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We address the trade-offs among delay, loss, and bandwidth in the design of coupled-resonator optical wave-
guide (CROW) delay lines. We begin by showing the convergence of the transfer matrix, tight-binding, and
time domain formalisms in the theoretical analysis of CROWs. From the analytical formalisms we obtain
simple, analytical expressions for the achievable delay, loss, bandwidth, and a figure of merit to be used to
compare delay line performance. We compare CROW delay lines composed of ring resonators, toroid resona-
tors, Fabry–Perot resonators, and photonic crystal defect cavities based on recent experimental results re-
ported in the literature. © 2004 Optical Society of America
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1. INTRODUCTION
Optical microresonators have been attracting consider-
able theoretical and experimental attention because they
have applications in fields ranging from fundamental
physics to telecommunications systems.1 Resonators
with effective volume V < (l0 /n)3 that possess only one
electromagnetic mode in a given spectral region, such as
the emission region of an inverted atomic population,
have been essential for studies of atom–light interactions
such as cavity quantum electrodynamics and the Purcell
effect.1 Microresonator lasers may have low thresholds
because both spontaneous emission and stimulated emis-
sion can take place in the same single electromagnetic
mode.1 Resonators can also be used as optical filters and
as add–drop multiplexers for optical communication
systems.2–4

A coupled-resonator optical waveguide (CROW) con-
sists of a chain of resonators in which light propagates by
virtue of the coupling between adjacent resonators.5–7

CROWs promise to be a new method for controlling the
group velocity of optical pulses and thus potentially to
find applications in storing and buffering optical pulses.8,9

Dispersion-related distortion in coupled-resonator struc-
tures was explored previously.7,10 In this paper we study
the relations among the different theoretical treatments
of CROWs, and we concentrate on the practical issues of
this application of resonators, dealing with time delay,
bandwidth, and loss.

The paper is organized as follows: In Section 2 we
show the convergence of three theoretical frameworks,
the tight-binding method, the transfer matrix method,
and the temporal coupled-mode approach, using the spe-
cific example of ring resonators; in Section 3 the ring reso-
nator example is generalized to Fabry–Perot and photo-
nic crystal cavities; in Section 4 we derive several simple
and intuitive equations for the delay, loss, and bandwidth
of a CROW; in Section 5 we define a figure of merit of a
CROW delay line that is generally applicable to
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resonator-based devices; in Section 6 we compare the per-
formance of CROW delay lines made from various types of
resonator, and we discuss their merits and demerits in
Section 7.

2. THEORETICAL APPROACHES
The theory of CROWs and other coupled-resonator sys-
tems has been explored extensively in recent years. For
a comprehensive understanding of CROWs, the assump-
tions that are inherent in and the relationships among
the different theoretical approaches should be identified,
so the appropriate model is used to study the problem at
hand. The three formalisms most commonly used to
study CROWs are the tight-binding approximation,5,11

the transfer matrix method,12–15 and temporal coupled-
mode theory.4,16 In this section we review these ap-
proaches and show that, whereas they may seem dispar-
ate at the outset, the three formalisms are consistent with
one another in the limit of weak interresonator coupling.

To show the convergence of the theoretical approaches,
we choose first to study a specific model of a sequence of
ring resonators that are coupled serially in a phase-
matched manner as in Fig. 1 for the following reasons:

1. Ring resonators can be made to support a single
transverse mode in a given spectral region, which is an
essential feature in its practical and scientific applica-
tions. This property is in contrast to those of disk or
spherical resonators with radii much greater than the op-
tical wavelength.

2. Evanescent wave coupling between ring resonators
and optical waveguides can be achieved straightforwardly
and in planar geometry by simple lithographic tech-
niques.

3. The simple modal structure and coupling mecha-
nism facilitate an essentially exact analytical treatment
of arbitrary sequences of coupled ring resonators and thus
a meaningful comparison with experiments.
2004 Optical Society of America
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The results that we obtain from the analysis of the ring
resonators will be generalized in Section 3 to photonic
crystal and Fabry–Perot cavities.

A. Tight-Binding Analysis
An infinite CROW consisting of an arbitrary type of reso-
nator can be analyzed by use of a tight-binding approach,
in analogy to solid-state physics5,6,11 in which a propagat-
ing mode is expressed as an equiamplitude phase-locked
excitation of the local mode of each resonator EV(r). In
the limit of weak, nearest-neighbor interresonator cou-
pling, dispersion relation v(K) is

v~K ! 5 VF1 2
Da

2
1 g cos~KL!G , (1)

where V is the resonance frequency of the individual reso-
nator, K is the Bloch wave vector, L is the periodicity, and
Da and g are

Da 5 E d3r@e~r! 2 e0~r!#EV~r! • EV~r!, (2a)

g 5 E d3r@e0~r 2 Lẑ! 2 e~r 2 Lẑ!#

3 EV~r! • EV~r 2 Lẑ!. (2b)

e(r) is the dielectric coefficient of the CROW and e0(r) is
the dielectric coefficient of an individual resonator.5

The tight-binding model is mathematically elegant and
applies to any kind of resonator. It has been used exten-
sively in studies of both linear and nonlinear optical
propagation in CROWs.10,17–19 This theoretical frame-
work most readily lends itself to the analysis of infinitely
long CROWs, or to those in which periodic boundary con-
ditions apply, that consist of identical resonators.

B. Transfer Matrix Analysis
In practice, the number of coupled resonators in a CROW
is finite and possibly not large; hence we need a design-
oriented analysis tool that can deal with any number of
resonators 1 < N , `. The transfer matrix
approach12–15 is particularly powerful in that it can deal
with any arbitrary sequence of resonators and couplers,
which is a prerequisite to general optical filter
design.2,4,20

For ring resonators, a special and important wave that
can be excited is one in which each resonator supports a
clockwise or a counterclockwise traveling wave with a
sense of circulation opposite that of its immediate neigh-
bors, as in Fig. 2. This circulating wave is not an eigen-
mode of the CROW but rather a superposition of the
Bloch eigenmodes that consist of standing waves in each
resonator shown in Fig. 1.15 One can calculate the trans-

Fig. 1. Infinite chain of coupled ring resonators.
mission through the CROW by successively multiplying a
transfer matrix that characterizes the coupling between
two adjacent rings and another matrix that accounts for
the field propagation in the rings. Using the notation
from Fig. 2, we describe the coupling region by the scat-
tering matrix

S an11

bn11
D 5 PS an8

bn8 D , P [
1

k
F 2t 1

21 t* G , (3)

where t is the transmission coefficient, k is the dimension-
less coupling coefficient over the coupling length, and
utu2 1 uku2 5 1 for lossless coupling. As the field propa-
gates about the ring, it accumulates a phase shift and
may be attenuated, such that

S an8
bn8 D 5 QS an

bn
D , Q [ F 0 exp~2ipbR !

exp~ipbR ! 0 G .
(4)

b is the propagation constant in the ring as given by b
5 nv/c, where n is the frequency-dependent effective in-
dex. b may include an imaginary part to account for loss
or gain. Combining Eqs. (3) and (4), we have

S an11

bn11
D 5 PQS an

bn
D . (5)

Matrices P and Q can be specified at each frequency to ac-
count for any frequency dependence of the effective index,
loss, and transmission and coupling coefficients. P and Q
can also be specified differently for each resonator in the
CROW to account for differences in resonator properties
and coupling coefficients.

By successively multiplying P and Q, we obtain a rela-
tion among the drop, through, and input ports shown in
Fig. 2:

S aN11

bN11
D [ FA B

C DG S a0

b0
D . (6)

For a single input to the waveguide, a0 , aN11 5 0.
Therefore the transfer functions at the through and the
drop ports are, respectively,

b0

a0
5 2

A

B
, (7a)

bN11

a0
5 C 2

AD

B
. (7b)

A key result of the transfer matrix approach is that it is
consistent with the tight-binding method. Whereas the
transfer matrices are outwardly quite different from the
tight-binding analysis, the two methods give dispersion

Fig. 2. Traveling wave in a finite chain of ring resonators.
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relations of the same form in the limit of weak coupling.
As was detailed in Ref. 15, the dispersion relation as de-
rived by application of the Bloch condition to the transfer
matrices is

sin~bpR ! 5 6Im~k!cos~KL!, (8)

where K is the Bloch wave vector and L is the periodicity
of the structure. In the limit of weak coupling, uku ! 1,
the dispersion relation reduces to

v~K ! 5 VF1 6
uku

mp
cos~KL!G , (9)

where m 5 VnR/c is the azimuthal modal number.
Equation (9), derived from the transfer matrices, is of a
form identical to that of Eq. (1) as derived from the tight-
binding approximation with g in Eq. (1) replaced by
uku/(mp).

C. Time Domain Analysis
Another powerful approach in the study of coupled-
resonator systems is the time domain or temporal
coupled-mode analysis. A time domain picture can also
more easily facilitate the study of pulse propagation in
the presence of certain optical nonlinearities, such as the
Kerr effect.21,22 Little et al. previously analyzed coupled
ring resonators by using temporal coupled-mode theory.4

We shall see that the transfer matrices, and hence the
tight-binding model for an infinitely long chain, are also
consistent with this approach.

As matrix analysis is a frequency-domain approach, the
temporal dynamics is related to the transfer matrices by
the Fourier transform. The field amplitudes in the ma-
trix approach, an and bn , are the frequency-dependent
Fourier components of the field. From the coupling ma-
trices and for unidirectional, phase-matched coupling
such that k* 5 2k,23 by using Eqs. (3) and (4) we find
that

2ian sin~bpR ! 5 iuku~an11 1 an21!. (10)

As b 5 vn/c in the same way that Eq. (8) can be approxi-
mated by Eq. (9) in the limit of weak coupling, the left-
hand side of Eq. (10) can be linearized such that

ivan 2 iVan 5
iuku~21 !mV

2mp
~an11 1 an21!. (11)

Taking the inverse Fourier transform of Eq. (11), we find
that the evolution of the field in the time domain is

dãn~t !

dt
2 iVãn~t ! 5

i~21 !mukuV

2mp
@ ãn11~t ! 1 ãn21~t !#.

(12)

Attenuation or gain can be introduced by the addition of
an imaginary part to V. Substituting the form of the
pulse envelope, An(t) 5 ãn(t)exp(2iVt), into Eq. (12)
yields

dAn~t !

dt
5

i~21 !mukuV

2mp
@An11~t ! 1 An21~t !#. (13)

Equation (13) represents a set of linear first-order dif-
ferential equations that can be solved for specific initial
conditions. In analogy to an array of coupled
waveguides, the solution to Eq. (13) for the initial condi-
tions A0(t 5 0) 5 1 and AnÞ0(t 5 0) 5 0 is

An~t ! 5 inJnS t

Text
D , (14)

where Jn is the nth-order Bessel function and Text
5 (21)mmp/ukuV.23 Appropriate superpositions of
Bessel functions can be used to satisfy any arbitrary ini-
tial conditions and can thus describe the evolution of an
arbitrary pulse in an infinite ring resonator CROW in a
purely temporal picture.

Equation (12) is exactly identical to the result obtained
previously by Little et al., whose analysis is based com-
pletely in the time domain.4 Reynolds et al. have also de-
rived the same result for coupled defects in photonic crys-
tals with nearest-neighbor coupling.16 That result shows
that the transfer matrix method is identical to the tempo-
ral coupled-mode theory in the limit of weak, phase-
matched coupling. This equivalence is essential because
it allows for the generalization of the results obtained by
use of a particular approach to other structures for which
that approach does not strictly apply.

The convergence of the time domain analysis, the tight-
binding approximation, and the transfer matrices is of
fundamental interest, as it illustrates that these different
points of view are consistent with one another within the
inherent assumptions of the models and in the limit of
weak coupling.

3. PHOTONIC CRYSTAL DEFECT AND
FABRY–PEROT CAVITIES
Even though our derivations have been based on the ex-
ample of ring resonators thus far, in this section we con-
sider ways in which to generalize the ring resonator re-
sults to two other important classes of resonator: the
photonic crystal defect and Fabry–Perot cavities.

Because the modes of photonic crystal defect cavities
cannot be readily decomposed into traveling plane waves,
the analysis of coupled photonic crystal defect cavities by
transfer matrix methods has been limited.24,25 However,
because the temporal coupled-mode equations for the ring
resonator and the photonic crystal defect cavity CROWs
are identical,16 the conclusions that we draw from the
ring resonator example hold for the latter case with
uku/(mp) replaced g in Eq. (2b).

The Fabry–Perot CROWs as in Fig. 3 can be analyzed
in the same way as the photonic crystal defect cavities as
well as by use of transfer matrices. The coupling will be
determined by the reflection and transmission coefficients
of the end mirrors of each cavity.26 However, coupling co-
efficient k is generally complex, not imaginary, in the case
of phase-matched codirectional coupling as derived from
coupled-mode theory.23,26 Moreover, because Fabry–
Perot resonators are one dimensional, they can be com-
pletely described by 2 3 2 transfer matrices,26 in contrast
to ring resonators, which require 4 3 4 transfer matrices
for modeling the Bloch modes.15 Therefore there are only
two Bloch modes at each frequency rather than four as for
the ring resonator CROW.
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For a general complex coupling coefficient between the
Fabry–Perot (one-dimensional) cavities, k 5 k0 exp(iu),
the dispersion relation becomes

v~K !

V
5 1 1

~21 !mk0

mp
@sin~KL 2 u!#. (15)

The dispersion relation is of the same form as Eq. (9), but
the 6 is absent and u can be arbitrarily specified, depend-
ing on the nature of the coupling. Whereas it does not
significantly alter the general characteristics of a CROW,
the presence of the phase shift modifies the phase velocity
of the CROW Bloch modes. Nonetheless, the results dis-
cussed thus far for the ring CROW still hold for a chain of
coupled linear resonators with pR replaced by L, the
length of the cavity.

4. DELAY, LOSS, AND BANDWIDTH
Using dispersion relation (9) and the transfer matrices for
the specific case of ring resonators, we now proceed to de-
rive and verify the expressions that highlight the trade-
offs among delay, bandwidth, and loss of a CROW. As
discussed in Section 3, the results that we obtain can eas-
ily be generalized to other common types of resonator.
The immediate consequence of Eq. (9) is that group veloc-
ity uvgu [ dv/dK 5 LVuk/(mp)sin(KL)u is dependent on
coupling coefficient uku. As uku can be controlled by the
separation between adjacent resonators, we can in prin-
ciple achieve arbitrarily large slowing down of optical
pulses. We can also control the delay by changing the re-
fractive index of the resonators or the coupling region
through the electro-optic or thermo-optic effect.27–30

However, as uku decreases, so does the bandwidth of the
CROW, and the overall loss of the CROW becomes more
sensitive to the intrinsic losses in the individual resona-
tor. The latter effect occurs because the light spends
more time in a resonator before tunneling to its neighbor.

In the absence of other mechanisms such as Kerr
nonlinearity21,22 to compensate for group-velocity disper-
sion, an optical pulse propagating in a CROW should
have a central frequency near the zero GVD region of the
dispersion curve (]2K/]v2 ' 0) to minimize the accumu-
lated distortion. This condition occurs at the center fre-
quency, v ' V, where the group velocity is maximum,
vg,max 5 ukuVL/(mp). From Eq. (9), a CROW band spans
the frequency range Dv 5 2Vuku/(mp). Consequently
we define the usable bandwidth of a CROW as half of this
total bandwidth centered at V:

Fig. 3. Coupled Fabry–Perot cavities. (a) Epitaxilly grown; (b)
gratings on a waveguide.
Dvuse [
ukuc

pnR
. (16)

The periodicity, L, is taken to be approximately equal to
2R. Thus the temporal delay of a pulse propagating
through the whole length of the CROW is determined by
the distance traversed in the CROW and the group veloc-
ity at V:

t 5
pnRN

ukuc
. (17)

From Eq. (17) we observe that the CROW effectively
acts as a conventional waveguide with group velocity c/n
but with a length of

Leff 5
ct

n
5

pRN

uku
, (18)

i.e., ;1/uku times longer than the CROW. Because of the
reduced group velocity provided by the feedback among
the coupled resonators, the total length of the CROW,
NL, is contracted by a factor of S 5 (p/2)uku. S repre-
sents the slowing factor of the group velocity, c/(nvg,max).
The contraction in the spatial length also applies to a
pulse propagating through the structure, such that a
100-ps pulse in a fiber, which has a spatial extent of ;2
cm, contracts to a length of ;3 mm in a CROW with uku
5 0.1.

Furthermore, the loss from the input to the output of
the CROW is intuitively given by the product of the loss
per unit length and Leff :

a 5
apRN

uku
5

mpN

ukuQ int
, (19)

where exp(2a) is the net power attenuation coefficient of
the CROW, exp(2a2pR) is the power attenuation in the
waveguides of the constituent resonators, and Q int is the
intrinsic quality factor or Q factor of the resonator.
Equations (16), (17), and (19) facilitate the straightfor-
ward design of CROW delay lines.

If only a specific loss is tolerated, the maximal delay
achievable is independent of uku. To illustrate this, we de-
fine the maximum tolerable loss as exp(2a) 5 exp(21).
Using Eqs. (19) and (17), we find that

tmax 5 n/ca. (20)

This result makes intuitive sense because light must
travel the same optical length to achieve a given delay.
The role of the resonators is now clear: The weakly
coupled resonators make this net length more compact.

To verify the simple and intuitive equations, Eqs. (16),
(17), and (19), we compare them with numerical results
obtained from the transfer matrices. In coupled-
resonator filter synthesis, the coupling constants must be
at specific ratios to prevent ripples in the passband, which
cause significant deviations from the ideal, infinite
CROW characteristics.4,31,32 For a maximally flat trans-
fer function, the interresonator couplings are not constant
throughout the structure,4,32,33 hence Eqs. (16), (17), and
(19) do not strictly apply. However, we may still obtain
fairly flat transfer functions over Dvuse by having a single
interresonator coupling constant, k, and a different
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waveguide–resonator coupling, k i . Figure 4 shows the
passband spectra for a finite CROW with a single k and a
different k i . As shown in Fig. 4 one pair of k and k i is
sufficient to produce a flat transmission spectrum over a
large range in the number of resonators. The flat re-
sponses enable us to use finite structures to mimic an in-
finitely long CROW characterized by a single coupling
constant.

Therefore, using the parameters in Table 1 when N is
fixed to be 10 and k is varied, and setting k i 5 20.43i and
k 5 20.1i when N is varied, we compare Eqs. (16), (17),
and (19) with the calculations from the transfer matrices.
As shown in Fig. 5, the expressions are in excellent agree-
ment with the numerical calculations. In the plots of the
delay times, the theoretical results as indicated by the
solid curves in Fig. 5 coincide most closely with the data
points that correspond to slight waveguide losses (;4 dB/
cm). This occurs because the losses smooth out the
transmission spectrum ripples, making the passband of
the finite CROW a better approximation to an infinitely
long CROW.

5. FIGURE OF MERIT
To compare CROW delay lines composed in a general way,
independently of material systems and resonator sizes,
we need a benchmark with which to determine the qual-
ity of a delay line. Although tmax is a useful criterion, it

Fig. 4. Passbands of coupled-resonator structures with identical
interresonator coupling uku throughout and different waveguide–
resonator coupling uk iu. (a) The number of resonators is fixed
and the number of coupling constants is varied. (b) The number
of coupling constants is fixed and N is varied.
does not account for the usable bandwidth. An alterna-
tive approach is to compare the intrinsic and coupling
losses in the resonators. The intrinsic losses of each
resonator that are due to absorption and scattering are
characterized by a time T int . The decay of resonator
power caused by coupling to adjacent neighbors is charac-
terized by Text and the associated Q, Qext 5 VText .

uTextu, from Eq. (14), naturally defines the characteris-
tic lifetime of the excitation that is due to the coupling, as
it sets the temporal width of the field in the initially ex-
cited resonator. It is also the time required for a pulse
centered at V to traverse a single resonator, i.e., uTextu
5 L/vg,max . At t 5 uTextu the energy at the zeroth reso-
nator will have decayed to uJ0(1)u2 ' 0.59 of its original
value.

To be useful as a delay line, Text ! T int or equivalently
Qext ! Q int . Therefore a useful figure of merit (FOM) for
CROW delay lines is

FOM [ Q int /Qext . (21)

The figure of merit is also useful for other resonator-based
devices or geometries for comparing the relative roles of
Q int and Qext , for example, in the determination of the
loaded Q, 1/QL 5 1/Q int 1 1/Qext .

Substituting uTextu 5 mp/ukuV from Eq. (14) into Qext
5 VuTextu, we find that

Qext 5 mp/uku. (22)

Figure of merit (21), in turn, simplifies to

FOM 5
uku

apR
5

Dvuset

atot
5 tmaxDvuse . (23)

The second equality reveals that the figure of merit can
alternatively be viewed as a balancing of bandwidth, loss,
and delay.

6. COMPARING DIFFERENT RESONATORS
Table 2 compares 10-resonator-long delay lines with uku
5 0.1 (1% power coupling) composed of resonators in dif-
ferent material systems at 1.55 mm. The results empha-
size the trade-offs between delay and bandwidth. For
the semiconductor, polymer, and Hydex ring resonators
and the photonic crystal cavities, we use some of the high-
est experimental Q int values of a single, passive resonator
reported in the literature to date and their corresponding
resonator sizes.34–36,38,39

A particular issue with ultrahigh-Q resonators is that
excess coupling losses may become dominant over intrin-
sic resonator Q. The source of the excess coupling loss is
that the neighboring resonators act as a dielectric pertur-
bation to an individual resonator. In the ring microreso-
nators with lower Q int values, bending and scattering
losses typically predominate.40 Because the coupling is

Table 1. zk z and the Corresponding zkiz Used in
Fig. 5 for NÄ10

Coupling Coefficient

uku 0.1 0.15 0.2 0.25 0.3 0.35
uk iu 0.43 0.55 0.6 0.65 0.7 0.75
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Fig. 5. Comparing analytical expressions for loss and delay with numerical results by use of the transfer matrices for various propa-
gation losses in the resonators. Solid curves, theoretical results; markers, numerical results. R 5 100 mm and n 5 1.54.

Table 2. Comparison of CROW Delay Lines Consisting of NÄ10 Resonators for zkzÄ0.1

Type of Resonator Q int Net Loss (dB) Delay Bandwidth tmax Figure of Merit

Semiconductor ring 5000 33 31 ps 51 GHz 4 ps 1.3
(n ; 3, R ; 10 mm)a

Polymer ring 2.4 3 104 12 53 ps 30 GHz 20 ps 3.8
(n ; 1.57, R ; 32 mm)b

Hydex ring 4 3 105 0.9 67 ps 24 GHz 329 ps 49
(n ; 1.6, R 5 40 mm)c

Fiber ring 8 3 107 10 152 ns 11 MHz 66 ns 4.3
(n 5 1.45, R 5 10 cm)d

Silica toroid 108 5 3 1023 91 ps 17 GHz 82 ns 9026
(n ; 1.45, R 5 60 mm)e

Semiconductor Fabry–Perot 2 3 106 0.06 30 ps 53 GHz 2.2 ns 724
(n ; 3, L 5 30 mm)

Photonic crystal defect 4.5 3 104 5 41 ps 39 GHz 37 ps 9
(g 5 2 3 1024)f

a Ref. 34.
b Ref. 35.
c Ref. 36.
d Includes excess coupling losses.
e Ref. 37, neglects excess coupling losses.
f Refs. 38 and 39.
assumed to be lossless in our analysis, the excess loss of
the coupler should be accounted for by the loss of the reso-
nator. Therefore, for a fiber ring resonator, in which ma-
terial, bending, and splice losses are negligible, the loss in
calculating the Q factor in Table 2 is taken to be the ex-
cess loss of a commercial fused fiber coupler [;0.2 dB
(Ref. 41)].

As no excess coupling loss values for ultrahigh-Q toroid
resonators have been reported to date, we neglect this ef-
fect in Table 2 and simply use the highest reported intrin-
sic Q value (Q int ' 108) of a single resonator.37,42 Ex-
trapolating from this Q value, the loss per revolution
inside the toroid resonator is ;1024 dB. For excess cou-
pling loss to be negligible, it must be !1024 dB. Even for
an excess coupling loss of 0.01 dB, the Q value in our com-
parison drops to 106, the net loss increases to 0.5 dB, tmax
becomes 0.82 ns, and the figure of merit is reduced to 90.
However, the coupling between a fiber taper and an
ultrahigh-Q silica microsphere has been experimentally
shown to be nearly (.99.97%) lossless43; therefore the
coupling of toroid resonators may be nearly ideal as well.

CROWs based on Fabry–Perot cavities with an opera-
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tional wavelength near 600 nm were recently
demonstrated.44 The coupling between Fabry–Perot
resonators can be controlled by Bragg reflection. Hence,
to compare this structure with the ring resonators for
which the coupling is due to evanescent decay of the field
outside the resonator, one takes the resonator Q of the
coupled Fabry–Perot structure not as the Q of the com-
posite structure of the cavity and Bragg layers but rather
as the cavity by itself. The loss is thus determined by
material and waveguide loss, which is taken to be 0.2
dB/cm for the comparison, assuming that the Bragg grat-
ings are etched on a waveguide. The losses at the cou-
pling regions are ignored.

Experimental progress in photonic crystal coupled-
cavity structures has been burgeoning over the past few
years.9,16,45–48 To compare photonic crystal defect cavity
CROWs with the ring and Fabry–Perot resonators we
take g to be 2 3 1024, which is approximately equal to
the value of uku/(mp) for the other integrated optical reso-
nators considered.

7. DISCUSSION
As evidenced by the comparison in Table 2, application re-
quirements, such as for the loss, bandwidth, and material
system, dictate the type of resonator that will be the most
suitable. To achieve long delays without too much at-
tenuation requires low-loss (high-Q) resonators. High-Q
resonators also allow for more flexibility in the design be-
cause the CROW can be made longer with a higher cou-
pling coefficient to increase the bandwidth without se-
verely exacerbating the loss. For our example of uku
5 0.1 and cavity lengths of tens of micrometers, for sub-
stantial delay with an attenuation of ;10 dB, Q values of
105 –106 are necessary.

Although the use of ultrahigh-Q resonators for a
CROW is an attractive option, there have not been many
reported experimental demonstrations of coupling of more
than a few of these resonators together.49 Moreover, thus
far there have not been extensive attempts to integrate
these types of resonator with other planar components.
Therefore, with the technological and experimental
progress to date, a more practical approach may be to use
resonators with lower-Q values as the constituent ele-
ments of a CROW.

Ring resonators and Fabry–Perot resonators are prom-
ising for the realization of CROWS. Fabry–Perot cavi-
ties have the advantage that the coupling can be precisely
controlled by Bragg reflection. However, Fabry–Perot
resonators fabricated by epitaxial growth or thin-film
deposition cannot be readily integrated with planar tech-
nologies. A lithographically defined grating on a wave-
guide requires a multistep fabrication process that has al-
ready been well exploited in distributed-feedback and
distributed Bragg reflector structures.

Even though the patterning of gratings is well estab-
lished, the option of using ring resonators should not be
neglected. Ring resonators are more compact than a lin-
ear chain of Fabry–Perot resonators and can be fabri-
cated in planar integrated light-wave circuits in a single
lithographic step in the case of horizontal coupling. Re-
cently, loss-compensated ring resonators in GaInAsP–InP
were reported50; thus a lossless or even an amplifying mi-
croring CROW may be feasible. As CROWs are typically
narrowband devices, even slight deviations in resonator
sizes will alter the passband spectrum in the form of the
Vernier effect.31,32 To achieve ideal device behavior, post-
fabrication tuning of the resonators through UV
trimming,51,52 the thermo-optic effect,53 or the electro-
optic effect35 maybe required. However, there have al-
ready been impressive demonstrations of flat-passband,
low-loss, high-order (up to 11th-order) coupled microring
resonator filters,36 illustrating that the coupled ring reso-
nators may indeed be a practical building block for inte-
grated optical devices. Recent advances in the fabrica-
tion of ring resonators continue to facilitate the
achievement of passive and active ring resonator CROW
delay lines in integrated optics.

8. CONCLUSION
In summary, we have addressed a number of key issues in
designing CROW delay lines made from ring resonators.
We have shown the convergence of the tight-binding ap-
proximation, the transfer matrix method, and the tempo-
ral mode coupling analysis. Achievable delay, available
bandwidth, and loss are given by simple, analytical ex-
pressions that are in excellent agreement with numerical
results from the transfer matrix method. We have pro-
posed a figure of merit with which to compare various
CROW delay lines that is a ratio between the lifetime of
an individual resonator and the lifetime that is due to
resonator coupling. This comparison offers an easy and
quick gauge for determining the feasibility of and the
minimum intrinsic resonator Q necessary for a CROW de-
lay line. We examined experimental progress in optical
resonators to find that CROW delay lines with band-
widths of ;50 GHz and delays of the order of 100 ps
should be feasible with current technologies.
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