 [5]. The unprecedented
market prospects and potential for computer-game diffusion among end-users
have created substantial interest in research on principled design techniques and
on cost-effective development technologies for game architectures. Our present
endeavor makes a step along these directions.

Making games is a complex business. Games are large pieces of software with
many heterogeneous requirements, the two crucial being high quality and high
performance [2]. High-quality in games is comprised by two main factors: visual
quality and simulation quality. Visual quality in games has made huge leaps
forward, and many researchers continuously push the boundaries of real-time
rendering towards photorealism. In contrast, simulation quality is often lacking
in modern games; game entities often react to the player with little intelligence,
input controllers are used in straightforward ways and the logic of game levels
is more often than not completely linear. Building a high-quality simulation is
rather complex in terms of development effort and also results in computationally
expensive code. To make matters worse, gameplay and many other aspects of
the game are modified (and often even rebuilt from scratch) many times during
the course of the development. For this reason game architectures require a large
amount of flexibility.

To manage the complexity, game developers use a variety of strategies. They
have used object-oriented architectures, component-based systems, and reactive
programming, with some degree of success for this purpose [6,7,4].

H.J. van den Herik and A. Plaat (Eds.): ACG 2011, LNCS 7168, pp. 320–332, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Designing Casanova: A Language for Games 321

In this paper we present the Casanova language, a language for making games,
as a solution to the obstacles mentioned above. Casanova offers a mixed declar-
ative/procedural style of programming which has been designed in order to fa-
cilitate game development. The basic idea of the language is to require from the
developer only and exclusively those aspects of the game code which are specific
to the game being developed. The language aims for simplicity and expressive
power, and thanks to automated optimizations it is capable of generating code
that is much faster than hand-written code and at no effort for the developer.
The language offers primitives to cover the development of the game logic, and
incorporates the typical processing of a game engine. Also, the language is built
around a theoretical model of games with a “well-formedness” definition, in order
to ensure that game code is always a good model of the simulated virtual world.

In the remainder of the paper we show the Casanova language in action. We
begin with a description of the current state of game engines and game program-
ming in Section 2. In Section 3 we define our model of games. We describe the
Casanova language in Section 4. We show an example of Casanova in action,
and also how we have rewritten the game logic of an official XNA sample from
Microsoft [18] in Casanova with far less code and higher runtime performance
in Section 5. In Section 6 we discuss our results and some future work.

2 Background

In this section we discuss five current approaches to game development. The two
most common game engine architectures found in today’s commercial games are
(1) object-oriented hierarchies and (2) component-based systems. In a traditional
object-oriented game engine the hierarchy represents the various game objects,
all derived from the general Entity class. Each entity is responsible for updating
itself at each tick of the game engine [1]. A component-based system defines
each game entity as a composition of components that provide reusable, specific
functionality such as animation, movement, and reaction to physics. Component-
based systems are being widely adopted, and they are described in [6].

These two, approaches are rather traditional and suffer from a noticeable
shortcoming: they focus exclusively on representing single entities and their up-
date operations in a dynamic, even composable way. By doing so, they lose the
focus on the fact that most entities in a game need to interact with one an-
other (collision detection, AI, etc.). Usually much of a game complexity comes
from defining (and optimizing) these interactions. Moreover, all games feature
behaviors that take longer than a single tick; these behaviors are hard to express
inside the various entities, which often end up storing explicit program counters
to resume the current behavior at each tick.

There are two more approaches that have emerged in the last few years as
possible alternatives to object-orientation and component-based systems. They
are (3) (functional) reactive programming and (4) SQL-style declarative pro-
gramming.



322 G. Maggiore et al.

Functional reactive programming (FRP, see [4]) is often studied in the con-
text of functional languages. FRP programming is a data-flow approach where
value modification is automatically propagated along a dependency graph that
represents the computation. FRP offers a solution to the problem of representing
long-running behaviors, even though it does not address the problem of many
entities that interact with each other.

SQL-queries for games have been used with a certain success in the SGL
language (see [15]). This approach uses a lightweight, statically compiled query
engine for defining a game. This query engine is aggressively optimized, in order
to make it to express efficient aggregations and cartesian products, two very
common operators in games. In contrast, SGL suffers when it comes to repre-
senting long-running behaviors, since it focuses exclusively on defining the tick
function.

With these two issues in mind we have designed Casanova. Casanova is the
fifth approach of this section. It seamlessly supports the integration of the inter-
actions between entities and long-running behaviors.

3 A Model for Games

We define a game as a triplet of (1) a game state, (2) an update function, and
(3) a series of asynchronous behaviors. In this model we purposefully ignore the
drawing function, since it is not part of the current design of Casanova.

type Game ’s =
{ State : ’s; Update : ’s -> DeltaTime -> (); Behavior : ’s -> () }

The game state is a set of (homogeneous) collections of entities; each entity is
a collection of attributes, which can either be (i) primitive values, (ii) collections
of attributes or (iii) references to other entities.

The update function modifies the attributes of the entire state according to a
fixed scheme which does not vary with time; we call this fixed scheme the rules

of the game; rules can be physics, timers, scores, etc. Each attribute of each
entity is associated to exactly one rule. The update function is quick and must
terminate after a brief computation, since it is invoked in a rather tight loop
that should perform 60 iterations per second.

The behavior function is a sequential process which performs a series of oper-
ations on the attributes of the game entities. It is a long-running, asynchronous
process with its own local state, it runs in parallel with the main loop and it can
access the current clock time at any step to perform actions which are synchro-
nized with real time. The processing over the game state takes more than one
tick; behaviors are used, for example, for implementing AIs.

A game engine is thus a certain way of processing a game (see the box below).

let run_game (game:Game ’s) =
let rec run_rules (t:Time) =

let t’ = get_time ()
game.Update game.State (t’-t)
run_rules t’

parallel (run_rules (get_time ()), game.Behavior (game.State))



Designing Casanova: A Language for Games 323

We define four properties of a correct and well-behaving game: (i) each entity
is updated exactly once per tick, (ii) the entity update is order-independent,
(iii) the tick always terminates, and (iv) the game runs at an interactive frame
rate.

Casanova guarantees only the first three requirements. The fourth requirement
cannot be guaranteed, since it heavily depends on factors, such as the size of
the virtual world and the computational resources of the machine used to run
the game; nevertheless, by automating certain optimizations Casanova makes it
easier to achieve the fourth requirement. Below we discuss the architecture of a
Casanova game.

Architecture of a Casanova Game

Fig. 1. Game architecture with Casanova

Behaviors are used to make it eas-
ier to handle complex input and to
build articulated level logics or cus-
tomized AI algorithms into the game.
While Casanova does not (yet) inte-
grate any deduction engine or proper
AI system, it makes integrating such
a system with the game loop and the
game state much simpler.

Rules are used to build all the reg-
ular logic that the game continuously
repeats. An example is the fact that
when projectiles collide with an as-
teroid then the asteroid is damaged
or other logical relationships between
entities occur. Rules are the main workhorse of a game, and Casanova ensures
that all the queries that make up the various rules maintain the integrity of the
state and are automatically optimized to yield a faster runtime.

The Casanova compiler will export the game state as a series of type defini-
tions and classes that can be accessed directly (that is without any overhead)
from a C# or C++ rendering library; in this way it takes little effort to integrate
the existing rendering code and engines with the help of Casanova.

4 The Casanova Language

In this section we present the Casanova language; for a more detailed treatment,
we refer to [11]. Casanova is inspired to the ML family of languages. We first
discuss the design goals (4.1), then provide a brief introduction (4.2), followed
by a description of syntax, semantics, and types (4.3). In 4.4 an introductory
example is given. Optimization is described in 4.5 and a full example is given
in 4.6.



324 G. Maggiore et al.

4.1 Design Goals

We have designed the Casanova language with multiple goals in mind. First
of all, Casanova games must be easy and intuitive to describe. For this reason
we have used a mix of declarative and procedural programming. For expressing
rules, declarative programming is cristal clear, allows the developer to focus
on what he wants to achieve rather than how, and there is a wealth of powerful
optimization techniques for declarative operations on sequences of values coming
from the field of databases [8]. The declarative portions of a game are all executed
in parallel, and can take advantage of multi-core CPUs.

Procedural programming, in particular coroutines [9], are used to describe
computations that take place during many ticks of the game engine. Imperative
coroutines are used to express the behaviors of a game. These behaviors are exe-
cuted sequentially and with no optimizations, since they can access any portion
of the state both for reading and writing, and they may perform any kind of
operation.

4.2 A Brief Introduction to Casanova

Casanova is a programming language designed around a set of core princi-
ples aimed at aiding game development. Here we describe the language “at a
glance”, by listing its features designed to simplify repetitive, complex or error
prone game coding activities: (i) Casanova integrates the game loop and time
as first-class constructs. The game loop and time management are almost al-
ways an important part of game development libraries, for example see [17]; (ii)
it performs a series of optimizations that are usually found hand-coded in vir-
tually all game engines [2], such as logical optimization of queries on lists and
spatial partitioning/use of indices to speed up quadratic queries, such as colli-
sion detection (for example: colliders(self) = [other | other <- Others,

collides(self,other)]; (iii) it guarantees that updates to the game state dur-
ing one tick are consistent, that is, the state is never partially updated thanks to
a (high-performance) transactional system; (iv) it offers a scripting system that
integrates seamlessly with the update loop.

We have designed Casanova with the aim of adding more features such as: (i)
automated generation of all the rendering code; (ii) automated generation of all
the networking code; (iii) automated generation of all or parts of an AI system.

Of course, the language can also serve as a general purpose language. Any
application that requires performing computations and visualization on a com-
plex set of data which evolves over time according to a set of fixed rules might
benefit from using Casanova. In the future, we may investigate other possible
uses of the language in this direction. As a final remark, it must be noted that
Casanova sometimes constrains the developer; for example, at most one rule may
be associated with any given field of the game state and rules are always applied
at every tick of the simulation. Since developers may find this set of restrictions
too tight we have included a scripting system which can also act as a “wild-
card” in this regard, that is scripts have essentially no limitations in expressivity



Designing Casanova: A Language for Games 325

(scripts are a general purpose programming language with coroutines) and for
this reason they can be used to express anything that the rule system cannot,
albeit renouncing various useful features such as automated optimization.

4.3 Syntax, Semantics, and Types

The details of the Casanova language syntax, semantics, and type system are
defined in [11]. In this subsection we give a general overview of the most salient
aspects of the language.

A Casanova program is divided into three parts: (i) the state definition, (ii)
the initial state, and (iii) the main behavior.

The state definition contains the type definitions of the game state and game
entities, together with the rules to which the various fields are subjected. Rules
may be nested, i.e., a field may contain a rule of type Rule T, where T contains
a value of type Rule V. This is quite common, and we will seen an instance of
this in the example in subsection 4.4.

Entities and the state may be defined in terms of the usual type constructors
found in a functional language: records, tuples, and discriminated unions. Also,
we can define values of type: table (for sequences), variable (for mutable cells),
rule (for updateable fields), and reference (for read-only pointers).

The initial state defines the starting value of the various game entities. The
main behavior is an imperative process which runs for the entire duration of
the game. A behavior may spawn (run) other behaviors, suspend itself for one
or more ticks (yield or wait) or wait for another behavior to complete before
resuming its execution (do! or let!). In addition, behaviors may access the state
without any limitation; a behavior can read or write any portion of the state:
:= is the assignment operator and ! is the lookup operator.

Behaviors can be combined with a small set of operators that define a straight-
forward concurrent calculus: parallel x y, which runs two behaviors in parallel
and returns the pair with their results; concurrent x y, which runs two behav-
iors in parallel and returns the result of the first to terminate; x => y, which
runs behavior y v only when x terminates with result Some v; and repeat x,
which continuously runs a behavior.

The tick function of the game is built automatically by the Casanova compiler,
and it executes all running behaviors until they yield; then it executes all rules
(in parallel and without modifying the current game state to avoid interferences);
finally it creates the new state from the result of the rules.

Rules do not interfere with each other, since they may not execute imperative
code. If rules immediately modified the current state, then their correctness
would depend on a specific order of execution. Specifying said order would place
an additional burden on the programmer’s shoulders.

The tick function for rules presents a problem which is partly addressed with
references: portions of the state must not be duplicated, for correctness rea-
sons. This means that each entity in Casanova may be subjected to some rules
but only once; if an entity is referenced more than once then it may be subjected
to more (and possibly even contradictory) rules. For this reason we make any



326 G. Maggiore et al.

value of type Rule (or which contains a field of type Rule) linear [13]. This means
that a value of type Rule T may be used at most once, and after it is read or
used it goes out of scope.

We use the type constructor Ref T to denote a reference to a value of
type T. A reference is a shallow copy to an entity which primary value is stored
elsewhere. This allows for the explicit sharing of portions of the game state with-
out duplication of rules, since rules are not applied to references. This also allows
for safe cyclical references, such as given below.

type Asteroid = { ... Colliders : Rule(Table(Ref Projectile)) }
type Projectile = { ... Colliders : Rule(Table(Ref Asteroid )) }

This restriction is enforced statically during type checking, and it ensures that
all rules are executed exactly once for each entity. The type checker enforces
another property: a behavior gives a compile-time error unless it is statically
known that all code paths yield. This is achieved by requiring that repeat and
=> are never invoked on a behavior which does not yield in all its paths. An
example is the behavior below.

repeat { if !x > 0 then yield else y := 10 }

which will generate a compile-time error.
This ensures that the tick function will always terminate, because rules are

non-recursive functions and behaviors are required never to run without yielding
indefinitely.

Of course, it is possible to lift this restriction, since it may give some false
negatives; for this reason, the actual Casanova compiler will be configurable to
give just a warning instead of an error when it appears that a script does not
yield correctly, to leave more freedom to those developers who need it.

So far the Casanova language enforces the following four properties.

– developers do not have to write the boilerplate code of traversing the state
and updating its portions; this happens thanks to the fact that Casanova
automatically builds the game loop

– all entities of the state are updated exactly once (even though they may be
shared freely across the state as Refs); this happens thanks to the linearity
of the Rule data type and the automatic execution of all rules by the game
loop

– rules do not interfere and are processed simultaneously; this happens thanks
to the linearity of the Rule data type and thanks to the fact that the state
is created anew at each tick

– the tick function always terminates; this happens because the state is not
recursive (again, thanks to the linearity of Rule) and because our coroutines
are statically required always to invoke yield

These properties alone are the correctness properties and ensure that the game
will behave correctly. We will now see an example Casanova game. We will also
see the set of optimizations implemented by the Casanova compiler. They make
sure that a game runs fast with no effort on the part of the developer.



Designing Casanova: A Language for Games 327

4.4 Introductory Example

A Casanova program starts with the definition of the game state, the various
entities and their rules. A field of an entity may have type Rule T for some type T.
This means that such a field will contain a value of type T, and will be associated
with a function of type: Ref(GameState)× Ref(Entity)× T× ∆Time → T

This function is the rule function, and its parameters are (they can be omitted
by writing an underscore _ in their position): (i) the current state of the game;
(ii) the current value of the entity we are processing; (iii) the current value of
the field we are processing; (iv) the number of seconds since the last tick.

When a field does not have an explicit rule function, then the identity rule
is assumed. A rule function returns the new value of a field, and cannot write
any portion of the state. Indeed, the current value of the state and the current
entity are read-only inside the body of a rule function to avoid read-write depen-
dencies between rules. Updating the state means that all its rule functions are
executed, and their results stored in separate locations. When all rule functions
are executed, then the new state is assembled from their results.

In the remainder of the paper we will omit some type annotations; this is
possible because we assume the presence of type inference. In a field declaration,
the : operator means “has type”, while the :: operator specifies the rule function
associated with a rule. The ! operator is the dereferencing operator for rules,
and it has type Rule T -> T.

Below we show how we would build a staightforward game where asteroids
fall down from the screen and are removed when they reach the bottom of the
screen.

type Asteroid = {
Y : Rule float :: fun (_,self ,y,dt) -> y + dt * self.VelY
VelY : float
X : float }

type GameState = {
Asteroids

: Rule(Table Asteroid )
:: fun (_,_,asteroids ,_) -> [a | a <- asteroids && a.Y > 0]

DestroyedAsteroids
: Rule int
:: fun (_,self , destroyed_asteroids,_) -> destroyed_asteroids +

count([a | a <- !self. Asteroids && a.Y <= 0]) }

In the state definition above we can see that the state is comprised by a set
of asteroids which are removed when they reach the bottom. Removing these
asteroids increments a counter, which is essentially the “score” of our pseudo-
game. Each asteroid moves according to its velocity.

The initial state is then provided as follows.

let state0 = { Asteroids = []; DestroyedAsteroids = 0 }

Behaviors in Casanova are based on coroutines, that is they are imperative
procedures which may invoke the yield operator. Yielding inside a behavior
suspends it until the next tick of the game. Behaviors may freely access the



328 G. Maggiore et al.

state for writing, that is behaviors are less constrained than rules but for this
reason they also support less optimizations. The only requirement that Casanova
enforces in behaviors is that they must never iterate indefinitely without yielding,
and this requirement is verified with a dataflow analysis.

When the main behavior of a game terminates, the game quits. The main
behavior of our game spawns asteroids every 1-3 seconds until the number of
destroyed asteroids reaches 100. The main behavior of our game is defined as
follows.

let main state =
let rec behavior () = {

do! wait (random.Next(1,3))
state.Asteroids.Add { X = random (-1 ,+1); Y = 1; VelY = random

(-0.1,-0.2) }
if !state.DestroyedAsteroids < 100 then do! behavior () else return ()

}
in behavior ()

The imperative syntax loosely follows the monadic [12,14] syntax of the F#
language, where a monadic block is declared within {} parentheses, and com-
bining behaviors is done with either do! or let! and returning a result is done
with the return statement. This allows us to mark clearly the points where
a behavior waits for another behavior to complete before taking its result and
proceeding.

4.5 Optimization

Casanova is designed to facilitate the automatic execution of three main opti-
mizations: memory recycling, rule parallelization, and query optimization.

Memory recycling is a straightforward yet effective optimization for all those
platforms (such as the Xbox 360) with a slow garbage collector [16]. Memory
recycling means that Rule T fields allocate a double buffer for storing both the
current and the next value for rules, instead of regenerating a new state at each
tick. Rule parallelization is made possible by the static constraint that rules are
linear: this means that no rules write the same memory location. We also know
that rules may not freely write any references. These two facts guarantee thread
safety, i.e., we may run all rules in parallel. The final optimization is query
optimization. Nested list comprehensions (also known as “joins” in the field of
databases [8]) can have high computational costs, such as O(n2), for example
when finding all the projectiles that collide with asteroids. Such a complexity is
unacceptable when we start having a large number of asteroids and projectiles,
because it may severely limit the maximum number of entities supported by
the game. We use the same physical optimization techniques used in modern
databases: we build a spatial partitioning index (such as a quad-, oc-, R-tree)
to speed up our collision detection. The resulting complexity of the same query
with a spatial partitioning index is O(n log n), which executes much faster and
allows us to support larger numbers of entities.



Designing Casanova: A Language for Games 329

4.6 A Full Example

Below we show a full example of a game where a series of balls are thrown from
one side of the screen and bounce towards the other side; the balls are removed
when they reach the other side of the screen.

We start by defining the state (a collection of balls) and its rules (gravity,
motion, and removal of those balls that reach one side of the screen).

let g = Vector2 (-9.81,0.0)

type BallsState = {
Balls : Rule(Table Ball))

:: fun (_,_,balls ,_) -> [b | b <- balls && b.X <= 50.0 ] }
type Ball = {

Position : Rule Vector2
:: fun (_,ball ,p,dt) ->

if p.Y < 0.0 then Vector2 (p.X, 0.0)
else p + !ball.Velocity * dt

Velocity : Rule Vector2
:: fun (_,ball ,v,dt) ->

if p.Y < 0.0 then Vector2 (v.X, -v.Y) * 0.6
else v + g * dt }

Then we define the initial state, which does not contain any balls.

let state0 = { Balls = [] }

Finally we define the main behavior which launches the balls, one every sec-
ond.

let rec main state = {
do! wait 1.0
state.Balls.Add { Position = Vector2 (0.0, 0.0); Velocity = Vector2 (5.0,

10.0) }
do! main state }

5 Case Study

In this section we will describe (1) how we have rewritten the XNA Spacewar [18]
sample in Casanova, (2) the resulting reduction in code, and (3) the increases in
performance obtained. We have chosen Spacewar because it is small enough to
be didactically useful while being built as a starter kit, that is a starting point
to be edited and extended into a different game and not just as a sample or
tutorial; from this point of view, Spacewar should be considered as a small, yet
complete and well-built, game.

The Casanova compiler is still in its early stages, and as such it is not yet
ready for the task. The definition of the compiler can be followed by hand, and
since the first Casanova compiler will generate F# code, we have written such
code by hand as the compiler would have output it.

5.1 Rewriting the Game

The original sample features two ships that shoot each other while dodging
asteroids that float around the gaming area. A star in the center of the playing



330 G. Maggiore et al.

field pulls the players with its gravity. The first player to destroy the other (by
hitting him or by making him crash on another celestial body) wins the stage.

The game state is defined as the two players, their ships, the table of asteroids
and projectiles, and the sun. Also, the state contains the current gameplay status,
which can either be Playing or GameOver w where w is the winner.

The source code of the original sample plus our implementation can be found
in [3]; the current implementation of the Casanova compiler is incomplete, and
at the time of writing the type checker and the F# code generator are both
producing their first correct outputs but are not yet integrated together. The
details of the porting are discussed in detail in [11], and we omit them here for
reasons of space.

We have slightly modified the original sample so that testing could be au-
tomated. For this reason we have removed the 30 seconds time limit of each
level, we have removed the victory and ending conditions, we have automated
ships movement and shooting and we have increased the maximum number of
asteroids and projectiles to 12 and 200 respectively. This way we have obtained
an automated stress test.

We have also removed all rendering features, to avoid benchmarking rendering
algorithms: Casanova does not generate rendering code, so such a comparison
would have been meaningless; also, Casanova can be integrated with the very
same C# rendering code of the original Spacewar. We compare the resulting
frame rates to see how many simulation steps per second the original game logic
is capable of performing versus the number of steps per second of the Casanova
game logic; the higher this number, the more efficient the game logic and the
more time remains for each frame to perform complex rendering.

As a final remark, it is worth noticing that while the original sample includes
more than one thousand lines of code the length of the corresponding Casanova
program is 348 lines long. The Casanova source easily fits a few pages, while
navigating the original source may prove a bit complex because of its sheer size.

5.2 Resulting Benchmarks

We have benchmarked the modified sample on both the Xbox 360 and a 1.86
Ghz Intel Core 2 Duo with an nVidia GeForce 320M GPU and 4GB of RAM. In
the table below we can see the frame rates of the various tests.

Table 1. Framerate of the original Spacewar vs the Casanova implementation

C# XBox C# PC Casanova XBox Casanova PC

8 9 22 577

As we can see, full Casanova optimization always beats the original source
by at least a factor of 2. The Xbox implementation suffers from the genera-
tion of garbage, which is a known problem of the XNA implementation on the
console [16]; indeed, profiling the garbage collector shows that large amounts of



Designing Casanova: A Language for Games 331

temporary memory are being generated by the program. It is noticeable that
on the PC, thanks to the full optimizations done by Casanova, performance
increased by almost two orders of magnitude: such an impressive increase was
quite unexpected even by us, it is the more so when keeping in mind that those
optimizations will be automated by the compiler.

6 Conclusions

In this paper we have presented the design of the Casanova language, a hybrid
declarative/procedural language for making games. The language has a triple
focus on (1) simplicity, (2) correctness (to increase developer productivity, given
the complexity of game development), and (3) performance (to ensure high fram-
erates).

We have defined a model that generalizes an abstract game, and we have
introduced four important properties that describe a good game. We have shown
how the Casanova language respects these properties, that is:

– rules are applied exactly once for each entity,
– rules are order-independent,
– ticks always terminate,
– automated optimizations ensure fast execution.

Our first goal is to implement a fully working prototype of the Casanova compiler
that outputs F# code. The compiler is still in its early stages, and much work
is still needed to achieve this goal.

Further (and less obvious) improvements may be adding support for rendering,
networking, and (fully or partially) automated AI. A second venue that we are
investigating is the support for reusable libraries of ready-made components,
possibly with some form of statically resolved polymorphism (maybe similar to
Haskell type classes) for performance reasons. Integration with an existing IDE
(such as MonoDevelop or Visual Studio) is an important addition to a modern
language. Finally, addressing the problem of generating less garbage (especially
for the XBox 360 and for other platforms such as Windows Phone 7 and iOS
through Mono) is another of our objectives.

As a final remark, some aspects of Casanova (namely scripting) already have
been fully implemented, as described in [10].

References

1. Ampatzoglou, A., Chatzigeorgiou, A.: Evaluation of object-oriented design patterns
in game development. Inf. Softw. Technol. 49, 445–454 (2007),
http://dl.acm.org/citation.cfm?id=1230152.1230366

2. Buckland, M.: Programming Game AI by Example. 1 edn. Jones & Bartlett Pub-
lishers (September 2004), http://www.amazon.com/exec/obidos/
redirect?tag=citeulike07-20&path=ASIN/1556220782

3. Casanova: Casanova project page, casanova.codeplex.com/

http://dl.acm.org/citation.cfm?id=1230152.1230366
casanova.codeplex.com/


332 G. Maggiore et al.

4. Elliott, C., Hudak, P.: Functional reactive animation. SIGPLAN Not. 32, 263–273
(1997), http://doi.acm.org/10.1145/258949.258973

5. ESA: Entertainment software association, http://www.theesa.com
6. Folmer, E.: Component Based Game Development – A Solution to Escalating

Costs and Expanding Deadlines? In: Schmidt, H.W., Crnković, I., Heineman, G.T.,
Stafford, J.A. (eds.) CBSE 2007. LNCS, vol. 4608, pp. 66–73. Springer, Heidelberg
(2007), http://portal.acm.org/citation.cfm?id=1770657.1770663

7. Gameobjects: Inheritance vs aggregation in game objects,
http://gamearchitect.net/Articles/GameObjects1.html

8. Garcia-molina, H., Ullman, J.D., Widom, J.: Database System Implementation
(2000)

9. Knuth, D.E.: The art of computer programming: Fundamental Algorithms, 3rd
edn., vol. 1. Addison Wesley Longman Publishing Co., Inc., Redwood City (1997)

10. Maggiore, G., Costantini, G.: Friendly F# (fun with game programming). Smash-
words (2011)

11. Maggiore, G., Orsini, R., Bugliesi, M.: Casanova: a declarative language for safe
games. Tech. Rep. 2011-7, Ca’ Foscari - DAIS (2011)

12. Moggi, E.: Notions of computation and monads. Information and Computation 93,
55–92 (1989)

13. Wadler, P.: Linear types can change the world! In: Programming Concepts and
Methods. North (1990)

14. Wadler, P.: Comprehending monads. In: Mathematical Structures in Computer
Science, pp. 61–78 (1992)

15. White, W., Demers, A., Koch, C., Gehrke, J., Rajagopalan, R.: Scaling games to
epic proportions. In: Proceedings of the 2007 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2007, pp. 31–42. ACM, New York (2007),
http://doi.acm.org/10.1145/1247480.1247486

16. XBOX: Slow garbage collection on the xbox,
http://blogs.msdn.com/b/shawnhar/archive/

2007/06/29/how-to-tell-if-your-xbox-garbage-collection-is-too-slow.aspx

17. XNA: The xna framework, http://msdn.microsoft.com/xna
18. XNA: Xna spacewar 4,

http://create.msdn.com/education/catalog/sample/spacewar

http://doi.acm.org/10.1145/258949.258973
http://portal.acm.org/citation.cfm?id=1770657.1770663
http://gamearchitect.net/Articles/GameObjects1.html
http://doi.acm.org/10.1145/1247480.1247486
http://blogs.msdn.com/b/shawnhar/archive/2007/06/29/how-to-tell-if-your-xbox-garbage-collection-is-too-slow.aspx
http://blogs.msdn.com/b/shawnhar/archive/2007/06/29/how-to-tell-if-your-xbox-garbage-collection-is-too-slow.aspx
http://msdn.microsoft.com/xna
http://create.msdn.com/education/catalog/sample/spacewar

	Designing Casanova: A Language for Games
	Introduction
	Background
	A Model for Games
	The Casanova Language
	Design Goals
	A Brief Introduction to Casanova
	Syntax, Semantics, and Types
	Introductory Example
	Optimization
	A Full Example

	Case Study
	Rewriting the Game
	Resulting Benchmarks

	Conclusions
	References


