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ABSTRACT
Digital camera sensors are inherently sensitive to the near-
infrared (NIR) part of the light spectrum. In this paper, we
propose a general design for color filter arrays that allow the
joint capture of visible/NIR images using a single sensor. We
pose the CFA design as a novel spatial domain optimization
problem, and provide an efficient iterative procedure that finds
(locally) optimal solutions. Numerical experiments confirm the
effectiveness of the proposed CFA design, which can simultane-
ously capture high quality visible and NIR image pairs.

Index Terms— Color filter arrays, color acquisition, sam-
pling, near-infrared, digital photography

1. INTRODUCTION

Silicon-based camera sensors are inherently sensitive to the near-
infrared (NIR) band of the light spectrum. Most camera de-
signs place an NIR-blocking filter, usually named “hot mirror”,
in front of the sensor to prevent the NIR contamination of the
visible image. By filtering out such a large part of the spectrum
(700 nm–1100 nm), however, a significant amount of potentially
valuable information is lost.
The usefulness of the NIR band has long been recognized in

fields such as spectroscopy [1] and remote sensing [2]. Providing
complementary information to the visible data, the NIR band has
also shown great potential in vision and digital photography ap-
plications. For example, recent work [3]–[6] has demonstrated
that the joint processing of visible and NIR data results in im-
age enhancement and analysis capabilities beyond what can be
achieved using visible information only.
The major limitation of research and applications of joint

visible/NIR image processing is the current acquisition method:
One way is to capture the visible and NIR images of the same
scene sequentially, a manner that is both cumbersome and
artifact-prone (due to camera and/or scene movement between
consecutive shots). An alternative is to use a two-camera rig to-
gether with a beam-splitter [3], an accurate but fairly expensive
setup suitable only for certain professional applications.
Motivated by the above issue, we are currently investigating

a camera design that can simultaneously capture high-quality
visible/NIR image pairs with a single sensor. The focus of the
present paper is to address one critical component of such a
camera—the color filter array (CFA)—in detail. We pose the

CFA design as a spatial-domain optimization problem, and
present an efficient iterative procedure that finds (locally) op-
timal solutions. Experiments on real images demonstrate the
feasibility and effectiveness of the proposed design.

2. BACKGROUND

2.1. Color Filter Arrays

A camera sensor is, in essence, monochromatic. In order to ac-
quire color information, the preferred solution is to place a CFA
in front of the sensor. This array is composed of a mosaic of col-
ored transparent material that allows only a portion of the spec-
trum to pass through.
In general, a CFA can be represented by a triplet

cfa[n] = [cr[n], cg[n], cb[n]]
T
∈ [0, 1]3,

where the three components denote the relative percentages of
the R, G, and B information retained at pixel location n. Note
that we enforce the range of CFA values to be within [0, 1] to
ensure physical realizability (via subtractive color layers). Let
r[n], g[n] and b[n] denote the ground truth R, G, B values of the
scene (i.e., the ones we would obtain from a 3-CCD camera); the
sensor reading after the CFA can then be modeled as

yvis[n] = cr[n] r[n] + cg[n] g[n] + cb[n] b[n]. (1)

2.2. Near-Infrared Acquisition

We propose a camera design for the simultaneous capture of high
quality visible/NIR images, which requires no modification of
the current imaging sensors. In fact, standard silicon-based sen-
sors, both CCD and CMOS, are intrinsically sensitive to wave-
lengths from roughly 200 nm to 1100 nm. Thus, if one removes
the hot mirror from the camera, the sensors will have the capa-
bility of imaging both the visible and NIR bands.
One component of the camera that does need modification

is the CFA. Without the hot mirror, the CFA filters are partly
transparent not only to their respective color wavelengths, but to
NIR as well [4]. This fact makes the acquisition model in (1) no
longer applicable.
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Fig. 1. The block diagram for the visible/NIR acquisition process
in the proposed camera design.

Fig. 2. A generic example of a 2 × 2 periodic CFA.

Assume that all color filters in the CFA are equally transmis-
sive to the NIR spectrum.1 Consequently, the color/NIR acqui-
sition process in the proposed camera design can be represented
by the scheme shown in Figure 1. The three visible channels,
r[n], g[n] and b[n], are combined by the CFA into a single mo-
saicked image yvis[n]. However, since the hot mirror of the cam-
era is removed, all color filters are sensitive to the NIR spectrum
as well. The actual sensor reading y[n] therefore is a summa-
tion of yvis[n] and an NIR intensity image, denoted by f [n]. It
follows from (1) that

y[n] = cr[n] r[n] + cg[n] g[n] + cb[n] b[n] + f [n]. (2)

The goal of the present work is to design a CFA and the asso-
ciated demosaicking algorithm that can reconstruct, from y[n],
full-resolution estimates of the visible and NIR information (i.e.,
a 4-layer RGB+NIR image).
Before presenting the proposed new design in Section 3, we

first explain why existing CFA patterns in the literature cannot
handle the simultaneous acquisition of the visible/NIR images.
To that end, consider a simple image

r[n] = g[n] = b[n] = c1 and f [n] = c2,

where c1 and c2 are two constants. In the visible spectrum, the
above image represents a uniform gray patch. A common feature
of most existing CFA patterns is that

cr[n] + cg[n] + cb[n] ≡ γ, (3)

i.e., the summation of the R, G, B values (sometimes called the
“luminance gain”) of the CFA is a constant. For example, the
widely used Bayer CFA satisfies this condition with γ = 1.
Other examples include the CMY CFA (γ = 2), as well as the
various new designs proposed in [7]. From (2), the sensor read-
ing in this case can be written as y[n] = γ c1 + c2. We see that
there exist different combinations of c1 and c2 that can gener-
ate identical y[n]. Consequently, it is impossible to recover the
original images by using CFAs satisfying (3).

1Pigments with this property do exist, and are used, for example, in the print-
ing of banknotes.

3. THE PROPOSED CFA DESIGN METHOD

The choice of CFA patterns has a great impact on the final image
quality in the digital imaging pipeline. The recent work of Hi-
rakawa and Wolfe [7] proposes to design the CFA in the Fourier
domain. The key idea behind this Fourier approach is that one
should design the CFA to minimize the frequency-domain alias-
ing between the luminance and chrominance channels [8].
By doing so, aliasing is treated as noise, and hence should

be avoided at all cost. However, rather than a total loss of infor-
mation, aliasing merely represents a linear mixing of frequency
values, which can be subsequently decoupled by carefully de-
signed reconstruction algorithms. In what follows, we propose a
novel spatial domain approach to CFA design, which allows the
existence of frequency aliasing.

3.1. Linear Minimum Mean Square Error Demosaicking

We start our discussion with the demosaicking algorithm. Con-
sider a genericN × N periodic CFA. Surrounding each N × N

block is a local neighborhoodof pixels of size (2L+1)N×(2L+
1)N , where L specifies the neighborhood size. See Figure 2 for
an example, where N = 2 and L = 1.
Denote by y

def
= vec(y[n]) the sensor observation vector,

where vec(·) denotes the vectorization of a matrix by stacking
its columns. Similarly, we can define the ground truth vector
x

def
= [vec(r[n])T , vec(g[n])T , vec(b[n])T , vec(f [n])T ]T . The

proposed visible/NIR image acquisition model in (2) can then
be written as a compact matrix-vector multiplication

y = Ax

def
=

[
diag(cr[n]) diag(cg[n]) diag(cb[n]) I

]
x, (4)

where diag(·) denotes a diagonal matrix constructed from its ar-
gument, and I is an identity matrix. We refer to the matrix A

defined above as the CFA sampling matrix.
Let x0 ∈ R

4N2

be the vector formed by the RGB and NIR
pixel values at the centerN×N block (e.g., the region inside the
black rectangle in Figure 2). We can easily verify that there is
a constant “selection” matrix S (consisting of zeroes and ones)
such that x0 = Sx.
The goal of demosaicking is to obtain an estimate of x0 from

the observation vector y. In this paper, we focus on linear de-
mosaicking algorithms, and hence the estimation process can be
represented by

x̂0 = D y = DAx, (5)

where x̂0 is the estimated vector andD is a fixed demosaicking
matrix. The average performance of a particular demosaicking
matrix D can be measured by the mean square error of recon-
struction, defined as

MSE def
= E

(
‖x0 − x̂0‖

2
)

= E
(
‖S x − DAx‖2

)
, (6)

where E(·) denotes the expectation operator.
Let C def

= E(xxT ) be the data correlation matrix. Since C

is positive semidefinite, we can always factorize it asC = PP ,
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where the “square root” P is another positive semidefinite ma-
trix. The MSE defined in (6) can be rewritten as [9]

MSE = ‖SP − DAP ‖2
F, (7)

where ‖·‖F is the Frobenius norm of a matrix.
The optimal linear demosaicking scheme in the minimum

mean square error (MMSE) sense is thus the solution to the fol-
lowing optimization problem: [10]

D∗ = arg min
D

‖SP − DAP ‖2
F. (8)

A closed-form solution to (8) is

D∗ = SP (AP )†, (9)

where † denotes the pseudo-inverse of a matrix.

3.2. A Spatial Domain Approach to Optimal CFA Design

For an N × N periodic CFA, its color pattern within one period
is specified by 3N2 numbers

{
cr[n], cg[n], cb[n] : n ∈ [0, N − 1]2

}
. (10)

We denote by α ∈ R
3N2

the column vector containing all 3N2

color values in (10). As stated before, we only consider α ∈

[0, 1]3N2 def
= B to ensure physical realizability. Note that the CFA

sampling matrix defined in (4) can now be written asA(α), i.e.,
a (matrix-valued) function of α.
Given the LMMSE demosaicking scheme in (8), we propose

that the optimal CFA pattern is the solution to the following dou-
ble optimization problem

α∗ = arg min
α∈B

(
min
D

‖SP − DA(α)P ‖2
F

)
. (11)

There exist close analogies between the above task and several
classical problems in communication and learning theories. In
particular, it is helpful to interpret the CFA sampling matrix A

in (11) as a low-dimensional approximation operation and, cor-
respondingly, demosaickingD as the best reconstruction opera-
tion. Finding the optimal CFA is thus equivalent to finding the
optimal approximation scheme for the original signals with min-
imum information loss.
A closed-form solution of (11) does not seem to exist in gen-

eral. Instead, we employ and extend the alternating minimiza-
tion algorithm proposed in [9], which can find (locally) optimal
solutions. To start, we first rewrite the “sequential” optimization
problem in (11) into the following “simultaneous” optimization
scheme

(α∗, D∗) = arg min
α∈B, D

‖SP − DA(α)P ‖2
F. (12)

See [11] for a justification of the equivalence of (11) and (12).
For fixed α, the above problem is convex, and the corre-

sponding optimal solutionD∗(α) is given by (9). Now consider

fixing D and searching for the best α. The key observation is
that we can rewriteA(α) as a linear combination

A(α) = A0 +
3N2∑
k=1

αkAk, (13)

where {Ak}k=0,1,...,3N2 are constant matrices whose entries can
be determined by (4). Substituting (13) into (12), we get

α∗(D) = arg min
α∈B

‖SP −DA0P −
3N2∑
k=1

(αk DAkP )‖2
F. (14)

This is a quadratic programming problem with inequality con-
straints (since α ∈ B). It can be efficiently solved by methods
such as the interior point algorithm. We can now summarize the
proposed iterative search procedure as follows.

Procedure 1 (Iterative Search for Optimal CFAs) Start from
an initial guess of the CFA (i.e., a vector α ∈ B).

1. Initialize: i = 1 and e(0) = 0.

2. ComputeD = SP (A(α)P )†.

3. Calculate the MSE e(i) = ‖SP − DA(α)P ‖2
F.

4. Solve the constrained quadratic minimization problem
(14) and set the solution to α.

5. If |e(i) − e(i−1)| is greater than a given threshold (e.g.,
δ = 0.001), then set i ← i + 1 and return to Step 2.
Otherwise, stop the procedure and return α.

4. NUMERICAL EXPERIMENTS

We present numerical experiments in this section to verify the
effectiveness of the proposed CFA design. To obtain the test
images, we modified a Canon 300D camera by replacing its hot
mirror with a piece of clear glass. This modification allows the
camera to captures visible and NIR light at the same time. We
use lens-mounted filters to capture the visible and NIR images
of the same scene in two consecutive shots. Image registration
has been applied to the visible/NIR pair to compensate for the
relative camera movement between the two shots. To further
reduce the artifacts due to remaining registration errors and other
in-camera processing, we downsample the original images from
2000 × 3000 pixels to 512 × 768 pixels.
In our experiments, we use a total of 12 visible/NIR image

pairs, of which six are used as the training set for estimating the
data correlationmatrixC. In what follows, we present the results
for one set of parameters: N = 4 (i.e., 4 × 4 CFA patterns) and
L = 1 (i.e., a neighborhood size of 12 × 12). The selection
process of these parameters is omitted due to space limitations.
Figure 3(a) shows the convergence behavior of the alternat-

ing minimization algorithm proposed in Procedure 1, with a ran-
domly generated starting point. TheMSE values decrease mono-
tonically throughout the iteration process, and the entire proce-
dure converges within a small tolerance (�MSE < 0.001) af-
ter about 1650 iterations. To improve the chance of reaching
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Fig. 3. (a) The convergence of the proposed iterative procedure.
(b) The obtained 4×4CFA design with 15 visible/NIR filters and
one NIR-only filter (i.e., the black pixel on the first row).

the global minimum, we repeat the iterative procedure 20 times,
with different randomly generated initial values. The obtained
4 × 4 CFA with the smallest MSE is shown in Figure 3(b).
The average reconstruction MSE for the six test image pairs

(not the training set) are 17.4 and 16.4, for visible and NIR, re-
spectively. Note that if we only acquire the visible part, the same
set of images will lead to an average MSE of 12.1 (using the
visible-only CFA in [9]). Effectively, we trade spatial resolution
for additional spectral information. Considering the potential ap-
plications of capturing the NIR alongside the visible images, and
the fact that current sensor resolutions have increased beyond the
human visual system’s discriminating capabilities, this is a trade
we can easily afford.
Figure 4 displays the comparison between two pairs of orig-

inal RGB/NIR images and the demosaicked results. We observe
that, in both the visible and the NIR channels, all key visual in-
formation of the original images have been faithfully retained,
demonstrating the feasibility of acquiring high quality visible
and NIR images simultaneously using a single sensor.

5. CONCLUSIONS

We proposed in this paper a general method for designing CFAs
that can simultaneously capture visible and NIR images. Unlike
previous work on CFA design, which approaches the problem in
the Fourier domain, we pose the CFA design as a novel spatial
domain optimization problem. We provide an efficient iterative
procedure to search for CFAs that are (locally) optimal solutions.
Experiments on real images confirm the effectiveness of the pro-
posed CFA design, which can faithfully retain the information of
the original visible and NIR images.
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