Designing Conventions for
Automated Negotiation

Jeffrey S. Rosenschein and Gilad Zlotkin

m As distributed systems of computers play an
increasingly important role in society, it will be
necessary to consider ways in which these
machines can be made to interact effectively. We
are concerned with heterogeneous, distributed
systems made up of machines that have been pro-
grammed by different entities to pursue different
goals. Adjusting the rules of public behavior (the
rules of the game) by which the programs must
interact can influence the private strategies that
designers set up in their machines. These rules
can shape the design choices of the machines’
programmers and, thus, the run-time behavior of
their creations. Certain kinds of desirable social
behavior can thus be caused to emerge through
the careful design of interaction rules. Formal
tools and analysis can help in the appropriate
design of these rules.

We consider how concepts from fields such as
decision theory and game theory can provide
standards to be used in the design of appropriate
negotiation and interaction environments. This
design is highly sensitive to the domain in which
the interaction is taking place.

This article is adapted from an invited lecture giv-
en by Jeffrey Rosenschein at the Thirteenth Inter-
national Joint Conference on Artificial Intelli-
gence in Chambery, France, on 2 September 1993.

e’ve all been hearing a lot about con-
errgence between telephone, televi-
sion, and computer technology. The
basic idea is that the networks that constitute
our telephone infrastructure, our television
(particularly cable) infrastructure, and our
computer infrastructure will be coalescing into
one harmonious whole. Then the user, sitting
in his/her home or office, has some kind of
information appliance that can handle the
wealth of resources that are available.
Now, Al has a role to play in how the com-
puter works in this brave new world of infor-

Copyright © 1994, AAAIL 0738-4602-1994 / $2.00

mation consolidation. Several groups of Al
researchers are already actively involved in
trying to design automated agents that will
help the user filter or retrieve information
from the network. To mention just one exam-
ple, Oren Etzioni’s group at the University of
Washington at Seattle is building what he
calls softbots, software robots, to handle the
interface between humans and network
resources. There are also a lot of good, meaty,
classic Al problems that need to be solved in
this context, such as knowledge representa-
tion and planning problems.

What we discuss here has a strong connec-
tion to those efforts to build software agents.
What we have been interested in over the last
few years has been to look at the ways in
which these automated software agents will
be dealing with one another. In other words,
it’s all well and good to have agents residing
in your home computer that help you deal
with all the information, but this agent of
yours is going to have to deal with the agents
of other people, either private agents if you're
trying to do a job such as setting up a meet-
ing with a group of people or corporate
agents if you're trying to access information
from a company database. These software
agents are on their way, and they’re going to
be getting a lot of things accomplished by
interacting with each other. The question is,
How will these agents be cooperating with
each other, competing with each other, and
negotiating with each other?

Machines Controlling and
Sharing Resources

There are actually a lot of different environ-
ments in which machines are making more

Articles

FALL 1994 29

Articles

... the agents
that we

are interested
in looking

at are
heterogeneous,
self-motivated
agents.

30 AI MAGAZINE

and more decisions that affect our daily lives,
and they’re making these decisions not in
isolation but in concert with other machines.
Computers that control electric grid networks
and need to balance their power require-
ments can share electricity with other com-
puters controlling other networks. If there’s a
drop or rise in power consumption, one com-
puter can sell or buy excess power from other
utilities to which it’s connected.

Another example is routing among
telecommunication networks. Information, or
packets, can pass over a network controlled by
one company onto another network con-
trolled by another company, or it can pass
through one country on through another.
Computers that control a telecommunications
network might find it beneficial to enter into
agreements with other computers that control
other networks about routing packets more
efficiently from source to destination. The
point is that it might make sense for both
machines to be able to exploit the resources
controlled by the other so that they can both
get their jobs done more effectively.

We're also seeing the emergence of tools
such as personal digital assistants, small, hand-
held computers (for example, the Newton).
These personal assistants are going to assume
the roles of a number of machines or tools
involved with managing our daily lives, such
as notebooks, communicators, fax machines,
telephones, and automated schedulers. We're
going to have some kind of agent software on
the personal assistant, and it’s ultimately
going to get part of its work done by interact-
ing with other agents on other personal assis-
tants.

Another example is the proliferation of
shared databases, where there’s information
spread all over the world. They have sprung
up with a vengeance in the last decade. You've
already got agents, such as Etzioni’s softbots,
that are going out there to gather informa-
tion—for example, a person’s Internet
address—from a shared database. Finally, even
something such as traffic control, coordina-
tion of vehicular traffic, or air traffic control
illustrates situations where software agents
will be making decisions based on communi-
cation and agreements with other agents.

Each of these situations is an instance
where computers are controlling some
resource and might be able to help them-
selves by strategically sharing this resource
with other computers. With personal digital
assistants, the resource might be a person’s
time, whereas with a telecommunications
network, the resource might be communica-

tion lines, switching nodes, or short- and
long-term storage. In each situation, the com-
puters that control these resources can do
their own job better by reaching agreements
with other computers.

Heterogeneous,
Self-Motivated Agents

Now, the agents that we are interested in
looking at are heterogeneous, self-motivated
agents. The systems are not assumed to be
centrally designed. For example, if you have a
personal digital assistant, you might have one
that was built by IBM, but the next person
over might have one that was built by Apple.
They don’t necessarily have a notion of glob-
al utility. Each personal digital assistant or
each agent operating from your machine is
interested in what your idea of utility is and
in how to further your notion of goodness.
They’re dynamic; for example, agents might
enter and leave the system in an unpre-
dictable way. The system as a whole is flexi-
ble; new personal assistants are coming in,
even new types of personal assistants are
being built and coming in to the system and
have to interact with other agents.

In particular, the personal assistants do not
act benevolently unless it’s in their interest to
do so. They do not necessarily share informa-
tion, they do not necessarily do things that
other agents ask them to do unless they have
a good reason for doing so. Thus, imagine
lots of agents, each one residing in your per-
sonal computer or on your personal digital
assistant, trying to carry out tasks, and inter-
acting with other agents.

The Aim of the Research

The aim of the research that we’ve been
doing can really be thought of as a kind of
social engineering for communities of
machines. With communities of people,
social engineering means setting up laws or
setting up an environment that causes people
to act in a certain beneficial way or causes
people to act in certain ways that we decided
ahead of time are desirable. At the least, it
constrains their behavior.

Similarly, we’re interested in the creation of
interaction environments that foster a certain
kind of social behavior among machines. We
want to develop conventions, rules of
encounter, for these software agents that will
cause them to act in certain ways. Another
way to look at this research is that we're trying
to exploit formal tools, in this case, game the-

ory tools, for high-level protocol design. We're
looking at protocols for interactions among
agents, and we would like to design protocols
that cause, for example, these personal digital
assistant agents to act in certain ways.

Broad Working Assumption

These agents are obviously still pursuing their
own utility, they’re still pursuing their own
goals, but they’re going to be constrained
somehow by the environment that we
design. However, who's “we”? “We” means
the designers of the network or the designers
of the system. Let’s say, as a working assump-
tion, that designers from IBM, Apple, Toshi-
ba, and Sony all come together and say, “OK,
we've got this domain. The domain is person-
al digital assistants doing scheduling, time
scheduling. Given this domain, we would like
to set up the rules for the way in which
schedules will be set. We want to set up the
rules, a high-level protocol, that determines
the kind of deals, let’s say, that agents can
make among themselves.”

These designers then come together and
try to agree on standards for how their auto-
mated agents interact. An important part of
this process is that it takes place in a given
domain. They might decide on different pro-
tocols for different domains, but given the
domain, like scheduling among personal digi-
tal assistants, the designers are going to
decide on standards for how the agents reach
agreements.

Now, what are the designers actually doing
in this meeting? It is a standards committee
meeting: They sit around a big table and dis-
cuss the trade-offs of different decisions. One
of them says, “You know, if we have this kind
of protocol, the agents will be able to come to
agreement quickly. The agreements probably
won’t be optimal, but we’ll be able to get to
them fast.” Somebody else at the table says,
“Yes, but it’s important to us at IBM that
these protocols not allow agents to manipu-
late one another. You know, we don’t want
any manipulative, exploitative agents getting
into the system and taking advantage.” Yet
another designer says, “Well, that’s not so
important to me. The most important thing
is that the average utility among all the
agents be as high as possible.”

We are not trying to impose a group of
decisions that these company representatives
might make. Instead, what we'’re trying to do
is come forward, elucidate a variety of proto-
col decisions, and show how particular proto-
cols have certain desirable attributes. Once

we show that protocol A has a certain
attribute, the designers of these personal digi-
tal assistants might decide to choose it, and
they might not; they might choose some-
thing else. However, the idea of the research
is to come forward and elucidate and elabo-
rate on the possibilities. Protocol A has this
set of attributes, and protocol B has this
slightly different set of attributes. Which do
you want to choose when you design your
agents? It's up to you. Part of the research is
to make it clear to those designers what the
options are.

Attributes of Standards

What are we looking at when we try to
design a standard? Well, we might look at the
efficiency of the system, such as Pareto opti-
mality; that is, the agreement that is reached
by the agents can be made no better for any
one of the them without making it worse for
one of the other agents. Thus, we have what
might be considered a broadly acceptable
doctrine of general goodness.

Stability: An agent has no incentive to
deviate from a particular strategy. This idea is
related to the game theory notion of equilib-
rium.

Simplicity: This quality is important for
computer science but much less important
for game theory. We certainly want our pro-
tocols to have low computation and commu-
nication costs. This attribute is one that we
might propose, and those designers might
say, “This attribute is absolutely important;
it’s important that our small processor not
have a heavy load in doing negotiation.”

We'd like the protocol to be distributed,
typically because if we're going to have a lot
of distributed agents, it would be nice not to
have a central decision maker. It would be
nice to have it be symmetric, so that no agent
plays a special role. When the agents come
together, they don’t have to decide who's
going to be the master and who’s going to be
the slave or who’s going to do what.

The idea is to design protocols for specific
classes of domains that satisfy some or all of
these attributes. As we present protocols, or
design decisions, it might be the case that it’s
simple but not distributed or that it’s stable
but not efficient or that it’s efficient but not
stable. These are classic trade-offs.

Distributed Al

How does this work relate to other research
being done in the field? It fits into the broad

Articles

... what we’re
trying to do is
come forward,
elucidate a
variety of
protocol
decisions,
and show
how
particular
protocols
have certain
desirable
attributes

FALL 1994 31

Articles

Phone Call Competition Example

Customer wishes to place long-distance call
Carriers simultaneously bid, sending proposed prices
Phone automatically chooses the carrier dynamically)

Figure 1. A System for Placing a Call.

32 AI MAGAZINE

area of distributed AI, which can be broken
down into two related areas. These two areas
constitute distinctions between research
agendas; they are not really appropriate as
descriptions of running systems.

One stream of research is distributed problem
solving, which constitutes the original empha-
sis of distributed Al, namely, the study of dis-
tributed but centrally designed Al systems.
How do you build a distributed system that is
made up of many agents that have some glob-
al problem to solve? You're going to design
the system so that the agents solve the prob-
lem in a good way, in a distributed way, in an
efficient way. In distributed problem solving,
there is assumed to be a single body that is
able, at design time, to directly influence the
preferences of all agents in the system.

This area contrasts with another stream of
research within distributed Al called multi-
agent systems. In multiagent systems, you
again have multiple agents in a distributed
system, but you do not assume that there is a
single designer who stands behind all of
them, or put another way, you do not assume
that the individual agents have a group sense
of utility. Each of the agents in the system
can be working at different goals, even con-
flicting goals. You have to deal with a system
made up of multiple agents where competi-
tion or cooperation is possible between the
agents. In multiagent systems, no single body
is assumed that, at design time, can directly
influence the preferences of all agents in the
system. The agents’ preferences arise from
distinct designers.

In particular, if a distributed problem-solv-
ing researcher can show that acting in a par-
ticular way is good for the system as a whole,
he/she can impose this behavior on all the
agents in the system at design time. For the
multiagent system researcher, such an alter-
native is unavailable. At best, he/she might
be able to design aspects of the environment
that motivate all the (selfish) agents to act in
a certain way. This need for indirect incen-
tives is one element that distinguishes multi-
agent system research from distributed prob-
lem-solving research.

The work we describe here is multiagent
system research.

The Telephone Call
Competition Example

We mentioned how we're trying to design
protocols for agent interactions. To illustrate
this point, we use the example of a hypothet-
ical environment to show how different pro-
tocols motivate agents to act in different
ways and how these different protocols end
up having different global properties.

In the United States, there are several long-
distance telephone companies, and each tele-
phone customer sends in a postcard asking to
hook up with one or another of them. The
selected company becomes the customer’s
default carrier; you have to dial extra num-
bers to place a long-distance call with some
other company. Imagine another kind of sys-
tem, one that might operate within the cur-
rent technology but has certain benefits over
the way things are done now. What if a cus-
tomer lifts a handset and dials a long-distance
call, and a microprocessor within the tele-
phone automatically collects bids from the
various carriers? Each company’s computer
automatically and simultaneously declares
the price per minute for which it's willing to
carry the call. In figure 1, we see the MCI
computer relaying 18 cents, but the AT&T
computer bids 20 cents, and so on. This pro-
cess can take place in a split second, without
significantly delaying the call.

Best Bid Wins

Our telephone’s microprocessor is now col-
lecting the bids. Assume that the protocol
involves our telephone choosing the compa-
ny with the lowest bid, which is completely
reasonable, and placing the telephone call
with the company. The winning carrier
receives a price for each minute equal to the
amount that it bid. The prices set by the com-
panies for telephone calls at different times of

the day no longer have to be fixed ahead of
time, nor does the pricing system have to be
simple enough to be remembered by con-
sumers. It can be completely dynamic and
sensitive to the real costs or economies that
exist at any given moment. The system
appears to be much more open to competi-
tion too: A new long-distance carrier doesn’t
have to win over consumers with a costly
advertising campaign; it just needs to set up
its computers to enter into the bidding game.
In fact, the companies now have greater
motivation to sink their budgets into
researching ways to lower their costs rather
than into advertising to grab consumers. The
process sounds good, but this bidding mecha-
nism has a serious flaw (figure 2).

Strategic Behavior Results

We have made the long-distance carrier selec-
tion distributed and symmetric, but the proto-
col, the rules by which the agents play to win
the telephone call, does not encourage stable,
simple, or efficient behavior on the part of the
telephone company computers. Let’s pretend
that our consumer wants to make a long-dis-
tance call and consider the MCI computer’s
reasoning. Although it could carry the call for
18 cents and get an acceptable profit, it might
rationally try to increase the profit by bidding
higher. It might think that the next-highest
bidder won't go below 22 cents and, conse-
quently, make its own bid 21 cents. Now, this
strategy is risky, but the carriers have a great
incentive for investing effort in strategic
behavior. Instead of putting their money into
polished ad campaigns, they’ll pay program-
mers to develop sophisticated models of their
opponents’ bidding strategies; that is, how
much can carrier X really afford to carry a call
for right now? They’ll put energy into trying
to discover relevant information about their
opponents, information that might affect the
bid the opponent puts in, for example, which
switching stations are down and what the
other company’s profit and loss are for this
quarter. Ultimately, this sort of effort drains
resources that might be better spent else-
where. Equally important, the actual bidding
procedure can result in an inefficient out-
come. In this example, MCI might lose the
bid when it could have served as the lowest-
cost alternative.

Can we do better by changing the protocol
of bidding? The answer is yes.

Best Bid Wins, Gets Second Price
Let’s say that in our new protocol, all the

Articles

Best Bid Wins

Phone chooses carrier with lowest bid
Carrier gets amount that it bid

Attributes of the Mechanism

Distributed
Symmetric

“Maybe | can
bid as high as
$0.21..."

Carriers have an

Figure 2. Rules of the Game and Resulting Attributes.

company computers put their bids in, and
our telephone’s computer again automatical-
ly chooses the lowest bidder as the winner.
However, this time, the carrier that wins gets
paid a price for each minute equal to the sec-
ond lowest bid. This bidding system, called
Vickrey’s mechanism, is attractive because it
provides no incentive for a company to
underbid or overbid. A company has the
incentive only to provide the true minimum
acceptable price. A company won’t bid lower
than its minimum acceptable price because it
fears that some other company might bid in
the gap that it has opened up (in fact, if no
one else bids in the gap, the first company
would have won anyway without bidding
low). If MCI bid 1 cent and won, somebody

FALL 1994 33

Articles

Best Bid Wins, Gets Second Price

Phone chooses carrier with lowest bid
Carrier gets amount of second-best price

“l have no
reason to
overbid...”

Attributes of the Mechanism

Distributed
Symmetric

Carriers have no
incentive to

Figure 3. Different Protocol, Different Attributes.

34 AI MAGAZINE

else might bid 10 cents; then MCI would be
forced to carry the call for less than its mini-
mal acceptable 18 cents for each minute.
However, no company has an incentive to
overbid either. What possible benefit could
MCI get from declaring a price higher than
18 cents? If it says, for example, 20 cents, it
might lose a bid it would otherwise have
won, and in any case, its own bid will never
affect how much money it gets! By separating
the issues of who wins the bid and how much
the winner gets, we have fundamentally
altered the way in which computers should
play the game (figure 3).

Attributes of the Mechanism

Now, the carriers at our long-distance compa-
nies have no incentive to invest effort in
strategic behavior. They can put all their
money into lowering the costs of long-dis-
tance calls so that they’ll win more bids and
get more business. We’ve got a distributed,
symmetric, stable, simple, and efficient
mechanism for these self-motivated machines
to use. Of course, we've bought these won-
derful attributes at a cost; the consumer has
to pay a small premium on each call to make
things work, in this example, paying 20 cents
rather than 18 cents for each minute. With
many carriers, this effect will be minimized.
In any case, the point of this example is not
its details. We illustrated how we can design
the rules of the game for multiple-agent inter-
actions and reach a situation where rational
agents are motivated to play in certain ways.
The telephone call domain is actually
incredibly simple. We are interested in more
complicated real-world situations, with com-
puters controlling and sharing resources.

Domain Theory

It is important in which domain our indepen-
dently motivated agents are working because
these domain attributes are going to affect
the properties of our protocols. A technique
that works in one domain class, motivating
agents to act in a certain way, won’t necessar-
ily work in another type of domain.

We've found it useful to categorize classes
of domains into a three-level hierarchy,
where each level is increasingly more general.
This categorization is not exhaustive; there
are other, more general categorizations of
domains. However, the three-level hierarchy
covers many of the real-world domains in
which we are interested.

The lowest-level, the simplest kind of
domain that we’ve looked at is the task-ori-
ented domain. A task-oriented domain exists
when agents have nonconflicting jobs to do,
and these jobs or tasks can be redistributed
among the agents. Thus, the agents receive
some list of jobs that they have to accom-
plish, and the object of negotiation in this
kind of environment is to redistribute tasks
among the agents to everyone’s mutual bene-
fit if possible. Most of the talk will be on this
first area.

The next-higher level we call the state-ori-
ented domain. State-oriented domains are a
superset of task-oriented domains. State-ori-
ented domains have goals that specify accept-
able final states in the classic AI way. Impor-

tantly, in contrast to task-oriented domains,
actions in state-oriented domains can have
side effects, where an agent doing one action
might hinder or help another agent. The
object of negotiation is to develop joint plans
and schedules for the agents. The agents want
to figure out when each agent should do each
action so that they stay out of each other’s
way but also help one other if appropriate.

Finally, we come to the worth-oriented
domain, which is a superset of the state-ori-
ented domain. Worth-oriented domains
assume, like state-oriented domains, that
goals specify final states, but this fact is
encoded in a function that rates the accept-
ability of states. Every state in the world is
better or worse, but it’s not the binary notion
of goal that we have in state-oriented
domains. In a worth-oriented domain, we
have a decision-theoretic kind of formula-
tion, with the agent striving for better states.
Again, the object of negotiation is a joint
plan, schedules, and goal relaxation. In other
words, agents might not be able to get to the
state that is their ultimate objective, but they
might be willing to arrive at a state that is a
little bit worse. Because the agents have a
function that rates the acceptability of states,
they are able to evaluate gradations among
goal states, which they can’t do in state-ori-
ented domains.

Examples of Task-Oriented Domains

In this subsection, we discuss various exam-
ples of task-, state-, and worth-oriented do-
mains. To illustrate task-oriented domains, we
present the postmen, database, and fax
domains. To illustrate state-oriented domains,
we discuss the slotted blocks world. Finally,
to illustrate worth-oriented domains, we dis-
cuss the multiagent tile world.

Postmen Domain A classic task-oriented
domain that we've looked at quite a bit is the
postmen domain (figure 4). In this case, two
agents arrive at the post office early in the
morning; they receive sacks of letters that
they then have to take and deliver around
the city, which is represented by a graph. At
each node, there is a little mailbox. Let’s say
agent 1 has to go to ¢, f, and e and then
return to the post office, but the other agent
might have to go to ¢, b, and d and then
return to the post office. This example illus-
trates a task-oriented domain. The cost of car-
rying out a delivery is only in the travel dis-
tance. There are no side effects to their
actions, there is no limit to the number of let-
ters they can carry, and there is no limit to
how many letters they can put in a mailbox.

Articles

Postmen Domain

Post Office

e
|

!‘l‘ ==

Figure 4. Example of a Task-Oriented Domain.

They have these tasks to do, and there is no
possibility of getting in each other’s way.

The agents cooperate before they start on
their journey. For example, they look at the
letters and say, “You know, it doesn't really
make sense. You're going past ¢ anyway, why
don’t you take my letter? It is no extra cost to
you; the cost is only in the travel distance,
and I'll have a shorter trip.” What they try to
do is evaluate these deals. There are different
possible divisions of the tasks, some are better
for one, some are better for the other. We
would like the agents to come to some agree-
ment about how they are going to divide the
tasks.

Database Domain Let’s look at another
domain, also a task-oriented domain, called
the database domain. There’s a common
database residing on the Internet, let’s say.
Two agents are sent out to get information.
One is supposed to retrieve the names of all
the female employees making over $50,000 a
year and return, and the other one is sup-
posed to get the names of all the female
employees with more than three children and
bring them back. In this domain, each sub-
query to the database costs money. These two
agents approach the database and look at
each other and say, “You know, one of our
subqueries is the same. We could structure
our requests for information so that only one
of us asked for all female employees, and
then subsequently, we would each do another
operation on the subset of names. We don't
both have to ask for the names of all the

FALL 1994 35

Articles

Database Domain

“All female
employees
making over
$50,000 a
year.”

= =

“All female
employees
with more
than three
children.”

Fax Domain

g Fio

Cost is
only to
establish

connection

Figure 5. More Examples of Task-Oriented Domains.

female employees.” There are no side effects,
no possibility for getting in each other’s way,
just cooperation (figure 5).

Fax Domain One final example of a task-
oriented domain, one similar to the postmen
domain, is the fax domain. In the fax domain,
two agents arrive in the morning and are giv-
en lists of faxes they have to send all over the
world. The agents fortunately only have to
pay to connect to the other fax machine;
once they connect, they are allowed to down
load as many faxes as they want.

The two agents might find that they both
have faxes to send to London and say, “It
doesn’t make sense for both of us to pay the
charge of connecting to London. Let’s divide

36 AI MAGAZINE

the faxes: You take my London faxes, and I'll
take your Rome faxes.”

Slotted Blocks World—
State-Oriented Domain

A blocks world is an example of a state-orient-
ed domain. An agent comes and wants the
blocks in a certain configuration. The other
agent comes and wants the blocks in a certain
configuration. These goals can be identical, or
they can be in conflict with one another. One
agent might want the orange block on top of
the blue block, and the other agent might
want the blue block on top of the orange
block. There’s a possibility for real conflict
(figure 6).

There are other possibilities, too, such as
accidental cooperative action, where one
agent inadvertently does something that’s
good for the other without the other having
to ask for it. This type of action can never be
true in our task-oriented domains, where
there has to be some communication, passing
of tasks back and forth, for cooperative action
to take place. Here, side effects really affect
our analysis of the domains.

The Multiagent Tile World—
Worth-Oriented Domain

A multiagent version of the tile world, original-
ly introduced by Martha Pollack, is an exam-
ple of a worth-oriented domain. We have
agents operating on a grid, and there are tiles
that need to be pushed into holes. The holes
have value to one or both of the agents, there
are obstacles, and agents move around the
grid and push tiles into holes. It’s true that
each agent has a most desirable state, where
all the tiles are in its holes, but other states
are also good, although less good than the
most desirable state. Thus, each agent is able
to rank different states, and agreements more
easily reflect the possibility of compromise.

Task-Oriented Domain

Let’s go back now and look at the task-oriented
domains. A task-oriented domain consists of a
tuple, <T, A, c>, where T is the set of tasks, all
the possible actions in the domain; A is the list
of agents; and c is some kind of monotonic
cost function from any set of tasks to a real
number. An encounter within a task-oriented
domain is a list, Ty, ... T,, of finite sets of tasks
from the task set T, such that each agent needs
to achieve all the tasks in its set. You might as
well also call the task set its goal. Thus, we
have an encounter, a group of agents coming
together, each with a list of tasks.

Remember, we're doing an analysis for the
sake of all those designers from IBM, Toshiba,
Sony, and so on, that are going to be sitting
around the table deciding how to design their
personal digital assistants.

Building Blocks

In doing this analysis, we have three things
we would like to look at. The first element is
a precise specification of the domain, a defi-
nition of what a goal is and what agent oper-
ations are. We just performed this specifica-
tion in a broad sense for a task-oriented
domain.

The second element is the design of a
negotiation protocol for the domain. A nego-
tiation protocol involves a definition of what
a deal is among the agents, a definition of
what utility is among the agents, and a defi-
nition of the so-called conflict deal. The con-
flict deal is the deal, the default deal, that the
agents get if they fail to reach an agreement.
You can think of the negotiation protocol as
something like the rules of the game. In
chess, for example, the negotiation protocol
would be analogous to a description of what
all the possible moves are.

The third element is the negotiation strate-
gy, or how an agent should act given the set
of rules. Think again about a chess game.
Think about separating the rules that describe
the game from the technique that an agent
uses in response to the environment, in
response to the rules. First, we would like to
define the rules of the negotiation, and then,
for purposes of illuminating the situation for
our designers, we would like to discuss nego-
tiation strategies that they might choose to
put into their agents.

Deal and Utility in
Two-Agent Task-Oriented Domain

First, we would like to have a definition of
the deal, the utility, and the conflict deal.
Here we have it for a two-agent task-oriented
domain: A deal & is a pair (D,, D,) such that
D, 0D, =T, 0T,. The conflict deal is defined
as © = (T;, T,). Utility,(8) = Cost(T;) — Cost(D;).

A deal in a two-agent task-oriented domain
is a pair, Dy, D,, such that their union is equal
to the union of the original task sets. Think
about those postmen with their letters. They
come together with T, and T),, their original
sacks of letters. A deal is a new distribution,
such that all the letters are taken care of.

The conflict deal in this case is simply the
original sets of letters. If you don't reach agree-
ment, you deliver your original sack of letters.

The utility of a deal for an agent is defined

Articles

Slotted Blocks World

SOD

Figure 6. State-Oriented Domain and Worth-Oriented Domain Examples.

as the cost of its original work minus the cost
of its new work given the deal. The difference
is how much it has gained from the deal. It
used to have to walk five miles; now it only
has to walk three miles. The utility is two.

Negotiation Protocols

As far as the protocol that the agents are
going to use, there are lots of good choices.
For the purposes of this discussion, we’re
going to assume that the agents are using
some kind of product-maximizing negotia-
tion protocol, such as in Nash bargaining the-
ory. For our purposes, it really doesn’t matter
which one they use as long as it’s symmetric;
that is, it maximizes the product of the utili-

FALL 1994 37

Articles

-1 Phase Game: Broadcast Tasks

Post Office °

Hiding Letters

Post Office ®

Agents will flip a coin to
decide who delivers all
the letters.

(hidden)

i |
L—e —0 They then agree that

agent 2 delivers to f
and e.

Figure 7. Dealing with (and Exploiting) Incomplete Information.

38 AI MAGAZINE

ties. There are all sorts of examples of differ-
ent protocols, different rules, that will bring
the agents to an agreement that maximizes
the product of their utilities. You can even
have a one-step protocol; if they know every-
thing, they can compute the agreement
point, which will be the point they jump to.
Instead, you can have some kind of a mono-
tonic concession protocol, where each agent first
starts with a deal that’s best for it and then
iteratively makes compromises to the other
agent. There are a lot of different product-
maximizing protocols.

Now we return to the last item on our
building blocks list. Given that we have a
task-oriented-domain specification, a defini-

tion of the deal, the utility, the conflict deal,
and an overall protocol, what negotiation
strategy should the agents use? Given the
previous discussion, you could say, “Well,
strategy is not really important in this situa-
tion because once the designers have decided
on the protocol, and they know exactly what
the tasks are for the other agent and what
their own tasks are, there’s a well-defined
agreement point. This well-defined point tells
them when they have maximized the product
of their utilities. They can just move to this
point in one way or another. It doesn’t really
matter how,” which is true when the agents
have complete information.

Negotiation with
Incomplete Information

What about the case where the agents don't
have complete information? What about that
situation where the postmen show up in the
morning, and the sacks of letters are opaque,
and they have to decide how to negotiate.
Let’s assume that the first agent has to carry
letters to b and £, and the second agent has to
go to e. Each agent knows its own letters but
doesn’t know the other’s letters, so they can’t
compute the agreement for the two of them.
Instead, they need some other kind of mecha-
nism that will allow them to come to an
agreement. One simple, straightforward tech-
nique is to set up a 21 phase game, a sort of
pregame exchange of information (figure 7).

The two agents broadcast their tasks and
then continue as before, computing where
the agreement is going to be. Agent 2
announces that it has to go to e, agent 1 says
“I have to go to b and f,” and they decide
who’s going to do what. Now, just to carry
out its own tasks, each one would have to go
a distance of eight units. Agent 1 would cer-
tainly go all the way around, and agent 2
might go half-way around and back, but it’s
equivalent to going all the way around. In
this particular case, because of the structure
of the problem, the agents eventually agree to
flip a coin, and one of them travels all the
way around while the other one stays at the
post office. Assuming it’s a fair coin toss, they
have divided up the work equally.

Hiding Letters

However, our intrepid agent has been built by
a smart group of designers, and it makes the
following claim: Agent 2 honestly says, “I
have to go to e”; agent 1 says, “I have to go to
f,” and it hides its letter to b (see figure 7b).
Now, the negotiation situation has changed

because agent 1 is purporting to say here that
it only has to travel six units, and it should
be required to do less of the final work. In
fact, in this situation, the only pure deal that
the agents can agree to is that agent 2 takes
the letters to f and e, and agent 1 supposedly
does nothing. This deal is agreed on because
it would not be rational for agent 1 to agree
to carry letters all the way around the loop. It
would then be doing eight units of work,
more than the six units of work it would
supposedly be doing by itself. It can’t be
expected to agree to a deal that makes it do
extra work. However, agent 2 doesn’t benefit
from this deal because it still travels eight
units, but it isn’t harmed either. Thus, the
deal where agent 2 does all the work is the
only rational, Pareto-optimal deal. In the
meantime, agent 1 runs off and delivers its
hidden letter to b at a cost of two units.
Agent 1 has really made off well with this
manipulation, guaranteeing itself two units
of work instead of eight if it were alone or
four units of expected work if it were honest
in its deal making.

Phantom Letters

Let’s look at another possibility for deception
(figure 8). Let’s say our agents both have to
deliver letters to nodes b and c. It’s an entire-
ly symmetric situation. Obviously, it makes
sense for one agent to go to b and one to go
to c. However, b is relatively far away, and c is
relatively close; each agent would prefer to be
the one to go to c. If they tell the truth and
declare their true tasks, they’ll flip a coin to
decide which one goes to which node.

Agent 1 again decides to manipulate the
agreement. It announces that it has a letter to
deliver to node d, which is a long way off in
the direction of node c. It only makes sense
for agent 1 to go to c¢ and, presumably, con-
tinue to d. If agent 2 were given the right side
of this route, it would have to do more work
than when it’s alone, which wouldn’t be
acceptable to agent 2. They have to agree that
agent 2 goes to the left side and that agent 1
goes to the right side. Of course, the letter to
d doesn’t exist; agent 1 just goes to ¢ and
comes back and benefits from its manipula-
tion.

Part of what’s going on here is that the
form of a deal that we defined has con-
strained the kinds of agreement the agents
can come to. Remember, a deal is just a divi-
sion of tasks, and we get certain discontinu-
ities when we define a deal this way. Howev-
er, it’s really that our deal space is discrete
that gives rise to some of these possibilities

Articles

Post Office

Another Possibility for Deception

They will agree to flip a coin

to decide who goes to b
and who goes to c.

Phantom Letter

Post Office

They agree that
agent 1 goes to c.

Figure 8. Creating a Phantom Task.

for deception. In other words, you have a cer-
tain limited number of ways to divide up
tasks between agents. Depending on the par-
ticular encounter, an agent might be able to
maneuver its way to a certain deal that’s bet-
ter for it, exploiting the fact that there are
only certain ways to divide the tasks.

Negotiation over Mixed Deals

One straightforward way of getting rid of
some deception is to make the deal space
continuous. We can redefine what a deal is,
what a division of tasks is, to include proba-
bility. A mixed deal is defined to be a division
of tasks (D,, D,) with an associated probabili-
ty p, so that with probability p, agent 1 does

FALL 1994 39

Articles

Hiding Letters with Mixed
All-or-Nothing Deals

Post Office]

They will agree on the mixed
deal where agent 1 has a 3/8
chance of delivering to f and e.

Phantom Letters with Mixed Deals

Post Office

They will agree on the mixed
deal where A has 3/4
chance of delivering all

letters, lowering his
i @ expected utility.

Figure 9. Mixed All-or-Nothing Deals Discouraging Deception.

40 AI MAGAZINE

task set D,, and with probability 1 2 p, it does
task set D, (and vice versa for agent 2). This
deal definition results in a continuous space
of deals. In addition, because of the way that
our class of task-oriented domains is defined,
if the agents use mixed deals, they can always
restrict their agreements to the so-called all-
or-nothing deal. In the all-or-nothing deal, all
tasks are put into one big set, and a weighted
coin is tossed to decide which agent does all
the tasks. In our examples, this kind of agree-
ment will always be a potential deal, but
there can be others. By adding this probabili-
ty into the deal definition, we make the space
of deals continuous instead of discrete, the
way it was originally.

Thus, at least some of the agents’ possibili-
ties for deception have vanished. Let’s revisit
our original postmen domain example. Now
the protocol has agents negotiating over
mixed all-or-nothing deals (figure 9). If agent
1 hides its letter to node b, it still has a cer-
tain probability of going all the way around
the loop, which means that it doesn’t get off
for free, as in the original example. There is
some possibility (less than 50 percent, but it’s
there) that it might deliver the declared let-
ters. In any case, it still has a guaranteed trip
of two units to node b, even if he wins the
coin toss. If you work out the numbers, you
see that agent 1 has not benefited any more
from its hiding one of its tasks.

Similarly, in the second encounter, where
agent 1 declared an extra, phantom task, the
use of probability in the deal ends up worsen-
ing agent 1’s position. It will end up doing
extra work because it had the audacity to
claim that it came into the encounter with
extra work. The logic of maximizing the
product of utilities here means that if it came
into the encounter with extra work, it has to
bear more of the burden of the final deal. In
both these specific cases, we did well by just
introducing probability into the deal defini-
tion.

Does adding probability really solve all our
problems? No, but it removes problems for
specific kinds of encounter. We have to
understand the kinds of task-oriented domain
that exist; not all task-oriented domains are
the same.

Subadditive
Task-Oriented Domains

All the examples we have given to this point
have been illustrations of what are called sub-
additive task-oriented domains. A task-oriented
domain is subadditive if for all finite sets of
tasks, the cost of the union of tasks is less
than or equal to the sum of the costs of the
separate sets (for finite X,Yin T, c((X O Y) <
c(X) + ¢(Y)). In other words, if you have two
sets of tasks, and you put them together,
you’ll never increase the cost, and perhaps
you'll decrease it. You can see the general idea
in figure 10. Putting the sets of tasks together
lowers the overall cost of the combined set.
All our examples have been subadditive,
but not all task-oriented domains are subad-
ditive. For example, consider a minor varia-
tion on the postmen domain; we call it the
delivery domain, where agents go out and
deliver their packages but are not required to
return to the post office at the end of the day.

In this case, we don’t have a subadditive
domain (see figure 10b). If one agent has the
task of delivering to the left node, and anoth-
er agent has the task of delivering to the right
node, then each has a task that costs one
unit. The combined set of tasks costs three
units: down one side, back to the original
node, then down the other side; so, the com-
bined tasks cost more than the sum of the
individual tasks and, thus, are not subaddi-
tive. If this domain were the postmen
domain, each separate delivery would cost
two units, and the combination would cost
four units and, thus, would be subadditive.

Incentive-Compatible Mechanisms

Now we can summarize what we know so far
into a table that illustrates when lying is
potentially advantageous and when telling
the truth is the best policy (figure 11). For
subadditive task-oriented domains, we have
three protocols: (1) the original deal defini-
tion that we call pure deals; (2) the new deal
definition that uses probability, which we call
mixed deals; and (3) the all-or-nothing proto-
col that always results in this special mixed
deal where one agent does everything with
some probability. The original loop example,
where a pure deal was being used in the pro-
tocol, was an instance where hiding a letter
might be beneficial to an agent. The L signi-
fies that encounters exist where lying is bene-
ficial. The second example illustrates where a
phantom task was beneficial; it also gets an L.
A T in a box means that honesty is the best
policy. An agent’s best strategy is to always
tell the truth. For example, when an all-o1-
nothing utility product-maximizing mecha-
nism (PMM) protocol is being used in a sub-
additive task-oriented domain, no agent has
an incentive to hide a task. The best strategy
is to reveal all the tasks.

The entry T/P means that although creat-
ing a phantom letter might sometimes be
beneficial, the deception might also be dis-
covered because the nonexistent task might
have to be handed over to the other agent
using these probabilistic protocols. Thus,
with a high enough penalty mechanism,
telling the truth becomes the best strategy.

Also notice that there’s a relationship
between table entries, denoted by the white
arrow. The relationships are implications that
arise naturally from the definitions of the
columns and rows. Here, for example, the
fact that all-or-nothing deals are a subset of
mixed deals means that if telling the truth is
the best strategy in mixed deals, it is certainly
also the best strategy in all-or-nothing deals,

Articles

Sub-Additivity

c(X OY) =c(X) +c(Y)

Sub-Additive TODs

sub-additive.

I _i_
: :;\}

o

The Postmen Domain, Database Domain, and Fax Domain are

The “Delivery Domain” (where postmen

don’t have to return to the Post Office) is
not sub-additive.

Figure 10. The Nature of Subadditivity.

which are a subset.

Decoy Tasks

One more kind of lie that’s worth looking at
is the decoy task. A decoy task is like a phan-
tom: It’s a fake task, but an agent can create it
on demand if necessary. A postman might
claim it has a letter to some particular node.
If required to hand it over when using a prob-
abilistic deal, the agent quickly jots down a
note, “Dear Resident: You might have already
won the sweepstakes,” and hands it over.
Thus, a simple penalty mechanism won’t
work, and, in fact, as the table shows (figure
11b), decoy lies in subadditive domains can
sometimes be beneficial for an agent even

FALL 1994 41

Articles

Incentive Compatible Mechanisms

E

T/P

Theorem: For all encounters in all sub-additive TODs, when
using a PMM over all-or-nothing deals, no agent has an
incentive to hide a task.

Decoy Tasks

Sub-Additive

tidden_[Phantom | Decoy

-,/

Figure 11. Tables Summarizing Strategies, Given Protocols.

42 Al MAGAZINE

when all-or-nothing protocols are used. Look
at figure 11, where agent 1 would prefer to
just deliver its own letters and return to the
post office. By creating this decoy letter in the
middle node, it claims that it would have to
do a lot of extra work to carry out agent 2’s
delivery. It deceptively locks itself into its
original path. Again, notice the white arrows.
Because lying can be beneficial using an all-
or-nothing protocol, it must also be benefi-
cial sometimes when using mixed deals,
which are a superset. Thus, having filled out
one entry in the table, other entries can be
implied automatically.

Subadditive task-oriented domains are an
important domain class, but we can use oth-

er, more restrictive classifications to under-
stand task-oriented domains.

Concave Task-Oriented
Domains

Concave task-oriented domains are a subset of
subadditive task-oriented domains that satisfy
the following condition: Imagine that we
have two sets of tasks, X and Y, where X is a
subset of Y, and we come along with some
other set of tasks, Z. The cost Z adds to X, the
subset, is greater than or equal to the cost Z
adds to Y, the superset: ¢(X O Z2) — ¢(X) =
cY O Z) — ¢(Y). If a domain is concave, then
it is also subadditive (figure 12).

Figure 12 is actually a bit misleading
because it appears like such an obvious prop-
erty that it ought to hold for all reasonable
task-oriented domains, but it doesn't (see fig-
ure 12b).

Of the three task-oriented domains we
introduced originally, only the database
domain and the fax domain are concave. The
general postmen domain is not concave
unless graphs are restricted to trees. To see an
example of a nonconcave encounter in the
general postmen domain, consider the exam-
ple we gave for a beneficial decoy task. Agent
1 has to travel around the left nodes; let’s call
it X. Agent 2 has to travel around the right
nodes; let’s call Y the set of all dark-gray
nodes (that is, excluding the middle node
marked Z). Thus, X, the left nodes marked
with a 1, is a subset of Y, all the dark-gray
nodes. Agent 1 lies with a decoy task to the
node in the middle. This decoy task is set Z.
The amount of work that Z adds to the set X
is 0. The agent visits Z on the way at no extra
cost. However, the amount of work that Z
adds to Y, a superset of X, is 2. An agent
would have to make a special trip to visit all
Y, then visit Z; so, this example is not con-
cave.

Three-Dimensional Incentive-Compati-
ble Mechanism Table: If we return to the
table that we’ve been setting up, we can
examine an entirely new set of possibilities
(figure 13). The table is now three dimension-
al; the black arrows show that relationships
exist among the concave and the subadditive
dimensions of the table. For example, if hid-
ing letters is sometimes beneficial in concave
domains when a pure deal protocol is used,
then it will also sometimes be beneficial in
subadditive domains because a concave
domain is also always a subadditive domain.

The main thing to notice here is that con-
cave domains are considerably better behaved

with regard to lying. There are more T’s in the
concave part of the table; in particular, we
proved a theorem that says that in all con-
cave task-oriented domains, when using all-
or-nothing deals, no agent has any incentive
to hide tasks or to create phantom or decoy
tasks. There’s absolutely no incentive for
lying. It is the theorem that allows us to put
the middle row of T’s into the concave part of
the table.

Modular Task-Oriented Domains

We can make an even more precise classifica-
tion of task-oriented domains with the fol-
lowing definition: A modular task-oriented
domain is one in which the cost of combining
two sets of tasks, X and Y, into one large set is
exactly the sum of their separate costs minus
the cost of their intersection (you don’t want
to count the tasks that appear in both sets
twice): ¢(X O Y) =c(X) + c(Y) — c(X n Y). Any
modular domain is also a concave domain as
well as a subadditive domain.

In figure 14, the cost of the combined set
of X union Y is exactly the cost of the set X
plus the cost of the set Y minus the cost of
the intersection of X and Y; the middle
region isn’t counted twice in the cost calcula-
tion.

Of the three original task-oriented domains
we introduced, only the fax domain is
modular. The general postmen domain is
modular if you restrict the graphs that the
postmen visit to a star topology (the post
office in the middle and the other nodes con-
nected to it like spokes on a wheel). Modular
task-oriented domains are the most restrictive
category and the best behaved with regard to
lying, but even with modular task-oriented
domains, hiding tasks can sometimes be ben-
eficial if the agents are using general mixed-
deal protocols.

Three-dimensional incentive-compatible
mechanism table: Returning to our evolving
table, we add another layer to the third
dimension (figure 15). This modular layer has
more T’s. You can see that in moving from
subadditive to concave to modular, we
increase the percentage of T boxes, where
telling the truth is always the best policy for
an agent; however, there are still some residu-
al L's lurking in the table.

Designers who together could determine
that their domain was, for example, a modu-
lar task-oriented domain could look at this
table and decide, perhaps, to use a protocol
that has agents negotiating over all-or-noth-
ing deals; the designers would be confident in

Articles

Concavity

The cost Z adds to X is more than
the cost it adds to Y.
(Z-Xis asuperset of Z-Y)

Concave TODs

The Database Domain and Fax Domain are concave (not the
Postmen Domain, unless restricted to trees).

This example was not concave; Z
adds 0 to X, but adds 2 to its
superset Y (all blue nodes).

Figure 12. Concave Task-Oriented Domains.

the knowledge that none of the individual
companies building the agents would have
an incentive to conceal their tasks or create
false ones. The best policy here is really just
to tell the truth: simple, efficient, and stable.
In an article that appeared recently in the
Boston Globe (“A New Dimension in Decep-
tion”), Michael Schrage talked about software
agents that might choose to lie to further the
aims of their owners. For example, a schedul-
ing agent might falsely claim that its owner
has an appointment at a certain time to force
a group of people to set a meeting at a time
the agent wants to have the meeting and not
at some other time. Schrage was pretty good
at laying out the scenario, but he missed one

FALL 1994 43

Articles

Three-Dimensional Incentive
Compatible Mechanism Table

Theorem : For all encounters Concave

in all concave TODs, when

Hidden |Phantom | Decoy

[Hidden [Phantom | Decoy |

T/P

v La T/P

Figure 13. The Enlarged Strategy-Protocol Table.

Modularity

Modular TODs

The Fax Domain is modular (not the Database Domain nor the
Postmen Domain, unless restricted to a star topology).

Even in modular TODs, hiding tasks can
be beneficial in general mixed deals.

Figure 14. Modular Task-Oriented Domains.

44 Al MAGAZINE

crucial point: Sometimes, it’s possible to
design the rules of encounter so that lying is
simply not in anyone’s interest.

Related Work

This article only covers the tip of the iceberg.
First, task-oriented domains are only a small
class of encounters between agents; remem-
ber, we presented two other general classes:
state-oriented domains and worth-oriented
domains. We have carried out similar kinds of
protocol analysis in these more general types
of domain, and the situation becomes more
complicated. Lying, for example, is harder to
prevent in the more general encounters, but
we can still analyze properties of protocols,
such as efficiency and stability, and provide
guidelines for how agent designers might
want to build their systems.

Other work that’s going on in this general
direction within Al includes several recent
papers on coalition formation where there are
more than two agents (S. Ketchpel, S. Kraus, J.
Rosenschein, and G. Zlotkin); general
research into mechanism design (E. Ephrati,
S. Kraus, and M. Tennenholtz); research on
other models of negotiation among agents (S.
Kraus, K. Sycara, E. Durfee, V. Lesser, L.
Gasser, and P. Gmytrasiewicz); and research
on other consensus mechanisms, such as vot-
ing techniques, explored in work that Jeffrey
Rosenschein has carried out with E. Ephrati,
and economic models, such as those being
examined by M. Wellman.

Conclusions

What did we argue? First, by appropriately
adjusting the rules of encounter by which
agents must interact, we can influence the
private strategies that designers will rationally
build into their machines. When we can’t
have direct control of how multiple agents
will be built, we can exert indirect influence
by carefully designing the negotiation proto-
col.

Second, we pointed out that the interac-
tion mechanism can and should be designed
to ensure efficiency of the multiagent system.

Third, to maintain efficiency over time of
dynamic multiagent systems, the rules must
also be stable. It is not enough to figure out a
strategy that has good properties, such as effi-
ciency. The agent designers have to feel that
they should stick with this strategy; they
shouldn’t have any incentive to move to
another strategy. Stability is an important
part of multiagent systems.

Finally, we did our analysis with the use of
formal tools. Our commitment to the formal
design and analysis of protocols both makes
us more sensitive to issues such as efficiency
and stability and gives us the ability to make
definitive statements about them. Such tools
give us the leverage we need to design inter-
action environments for automated negotia-
tion.

Acknowledgments

This research has partially been supported by
the Leibniz Center for Research in Computer
Science at the Hebrew University of Jerusalem
and the Israeli Ministry of Science and Tech-
nology (grant 032-8284). The authors want to
thank their many colleagues who have
helped in the refinement of this research,
including Erik Brynjolfsson, Edmund Durfee,
Eithan Ephrati, Les Gasser, Mike Genesereth,
Barbara Grosz, Robin Hanson, Sarit Kraus,
Daniel Lehmann, Nati Linial, Ariel Rubin-
stein, Moshe Tennenholtz, Mario Tokoro, and
Avi Wigderson.

Suggestions for Further Reading

Avouris, M., and Gasser, L. 1992. Distributed Artifi-
cial Intelligence: Theory and Praxis. Boston, Mass.:
Kluwer Academic.

Binmore, K. 1992. Fun and Games: A Text on Game
Theory. Lexington, Mass.: D. C. Heath.

Conry, S.; Meyer, R.; and Lesser, V. 1988. Multistage
Negotiation in Distributed Planning. In Readings in
Distributed Artificial Intelligence, eds. A. Bond and L.
Gasser, 367-384. San Mateo, Calif.: Morgan Kauf-
mann.

Decker, K., and Lesser, V. 1993a. An Approach to
Analyzing the Need for Meta-Level Communica-
tion. In Proceedings of the Thirteenth Internation-
al Joint Conference on Artificial Intelligence,
360-366. Menlo Park, Calif.: International Joint
Conferences on Artificial Intelligence.

Decker, K., and Lesser, V. 1993b. A One-Shot
Dynamic Coordination Algorithm for Distributed
Sensor Networks. In Proceedings of the Eleventh
National Conference on Artificial Intelligence,
210-216. Menlo Park, Calif.: American Association
for Artificial Intelligence.

Ephrati, E., and Rosenschein, J. 1993. Distributed
Consensus Mechanisms for Self-Interested Hetero-
geneous Agents. In First International Conference
on Intelligent and Cooperative Information Sys-
tems, 71-79. Washington, D.C.: IEEE Computer
Society.

Ephrati, E., and Rosenschein, J. 1992. Reaching
Agreement through Partial Revelation of Prefer-
ences. In Proceedings of the Tenth European Confer-
ence on Artificial Intelligence, 229-233. Chichester,
U.K.: Wiley.

Ephrati, E., and Rosenschein, J. 1991. The Clarke
Tax as a Consensus Mechanism among Automated

Articles

Three-Dimensional Incentive
Compatible Mechanism Table

Modular

Figure 15. Categorizing Strategies Based on Domain and Protocol.

Agents. In Proceedings of the Ninth National Con-
ference on Artificial Intelligence, 173-178. Menlo
Park, Calif.: American Association for Artificial
Intelligence.

Etzioni, O.; Leash, N.; and Segal, R. 1993. Building
Softbots for unix, Preliminary Report, 93-09-01,
Dept. of Computer Science, Univ. of Washington.

Fudenberg, D., and Tirole, J. 1992. Game Theory.
Cambridge, Mass.: MIT Press.

Gasser, L. 1991. Social Conceptions of Knowledge
and Action: DAI Foundations and Open Systems
Semantics. Artificial Intelligence 47(1-3): 107-138.

Gmytrasiewicz, P.; Durfee, E.; and Wehe, D. 1991a.
A Decision-Theoretic Approach to Coordinating
Multiagent Interactions. In Proceedings of the
Twelfth International Joint Conference on Artificial
Intelligence, 62-68. Menlo Park, Calif.: Internation-
al Joint Conferences on Artificial Intelligence.

Gmytrasiewicz, P.; Durfee, E.; and Wehe, D. 1991b.
The Utility of Communication in Coordinating
Intelligent Agents. In Proceedings of the Ninth
National Conference on Artificial Intelligence,
166-172. Menlo Park, Calif.: American Association
for Artificial Intelligence.

Harsanyi, J. 1977. Rational Behavior and Bargain-
ing Equilibrium in Games and Social Situations.
Cambridge, U.K.: Cambridge University Press.

Kraus, S. 1993. Agents Contracting Tasks in Non-
Collaborative Environments. In Proceedings of the
Eleventh National Conference on Artificial Intelli-
gence, 243-248. Menlo Park, Calif.: American Asso-
ciation for Artificial Intelligence.

Kraus, S., and Wilkenfeld, J. 1991. Negotiations
over Time in a Multi-Agent Environment: Prelimi-
nary Report. In Proceedings of the Twelfth Interna-
tional Joint Conference on Artificial Intelligence,
56-61. Menlo Park, Calif.: International Joint Con-

FALL 1994 45

Articles

46 Al MAGAZINE

ferences on Artificial Intelligence.

Kraus, S.; Wilkenfeld, J.; and Zlotkin, G. 1992. Mul-
tiagent Negotiation under Time Constraints, Tech-
nical Report, CS-TR-2975, Dept. of Computer Sci-
ence, University of Maryland.

Luce, R., and Raiffa, H. 1957. Games and Decisions.
New York: Wiley.

Moses, Y., and Tennenholtz, M. 1989. On Coopera-
tion in a Multi-Entity Model. In Proceedings of the
Eleventh International Joint Conference on Artifi-
cial Intelligence, 918-923. Menlo Park, Calif.: Inter-
national Joint Conferences on Artificial Intelli-
gence.

Osborne, M., and Rubinstein, A. 1990. Bargaining
and Markets. San Diego, Calif.: Academic.
Rosenschein, J., and Zlotkin, G. 1994. Rules of
Encounter: Designing Conventions for Automated
Negotiation among Computers. Cambridge, Mass.:
MIT Press.

Roth, A. 1979. Axiomatic Models of Bargaining.
Berlin: Springer-Verlag.

Shoham, Y., and Tennenholtz, M. 1992. On the
Synthesis of Useful Social Laws for Artificial Agent
Societies. In Proceedings of the Tenth National
Conference on Artificial Intelligence, 276-281.
Menlo Park, Calif.: American Association for Artifi-
cial Intelligence.

Zlotkin, G., and Rosenschein, J. 1993a. A Domain
Theory for Task-Oriented Negotiation. In Proceed-
ings of the Thirteenth International Joint Confer-
ence on Artificial Intelligence, 416-422. Menlo
Park, Calif.: International Joint Conferences on
Artificial Intelligence.

Zlotkin, G., and Rosenschein, J. 1993b. Negotiation
with Incomplete Information about Worth: Strict
versus Tolerant Mechanisms. In Proceedings of the
International Conference on Intelligent and Coop-
erative Information Systems, 175-184. Washing-
ton, D.C.: IEEE Computer Society.

Zlotkin, G., and Rosenschein, J. 1993c. The Extent
of Cooperation in State-Oriented Domains: Negoti-
ation among Tidy Agents. Computers and Artificial
Intelligence 12(2): 105-122.

Zlotkin, G., and Rosenschein, J. 1991a. Coopera-
tion and Conflict Resolution via Negotiation
among Autonomous Agents in Noncooperative
Domains. IEEE Transactions on Systems, Man, and
Cybernetics 21(6): 1317-1324.

Zlotkin, G., and Rosenschein,]J. 1991b. Incomplete
Information and Deception in Multi-Agent Negoti-
ation. In Proceedings of the Twelfth International
Joint Conference on Artificial Intelligence,
225-231. Menlo Park, Calif.: International Joint
Conferences on Artificial Intelligence.

Zlotkin, G., and Rosenschein, J. 1990. Negotiation
and Conflict Resolution in Non-Cooperative
Domains. In Proceedings of the Eighth National
Conference on Artificial Intelligence, 100-10S5.
Menlo Park, Calif.: American Association for Artifi-
cial Intelligence.

Zlotkin, G., and Rosenschein, J. 1989. Negotiation
and Task Sharing among Autonomous Agents in
Cooperative Domains. In Proceedings of the

Eleventh International Joint Conference on Artifi-
cial Intelligence, 912-917. Menlo Park, Calif.: Inter-
national Joint Conferences on Artificial Intelli-
gence.

Jeffrey S. Rosenschein received his B.A. in applied

mathematics from Harvard Uni-
versity (1979) and his M.S. (1981)
and Ph.D. (1986) in computer sci-
ence from Stanford University. He
is currently a senior lecturer at
the Institute of Computer Science
at the Hebrew University,

N) || Jerusalem, Israel. His research

interests revolve around issues of
cooperation and competition among agents and
the use of economic theory, voting theory, and
game theory to establish appropriate foundations
for distributed Al. He and Gilad Zlotkin cowrote a
book for MIT Press (1994) on their research entitled
“Rules of Encounter: Designing Conventions for
Automated Negotiation among Computers.”

Gilad Zlotkin received his Ph.D. in computer sci-
ence from the Hebrew University
in Jerusalem, Israel. He is current-
ly a research fellow at the Center
for Coordination Science at the
Sloan School of Management at
the Massachusetts Institute of
Technology. His research involves
the use of game and group deci-
sion theories to design automated
coordination mechanisms. His current research
activities include coordination theory within the
scope of business process reengineering, mecha-
nisms for coalition formation, and meeting-
scheduling systems.

